Skip to content

Latest commit

 

History

History
98 lines (68 loc) · 3.43 KB

README.md

File metadata and controls

98 lines (68 loc) · 3.43 KB
page_type languages products description urlFragment
sample
python
html
azure-functions
Predict ImageNet Classes with PyTorch and Azure Functions
functions-python-pytorch-tutorial

Make machine learning predictions with PyTorch and Azure Functions

Run locally

Note, the instructions below assume you are using a Linux environment.

Activate virtualenv

  1. mkdir start
  2. cd start
  3. python -m venv .venv
  4. source .venv/bin/activate

Initialize function app

  1. func init --worker-runtime python
  2. func new --name classify --template "HTTP trigger"

Copy resources into the classify folder, assuming you run these commands from start

  1. cp ../resources/predict.py classify
  2. cp ../resources/labels.txt classify
  3. Add the following dependencies to start/requirements.txt, installing some numerical libraries and PyTorch itself:
azure-functions
requests
numpy==1.15.4
https://download.pytorch.org/whl/cpu/torch-1.4.0%2Bcpu-cp36-cp36m-win_amd64.whl; sys_platform == 'win32' and python_version == '3.6'
https://download.pytorch.org/whl/cpu/torch-1.4.0%2Bcpu-cp36-cp36m-linux_x86_64.whl; sys_platform == 'linux' and python_version == '3.6'
https://download.pytorch.org/whl/cpu/torch-1.4.0%2Bcpu-cp37-cp37m-win_amd64.whl; sys_platform == 'win32' and python_version == '3.7'
https://download.pytorch.org/whl/cpu/torch-1.4.0%2Bcpu-cp37-cp37m-linux_x86_64.whl; sys_platform == 'linux' and python_version == '3.7'
https://download.pytorch.org/whl/cpu/torch-1.4.0%2Bcpu-cp38-cp38-win_amd64.whl; sys_platform == 'win32' and python_version == '3.8'
https://download.pytorch.org/whl/cpu/torch-1.4.0%2Bcpu-cp38-cp38-linux_x86_64.whl; sys_platform == 'linux' and python_version == '3.8'
torchvision==0.5.0
  1. Install dependencies with pip install --no-cache-dir -r requirements.txt

Update the function to run predictions

  1. Add an import statement to classify/__init__.py
import logging
import json
import azure.functions as func

from .predict import predict_image_from_url

  1. Replace the entire contents of the main function with the following code:
def main(req: func.HttpRequest) -> func.HttpResponse:
    image_url = req.params.get('img')
    logging.info('Image URL received: ' + image_url)

    results = predict_image_from_url(image_url)

    headers = {
        "Content-type": "application/json",
        "Access-Control-Allow-Origin": "*"
    }

    return func.HttpResponse(json.dumps(results), headers = headers)

Run the local function

  1. Run func start from within the start folder with the virtual environment activated.
  2. Run http://localhost:7071/api/classify?img=https://raw.githubusercontent.com/gvashishtha/functions-pytorch/master/resources/assets/Bernese-Mountain-Dog-Temperament-long.jpg

Publish to Azure

  1. func azure functionapp publish <appname> --build local
  2. Test by using the suggested URL and appending &img=https://raw.githubusercontent.com/gvashishtha/functions-pytorch/master/resources/assets/Bernese-Mountain-Dog-Temperament-long.jpg at the end of the query string.

License

See LICENSE.

Contributing

This project has adopted the Microsoft Open Source Code of Conduct. For more information see the Code of Conduct FAQ or contact [email protected] with any additional questions or comments.