-
Notifications
You must be signed in to change notification settings - Fork 0
/
MuZero.py
615 lines (461 loc) · 19 KB
/
MuZero.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
# https://arxiv.org/src/1911.08265v1/anc/pseudocode.py
# Lint as: python3
"""Pseudocode description of the MuZero algorithm."""
# pylint: disable=unused-argument
# pylint: disable=missing-docstring
# pylint: disable=g-explicit-length-test
from __future__ import absolute_import
from __future__ import division
from __future__ import google_type_annotations
from __future__ import print_function
import collections
import math
import typing
from typing import Dict, List, Optional
import numpy
import tensorflow as tf
##########################
####### Helpers ##########
MAXIMUM_FLOAT_VALUE = float('inf')
KnownBounds = collections.namedtuple('KnownBounds', ['min', 'max'])
class MinMaxStats(object):
"""A class that holds the min-max values of the tree."""
def __init__(self, known_bounds: Optional[KnownBounds]):
self.maximum = known_bounds.max if known_bounds else -MAXIMUM_FLOAT_VALUE
self.minimum = known_bounds.min if known_bounds else MAXIMUM_FLOAT_VALUE
def update(self, value: float):
self.maximum = max(self.maximum, value)
self.minimum = min(self.minimum, value)
def normalize(self, value: float) -> float:
if self.maximum > self.minimum:
# We normalize only when we have set the maximum and minimum values.
return (value - self.minimum) / (self.maximum - self.minimum)
return value
class MuZeroConfig(object):
def __init__(self,
action_space_size: int,
max_moves: int,
discount: float,
dirichlet_alpha: float,
num_simulations: int,
batch_size: int,
td_steps: int,
num_actors: int,
lr_init: float,
lr_decay_steps: float,
visit_softmax_temperature_fn,
known_bounds: Optional[KnownBounds] = None):
### Self-Play
self.action_space_size = action_space_size
self.num_actors = num_actors
self.visit_softmax_temperature_fn = visit_softmax_temperature_fn
self.max_moves = max_moves
self.num_simulations = num_simulations
self.discount = discount
# Root prior exploration noise.
self.root_dirichlet_alpha = dirichlet_alpha
self.root_exploration_fraction = 0.25
# UCB formula
self.pb_c_base = 19652
self.pb_c_init = 1.25
# If we already have some information about which values occur in the
# environment, we can use them to initialize the rescaling.
# This is not strictly necessary, but establishes identical behaviour to
# AlphaZero in board games.
self.known_bounds = known_bounds
### Training
self.training_steps = int(1000e3)
self.checkpoint_interval = int(1e3)
self.window_size = int(1e6)
self.batch_size = batch_size
self.num_unroll_steps = 5
self.td_steps = td_steps
self.weight_decay = 1e-4
self.momentum = 0.9
# Exponential learning rate schedule
self.lr_init = lr_init
self.lr_decay_rate = 0.1
self.lr_decay_steps = lr_decay_steps
def new_game(self):
return Game(self.action_space_size, self.discount)
def make_board_game_config(action_space_size: int, max_moves: int,
dirichlet_alpha: float,
lr_init: float) -> MuZeroConfig:
def visit_softmax_temperature(num_moves, training_steps):
if num_moves < 30:
return 1.0
else:
return 0.0 # Play according to the max.
return MuZeroConfig(
action_space_size=action_space_size,
max_moves=max_moves,
discount=1.0,
dirichlet_alpha=dirichlet_alpha,
num_simulations=800,
batch_size=2048,
td_steps=max_moves, # Always use Monte Carlo return.
num_actors=3000,
lr_init=lr_init,
lr_decay_steps=400e3,
visit_softmax_temperature_fn=visit_softmax_temperature,
known_bounds=KnownBounds(-1, 1))
def make_go_config() -> MuZeroConfig:
return make_board_game_config(
action_space_size=362, max_moves=722, dirichlet_alpha=0.03, lr_init=0.01)
def make_chess_config() -> MuZeroConfig:
return make_board_game_config(
action_space_size=4672, max_moves=512, dirichlet_alpha=0.3, lr_init=0.1)
def make_shogi_config() -> MuZeroConfig:
return make_board_game_config(
action_space_size=11259, max_moves=512, dirichlet_alpha=0.15, lr_init=0.1)
def make_atari_config() -> MuZeroConfig:
def visit_softmax_temperature(num_moves, training_steps):
if training_steps < 500e3:
return 1.0
elif training_steps < 750e3:
return 0.5
else:
return 0.25
return MuZeroConfig(
action_space_size=18,
max_moves=27000, # Half an hour at action repeat 4.
discount=0.997,
dirichlet_alpha=0.25,
num_simulations=50,
batch_size=1024,
td_steps=10,
num_actors=350,
lr_init=0.05,
lr_decay_steps=350e3,
visit_softmax_temperature_fn=visit_softmax_temperature)
class Action(object):
def __init__(self, index: int):
self.index = index
def __hash__(self):
return self.index
def __eq__(self, other):
return self.index == other.index
def __gt__(self, other):
return self.index > other.index
class Player(object):
pass
class Node(object):
def __init__(self, prior: float):
self.visit_count = 0
self.to_play = -1
self.prior = prior
self.value_sum = 0
self.children = {}
self.hidden_state = None
self.reward = 0
def expanded(self) -> bool:
return len(self.children) > 0
def value(self) -> float:
if self.visit_count == 0:
return 0
return self.value_sum / self.visit_count
class ActionHistory(object):
"""Simple history container used inside the search.
Only used to keep track of the actions executed.
"""
def __init__(self, history: List[Action], action_space_size: int):
self.history = list(history)
self.action_space_size = action_space_size
def clone(self):
return ActionHistory(self.history, self.action_space_size)
def add_action(self, action: Action):
self.history.append(action)
def last_action(self) -> Action:
return self.history[-1]
def action_space(self) -> List[Action]:
return [Action(i) for i in range(self.action_space_size)]
def to_play(self) -> Player:
return Player()
class Environment(object):
"""The environment MuZero is interacting with."""
def step(self, action):
pass
class Game(object):
"""A single episode of interaction with the environment."""
def __init__(self, action_space_size: int, discount: float):
self.environment = Environment() # Game specific environment.
self.history = []
self.rewards = []
self.child_visits = []
self.root_values = []
self.action_space_size = action_space_size
self.discount = discount
def terminal(self) -> bool:
# Game specific termination rules.
pass
def legal_actions(self) -> List[Action]:
# Game specific calculation of legal actions.
return []
def apply(self, action: Action):
reward = self.environment.step(action)
self.rewards.append(reward)
self.history.append(action)
def store_search_statistics(self, root: Node):
sum_visits = sum(child.visit_count for child in root.children.values())
action_space = (Action(index) for index in range(self.action_space_size))
self.child_visits.append([
root.children[a].visit_count / sum_visits if a in root.children else 0
for a in action_space
])
self.root_values.append(root.value())
def make_image(self, state_index: int):
# Game specific feature planes.
return []
def make_target(self, state_index: int, num_unroll_steps: int, td_steps: int,
to_play: Player):
# The value target is the discounted root value of the search tree N steps
# into the future, plus the discounted sum of all rewards until then.
targets = []
for current_index in range(state_index, state_index + num_unroll_steps + 1):
bootstrap_index = current_index + td_steps
if bootstrap_index < len(self.root_values):
value = self.root_values[bootstrap_index] * self.discount**td_steps
else:
value = 0
for i, reward in enumerate(self.rewards[current_index:bootstrap_index]):
value += reward * self.discount**i # pytype: disable=unsupported-operands
if current_index < len(self.root_values):
targets.append((value, self.rewards[current_index],
self.child_visits[current_index]))
else:
# States past the end of games are treated as absorbing states.
targets.append((0, 0, []))
return targets
def to_play(self) -> Player:
return Player()
def action_history(self) -> ActionHistory:
return ActionHistory(self.history, self.action_space_size)
class ReplayBuffer(object):
def __init__(self, config: MuZeroConfig):
self.window_size = config.window_size
self.batch_size = config.batch_size
self.buffer = []
def save_game(self, game):
if len(self.buffer) > self.window_size:
self.buffer.pop(0)
self.buffer.append(game)
def sample_batch(self, num_unroll_steps: int, td_steps: int):
games = [self.sample_game() for _ in range(self.batch_size)]
game_pos = [(g, self.sample_position(g)) for g in games]
return [(g.make_image(i), g.history[i:i + num_unroll_steps],
g.make_target(i, num_unroll_steps, td_steps, g.to_play()))
for (g, i) in game_pos]
def sample_game(self) -> Game:
# Sample game from buffer either uniformly or according to some priority.
return self.buffer[0]
def sample_position(self, game) -> int:
# Sample position from game either uniformly or according to some priority.
return -1
class NetworkOutput(typing.NamedTuple):
value: float
reward: float
policy_logits: Dict[Action, float]
hidden_state: List[float]
class Network(object):
def initial_inference(self, image) -> NetworkOutput:
# representation + prediction function
return NetworkOutput(0, 0, {}, [])
def recurrent_inference(self, hidden_state, action) -> NetworkOutput:
# dynamics + prediction function
return NetworkOutput(0, 0, {}, [])
def get_weights(self):
# Returns the weights of this network.
return []
def training_steps(self) -> int:
# How many steps / batches the network has been trained for.
return 0
class SharedStorage(object):
def __init__(self):
self._networks = {}
def latest_network(self) -> Network:
if self._networks:
return self._networks[max(self._networks.keys())]
else:
# policy -> uniform, value -> 0, reward -> 0
return make_uniform_network()
def save_network(self, step: int, network: Network):
self._networks[step] = network
##### End Helpers ########
##########################
# MuZero training is split into two independent parts: Network training and
# self-play data generation.
# These two parts only communicate by transferring the latest network checkpoint
# from the training to the self-play, and the finished games from the self-play
# to the training.
def muzero(config: MuZeroConfig):
storage = SharedStorage()
replay_buffer = ReplayBuffer(config)
for _ in range(config.num_actors):
launch_job(run_selfplay, config, storage, replay_buffer)
train_network(config, storage, replay_buffer)
return storage.latest_network()
##################################
####### Part 1: Self-Play ########
# Each self-play job is independent of all others; it takes the latest network
# snapshot, produces a game and makes it available to the training job by
# writing it to a shared replay buffer.
def run_selfplay(config: MuZeroConfig, storage: SharedStorage,
replay_buffer: ReplayBuffer):
while True:
network = storage.latest_network()
game = play_game(config, network)
replay_buffer.save_game(game)
# Each game is produced by starting at the initial board position, then
# repeatedly executing a Monte Carlo Tree Search to generate moves until the end
# of the game is reached.
def play_game(config: MuZeroConfig, network: Network) -> Game:
game = config.new_game()
while not game.terminal() and len(game.history) < config.max_moves:
# At the root of the search tree we use the representation function to
# obtain a hidden state given the current observation.
root = Node(0)
current_observation = game.make_image(-1)
expand_node(root, game.to_play(), game.legal_actions(),
network.initial_inference(current_observation))
add_exploration_noise(config, root)
# We then run a Monte Carlo Tree Search using only action sequences and the
# model learned by the network.
run_mcts(config, root, game.action_history(), network)
action = select_action(config, len(game.history), root, network)
game.apply(action)
game.store_search_statistics(root)
return game
# Core Monte Carlo Tree Search algorithm.
# To decide on an action, we run N simulations, always starting at the root of
# the search tree and traversing the tree according to the UCB formula until we
# reach a leaf node.
def run_mcts(config: MuZeroConfig, root: Node, action_history: ActionHistory,
network: Network):
min_max_stats = MinMaxStats(config.known_bounds)
for _ in range(config.num_simulations):
history = action_history.clone()
node = root
search_path = [node]
while node.expanded():
action, node = select_child(config, node, min_max_stats)
history.add_action(action)
search_path.append(node)
# Inside the search tree we use the dynamics function to obtain the next
# hidden state given an action and the previous hidden state.
parent = search_path[-2]
network_output = network.recurrent_inference(parent.hidden_state,
history.last_action())
expand_node(node, history.to_play(), history.action_space(), network_output)
backpropagate(search_path, network_output.value, history.to_play(),
config.discount, min_max_stats)
def select_action(config: MuZeroConfig, num_moves: int, node: Node,
network: Network):
visit_counts = [
(child.visit_count, action) for action, child in node.children.items()
]
t = config.visit_softmax_temperature_fn(
num_moves=num_moves, training_steps=network.training_steps())
_, action = softmax_sample(visit_counts, t)
return action
# Select the child with the highest UCB score.
def select_child(config: MuZeroConfig, node: Node,
min_max_stats: MinMaxStats):
_, action, child = max(
(ucb_score(config, node, child, min_max_stats), action,
child) for action, child in node.children.items())
return action, child
# The score for a node is based on its value, plus an exploration bonus based on
# the prior.
def ucb_score(config: MuZeroConfig, parent: Node, child: Node,
min_max_stats: MinMaxStats) -> float:
pb_c = math.log((parent.visit_count + config.pb_c_base + 1) /
config.pb_c_base) + config.pb_c_init
pb_c *= math.sqrt(parent.visit_count) / (child.visit_count + 1)
prior_score = pb_c * child.prior
value_score = min_max_stats.normalize(child.value())
return prior_score + value_score
# We expand a node using the value, reward and policy prediction obtained from
# the neural network.
def expand_node(node: Node, to_play: Player, actions: List[Action],
network_output: NetworkOutput):
node.to_play = to_play
node.hidden_state = network_output.hidden_state
node.reward = network_output.reward
policy = {a: math.exp(network_output.policy_logits[a]) for a in actions}
policy_sum = sum(policy.values())
for action, p in policy.items():
node.children[action] = Node(p / policy_sum)
# At the end of a simulation, we propagate the evaluation all the way up the
# tree to the root.
def backpropagate(search_path: List[Node], value: float, to_play: Player,
discount: float, min_max_stats: MinMaxStats):
for node in search_path:
node.value_sum += value if node.to_play == to_play else -value
node.visit_count += 1
min_max_stats.update(node.value())
value = node.reward + discount * value
# At the start of each search, we add dirichlet noise to the prior of the root
# to encourage the search to explore new actions.
def add_exploration_noise(config: MuZeroConfig, node: Node):
actions = list(node.children.keys())
noise = numpy.random.dirichlet([config.root_dirichlet_alpha] * len(actions))
frac = config.root_exploration_fraction
for a, n in zip(actions, noise):
node.children[a].prior = node.children[a].prior * (1 - frac) + n * frac
######### End Self-Play ##########
##################################
##################################
####### Part 2: Training #########
def train_network(config: MuZeroConfig, storage: SharedStorage,
replay_buffer: ReplayBuffer):
network = Network()
learning_rate = config.lr_init * config.lr_decay_rate**(
tf.train.get_global_step() / config.lr_decay_steps)
optimizer = tf.train.MomentumOptimizer(learning_rate, config.momentum)
for i in range(config.training_steps):
if i % config.checkpoint_interval == 0:
storage.save_network(i, network)
batch = replay_buffer.sample_batch(config.num_unroll_steps, config.td_steps)
update_weights(optimizer, network, batch, config.weight_decay)
storage.save_network(config.training_steps, network)
def update_weights(optimizer: tf.train.Optimizer, network: Network, batch,
weight_decay: float):
loss = 0
for image, actions, targets in batch:
# Initial step, from the real observation.
value, reward, policy_logits, hidden_state = network.initial_inference(
image)
predictions = [(1.0, value, reward, policy_logits)]
# Recurrent steps, from action and previous hidden state.
for action in actions:
value, reward, policy_logits, hidden_state = network.recurrent_inference(
hidden_state, action)
predictions.append((1.0 / len(actions), value, reward, policy_logits))
hidden_state = tf.scale_gradient(hidden_state, 0.5)
for prediction, target in zip(predictions, targets):
gradient_scale, value, reward, policy_logits = prediction
target_value, target_reward, target_policy = target
l = (
scalar_loss(value, target_value) +
scalar_loss(reward, target_reward) +
tf.nn.softmax_cross_entropy_with_logits(
logits=policy_logits, labels=target_policy))
loss += tf.scale_gradient(l, gradient_scale)
for weights in network.get_weights():
loss += weight_decay * tf.nn.l2_loss(weights)
optimizer.minimize(loss)
def scalar_loss(prediction, target) -> float:
# MSE in board games, cross entropy between categorical values in Atari.
return -1
######### End Training ###########
##################################
################################################################################
############################# End of pseudocode ################################
################################################################################
# Stubs to make the typechecker happy.
def softmax_sample(distribution, temperature: float):
return 0, 0
def launch_job(f, *args):
f(*args)
def make_uniform_network():
return Network()