-
Notifications
You must be signed in to change notification settings - Fork 0
/
p071.py
executable file
·46 lines (38 loc) · 1.31 KB
/
p071.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
#Consider the fraction, n/d, where n and d are positive integers. If n<d and HCF(n,d)=1, it is called a reduced proper fraction.
#
#If we list the set of reduced proper fractions for d <= 8 in ascending order of size, we get:
#
#1/8, 1/7, 1/6, 1/5, 1/4, 2/7, 1/3, 3/8, 2/5, 3/7, 1/2, 4/7, 3/5, 5/8, 2/3, 5/7, 3/4, 4/5, 5/6, 6/7, 7/8
#
#It can be seen that 2/5 is the fraction immediately to the left of 3/7.
#
#By listing the set of reduced proper fractions for d <= 1,000,000 in ascending order of size, find the numerator of the fraction immediately to the left of 3/7.
import logging
from math import ceil
from prime import PrimeNumberPool
def HCF(n, d, prime):
for p in prime.getPrimeFactor(n):
if (d % p == 0):
return 0
return 1
def main(args):
if args.test:
m = 10
else:
m = 1000*1000
prime = PrimeNumberPool()
md = 5
mn = 2
for d in range(2, m):
if d == 7:
continue
n = d * 3 // 7
if (n>mn*d/md and HCF(n, d, prime)):
mn = n
md = d
logging.debug("{}/{}".format(mn, md))
logging.info("answer: {}/{}".format(mn, md))
logging.debug(prime.Factorize(mn))
logging.debug(prime.getPrimeFactor(mn))
logging.debug(prime.Factorize(md))
logging.debug(prime.getPrimeFactor(md))