-
Notifications
You must be signed in to change notification settings - Fork 4
/
mnist_conv.py
executable file
·93 lines (70 loc) · 3.08 KB
/
mnist_conv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
#!/usr/bin/env python
#
# From the MNIST tutorial: https://www.tensorflow.org/tutorials/mnist/pros/
import tensorflow as tf
import numpy as np
from dataset import Dataset
from trainer import Trainer
class MNISTConv:
def __init__(self):
with tf.variable_scope("mnist-conv"):
# input layer
with tf.variable_scope("input"):
self.x = tf.placeholder(tf.float32, shape=[None, 784])
self.y_ = tf.placeholder(tf.float32, shape=[None, 10])
x_image = tf.reshape(self.x, [-1,28,28,1])
# First layer (conv)
with tf.variable_scope("conv1"):
W_conv1 = self.weight_variable([5, 5, 1, 32])
b_conv1 = self.bias_variable([32])
h_conv1 = tf.nn.relu(self.conv2d(x_image, W_conv1) + b_conv1)
h_pool1 = self.max_pool_2x2(h_conv1)
# Second layer (conv)
with tf.variable_scope("conv2"):
W_conv2 = self.weight_variable([5, 5, 32, 64])
b_conv2 = self.bias_variable([64])
h_conv2 = tf.nn.relu(self.conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = self.max_pool_2x2(h_conv2)
# Third layer (fully connected)
with tf.variable_scope("fc1"):
W_fc1 = self.weight_variable([7 * 7 * 64, 1024])
b_fc1 = self.bias_variable([1024])
h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
# Fourth layer (final output)
with tf.variable_scope("fc2"):
W_fc2 = self.weight_variable([1024, 10])
b_fc2 = self.bias_variable([10])
y_logit = tf.matmul(h_fc1, W_fc2) + b_fc2
self.loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=y_logit, labels=self.y_))
self.train_step = tf.train.AdamOptimizer().minimize(self.loss)
correct_prediction = tf.equal(tf.argmax(y_logit, 1), tf.argmax(self.y_, 1))
self.accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
self.session = tf.Session()
self.session.run(tf.global_variables_initializer())
def weight_variable(self, shape):
return tf.get_variable('weights', shape, initializer=tf.contrib.layers.xavier_initializer())
def bias_variable(self, shape):
return tf.get_variable('biases', shape, initializer=tf.constant_initializer(0.0))
def conv2d(self, x, W):
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
def max_pool_2x2(self, x):
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
def train_batch(self, x, y):
self.session.run(self.train_step, feed_dict={self.x: x, self.y_: y})
def evaluate(self, x, y):
return self.session.run(self.accuracy, feed_dict={self.x: x, self.y_: y});
def save(self, path):
saver = tf.train.Saver(max_to_keep=1)
saver.save(self.session, path + '/model')
def load(self, path):
saver = tf.train.Saver()
saver.restore(self.session, tf.train.latest_checkpoint(path))
def main():
mnist = Dataset.load_mnist()
network = MNISTConv()
trainer = Trainer()
accuracy = trainer.train(network, mnist)
print("Final Accuracy %f" % accuracy)
if __name__ == "__main__":
main()