-
Notifications
You must be signed in to change notification settings - Fork 79
/
Copy pathACNet.py
121 lines (108 loc) · 8.84 KB
/
ACNet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import tensorflow as tf
import tensorflow.contrib.layers as layers
import numpy as np
#parameters for training
GRAD_CLIP = 1000.0
KEEP_PROB1 = 1 # was 0.5
KEEP_PROB2 = 1 # was 0.7
RNN_SIZE = 512
GOAL_REPR_SIZE = 12
#Used to initialize weights for policy and value output layers (Do we need to use that? Maybe not now)
def normalized_columns_initializer(std=1.0):
def _initializer(shape, dtype=None, partition_info=None):
out = np.random.randn(*shape).astype(np.float32)
out *= std / np.sqrt(np.square(out).sum(axis=0, keepdims=True))
return tf.constant(out)
return _initializer
class ACNet:
def __init__(self, scope, a_size, trainer,TRAINING,GRID_SIZE,GLOBAL_NET_SCOPE):
with tf.variable_scope(str(scope)+'/qvalues'):
#The input size may require more work to fit the interface.
self.inputs = tf.placeholder(shape=[None,4,GRID_SIZE,GRID_SIZE], dtype=tf.float32)
self.goal_pos=tf.placeholder(shape=[None,3],dtype=tf.float32)
self.myinput = tf.transpose(self.inputs, perm=[0,2,3,1])
self.policy, self.value, self.state_out, self.state_in, self.state_init, self.blocking, self.on_goal,self.valids = self._build_net(self.myinput,self.goal_pos,RNN_SIZE,TRAINING,a_size)
if TRAINING:
self.actions = tf.placeholder(shape=[None], dtype=tf.int32)
self.actions_onehot = tf.one_hot(self.actions, a_size, dtype=tf.float32)
self.train_valid = tf.placeholder(shape=[None,a_size], dtype=tf.float32)
self.target_v = tf.placeholder(tf.float32, [None], 'Vtarget')
self.advantages = tf.placeholder(shape=[None], dtype=tf.float32)
self.target_blockings = tf.placeholder(tf.float32, [None])
self.target_on_goals = tf.placeholder(tf.float32, [None])
self.responsible_outputs = tf.reduce_sum(self.policy * self.actions_onehot, [1])
self.train_value = tf.placeholder(tf.float32, [None])
self.optimal_actions = tf.placeholder(tf.int32,[None])
self.optimal_actions_onehot = tf.one_hot(self.optimal_actions, a_size, dtype=tf.float32)
# Loss Functions
self.value_loss = tf.reduce_sum(self.train_value*tf.square(self.target_v - tf.reshape(self.value, shape=[-1])))
self.entropy = - tf.reduce_sum(self.policy * tf.log(tf.clip_by_value(self.policy,1e-10,1.0)))
self.policy_loss = - tf.reduce_sum(tf.log(tf.clip_by_value(self.responsible_outputs,1e-15,1.0)) * self.advantages)
self.valid_loss = - tf.reduce_sum(tf.log(tf.clip_by_value(self.valids,1e-10,1.0)) *\
self.train_valid+tf.log(tf.clip_by_value(1-self.valids,1e-10,1.0)) * (1-self.train_valid))
self.blocking_loss = - tf.reduce_sum(self.target_blockings*tf.log(tf.clip_by_value(self.blocking,1e-10,1.0))\
+(1-self.target_blockings)*tf.log(tf.clip_by_value(1-self.blocking,1e-10,1.0)))
self.on_goal_loss = - tf.reduce_sum(self.target_on_goals*tf.log(tf.clip_by_value(self.on_goal,1e-10,1.0))\
+(1-self.target_on_goals)*tf.log(tf.clip_by_value(1-self.on_goal,1e-10,1.0)))
self.loss = 0.5 * self.value_loss + self.policy_loss + 0.5*self.valid_loss \
- self.entropy * 0.01 +.5*self.blocking_loss
self.imitation_loss = tf.reduce_mean(tf.contrib.keras.backend.categorical_crossentropy(self.optimal_actions_onehot,self.policy))
# Get gradients from local network using local losses and
# normalize the gradients using clipping
local_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope+'/qvalues')
self.gradients = tf.gradients(self.loss, local_vars)
self.var_norms = tf.global_norm(local_vars)
grads, self.grad_norms = tf.clip_by_global_norm(self.gradients, GRAD_CLIP)
# Apply local gradients to global network
global_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, GLOBAL_NET_SCOPE+'/qvalues')
self.apply_grads = trainer.apply_gradients(zip(grads, global_vars))
#now the gradients for imitation loss
self.i_gradients = tf.gradients(self.imitation_loss, local_vars)
self.i_var_norms = tf.global_norm(local_vars)
i_grads, self.i_grad_norms = tf.clip_by_global_norm(self.i_gradients, GRAD_CLIP)
# Apply local gradients to global network
self.apply_imitation_grads = trainer.apply_gradients(zip(i_grads, global_vars))
print("Hello World... From "+str(scope)) # :)
def _build_net(self,inputs,goal_pos,RNN_SIZE,TRAINING,a_size):
w_init = layers.variance_scaling_initializer()
conv1 = layers.conv2d(inputs=inputs, padding="SAME", num_outputs=RNN_SIZE//4, kernel_size=[3, 3], stride=1, data_format="NHWC", weights_initializer=w_init,activation_fn=tf.nn.relu)
conv1a = layers.conv2d(inputs=conv1, padding="SAME", num_outputs=RNN_SIZE//4, kernel_size=[3, 3], stride=1, data_format="NHWC", weights_initializer=w_init,activation_fn=tf.nn.relu)
conv1b = layers.conv2d(inputs=conv1a, padding="SAME", num_outputs=RNN_SIZE//4, kernel_size=[3, 3], stride=1, data_format="NHWC", weights_initializer=w_init,activation_fn=tf.nn.relu)
pool1 = layers.max_pool2d(inputs=conv1b,kernel_size=[2,2])
conv2 = layers.conv2d(inputs=pool1, padding="SAME", num_outputs=RNN_SIZE//2, kernel_size=[3, 3], stride=1, data_format="NHWC", weights_initializer=w_init,activation_fn=tf.nn.relu)
conv2a = layers.conv2d(inputs=conv2, padding="SAME", num_outputs=RNN_SIZE//2, kernel_size=[3, 3], stride=1, data_format="NHWC", weights_initializer=w_init,activation_fn=tf.nn.relu)
conv2b = layers.conv2d(inputs=conv2a, padding="SAME", num_outputs=RNN_SIZE//2, kernel_size=[3, 3], stride=1, data_format="NHWC", weights_initializer=w_init,activation_fn=tf.nn.relu)
pool2 = layers.max_pool2d(inputs=conv2b,kernel_size=[2,2])
conv3 = layers.conv2d(inputs=pool2, padding="VALID", num_outputs=RNN_SIZE-GOAL_REPR_SIZE, kernel_size=[2, 2], stride=1, data_format="NHWC", weights_initializer=w_init,activation_fn=None)
flat = tf.nn.relu(layers.flatten(conv3))
goal_layer= layers.fully_connected(inputs=goal_pos, num_outputs=GOAL_REPR_SIZE)
hidden_input=tf.concat([flat,goal_layer],1)
h1 = layers.fully_connected(inputs=hidden_input, num_outputs=RNN_SIZE)
d1 = layers.dropout(h1, keep_prob=KEEP_PROB1, is_training=TRAINING)
h2 = layers.fully_connected(inputs=d1, num_outputs=RNN_SIZE, activation_fn=None)
d2 = layers.dropout(h2, keep_prob=KEEP_PROB2, is_training=TRAINING)
self.h3 = tf.nn.relu(d2+hidden_input)
#Recurrent network for temporal dependencies
lstm_cell = tf.nn.rnn_cell.BasicLSTMCell(RNN_SIZE,state_is_tuple=True)
c_init = np.zeros((1, lstm_cell.state_size.c), np.float32)
h_init = np.zeros((1, lstm_cell.state_size.h), np.float32)
state_init = [c_init, h_init]
c_in = tf.placeholder(tf.float32, [1, lstm_cell.state_size.c])
h_in = tf.placeholder(tf.float32, [1, lstm_cell.state_size.h])
state_in = (c_in, h_in)
rnn_in = tf.expand_dims(self.h3, [0])
step_size = tf.shape(inputs)[:1]
state_in = tf.nn.rnn_cell.LSTMStateTuple(c_in, h_in)
lstm_outputs, lstm_state = tf.nn.dynamic_rnn(
lstm_cell, rnn_in, initial_state=state_in, sequence_length=step_size,
time_major=False)
lstm_c, lstm_h = lstm_state
state_out = (lstm_c[:1, :], lstm_h[:1, :])
self.rnn_out = tf.reshape(lstm_outputs, [-1, RNN_SIZE])
policy_layer = layers.fully_connected(inputs=self.rnn_out, num_outputs=a_size,weights_initializer=normalized_columns_initializer(1./float(a_size)), biases_initializer=None, activation_fn=None)
policy = tf.nn.softmax(policy_layer)
policy_sig = tf.sigmoid(policy_layer)
value = layers.fully_connected(inputs=self.rnn_out, num_outputs=1, weights_initializer=normalized_columns_initializer(1.0), biases_initializer=None, activation_fn=None)
blocking = layers.fully_connected(inputs=self.rnn_out, num_outputs=1, weights_initializer=normalized_columns_initializer(1.0), biases_initializer=None, activation_fn=tf.sigmoid)
on_goal = layers.fully_connected(inputs=self.rnn_out, num_outputs=1, weights_initializer=normalized_columns_initializer(1.0), biases_initializer=None, activation_fn=tf.sigmoid)
return policy, value, state_out ,state_in, state_init, blocking, on_goal,policy_sig