-
Notifications
You must be signed in to change notification settings - Fork 25
/
Copy pathtfplot.py
169 lines (145 loc) · 6.27 KB
/
tfplot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
# Python Open Room Correction (PORC)
# Copyright (c) 2012 Mason A. Green
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
# ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
# (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
# ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# TFPLOT - Smoothed transfer fucntion plotting
# TFPLOTS(IMPRESP,COLOR, Fs, FRACT)
# Logarithmic transfer function plot from impluse response IMPRESP.
# A half hanning window is applied before a 2^18 point FFT, then the data is colleced
# into logaritmically spaced bins and the average power is computed for
# each bin (100/octave). Then this is power-smoothed by a hanning window, where
# FRACT defines the fractional-octave smoothing (default is 3, meaning third-octave).
# The length of the smoothing hanning window is the double compared to the distance
# defined by FRACT.
# The sampling frequency is set by FS (default is 44.1 kHz) and the plotting color is set by the COLOR variable
# (default is 'b').
#
# TFPLOT(IMPRESP, COLOR, FS, OCTBIN, AVG)
# Logarithmic transfer function plot from impluse response IMPRESP.
# A half hanning window is applied before a 2^18 point FFT, then the
# data is colleced into logaritmically spaced bins and the average
# response is computed for each bin. OCTBIN sets the number of bins
# in one octave, the default is 100 (lower numbers mean more smoothing).
# The sampling frequency is set by FS (default is 44.1 kHz) and the
# plotting color is set by the COLOR variable (default is 'b').
#
# If the AVG variable is set to 'power' then the power is averaged
# in the logaritmic bin, if it is 'abs' then the absolute value. If the
# AVG parameter is set to 'comp' or omitted, it averages the complex
# magnitude (i.e., this is the default).
#
# C. Balazs Bank, 2006-2007.
import numpy as np
import scipy as sp
import scipy.signal as sig
import matplotlib.pyplot as plt
from numpy.fft import fft, ifft
# Ported from Octave fftfilt.m
def fftfilt(b, x):
## Use FFT with the smallest power of 2 which is >= length (x) +
## length (b) - 1 as number of points ...
c_x = x.size
c_b = b.size
N = np.power(2, np.ceil(np.log(c_x+c_b)/np.log(2)), dtype=np.float32)
y = ifft(fft(x, N)*fft(b, N))
## Final cleanups: Both x and b are real; y should also be
return np.real(y)
def tfplots(data, Fs = 44100, color = 'b', fract=3):
octbin = 100.
FFTSIZE = 2**18
logfact = 2**(1./octbin)
LOGN = np.floor(np.log(Fs/2)/np.log(logfact))
# logarithmic scale from 1 Hz to Fs/2
logscale = np.power(logfact, np.r_[:LOGN])
# creating a half hanning window
WL = data.size
hann = sp.hanning(WL*2)
endwin = hann[WL:2*WL]
tf = fft(data*endwin, FFTSIZE)
magn = np.abs(tf[:FFTSIZE/2])
compamp = tf[:FFTSIZE/2]
# creating 100th octave resolution log. spaced data from the lin. spaced FFT data
logmagn = np.empty(LOGN)
fstep = Fs/np.float64(FFTSIZE)
for k in range(logscale.size):
start = np.round(logscale[k]/np.sqrt(logfact)/fstep)
start = np.maximum(start,1)
start = np.minimum(start, FFTSIZE/2)
stop = np.round(logscale[k]*np.sqrt(logfact)/fstep)
stop = np.maximum(stop,1)
stop = np.minimum(stop, FFTSIZE/2)
# averaging the power
logmagn[k] = np.sqrt(np.mean(np.power(magn[start-1:stop],2)))
# creating hanning window
# fractional octave smoothing
HL = 2 * np.round(octbin/fract)
hh = sp.hanning(HL)
L = logmagn.size
logmagn[L-1:L+HL] = 0
# Smoothing the log. spaced data by convonvling with the hanning window
tmp = fftfilt(hh, np.power(logmagn,2))
smoothmagn = np.sqrt(tmp[HL/2:HL/2+L]/hh.sum(axis=0))
# plotting
plt.semilogx(logscale, 20*np.log10(smoothmagn), color)
def tfplot(data, Fs = 44100, color = 'b', octbin = 100, avg = 'comp'):
FFTSIZE=2**18
logfact = 2**(1./octbin)
LOGN = np.floor(np.log(Fs/2)/np.log(logfact))
# logarithmic scale from 1 Hz to Fs/2
logscale = np.power(logfact, np.r_[:LOGN])
# creating a half hanning window
WL = data.size
hann = sp.hanning(WL*2)
endwin = hann[WL:2*WL]
tf = fft(data*endwin, FFTSIZE)
compamp = tf[:FFTSIZE/2]
logmagn = np.empty(LOGN)
fstep = Fs/np.float64(FFTSIZE)
for k in range(logscale.size):
#finding the start and end positions of the logaritmic bin
start = np.round(logscale[k]/np.sqrt(logfact)/fstep)
start = np.maximum(start, 1);
start = np.minimum(start, FFTSIZE/2)
stop = np.round(logscale[k]*np.sqrt(logfact)/fstep)-1
stop = np.maximum(stop, start)
stop = np.maximum(stop, 1)
stop = np.minimum(stop, FFTSIZE/2)
#averaging the complex transfer function
if avg == 'comp':
logmagn[k] = np.abs(np.mean(compamp[start-1:stop]))
elif avg == 'abs':
logmagn[k] = np.mean(np.abs(compamp[start-1:stop]))
elif avg == 'power':
logmagn[k] = np.sqrt(np.mean(np.abs(np.power(compamp[start-1:stop],2))))
# plotting
plt.semilogx(logscale, 20*np.log10(logmagn), color)
def debug_log_plot(x, y):
fig = plt.figure()
plt.title("Digital filter frequency response")
ax = fig.add_subplot(111)
plt.semilogx(x, y, 'b')
plt.ylabel('Amplitude (power)', color='b')
plt.xlabel('Frequency (rad/sample)')
plt.grid()
plt.legend()
plt.show()