-
Notifications
You must be signed in to change notification settings - Fork 84
/
script_download_data.py
647 lines (497 loc) · 20 KB
/
script_download_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
# coding=utf-8
# Copyright 2021 The Google Research Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""Script to download data for a default experiment.
Only downloads data if the csv files are present, unless the "force_download"
argument is supplied. For new datasets, the download_and_unzip(.) can be reused
to pull csv files from an online repository, but may require subsequent
dataset-specific processing.
Usage:
python3 script_download_data {EXPT_NAME} {OUTPUT_FOLDER} {FORCE_DOWNLOAD}
Command line args:
EXPT_NAME: Name of experiment to download data for {e.g. volatility}
OUTPUT_FOLDER: Path to folder in which
FORCE_DOWNLOAD: Whether to force data download from scratch.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import gc
import glob
import os
import shutil
import sys
from expt_settings.configs import ExperimentConfig
import numpy as np
import pandas as pd
import pyunpack
import wget
# General functions for data downloading & aggregation.
def download_from_url(url, output_path):
"""Downloads a file froma url."""
print('Pulling data from {} to {}'.format(url, output_path))
wget.download(url, output_path)
print('done')
def recreate_folder(path):
"""Deletes and recreates folder."""
shutil.rmtree(path)
os.makedirs(path)
def unzip(zip_path, output_file, data_folder):
"""Unzips files and checks successful completion."""
print('Unzipping file: {}'.format(zip_path))
pyunpack.Archive(zip_path).extractall(data_folder)
# Checks if unzip was successful
if not os.path.exists(output_file):
raise ValueError(
'Error in unzipping process! {} not found.'.format(output_file))
def download_and_unzip(url, zip_path, csv_path, data_folder):
"""Downloads and unzips an online csv file.
Args:
url: Web address
zip_path: Path to download zip file
csv_path: Expected path to csv file
data_folder: Folder in which data is stored.
"""
download_from_url(url, zip_path)
unzip(zip_path, csv_path, data_folder)
print('Done.')
# Dataset specific download routines.
def download_volatility(config):
"""Downloads volatility data from OMI website."""
url = 'https://realized.oxford-man.ox.ac.uk/images/oxfordmanrealizedvolatilityindices.zip'
data_folder = config.data_folder
csv_path = os.path.join(data_folder, 'oxfordmanrealizedvolatilityindices.csv')
zip_path = os.path.join(data_folder, 'oxfordmanrealizedvolatilityindices.zip')
download_and_unzip(url, zip_path, csv_path, data_folder)
print('Unzip complete. Adding extra inputs')
df = pd.read_csv(csv_path, index_col=0) # no explicit index
# Adds additional date/day fields
idx = [str(s).split('+')[0] for s in df.index
] # ignore timezones, we don't need them
dates = pd.to_datetime(idx)
df['date'] = dates
df['days_from_start'] = (dates - pd.datetime(2000, 1, 3)).days
df['day_of_week'] = dates.dayofweek
df['day_of_month'] = dates.day
df['week_of_year'] = dates.weekofyear
df['month'] = dates.month
df['year'] = dates.year
df['categorical_id'] = df['Symbol'].copy()
# Processes log volatility
vol = df['rv5_ss'].copy()
vol.loc[vol == 0.] = np.nan
df['log_vol'] = np.log(vol)
# Adds static information
symbol_region_mapping = {
'.AEX': 'EMEA',
'.AORD': 'APAC',
'.BFX': 'EMEA',
'.BSESN': 'APAC',
'.BVLG': 'EMEA',
'.BVSP': 'AMER',
'.DJI': 'AMER',
'.FCHI': 'EMEA',
'.FTMIB': 'EMEA',
'.FTSE': 'EMEA',
'.GDAXI': 'EMEA',
'.GSPTSE': 'AMER',
'.HSI': 'APAC',
'.IBEX': 'EMEA',
'.IXIC': 'AMER',
'.KS11': 'APAC',
'.KSE': 'APAC',
'.MXX': 'AMER',
'.N225': 'APAC ',
'.NSEI': 'APAC',
'.OMXC20': 'EMEA',
'.OMXHPI': 'EMEA',
'.OMXSPI': 'EMEA',
'.OSEAX': 'EMEA',
'.RUT': 'EMEA',
'.SMSI': 'EMEA',
'.SPX': 'AMER',
'.SSEC': 'APAC',
'.SSMI': 'EMEA',
'.STI': 'APAC',
'.STOXX50E': 'EMEA'
}
df['Region'] = df['Symbol'].apply(lambda k: symbol_region_mapping[k])
# Performs final processing
output_df_list = []
for grp in df.groupby('Symbol'):
sliced = grp[1].copy()
sliced.sort_values('days_from_start', inplace=True)
# Impute log volatility values
sliced['log_vol'].fillna(method='ffill', inplace=True)
sliced.dropna()
output_df_list.append(sliced)
df = pd.concat(output_df_list, axis=0)
output_file = config.data_csv_path
print('Completed formatting, saving to {}'.format(output_file))
df.to_csv(output_file)
print('Done.')
def download_electricity(config):
"""Downloads electricity dataset from UCI repository."""
url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/00321/LD2011_2014.txt.zip'
data_folder = config.data_folder
csv_path = os.path.join(data_folder, 'LD2011_2014.txt')
zip_path = csv_path + '.zip'
download_and_unzip(url, zip_path, csv_path, data_folder)
print('Aggregating to hourly data')
df = pd.read_csv(csv_path, index_col=0, sep=';', decimal=',')
df.index = pd.to_datetime(df.index)
df.sort_index(inplace=True)
# Used to determine the start and end dates of a series
output = df.resample('1h').mean().replace(0., np.nan)
earliest_time = output.index.min()
df_list = []
for label in output:
print('Processing {}'.format(label))
srs = output[label]
start_date = min(srs.fillna(method='ffill').dropna().index)
end_date = max(srs.fillna(method='bfill').dropna().index)
active_range = (srs.index >= start_date) & (srs.index <= end_date)
srs = srs[active_range].fillna(0.)
tmp = pd.DataFrame({'power_usage': srs})
date = tmp.index
tmp['t'] = (date - earliest_time).seconds / 60 / 60 + (
date - earliest_time).days * 24
tmp['days_from_start'] = (date - earliest_time).days
tmp['categorical_id'] = label
tmp['date'] = date
tmp['id'] = label
tmp['hour'] = date.hour
tmp['day'] = date.day
tmp['day_of_week'] = date.dayofweek
tmp['month'] = date.month
df_list.append(tmp)
output = pd.concat(df_list, axis=0, join='outer').reset_index(drop=True)
output['categorical_id'] = output['id'].copy()
output['hours_from_start'] = output['t']
output['categorical_day_of_week'] = output['day_of_week'].copy()
output['categorical_hour'] = output['hour'].copy()
# Filter to match range used by other academic papers
output = output[(output['days_from_start'] >= 1096)
& (output['days_from_start'] < 1346)].copy()
output.to_csv(config.data_csv_path)
print('Done.')
def download_traffic(config):
"""Downloads traffic dataset from UCI repository."""
url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/00204/PEMS-SF.zip'
data_folder = config.data_folder
csv_path = os.path.join(data_folder, 'PEMS_train')
zip_path = os.path.join(data_folder, 'PEMS-SF.zip')
download_and_unzip(url, zip_path, csv_path, data_folder)
print('Aggregating to hourly data')
def process_list(s, variable_type=int, delimiter=None):
"""Parses a line in the PEMS format to a list."""
if delimiter is None:
l = [
variable_type(i) for i in s.replace('[', '').replace(']', '').split()
]
else:
l = [
variable_type(i)
for i in s.replace('[', '').replace(']', '').split(delimiter)
]
return l
def read_single_list(filename):
"""Returns single list from a file in the PEMS-custom format."""
with open(os.path.join(data_folder, filename), 'r') as dat:
l = process_list(dat.readlines()[0])
return l
def read_matrix(filename):
"""Returns a matrix from a file in the PEMS-custom format."""
array_list = []
with open(os.path.join(data_folder, filename), 'r') as dat:
lines = dat.readlines()
for i, line in enumerate(lines):
if (i + 1) % 50 == 0:
print('Completed {} of {} rows for {}'.format(i + 1, len(lines),
filename))
array = [
process_list(row_split, variable_type=float, delimiter=None)
for row_split in process_list(
line, variable_type=str, delimiter=';')
]
array_list.append(array)
return array_list
shuffle_order = np.array(read_single_list('randperm')) - 1 # index from 0
train_dayofweek = read_single_list('PEMS_trainlabels')
train_tensor = read_matrix('PEMS_train')
test_dayofweek = read_single_list('PEMS_testlabels')
test_tensor = read_matrix('PEMS_test')
# Inverse permutate shuffle order
print('Shuffling')
inverse_mapping = {
new_location: previous_location
for previous_location, new_location in enumerate(shuffle_order)
}
reverse_shuffle_order = np.array([
inverse_mapping[new_location]
for new_location, _ in enumerate(shuffle_order)
])
# Group and reoder based on permuation matrix
print('Reodering')
day_of_week = np.array(train_dayofweek + test_dayofweek)
combined_tensor = np.array(train_tensor + test_tensor)
day_of_week = day_of_week[reverse_shuffle_order]
combined_tensor = combined_tensor[reverse_shuffle_order]
# Put everything back into a dataframe
print('Parsing as dataframe')
labels = ['traj_{}'.format(i) for i in read_single_list('stations_list')]
hourly_list = []
for day, day_matrix in enumerate(combined_tensor):
# Hourly data
hourly = pd.DataFrame(day_matrix.T, columns=labels)
hourly['hour_on_day'] = [int(i / 6) for i in hourly.index
] # sampled at 10 min intervals
if hourly['hour_on_day'].max() > 23 or hourly['hour_on_day'].min() < 0:
raise ValueError('Invalid hour! {}-{}'.format(
hourly['hour_on_day'].min(), hourly['hour_on_day'].max()))
hourly = hourly.groupby('hour_on_day', as_index=True).mean()[labels]
hourly['sensor_day'] = day
hourly['time_on_day'] = hourly.index
hourly['day_of_week'] = day_of_week[day]
hourly_list.append(hourly)
hourly_frame = pd.concat(hourly_list, axis=0, ignore_index=True, sort=False)
# Flatten such that each entitiy uses one row in dataframe
store_columns = [c for c in hourly_frame.columns if 'traj' in c]
other_columns = [c for c in hourly_frame.columns if 'traj' not in c]
flat_df = pd.DataFrame(columns=['values', 'prev_values', 'next_values'] +
other_columns + ['id'])
def format_index_string(x):
"""Returns formatted string for key."""
if x < 10:
return '00' + str(x)
elif x < 100:
return '0' + str(x)
elif x < 1000:
return str(x)
raise ValueError('Invalid value of x {}'.format(x))
for store in store_columns:
print('Processing {}'.format(store))
sliced = hourly_frame[[store] + other_columns].copy()
sliced.columns = ['values'] + other_columns
sliced['id'] = int(store.replace('traj_', ''))
# Sort by Sensor-date-time
key = sliced['id'].apply(str) \
+ sliced['sensor_day'].apply(lambda x: '_' + format_index_string(x)) \
+ sliced['time_on_day'].apply(lambda x: '_' + format_index_string(x))
sliced = sliced.set_index(key).sort_index()
sliced['values'] = sliced['values'].fillna(method='ffill')
sliced['prev_values'] = sliced['values'].shift(1)
sliced['next_values'] = sliced['values'].shift(-1)
flat_df = flat_df.append(sliced.dropna(), ignore_index=True, sort=False)
# Filter to match range used by other academic papers
index = flat_df['sensor_day']
flat_df = flat_df[index < 173].copy()
# Creating columns fo categorical inputs
flat_df['categorical_id'] = flat_df['id'].copy()
flat_df['hours_from_start'] = flat_df['time_on_day'] \
+ flat_df['sensor_day']*24.
flat_df['categorical_day_of_week'] = flat_df['day_of_week'].copy()
flat_df['categorical_time_on_day'] = flat_df['time_on_day'].copy()
flat_df.to_csv(config.data_csv_path)
print('Done.')
def process_favorita(config):
"""Processes Favorita dataset.
Makes use of the raw files should be manually downloaded from Kaggle @
https://www.kaggle.com/c/favorita-grocery-sales-forecasting/data
Args:
config: Default experiment config for Favorita
"""
url = 'https://www.kaggle.com/c/favorita-grocery-sales-forecasting/data'
data_folder = config.data_folder
# Save manual download to root folder to avoid deleting when re-processing.
zip_file = os.path.join(data_folder, '..',
'favorita-grocery-sales-forecasting.zip')
if not os.path.exists(zip_file):
raise ValueError(
'Favorita zip file not found in {}!'.format(zip_file) +
' Please manually download data from Kaggle @ {}'.format(url))
# Unpack main zip file
outputs_file = os.path.join(data_folder, 'train.csv.7z')
unzip(zip_file, outputs_file, data_folder)
# Unpack individually zipped files
for file in glob.glob(os.path.join(data_folder, '*.7z')):
csv_file = file.replace('.7z', '')
unzip(file, csv_file, data_folder)
print('Unzipping complete, commencing data processing...')
# Extract only a subset of data to save/process for efficiency
start_date = pd.datetime(2015, 1, 1)
end_date = pd.datetime(2016, 6, 1)
print('Regenerating data...')
# load temporal data
temporal = pd.read_csv(os.path.join(data_folder, 'train.csv'), index_col=0)
store_info = pd.read_csv(os.path.join(data_folder, 'stores.csv'), index_col=0)
oil = pd.read_csv(
os.path.join(data_folder, 'oil.csv'), index_col=0).iloc[:, 0]
holidays = pd.read_csv(os.path.join(data_folder, 'holidays_events.csv'))
items = pd.read_csv(os.path.join(data_folder, 'items.csv'), index_col=0)
transactions = pd.read_csv(os.path.join(data_folder, 'transactions.csv'))
# Take first 6 months of data
temporal['date'] = pd.to_datetime(temporal['date'])
# Filter dates to reduce storage space requirements
if start_date is not None:
temporal = temporal[(temporal['date'] >= start_date)]
if end_date is not None:
temporal = temporal[(temporal['date'] < end_date)]
dates = temporal['date'].unique()
# Add trajectory identifier
temporal['traj_id'] = temporal['store_nbr'].apply(
str) + '_' + temporal['item_nbr'].apply(str)
temporal['unique_id'] = temporal['traj_id'] + '_' + temporal['date'].apply(
str)
# Remove all IDs with negative returns
print('Removing returns data')
min_returns = temporal['unit_sales'].groupby(temporal['traj_id']).min()
valid_ids = set(min_returns[min_returns >= 0].index)
selector = temporal['traj_id'].apply(lambda traj_id: traj_id in valid_ids)
new_temporal = temporal[selector].copy()
del temporal
gc.collect()
temporal = new_temporal
temporal['open'] = 1
# Resampling
print('Resampling to regular grid')
resampled_dfs = []
for traj_id, raw_sub_df in temporal.groupby('traj_id'):
print('Resampling', traj_id)
sub_df = raw_sub_df.set_index('date', drop=True).copy()
sub_df = sub_df.resample('1d').last()
sub_df['date'] = sub_df.index
sub_df[['store_nbr', 'item_nbr', 'onpromotion']] \
= sub_df[['store_nbr', 'item_nbr', 'onpromotion']].fillna(method='ffill')
sub_df['open'] = sub_df['open'].fillna(
0) # flag where sales data is unknown
sub_df['log_sales'] = np.log(sub_df['unit_sales'])
resampled_dfs.append(sub_df.reset_index(drop=True))
new_temporal = pd.concat(resampled_dfs, axis=0)
del temporal
gc.collect()
temporal = new_temporal
print('Adding oil')
oil.name = 'oil'
oil.index = pd.to_datetime(oil.index)
temporal = temporal.join(
oil.loc[dates].fillna(method='ffill'), on='date', how='left')
temporal['oil'] = temporal['oil'].fillna(-1)
print('Adding store info')
temporal = temporal.join(store_info, on='store_nbr', how='left')
print('Adding item info')
temporal = temporal.join(items, on='item_nbr', how='left')
transactions['date'] = pd.to_datetime(transactions['date'])
temporal = temporal.merge(
transactions,
left_on=['date', 'store_nbr'],
right_on=['date', 'store_nbr'],
how='left')
temporal['transactions'] = temporal['transactions'].fillna(-1)
# Additional date info
temporal['day_of_week'] = pd.to_datetime(temporal['date'].values).dayofweek
temporal['day_of_month'] = pd.to_datetime(temporal['date'].values).day
temporal['month'] = pd.to_datetime(temporal['date'].values).month
# Add holiday info
print('Adding holidays')
holiday_subset = holidays[holidays['transferred'].apply(
lambda x: not x)].copy()
holiday_subset.columns = [
s if s != 'type' else 'holiday_type' for s in holiday_subset.columns
]
holiday_subset['date'] = pd.to_datetime(holiday_subset['date'])
local_holidays = holiday_subset[holiday_subset['locale'] == 'Local']
regional_holidays = holiday_subset[holiday_subset['locale'] == 'Regional']
national_holidays = holiday_subset[holiday_subset['locale'] == 'National']
temporal['national_hol'] = temporal.merge(
national_holidays, left_on=['date'], right_on=['date'],
how='left')['description'].fillna('')
temporal['regional_hol'] = temporal.merge(
regional_holidays,
left_on=['state', 'date'],
right_on=['locale_name', 'date'],
how='left')['description'].fillna('')
temporal['local_hol'] = temporal.merge(
local_holidays,
left_on=['city', 'date'],
right_on=['locale_name', 'date'],
how='left')['description'].fillna('')
temporal.sort_values('unique_id', inplace=True)
print('Saving processed file to {}'.format(config.data_csv_path))
temporal.to_csv(config.data_csv_path)
# Core routine.
def main(expt_name, force_download, output_folder):
"""Runs main download routine.
Args:
expt_name: Name of experiment
force_download: Whether to force data download from scratch
output_folder: Folder path for storing data
"""
print('#### Running download script ###')
expt_config = ExperimentConfig(expt_name, output_folder)
if os.path.exists(expt_config.data_csv_path) and not force_download:
print('Data has been processed for {}. Skipping download...'.format(
expt_name))
sys.exit(0)
else:
print('Resetting data folder...')
recreate_folder(expt_config.data_folder)
# Default download functions
download_functions = {
'volatility': download_volatility,
'electricity': download_electricity,
'traffic': download_traffic,
'favorita': process_favorita
}
if expt_name not in download_functions:
raise ValueError('Unrecongised experiment! name={}'.format(expt_name))
download_function = download_functions[expt_name]
# Run data download
print('Getting {} data...'.format(expt_name))
download_function(expt_config)
print('Download completed.')
if __name__ == '__main__':
def get_args():
"""Returns settings from command line."""
experiment_names = ExperimentConfig.default_experiments
parser = argparse.ArgumentParser(description='Data download configs')
parser.add_argument(
'expt_name',
metavar='e',
type=str,
nargs='?',
choices=experiment_names,
help='Experiment Name. Default={}'.format(','.join(experiment_names)))
parser.add_argument(
'output_folder',
metavar='f',
type=str,
nargs='?',
default='.',
help='Path to folder for data download')
parser.add_argument(
'force_download',
metavar='r',
type=str,
nargs='?',
choices=['yes', 'no'],
default='no',
help='Whether to re-run data download')
args = parser.parse_known_args()[0]
root_folder = None if args.output_folder == '.' else args.output_folder
return args.expt_name, args.force_download == 'yes', root_folder
name, force, folder = get_args()
main(expt_name=name, force_download=force, output_folder=folder)