forked from yisol/IDM-VTON
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinference_dc.py
578 lines (484 loc) · 23.4 KB
/
inference_dc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
from typing import Any, Callable, Dict, List, Optional, Tuple, Union, Literal
from ip_adapter.ip_adapter import Resampler
import argparse
import logging
import os
import torch.utils.data as data
import torchvision
import json
import accelerate
import numpy as np
import torch
from PIL import Image, ImageDraw
import torch.nn.functional as F
import transformers
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import ProjectConfiguration, set_seed
from packaging import version
from torchvision import transforms
import diffusers
from diffusers import AutoencoderKL, DDPMScheduler, StableDiffusionPipeline, StableDiffusionXLControlNetInpaintPipeline
from transformers import AutoTokenizer, PretrainedConfig,CLIPImageProcessor, CLIPVisionModelWithProjection,CLIPTextModelWithProjection, CLIPTextModel, CLIPTokenizer
import cv2
from diffusers.utils.import_utils import is_xformers_available
from numpy.linalg import lstsq
from src.unet_hacked_tryon import UNet2DConditionModel
from src.unet_hacked_garmnet import UNet2DConditionModel as UNet2DConditionModel_ref
from src.tryon_pipeline import StableDiffusionXLInpaintPipeline as TryonPipeline
logger = get_logger(__name__, log_level="INFO")
label_map={
"background": 0,
"hat": 1,
"hair": 2,
"sunglasses": 3,
"upper_clothes": 4,
"skirt": 5,
"pants": 6,
"dress": 7,
"belt": 8,
"left_shoe": 9,
"right_shoe": 10,
"head": 11,
"left_leg": 12,
"right_leg": 13,
"left_arm": 14,
"right_arm": 15,
"bag": 16,
"scarf": 17,
}
def parse_args():
parser = argparse.ArgumentParser(description="Simple example of a training script.")
parser.add_argument("--pretrained_model_name_or_path",type=str,default= "yisol/IDM-VTON",required=False,)
parser.add_argument("--width",type=int,default=768,)
parser.add_argument("--height",type=int,default=1024,)
parser.add_argument("--num_inference_steps",type=int,default=30,)
parser.add_argument("--output_dir",type=str,default="result",)
parser.add_argument("--category",type=str,default="upper_body",choices=["upper_body", "lower_body", "dresses"])
parser.add_argument("--unpaired",action="store_true",)
parser.add_argument("--data_dir",type=str,default="/home/omnious/workspace/yisol/Dataset/zalando")
parser.add_argument("--seed", type=int, default=42,)
parser.add_argument("--test_batch_size", type=int, default=2,)
parser.add_argument("--guidance_scale",type=float,default=2.0,)
parser.add_argument("--mixed_precision",type=str,default=None,choices=["no", "fp16", "bf16"],)
parser.add_argument("--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers.")
args = parser.parse_args()
return args
def pil_to_tensor(images):
images = np.array(images).astype(np.float32) / 255.0
images = torch.from_numpy(images.transpose(2, 0, 1))
return images
class DresscodeTestDataset(data.Dataset):
def __init__(
self,
dataroot_path: str,
phase: Literal["train", "test"],
order: Literal["paired", "unpaired"] = "paired",
category = "upper_body",
size: Tuple[int, int] = (512, 384),
):
super(DresscodeTestDataset, self).__init__()
self.dataroot = os.path.join(dataroot_path,category)
self.phase = phase
self.height = size[0]
self.width = size[1]
self.size = size
self.transform = transforms.Compose(
[
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]),
]
)
self.toTensor = transforms.ToTensor()
self.order = order
self.radius = 5
self.category = category
im_names = []
c_names = []
if phase == "train":
filename = os.path.join(dataroot_path,category, f"{phase}_pairs.txt")
else:
filename = os.path.join(dataroot_path,category, f"{phase}_pairs_{order}.txt")
with open(filename, "r") as f:
for line in f.readlines():
im_name, c_name = line.strip().split()
im_names.append(im_name)
c_names.append(c_name)
file_path = os.path.join(dataroot_path,category,"dc_caption.txt")
self.annotation_pair = {}
with open(file_path, "r") as file:
for line in file:
parts = line.strip().split(" ")
self.annotation_pair[parts[0]] = ' '.join(parts[1:])
self.im_names = im_names
self.c_names = c_names
self.clip_processor = CLIPImageProcessor()
def __getitem__(self, index):
c_name = self.c_names[index]
im_name = self.im_names[index]
if c_name in self.annotation_pair:
cloth_annotation = self.annotation_pair[c_name]
else:
cloth_annotation = self.category
cloth = Image.open(os.path.join(self.dataroot, "images", c_name))
im_pil_big = Image.open(
os.path.join(self.dataroot, "images", im_name)
).resize((self.width,self.height))
image = self.transform(im_pil_big)
skeleton = Image.open(os.path.join(self.dataroot, 'skeletons', im_name.replace("_0", "_5")))
skeleton = skeleton.resize((self.width, self.height))
skeleton = self.transform(skeleton)
# Label Map
parse_name = im_name.replace('_0.jpg', '_4.png')
im_parse = Image.open(os.path.join(self.dataroot, 'label_maps', parse_name))
im_parse = im_parse.resize((self.width, self.height), Image.NEAREST)
parse_array = np.array(im_parse)
# Load pose points
pose_name = im_name.replace('_0.jpg', '_2.json')
with open(os.path.join(self.dataroot, 'keypoints', pose_name), 'r') as f:
pose_label = json.load(f)
pose_data = pose_label['keypoints']
pose_data = np.array(pose_data)
pose_data = pose_data.reshape((-1, 4))
point_num = pose_data.shape[0]
pose_map = torch.zeros(point_num, self.height, self.width)
r = self.radius * (self.height / 512.0)
for i in range(point_num):
one_map = Image.new('L', (self.width, self.height))
draw = ImageDraw.Draw(one_map)
point_x = np.multiply(pose_data[i, 0], self.width / 384.0)
point_y = np.multiply(pose_data[i, 1], self.height / 512.0)
if point_x > 1 and point_y > 1:
draw.rectangle((point_x - r, point_y - r, point_x + r, point_y + r), 'white', 'white')
one_map = self.toTensor(one_map)
pose_map[i] = one_map[0]
agnostic_mask = self.get_agnostic(parse_array, pose_data, self.category, (self.width,self.height))
# agnostic_mask = transforms.functional.resize(agnostic_mask, (self.height, self.width),
# interpolation=transforms.InterpolationMode.NEAREST)
mask = 1 - agnostic_mask
im_mask = image * agnostic_mask
pose_img = Image.open(
os.path.join(self.dataroot, "image-densepose", im_name)
)
pose_img = self.transform(pose_img) # [-1,1]
result = {}
result["c_name"] = c_name
result["im_name"] = im_name
result["image"] = image
result["cloth_pure"] = self.transform(cloth)
result["cloth"] = self.clip_processor(images=cloth, return_tensors="pt").pixel_values
result["inpaint_mask"] =mask
result["im_mask"] = im_mask
result["caption_cloth"] = "a photo of " + cloth_annotation
result["caption"] = "model is wearing a " + cloth_annotation
result["pose_img"] = pose_img
return result
def __len__(self):
# model images + cloth image
return len(self.im_names)
def get_agnostic(self,parse_array, pose_data, category, size):
parse_shape = (parse_array > 0).astype(np.float32)
parse_head = (parse_array == 1).astype(np.float32) + \
(parse_array == 2).astype(np.float32) + \
(parse_array == 3).astype(np.float32) + \
(parse_array == 11).astype(np.float32)
parser_mask_fixed = (parse_array == label_map["hair"]).astype(np.float32) + \
(parse_array == label_map["left_shoe"]).astype(np.float32) + \
(parse_array == label_map["right_shoe"]).astype(np.float32) + \
(parse_array == label_map["hat"]).astype(np.float32) + \
(parse_array == label_map["sunglasses"]).astype(np.float32) + \
(parse_array == label_map["scarf"]).astype(np.float32) + \
(parse_array == label_map["bag"]).astype(np.float32)
parser_mask_changeable = (parse_array == label_map["background"]).astype(np.float32)
arms = (parse_array == 14).astype(np.float32) + (parse_array == 15).astype(np.float32)
if category == 'dresses':
label_cat = 7
parse_mask = (parse_array == 7).astype(np.float32) + \
(parse_array == 12).astype(np.float32) + \
(parse_array == 13).astype(np.float32)
parser_mask_changeable += np.logical_and(parse_array, np.logical_not(parser_mask_fixed))
elif category == 'upper_body':
label_cat = 4
parse_mask = (parse_array == 4).astype(np.float32)
parser_mask_fixed += (parse_array == label_map["skirt"]).astype(np.float32) + \
(parse_array == label_map["pants"]).astype(np.float32)
parser_mask_changeable += np.logical_and(parse_array, np.logical_not(parser_mask_fixed))
elif category == 'lower_body':
label_cat = 6
parse_mask = (parse_array == 6).astype(np.float32) + \
(parse_array == 12).astype(np.float32) + \
(parse_array == 13).astype(np.float32)
parser_mask_fixed += (parse_array == label_map["upper_clothes"]).astype(np.float32) + \
(parse_array == 14).astype(np.float32) + \
(parse_array == 15).astype(np.float32)
parser_mask_changeable += np.logical_and(parse_array, np.logical_not(parser_mask_fixed))
parse_head = torch.from_numpy(parse_head) # [0,1]
parse_mask = torch.from_numpy(parse_mask) # [0,1]
parser_mask_fixed = torch.from_numpy(parser_mask_fixed)
parser_mask_changeable = torch.from_numpy(parser_mask_changeable)
# dilation
parse_without_cloth = np.logical_and(parse_shape, np.logical_not(parse_mask))
parse_mask = parse_mask.cpu().numpy()
width = size[0]
height = size[1]
im_arms = Image.new('L', (width, height))
arms_draw = ImageDraw.Draw(im_arms)
if category == 'dresses' or category == 'upper_body':
shoulder_right = tuple(np.multiply(pose_data[2, :2], height / 512.0))
shoulder_left = tuple(np.multiply(pose_data[5, :2], height / 512.0))
elbow_right = tuple(np.multiply(pose_data[3, :2], height / 512.0))
elbow_left = tuple(np.multiply(pose_data[6, :2], height / 512.0))
wrist_right = tuple(np.multiply(pose_data[4, :2], height / 512.0))
wrist_left = tuple(np.multiply(pose_data[7, :2], height / 512.0))
if wrist_right[0] <= 1. and wrist_right[1] <= 1.:
if elbow_right[0] <= 1. and elbow_right[1] <= 1.:
arms_draw.line([wrist_left, elbow_left, shoulder_left, shoulder_right], 'white', 30, 'curve')
else:
arms_draw.line([wrist_left, elbow_left, shoulder_left, shoulder_right, elbow_right], 'white', 30,
'curve')
elif wrist_left[0] <= 1. and wrist_left[1] <= 1.:
if elbow_left[0] <= 1. and elbow_left[1] <= 1.:
arms_draw.line([shoulder_left, shoulder_right, elbow_right, wrist_right], 'white', 30, 'curve')
else:
arms_draw.line([elbow_left, shoulder_left, shoulder_right, elbow_right, wrist_right], 'white', 30,
'curve')
else:
arms_draw.line([wrist_left, elbow_left, shoulder_left, shoulder_right, elbow_right, wrist_right], 'white',
30, 'curve')
if height > 512:
im_arms = cv2.dilate(np.float32(im_arms), np.ones((10, 10), np.uint16), iterations=5)
elif height > 256:
im_arms = cv2.dilate(np.float32(im_arms), np.ones((5, 5), np.uint16), iterations=5)
hands = np.logical_and(np.logical_not(im_arms), arms)
parse_mask += im_arms
parser_mask_fixed += hands
# delete neck
parse_head_2 = torch.clone(parse_head)
if category == 'dresses' or category == 'upper_body':
points = []
points.append(np.multiply(pose_data[2, :2], height / 512.0))
points.append(np.multiply(pose_data[5, :2], height / 512.0))
x_coords, y_coords = zip(*points)
A = np.vstack([x_coords, np.ones(len(x_coords))]).T
m, c = lstsq(A, y_coords, rcond=None)[0]
for i in range(parse_array.shape[1]):
y = i * m + c
parse_head_2[int(y - 20 * (height / 512.0)):, i] = 0
parser_mask_fixed = np.logical_or(parser_mask_fixed, np.array(parse_head_2, dtype=np.uint16))
parse_mask += np.logical_or(parse_mask, np.logical_and(np.array(parse_head, dtype=np.uint16),
np.logical_not(np.array(parse_head_2, dtype=np.uint16))))
if height > 512:
parse_mask = cv2.dilate(parse_mask, np.ones((20, 20), np.uint16), iterations=5)
elif height > 256:
parse_mask = cv2.dilate(parse_mask, np.ones((10, 10), np.uint16), iterations=5)
else:
parse_mask = cv2.dilate(parse_mask, np.ones((5, 5), np.uint16), iterations=5)
parse_mask = np.logical_and(parser_mask_changeable, np.logical_not(parse_mask))
parse_mask_total = np.logical_or(parse_mask, parser_mask_fixed)
agnostic_mask = parse_mask_total.unsqueeze(0)
return agnostic_mask
def main():
args = parse_args()
accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir)
accelerator = Accelerator(
mixed_precision=args.mixed_precision,
project_config=accelerator_project_config,
)
if accelerator.is_local_main_process:
transformers.utils.logging.set_verbosity_warning()
diffusers.utils.logging.set_verbosity_info()
else:
transformers.utils.logging.set_verbosity_error()
diffusers.utils.logging.set_verbosity_error()
# If passed along, set the training seed now.
if args.seed is not None:
set_seed(args.seed)
# Handle the repository creation
if accelerator.is_main_process:
if args.output_dir is not None:
os.makedirs(args.output_dir, exist_ok=True)
weight_dtype = torch.float16
# if accelerator.mixed_precision == "fp16":
# weight_dtype = torch.float16
# args.mixed_precision = accelerator.mixed_precision
# elif accelerator.mixed_precision == "bf16":
# weight_dtype = torch.bfloat16
# args.mixed_precision = accelerator.mixed_precision
# Load scheduler, tokenizer and models.
noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler")
vae = AutoencoderKL.from_pretrained(
args.pretrained_model_name_or_path,
subfolder="vae",
torch_dtype=torch.float16,
)
unet = UNet2DConditionModel.from_pretrained(
"yisol/IDM-VTON-DC",
subfolder="unet",
torch_dtype=torch.float16,
)
image_encoder = CLIPVisionModelWithProjection.from_pretrained(
args.pretrained_model_name_or_path,
subfolder="image_encoder",
torch_dtype=torch.float16,
)
UNet_Encoder = UNet2DConditionModel_ref.from_pretrained(
args.pretrained_model_name_or_path,
subfolder="unet_encoder",
torch_dtype=torch.float16,
)
text_encoder_one = CLIPTextModel.from_pretrained(
args.pretrained_model_name_or_path,
subfolder="text_encoder",
torch_dtype=torch.float16,
)
text_encoder_two = CLIPTextModelWithProjection.from_pretrained(
args.pretrained_model_name_or_path,
subfolder="text_encoder_2",
torch_dtype=torch.float16,
)
tokenizer_one = AutoTokenizer.from_pretrained(
args.pretrained_model_name_or_path,
subfolder="tokenizer",
revision=None,
use_fast=False,
)
tokenizer_two = AutoTokenizer.from_pretrained(
args.pretrained_model_name_or_path,
subfolder="tokenizer_2",
revision=None,
use_fast=False,
)
# Freeze vae and text_encoder and set unet to trainable
unet.requires_grad_(False)
vae.requires_grad_(False)
image_encoder.requires_grad_(False)
UNet_Encoder.requires_grad_(False)
text_encoder_one.requires_grad_(False)
text_encoder_two.requires_grad_(False)
UNet_Encoder.to(accelerator.device, weight_dtype)
unet.eval()
UNet_Encoder.eval()
if args.enable_xformers_memory_efficient_attention:
if is_xformers_available():
import xformers
xformers_version = version.parse(xformers.__version__)
if xformers_version == version.parse("0.0.16"):
logger.warn(
"xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details."
)
unet.enable_xformers_memory_efficient_attention()
else:
raise ValueError("xformers is not available. Make sure it is installed correctly")
test_dataset = DresscodeTestDataset(
dataroot_path=args.data_dir,
phase="test",
order="unpaired" if args.unpaired else "paired",
category = args.category,
size=(args.height, args.width),
)
test_dataloader = torch.utils.data.DataLoader(
test_dataset,
shuffle=False,
batch_size=args.test_batch_size,
num_workers=4,
)
pipe = TryonPipeline.from_pretrained(
args.pretrained_model_name_or_path,
unet=unet,
vae=vae,
feature_extractor= CLIPImageProcessor(),
text_encoder = text_encoder_one,
text_encoder_2 = text_encoder_two,
tokenizer = tokenizer_one,
tokenizer_2 = tokenizer_two,
scheduler = noise_scheduler,
image_encoder=image_encoder,
torch_dtype=torch.float16,
).to(accelerator.device)
pipe.unet_encoder = UNet_Encoder
# pipe.enable_sequential_cpu_offload()
# pipe.enable_model_cpu_offload()
# pipe.enable_vae_slicing()
with torch.no_grad():
# Extract the images
with torch.cuda.amp.autocast():
with torch.no_grad():
for sample in test_dataloader:
img_emb_list = []
for i in range(sample['cloth'].shape[0]):
img_emb_list.append(sample['cloth'][i])
prompt = sample["caption"]
num_prompts = sample['cloth'].shape[0]
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
if not isinstance(prompt, List):
prompt = [prompt] * num_prompts
if not isinstance(negative_prompt, List):
negative_prompt = [negative_prompt] * num_prompts
image_embeds = torch.cat(img_emb_list,dim=0)
with torch.inference_mode():
(
prompt_embeds,
negative_prompt_embeds,
pooled_prompt_embeds,
negative_pooled_prompt_embeds,
) = pipe.encode_prompt(
prompt,
num_images_per_prompt=1,
do_classifier_free_guidance=True,
negative_prompt=negative_prompt,
)
prompt = sample["caption_cloth"]
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
if not isinstance(prompt, List):
prompt = [prompt] * num_prompts
if not isinstance(negative_prompt, List):
negative_prompt = [negative_prompt] * num_prompts
with torch.inference_mode():
(
prompt_embeds_c,
_,
_,
_,
) = pipe.encode_prompt(
prompt,
num_images_per_prompt=1,
do_classifier_free_guidance=False,
negative_prompt=negative_prompt,
)
generator = torch.Generator(pipe.device).manual_seed(args.seed) if args.seed is not None else None
images = pipe(
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
num_inference_steps=args.num_inference_steps,
generator=generator,
strength = 1.0,
pose_img = sample['pose_img'],
text_embeds_cloth=prompt_embeds_c,
cloth = sample["cloth_pure"].to(accelerator.device),
mask_image=sample['inpaint_mask'],
image=(sample['image']+1.0)/2.0,
height=args.height,
width=args.width,
guidance_scale=args.guidance_scale,
ip_adapter_image = image_embeds,
)[0]
for i in range(len(images)):
x_sample = pil_to_tensor(images[i])
torchvision.utils.save_image(x_sample,os.path.join(args.output_dir,sample['im_name'][i]))
if __name__ == "__main__":
main()