Skip to content

Latest commit

 

History

History
433 lines (344 loc) · 22.9 KB

system_benchmarking.md

File metadata and controls

433 lines (344 loc) · 22.9 KB

HOWTO: Writing system benchmarks for a package

Introduction

Elastic Packages are comprised of data streams. A system benchmark exercises the end-to-end flow of data for a package's data stream — from ingesting data from the package's integration service all the way to indexing it into an Elasticsearch data stream, and retrieves performance metrics from the Elasticsearch nodes.

Conceptual process

Conceptually, running a system benchmark involves the following steps:

  1. Deploy the Elastic Stack, including Elasticsearch, Kibana, and the Elastic Agent(s). This step takes time so it should typically be done once as a pre-requisite to running a system benchmark scenario.
  2. Enroll the Elastic Agent(s) with Fleet (running in the Kibana instance). This step also can be done once, as a pre-requisite.
  3. Depending on the Elastic Package whose data stream is being tested, deploy an instance of the package's integration service.
  4. Create a benchmark policy that configures a single data stream for a single package.
  5. Assign the policy to the enrolled Agent(s).
  6. Metrics collections from the cluster starts. (TODO: record metrics from all Elastic Agents involved using the system integration.)
  7. Send the collected metrics to the ES Metricstore if set.
  8. Generate data if configured (it uses the corpus-generator-tool)
  9. Wait a reasonable amount of time for the Agent to collect data from the integration service and index it into the correct Elasticsearch data stream. This time can be pre-defined with the benchmark_time. In case this setting is not set the benchmark will continue until the number of documents is not changed in the data stream.
  10. Metrics collection ends and a summary report is created.
  11. Delete test artifacts and tear down the instance of the package's integration service.
  12. Optionally reindex all ingested data into the ES Metricstore for further analysis.
  13. TODO: Optionally compare results against another benchmark run.

Defining a system benchmark scenario

System benchmarks are defined at the package level.

Optionally system benchmarks can define a configuration for deploying a package's integration service. We must define it on the package level:

<package root>/
  _dev/
    benchmark/
      system/
        deploy/
          <service deployer>/
            <service deployer files>

<service deployer> - a name of the supported service deployer:

  • docker - Docker Compose
  • k8s - Kubernetes
  • tf - Terraform

Docker Compose service deployer

When using the Docker Compose service deployer, the <service deployer files> must include a docker-compose.yml file. The docker-compose.yml file defines the integration service(s) for the package. If your package has a logs data stream, the log files from your package's integration service must be written to a volume.

elastic-package will remove orphan volumes associated to the started services when they are stopped. Docker compose may not be able to find volumes defined in the Dockerfile for this cleanup. In these cases, override the volume definition.

Terraform service deployer

When using the Terraform service deployer, the <service deployer files> must include at least one *.tf file. The *.tf files define the infrastructure using the Terraform syntax. The terraform based service can be handy to boot up resources using selected cloud provider and use them for testing (e.g. observe and collect metrics).

Sample main.tf definition:

variable "TEST_RUN_ID" {
  default = "detached"
}

provider "aws" {}

resource "aws_instance" "i" {
  ami           = data.aws_ami.latest-amzn.id
  monitoring = true
  instance_type = "t1.micro"
  tags = {
    Name = "elastic-package-test-${var.TEST_RUN_ID}"
  }
}

data "aws_ami" "latest-amzn" {
  most_recent = true
  owners = [ "amazon" ] # AWS
  filter {
    name   = "name"
    values = ["amzn2-ami-hvm-*"]
  }
}

Notice the use of the TEST_RUN_ID variable. It contains a unique ID, which can help differentiate resources created in potential concurrent test runs.

Terraform Outputs

The outputs generated by the terraform service deployer can be accessed in the system test config using handlebars template. For example, if a SQS queue is configured in terraform and if the queue_url is configured as output , it can be used in the test config as a handlebars template {{TF_OUTPUT_queue_url}}

Sample Terraform definition

resource "aws_sqs_queue" "test" {

}

output "queue_url"{
  value = aws_sqs_queue.test.url
}

Sample system test config

data_stream:
  vars:
    period: 5m
    latency: 10m
    queue_url: '{{TF_OUTPUT_queue_url}}'
    tags_filter: |-
      - key: Name
        value: "elastic-package-test-{{TEST_RUN_ID}}"

For complex outputs from terraform you can use {{TF_OUTPUT_root_key.nested_key}}

output "root_key"{
  value = someoutput.nested_key_value
}
{
  "root_key": {
    "sensitive": false,
    "type": [
      "object",
      {
        "nested_key": "string"
      }
    ],
    "value": {
      "nested_key": "this is a nested key"
    }
  }
}
data_stream:
  vars:
    queue_url: '{{TF_OUTPUT_root_key.nested_key}}'

Environment variables

To use environment variables within the Terraform service deployer a env.yml file is required.

The file should be structured like this:

version: '2.3'
services:
  terraform:
    environment:
      - AWS_ACCESS_KEY_ID=${AWS_ACCESS_KEY_ID}

It's purpose is to inject environment variables in the Terraform service deployer environment.

To specify a default use this syntax: AWS_ACCESS_KEY_ID=${AWS_ACCESS_KEY_ID:-default}, replacing default with the desired default value.

NOTE: Terraform requires to prefix variables using the environment variables form with TF_VAR_. These variables are not available in test case definitions because they are not injected in the test environment.

Cloud Provider CI support

Terraform is often used to interact with Cloud Providers. This require Cloud Provider credentials.

Injecting credentials can be achieved with functions from the apm-pipeline-library Jenkins library. For example look for withAzureCredentials, withAWSEnv or withGCPEnv.

Tagging/labelling created Cloud Provider resources

Leveraging Terraform to create cloud resources is useful but risks creating leftover resources that are difficult to remove.

There are some specific environment variables that should be leveraged to overcome this issue; these variables are already injected to be used by Terraform (through TF_VAR_):

  • TF_VAR_TEST_RUN_ID: a unique identifier for the test run, allows to distinguish each run
  • BRANCH_NAME_LOWER_CASE: the branch name or PR number the CI run is linked to
  • BUILD_ID: incremental number providing the current CI run number
  • CREATED_DATE: the creation date in epoch time, milliseconds, when the resource was created
  • ENVIRONMENT: what environment created the resource (ci)
  • REPO: the GitHub repository name (elastic-package)

Kubernetes service deployer

The Kubernetes service deployer requires the _dev/benchmark/system/deploy/k8s directory to be present. It can include additional *.yaml files to deploy custom applications in the Kubernetes cluster (e.g. Nginx deployment). It is possible to use a kustomization.yaml file. If no resource definitions (*.yaml files ) are needed, the _dev/benchmark/system/deploy/k8s directory must contain an .empty file (to preserve the k8s directory under version control).

The Kubernetes service deployer needs kind to be installed and the cluster to be up and running:

wget -qO-  https://raw.githubusercontent.com/elastic/elastic-package/main/scripts/kind-config.yaml | kind create cluster --config -

Before executing system tests, the service deployer applies once the deployment of the Elastic Agent to the cluster and links the kind cluster with the Elastic stack network - applications running in the kind cluster can reach Elasticsearch and Kibana instances. To shorten the total test execution time the Elastic Agent's deployment is not deleted after tests, but it can be reused.

See how to execute system benchmarks for the Kubernetes integration:

elastic-package stack up -d -v # start the Elastic stack
wget -qO-  https://raw.githubusercontent.com/elastic/elastic-package/main/scripts/kind-config.yaml | kind create cluster --config -
elastic-package benchmark system --benchmark k8s-benchmark -v

Benchmark scenario definition

Next, we must define at least one configuration for the package that we want to benchmark. There can be multiple scenarios defined for the same package.

<package root>/
  _dev/
    benchmark/
      system/
        <scenario>.yml

The <scenario>.yml files allow you to define various settings for the benchmark scenario along with values for package and data stream-level variables. These are the available configuration options for system benchmarks.

Option Type Required Description
package string The name of the package. If omitted will pick the current package, this is to allow for future definition of benchmarks outside of the packages folders.
description string A description for the scenario.
version string The version of the package to benchmark. If omitted will pick the current version of the package.
policy_template string The policy template to test. If omitted will pick the first one.
input string yes Input type to test (e.g. logfile, httpjson, etc). Defaults to the input used by the first stream in the data stream manifest.
vars dictionary Package level variables to set (i.e. declared in $package_root/manifest.yml). If not specified the defaults from the manifest are used.
data_stream.name string yes The data stream to benchmark.
data_stream.vars dictionary Data stream level variables to set (i.e. declared in package_root/data_stream/$data_stream/manifest.yml). If not specified the defaults from the manifest are used.
warmup_time_period duration Warmup time period. All data prior to this period will be ignored in the benchmark results.
benchmark_time_period duration Amount of time the benchmark needs to run for. If set the benchmark will stop after this period even though more data is still pending to be ingested.
wait_for_data_timeout duration Amount of time to wait for data to be present in Elasticsearch. Defaults to 10m.
corpora.generator.size string String describing the amount of data to generate. Example: 20MiB
corpora.generator.template.raw string Raw template for the corpus generator.
corpora.generator.template.path string Path to the template for the corpus generator. If a path is defined, it will override any raw template definition.
corpora.generator.template.type string Type of the template for the corpus generator. Default placeholder.
corpora.generator.config.raw dictionary Raw config for the corpus generator.
corpora.generator.config.path string Path to the config for the corpus generator. If a path is defined, it will override any raw config definition.
corpora.generator.fields.raw dictionary Raw fields for the corpus generator.
corpora.generator.fields.path string Path to the fields for the corpus generator. If a path is defined, it will override any raw fields definition.
corpora.input_service.name string Name of the input service to use (defined in the deploy folder).
corpora.input_service.signal string Signal to send to the input service once the benchmark is ready to start.

Example:

logs-benchmark.yml

---
description: Benchmark 100MiB of data ingested
input: filestream
vars: ~
data_stream.name: test
data_stream.vars.paths:
  - "{{SERVICE_LOGS_DIR}}/corpus-*"
warmup_time_period: 10s
corpora.generator.size: 100MiB
corpora.generator.template.path: ./logs-benchmark/template.log
corpora.generator.config.path: ./logs-benchmark/config.yml
corpora.generator.fields.path: ./logs-benchmark/fields.yml

The top-level vars field corresponds to package-level variables defined in the package's manifest.yml file. In the above example we don't override any of these package-level variables, so their default values, as specified in the package's manifest.yml file are used.

The data_stream.vars field corresponds to data stream-level variables for the current data stream (test in the above example). In the above example we override the paths variable. All other variables are populated with their default values, as specified in the data stream's manifest.yml file.

Notice the use of the {{SERVICE_LOGS_DIR}} placeholder. This also corresponds to the ${SERVICE_LOGS_DIR} variable that can be used the docker-compose.yml files.

The generator puts the generated data inside {{SERVICE_LOGS_DIR}} so they are available both in docker-compose.yml and inside the Elastic Agent that is provisioned by the stack command.

Placeholders

The SERVICE_LOGS_DIR placeholder is not the only one available for use in a data stream's <scenario>.yml file. The complete list of available placeholders is shown below.

Placeholder name Data type Description
Hostname string Addressable host name of the integration service.
Ports []int Array of addressable ports the integration service is listening on.
Port int Alias for Ports[0]. Provided as a convenience.
Logs.Folder.Agent string Path to integration service's logs folder, as addressable by the Agent.
SERVICE_LOGS_DIR string Alias for Logs.Folder.Agent. Provided as a convenience.

Placeholders used in the <scenario>.yml must be enclosed in {{ and }} delimiters, per Go syntax.

Running a system benchmark

Once the configuration is defined as described in the previous section, you are ready to run system benchmarks for a package.

First you must deploy the Elastic Stack.

elastic-package stack up -d

For a complete listing of options available for this command, run elastic-package stack up -h or elastic-package help stack up.

Next, you must set environment variables needed for further elastic-package commands.

$(elastic-package stack shellinit)

Next, you must invoke the system benchmark runner.

elastic-package benchmark system --benchmark logs-benchmark -v
# ... debug output
--- Benchmark results for package: system_benchmarks - START ---
╭─────────────────────────────────────────────────────╮
│ info                                                │
├──────────────┬──────────────────────────────────────┤
│ benchmark    │                       logs-benchmark │
│ description  │    Benchmark 100MiB of data ingested │
│ run ID       │ d2960c04-0028-42c9-bafc-35e599563cb1 │
│ package      │                    system_benchmarks │
│ start ts (s) │                           1682320355 │
│ end ts (s)   │                           1682320355 │
│ duration     │                                 2m3s │
╰──────────────┴──────────────────────────────────────╯
╭───────────────────────────────────────────────────────────────────────╮
│ parameters                                                            │
├─────────────────────────────────┬─────────────────────────────────────┤
│ package version                 │                         999.999.999 │
│ input                           │                          filestream │
│ data_stream.name                │                                test │
│ data_stream.vars.paths          │        [/tmp/service_logs/corpus-*] │
│ warmup time period              │                                 10s │
│ benchmark time period           │                                  0s │
│ wait for data timeout           │                                  0s │
│ corpora.generator.size          │                              100MiB │
│ corpora.generator.template.path │       ./logs-benchmark/template.log │
│ corpora.generator.template.raw  │                                     │
│ corpora.generator.template.type │                                     │
│ corpora.generator.config.path   │         ./logs-benchmark/config.yml │
│ corpora.generator.config.raw    │                               map[] │
│ corpora.generator.fields.path   │         ./logs-benchmark/fields.yml │
│ corpora.generator.fields.raw    │                               map[] │
╰─────────────────────────────────┴─────────────────────────────────────╯
╭───────────────────────╮
│ cluster info          │
├───────┬───────────────┤
│ name  │ elasticsearch │
│ nodes │             1 │
╰───────┴───────────────╯
╭─────────────────────────────────────────────────────────────╮
│ data stream stats                                           │
├────────────────────────────┬────────────────────────────────┤
│ data stream                │ logs-system_benchmarks.test-ep │
│ approx total docs ingested │                         410127 │
│ backing indices            │                              1 │
│ store size bytes           │                      136310570 │
│ maximum ts (ms)            │                  1682320467448 │
╰────────────────────────────┴────────────────────────────────╯
╭───────────────────────────────────────╮
│ disk usage for index .ds-logs-system_ │
│ benchmarks.test-ep-2023.04.22-000001  │
│ (for all fields)                      │
├──────────────────────────────┬────────┤
│ total                        │ 99.8mb │
│ inverted_index.total         │ 31.3mb │
│ inverted_index.stored_fields │ 35.5mb │
│ inverted_index.doc_values    │   30mb │
│ inverted_index.points        │  2.8mb │
│ inverted_index.norms         │     0b │
│ inverted_index.term_vectors  │     0b │
│ inverted_index.knn_vectors   │     0b │
╰──────────────────────────────┴────────╯
╭───────────────────────────────────────────────────────────────────────────────────────────╮
│ pipeline logs-system_benchmarks.test-999.999.999 stats in node Qa9ujRVfQuWhqEESdt6xnw     │
├───────────────────────────────────────────────┬───────────────────────────────────────────┤
│ grok ()                                       │ Count: 407819 | Failed: 0 | Time: 16.615s │
│ user_agent ()                                 │   Count: 407819 | Failed: 0 | Time: 768ms │
│ pipeline (logs-system_benchmarks.test@custom) │    Count: 407819 | Failed: 0 | Time: 59ms │
╰───────────────────────────────────────────────┴───────────────────────────────────────────╯

--- Benchmark results for package: system_benchmarks - END   ---
Done

Finally, when you are done running the benchmark, bring down the Elastic Stack.

elastic-package stack down

Setting up an external metricstore

A metricstore can be set up to send metrics collected during the benchmark execution.

An external metricstore might be useful for:

  • Store monitoring data of the benchmark scenario for all its execution time.
  • Analyse the data generated during a benchmark. This is possible when using the reindex-to-metricstore flag.
  • TODO: Store benchmark results for various benchmark runs permanently for later comparison.

In order to initialize it, you need to set up the following environment variables:

export ELASTIC_PACKAGE_ESMETRICSTORE_HOST=https://127.0.0.1:9200
export ELASTIC_PACKAGE_ESMETRICSTORE_USERNAME=elastic
export ELASTIC_PACKAGE_ESMETRICSTORE_PASSWORD=changeme
export ELASTIC_PACKAGE_ESMETRICSTORE_CA_CERT="$HOME/.elastic-package/profiles/default/certs/ca-cert.pem"

The only one that is optional is ELASTIC_PACKAGE_ESMETRICSTORE_CA_CERT.

When these are detected, metrics will be automatically collected every second and sent to a new index called bench-metrics-{dataset}-{testRunID}".

The collected metrics include the following node stats: nodes.*.breakers, nodes.*.indices, nodes.*.jvm.mem, nodes.*.jvm.gc, nodes.*.jvm.buffer_pools, nodes.*.os.mem, nodes.*.process.cpu, nodes.*.thread_pool, and nodes.*.transport.

Ingest pipelines metrics are only collected at the end since its own collection would affect the benchmark results.

You can see a sample collected metric here

Additionally, if the reindex-to-metricstore flag is used, the data generated during the benchmark will be sent to the metricstore into an index called bench-reindex-{datastream}-{testRunID} for further analysis. The events will be enriched with metadata related to the benchmark run.