Elastic Packages are comprised of data streams. A system benchmark exercises the end-to-end flow of data for a package's data stream — from ingesting data from the package's integration service all the way to indexing it into an Elasticsearch data stream, and retrieves performance metrics from the Elasticsearch nodes.
Conceptually, running a system benchmark involves the following steps:
- Deploy the Elastic Stack, including Elasticsearch, Kibana, and the Elastic Agent(s). This step takes time so it should typically be done once as a pre-requisite to running a system benchmark scenario.
- Enroll the Elastic Agent(s) with Fleet (running in the Kibana instance). This step also can be done once, as a pre-requisite.
- Depending on the Elastic Package whose data stream is being tested, deploy an instance of the package's integration service.
- Create a benchmark policy that configures a single data stream for a single package.
- Assign the policy to the enrolled Agent(s).
- Metrics collections from the cluster starts. (TODO: record metrics from all Elastic Agents involved using the
system
integration.) - Send the collected metrics to the ES Metricstore if set.
- Generate data if configured (it uses the corpus-generator-tool)
- Wait a reasonable amount of time for the Agent to collect data from the
integration service and index it into the correct Elasticsearch data stream.
This time can be pre-defined with the
benchmark_time
. In case this setting is not set the benchmark will continue until the number of documents is not changed in the data stream. - Metrics collection ends and a summary report is created.
- Delete test artifacts and tear down the instance of the package's integration service.
- Optionally reindex all ingested data into the ES Metricstore for further analysis.
- TODO: Optionally compare results against another benchmark run.
System benchmarks are defined at the package level.
Optionally system benchmarks can define a configuration for deploying a package's integration service. We must define it on the package level:
<package root>/
_dev/
benchmark/
system/
deploy/
<service deployer>/
<service deployer files>
<service deployer>
- a name of the supported service deployer:
docker
- Docker Composek8s
- Kubernetestf
- Terraform
When using the Docker Compose service deployer, the <service deployer files>
must include a docker-compose.yml
file.
The docker-compose.yml
file defines the integration service(s) for the package. If your package has a logs data stream, the log files from your package's integration service must be written to a volume.
elastic-package
will remove orphan volumes associated to the started services
when they are stopped. Docker compose may not be able to find volumes defined in
the Dockerfile for this cleanup. In these cases, override the volume definition.
When using the Terraform service deployer, the <service deployer files>
must include at least one *.tf
file.
The *.tf
files define the infrastructure using the Terraform syntax. The terraform based service can be handy to boot up
resources using selected cloud provider and use them for testing (e.g. observe and collect metrics).
Sample main.tf
definition:
variable "TEST_RUN_ID" {
default = "detached"
}
provider "aws" {}
resource "aws_instance" "i" {
ami = data.aws_ami.latest-amzn.id
monitoring = true
instance_type = "t1.micro"
tags = {
Name = "elastic-package-test-${var.TEST_RUN_ID}"
}
}
data "aws_ami" "latest-amzn" {
most_recent = true
owners = [ "amazon" ] # AWS
filter {
name = "name"
values = ["amzn2-ami-hvm-*"]
}
}
Notice the use of the TEST_RUN_ID
variable. It contains a unique ID, which can help differentiate resources created in potential concurrent test runs.
The outputs generated by the terraform service deployer can be accessed in the system test config using handlebars template.
For example, if a SQS queue
is configured in terraform and if the queue_url
is configured as output , it can be used in the test config as a handlebars template {{TF_OUTPUT_queue_url}}
Sample Terraform definition
resource "aws_sqs_queue" "test" {
}
output "queue_url"{
value = aws_sqs_queue.test.url
}
Sample system test config
data_stream:
vars:
period: 5m
latency: 10m
queue_url: '{{TF_OUTPUT_queue_url}}'
tags_filter: |-
- key: Name
value: "elastic-package-test-{{TEST_RUN_ID}}"
For complex outputs from terraform you can use {{TF_OUTPUT_root_key.nested_key}}
output "root_key"{
value = someoutput.nested_key_value
}
{
"root_key": {
"sensitive": false,
"type": [
"object",
{
"nested_key": "string"
}
],
"value": {
"nested_key": "this is a nested key"
}
}
}
data_stream:
vars:
queue_url: '{{TF_OUTPUT_root_key.nested_key}}'
To use environment variables within the Terraform service deployer a env.yml
file is required.
The file should be structured like this:
version: '2.3'
services:
terraform:
environment:
- AWS_ACCESS_KEY_ID=${AWS_ACCESS_KEY_ID}
It's purpose is to inject environment variables in the Terraform service deployer environment.
To specify a default use this syntax: AWS_ACCESS_KEY_ID=${AWS_ACCESS_KEY_ID:-default}
, replacing default
with the desired default value.
NOTE: Terraform requires to prefix variables using the environment variables form with TF_VAR_
. These variables are not available in test case definitions because they are not injected in the test environment.
Terraform is often used to interact with Cloud Providers. This require Cloud Provider credentials.
Injecting credentials can be achieved with functions from the apm-pipeline-library
Jenkins library. For example look for withAzureCredentials
, withAWSEnv
or withGCPEnv
.
Leveraging Terraform to create cloud resources is useful but risks creating leftover resources that are difficult to remove.
There are some specific environment variables that should be leveraged to overcome this issue; these variables are already injected to be used by Terraform (through TF_VAR_
):
TF_VAR_TEST_RUN_ID
: a unique identifier for the test run, allows to distinguish each runBRANCH_NAME_LOWER_CASE
: the branch name or PR number the CI run is linked toBUILD_ID
: incremental number providing the current CI run numberCREATED_DATE
: the creation date in epoch time, milliseconds, when the resource was createdENVIRONMENT
: what environment created the resource (ci
)REPO
: the GitHub repository name (elastic-package
)
The Kubernetes service deployer requires the _dev/benchmark/system/deploy/k8s
directory to be present. It can include additional *.yaml
files to deploy
custom applications in the Kubernetes cluster (e.g. Nginx deployment). It is possible to use a kustomization.yaml
file.
If no resource definitions (*.yaml
files ) are needed,
the _dev/benchmark/system/deploy/k8s
directory must contain an .empty
file (to preserve the k8s
directory under version control).
The Kubernetes service deployer needs kind to be installed and the cluster to be up and running:
wget -qO- https://raw.githubusercontent.com/elastic/elastic-package/main/scripts/kind-config.yaml | kind create cluster --config -
Before executing system tests, the service deployer applies once the deployment of the Elastic Agent to the cluster and links the kind cluster with the Elastic stack network - applications running in the kind cluster can reach Elasticsearch and Kibana instances. To shorten the total test execution time the Elastic Agent's deployment is not deleted after tests, but it can be reused.
See how to execute system benchmarks for the Kubernetes integration:
elastic-package stack up -d -v # start the Elastic stack
wget -qO- https://raw.githubusercontent.com/elastic/elastic-package/main/scripts/kind-config.yaml | kind create cluster --config -
elastic-package benchmark system --benchmark k8s-benchmark -v
Next, we must define at least one configuration for the package that we want to benchmark. There can be multiple scenarios defined for the same package.
<package root>/
_dev/
benchmark/
system/
<scenario>.yml
The <scenario>.yml
files allow you to define various settings for the benchmark scenario
along with values for package and data stream-level variables. These are the available configuration options for system benchmarks.
Option | Type | Required | Description |
---|---|---|---|
package | string | The name of the package. If omitted will pick the current package, this is to allow for future definition of benchmarks outside of the packages folders. | |
description | string | A description for the scenario. | |
version | string | The version of the package to benchmark. If omitted will pick the current version of the package. | |
policy_template | string | The policy template to test. If omitted will pick the first one. | |
input | string | yes | Input type to test (e.g. logfile, httpjson, etc). Defaults to the input used by the first stream in the data stream manifest. |
vars | dictionary | Package level variables to set (i.e. declared in $package_root/manifest.yml ). If not specified the defaults from the manifest are used. |
|
data_stream.name | string | yes | The data stream to benchmark. |
data_stream.vars | dictionary | Data stream level variables to set (i.e. declared in package_root/data_stream/$data_stream/manifest.yml ). If not specified the defaults from the manifest are used. |
|
warmup_time_period | duration | Warmup time period. All data prior to this period will be ignored in the benchmark results. | |
benchmark_time_period | duration | Amount of time the benchmark needs to run for. If set the benchmark will stop after this period even though more data is still pending to be ingested. | |
wait_for_data_timeout | duration | Amount of time to wait for data to be present in Elasticsearch. Defaults to 10m. | |
corpora.generator.size | string | String describing the amount of data to generate. Example: 20MiB |
|
corpora.generator.template.raw | string | Raw template for the corpus generator. | |
corpora.generator.template.path | string | Path to the template for the corpus generator. If a path is defined, it will override any raw template definition. |
|
corpora.generator.template.type | string | Type of the template for the corpus generator. Default placeholder . |
|
corpora.generator.config.raw | dictionary | Raw config for the corpus generator. | |
corpora.generator.config.path | string | Path to the config for the corpus generator. If a path is defined, it will override any raw config definition. |
|
corpora.generator.fields.raw | dictionary | Raw fields for the corpus generator. | |
corpora.generator.fields.path | string | Path to the fields for the corpus generator. If a path is defined, it will override any raw fields definition. |
|
corpora.input_service.name | string | Name of the input service to use (defined in the deploy folder). |
|
corpora.input_service.signal | string | Signal to send to the input service once the benchmark is ready to start. |
Example:
logs-benchmark.yml
---
description: Benchmark 100MiB of data ingested
input: filestream
vars: ~
data_stream.name: test
data_stream.vars.paths:
- "{{SERVICE_LOGS_DIR}}/corpus-*"
warmup_time_period: 10s
corpora.generator.size: 100MiB
corpora.generator.template.path: ./logs-benchmark/template.log
corpora.generator.config.path: ./logs-benchmark/config.yml
corpora.generator.fields.path: ./logs-benchmark/fields.yml
The top-level vars
field corresponds to package-level variables defined in the
package's manifest.yml
file. In the above example we don't override
any of these package-level variables, so their default values, as specified in
the package's manifest.yml
file are used.
The data_stream.vars
field corresponds to data stream-level variables for the
current data stream (test
in the above example). In the above example
we override the paths
variable. All other variables are populated with their
default values, as specified in the data stream's manifest.yml
file.
Notice the use of the {{SERVICE_LOGS_DIR}}
placeholder. This also corresponds to
the ${SERVICE_LOGS_DIR}
variable that can be used the docker-compose.yml
files.
The generator puts the generated data inside {{SERVICE_LOGS_DIR}}
so they are available both
in docker-compose.yml
and inside the Elastic Agent that is provisioned by the stack
command.
The SERVICE_LOGS_DIR
placeholder is not the only one available for use in a data stream's <scenario>.yml
file. The complete list of available placeholders is shown below.
Placeholder name | Data type | Description |
---|---|---|
Hostname |
string | Addressable host name of the integration service. |
Ports |
[]int | Array of addressable ports the integration service is listening on. |
Port |
int | Alias for Ports[0] . Provided as a convenience. |
Logs.Folder.Agent |
string | Path to integration service's logs folder, as addressable by the Agent. |
SERVICE_LOGS_DIR |
string | Alias for Logs.Folder.Agent . Provided as a convenience. |
Placeholders used in the <scenario>.yml
must be enclosed in {{
and }}
delimiters, per Go syntax.
Once the configuration is defined as described in the previous section, you are ready to run system benchmarks for a package.
First you must deploy the Elastic Stack.
elastic-package stack up -d
For a complete listing of options available for this command, run elastic-package stack up -h
or elastic-package help stack up
.
Next, you must set environment variables needed for further elastic-package
commands.
$(elastic-package stack shellinit)
Next, you must invoke the system benchmark runner.
elastic-package benchmark system --benchmark logs-benchmark -v
# ... debug output
--- Benchmark results for package: system_benchmarks - START ---
╭─────────────────────────────────────────────────────╮
│ info │
├──────────────┬──────────────────────────────────────┤
│ benchmark │ logs-benchmark │
│ description │ Benchmark 100MiB of data ingested │
│ run ID │ d2960c04-0028-42c9-bafc-35e599563cb1 │
│ package │ system_benchmarks │
│ start ts (s) │ 1682320355 │
│ end ts (s) │ 1682320355 │
│ duration │ 2m3s │
╰──────────────┴──────────────────────────────────────╯
╭───────────────────────────────────────────────────────────────────────╮
│ parameters │
├─────────────────────────────────┬─────────────────────────────────────┤
│ package version │ 999.999.999 │
│ input │ filestream │
│ data_stream.name │ test │
│ data_stream.vars.paths │ [/tmp/service_logs/corpus-*] │
│ warmup time period │ 10s │
│ benchmark time period │ 0s │
│ wait for data timeout │ 0s │
│ corpora.generator.size │ 100MiB │
│ corpora.generator.template.path │ ./logs-benchmark/template.log │
│ corpora.generator.template.raw │ │
│ corpora.generator.template.type │ │
│ corpora.generator.config.path │ ./logs-benchmark/config.yml │
│ corpora.generator.config.raw │ map[] │
│ corpora.generator.fields.path │ ./logs-benchmark/fields.yml │
│ corpora.generator.fields.raw │ map[] │
╰─────────────────────────────────┴─────────────────────────────────────╯
╭───────────────────────╮
│ cluster info │
├───────┬───────────────┤
│ name │ elasticsearch │
│ nodes │ 1 │
╰───────┴───────────────╯
╭─────────────────────────────────────────────────────────────╮
│ data stream stats │
├────────────────────────────┬────────────────────────────────┤
│ data stream │ logs-system_benchmarks.test-ep │
│ approx total docs ingested │ 410127 │
│ backing indices │ 1 │
│ store size bytes │ 136310570 │
│ maximum ts (ms) │ 1682320467448 │
╰────────────────────────────┴────────────────────────────────╯
╭───────────────────────────────────────╮
│ disk usage for index .ds-logs-system_ │
│ benchmarks.test-ep-2023.04.22-000001 │
│ (for all fields) │
├──────────────────────────────┬────────┤
│ total │ 99.8mb │
│ inverted_index.total │ 31.3mb │
│ inverted_index.stored_fields │ 35.5mb │
│ inverted_index.doc_values │ 30mb │
│ inverted_index.points │ 2.8mb │
│ inverted_index.norms │ 0b │
│ inverted_index.term_vectors │ 0b │
│ inverted_index.knn_vectors │ 0b │
╰──────────────────────────────┴────────╯
╭───────────────────────────────────────────────────────────────────────────────────────────╮
│ pipeline logs-system_benchmarks.test-999.999.999 stats in node Qa9ujRVfQuWhqEESdt6xnw │
├───────────────────────────────────────────────┬───────────────────────────────────────────┤
│ grok () │ Count: 407819 | Failed: 0 | Time: 16.615s │
│ user_agent () │ Count: 407819 | Failed: 0 | Time: 768ms │
│ pipeline (logs-system_benchmarks.test@custom) │ Count: 407819 | Failed: 0 | Time: 59ms │
╰───────────────────────────────────────────────┴───────────────────────────────────────────╯
--- Benchmark results for package: system_benchmarks - END ---
Done
Finally, when you are done running the benchmark, bring down the Elastic Stack.
elastic-package stack down
A metricstore can be set up to send metrics collected during the benchmark execution.
An external metricstore might be useful for:
- Store monitoring data of the benchmark scenario for all its execution time.
- Analyse the data generated during a benchmark. This is possible when using the
reindex-to-metricstore
flag. - TODO: Store benchmark results for various benchmark runs permanently for later comparison.
In order to initialize it, you need to set up the following environment variables:
export ELASTIC_PACKAGE_ESMETRICSTORE_HOST=https://127.0.0.1:9200
export ELASTIC_PACKAGE_ESMETRICSTORE_USERNAME=elastic
export ELASTIC_PACKAGE_ESMETRICSTORE_PASSWORD=changeme
export ELASTIC_PACKAGE_ESMETRICSTORE_CA_CERT="$HOME/.elastic-package/profiles/default/certs/ca-cert.pem"
The only one that is optional is ELASTIC_PACKAGE_ESMETRICSTORE_CA_CERT
.
When these are detected, metrics will be automatically collected every second and sent to a new index called bench-metrics-{dataset}-{testRunID}"
.
The collected metrics include the following node stats: nodes.*.breakers
, nodes.*.indices
, nodes.*.jvm.mem
, nodes.*.jvm.gc
, nodes.*.jvm.buffer_pools
, nodes.*.os.mem
, nodes.*.process.cpu
, nodes.*.thread_pool
, and nodes.*.transport
.
Ingest pipelines metrics are only collected at the end since its own collection would affect the benchmark results.
You can see a sample collected metric here
Additionally, if the reindex-to-metricstore
flag is used, the data generated during the benchmark will be sent to the metricstore into an index called bench-reindex-{datastream}-{testRunID}
for further analysis. The events will be enriched with metadata related to the benchmark run.