-
Notifications
You must be signed in to change notification settings - Fork 38
/
Copy pathREADME.fairseq
237 lines (200 loc) · 16.3 KB
/
README.fairseq
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
<p align="center">
<img src="docs/fairseq_logo.png" width="150">
<br />
<br />
<a href="https://github.com/pytorch/fairseq/blob/main/LICENSE"><img alt="MIT License" src="https://img.shields.io/badge/license-MIT-blue.svg" /></a>
<a href="https://github.com/pytorch/fairseq/releases"><img alt="Latest Release" src="https://img.shields.io/github/release/pytorch/fairseq.svg" /></a>
<a href="https://github.com/pytorch/fairseq/actions?query=workflow:build"><img alt="Build Status" src="https://github.com/pytorch/fairseq/workflows/build/badge.svg" /></a>
<a href="https://fairseq.readthedocs.io/en/latest/?badge=latest"><img alt="Documentation Status" src="https://readthedocs.org/projects/fairseq/badge/?version=latest" /></a>
</p>
--------------------------------------------------------------------------------
Fairseq(-py) is a sequence modeling toolkit that allows researchers and
developers to train custom models for translation, summarization, language
modeling and other text generation tasks.
We provide reference implementations of various sequence modeling papers:
<details><summary>List of implemented papers</summary><p>
* **Convolutional Neural Networks (CNN)**
+ [Language Modeling with Gated Convolutional Networks (Dauphin et al., 2017)](examples/language_model/conv_lm/README.md)
+ [Convolutional Sequence to Sequence Learning (Gehring et al., 2017)](examples/conv_seq2seq/README.md)
+ [Classical Structured Prediction Losses for Sequence to Sequence Learning (Edunov et al., 2018)](https://github.com/pytorch/fairseq/tree/classic_seqlevel)
+ [Hierarchical Neural Story Generation (Fan et al., 2018)](examples/stories/README.md)
+ [wav2vec: Unsupervised Pre-training for Speech Recognition (Schneider et al., 2019)](examples/wav2vec/README.md)
* **LightConv and DynamicConv models**
+ [Pay Less Attention with Lightweight and Dynamic Convolutions (Wu et al., 2019)](examples/pay_less_attention_paper/README.md)
* **Long Short-Term Memory (LSTM) networks**
+ Effective Approaches to Attention-based Neural Machine Translation (Luong et al., 2015)
* **Transformer (self-attention) networks**
+ Attention Is All You Need (Vaswani et al., 2017)
+ [Scaling Neural Machine Translation (Ott et al., 2018)](examples/scaling_nmt/README.md)
+ [Understanding Back-Translation at Scale (Edunov et al., 2018)](examples/backtranslation/README.md)
+ [Adaptive Input Representations for Neural Language Modeling (Baevski and Auli, 2018)](examples/language_model/README.adaptive_inputs.md)
+ [Lexically constrained decoding with dynamic beam allocation (Post & Vilar, 2018)](examples/constrained_decoding/README.md)
+ [Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context (Dai et al., 2019)](examples/truncated_bptt/README.md)
+ [Adaptive Attention Span in Transformers (Sukhbaatar et al., 2019)](examples/adaptive_span/README.md)
+ [Mixture Models for Diverse Machine Translation: Tricks of the Trade (Shen et al., 2019)](examples/translation_moe/README.md)
+ [RoBERTa: A Robustly Optimized BERT Pretraining Approach (Liu et al., 2019)](examples/roberta/README.md)
+ [Facebook FAIR's WMT19 News Translation Task Submission (Ng et al., 2019)](examples/wmt19/README.md)
+ [Jointly Learning to Align and Translate with Transformer Models (Garg et al., 2019)](examples/joint_alignment_translation/README.md )
+ [Multilingual Denoising Pre-training for Neural Machine Translation (Liu et at., 2020)](examples/mbart/README.md)
+ [Neural Machine Translation with Byte-Level Subwords (Wang et al., 2020)](examples/byte_level_bpe/README.md)
+ [Unsupervised Quality Estimation for Neural Machine Translation (Fomicheva et al., 2020)](examples/unsupervised_quality_estimation/README.md)
+ [wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations (Baevski et al., 2020)](examples/wav2vec/README.md)
+ [Generating Medical Reports from Patient-Doctor Conversations Using Sequence-to-Sequence Models (Enarvi et al., 2020)](examples/pointer_generator/README.md)
+ [Linformer: Self-Attention with Linear Complexity (Wang et al., 2020)](examples/linformer/README.md)
+ [Cross-lingual Retrieval for Iterative Self-Supervised Training (Tran et al., 2020)](examples/criss/README.md)
+ [Deep Transformers with Latent Depth (Li et al., 2020)](examples/latent_depth/README.md)
+ [Unsupervised Cross-lingual Representation Learning for Speech Recognition (Conneau et al., 2020)](https://arxiv.org/abs/2006.13979)
+ [Self-training and Pre-training are Complementary for Speech Recognition (Xu et al., 2020)](https://arxiv.org/abs/2010.11430)
+ [Robust wav2vec 2.0: Analyzing Domain Shift in Self-Supervised Pre-Training (Hsu, et al., 2021)](https://arxiv.org/abs/2104.01027)
+ [Unsupervised Speech Recognition (Baevski, et al., 2021)](https://arxiv.org/abs/2105.11084)
+ [Simple and Effective Zero-shot Cross-lingual Phoneme Recognition (Xu et al., 2021)](https://arxiv.org/abs/2109.11680)
+ [VideoCLIP: Contrastive Pre-training for Zero-shot Video-Text Understanding (Xu et. al., 2021)](https://arxiv.org/pdf/2109.14084.pdf)
+ [VLM: Task-agnostic Video-Language Model Pre-training for Video Understanding (Xu et. al., 2021)](https://aclanthology.org/2021.findings-acl.370.pdf)
+ [NormFormer: Improved Transformer Pretraining with Extra Normalization (Shleifer et. al, 2021)](examples/normformer/README.md)
* **Non-autoregressive Transformers**
+ Non-Autoregressive Neural Machine Translation (Gu et al., 2017)
+ Deterministic Non-Autoregressive Neural Sequence Modeling by Iterative Refinement (Lee et al. 2018)
+ Insertion Transformer: Flexible Sequence Generation via Insertion Operations (Stern et al. 2019)
+ Mask-Predict: Parallel Decoding of Conditional Masked Language Models (Ghazvininejad et al., 2019)
+ [Levenshtein Transformer (Gu et al., 2019)](examples/nonautoregressive_translation/README.md)
* **Finetuning**
+ [Better Fine-Tuning by Reducing Representational Collapse (Aghajanyan et al. 2020)](examples/rxf/README.md)
</p></details>
### What's New:
* December 2021 [Released Direct speech-to-speech translation code](examples/speech_to_speech/README.md)
* October 2021 [Released VideoCLIP and VLM models](examples/MMPT/README.md)
* October 2021 [Released multilingual finetuned XLSR-53 model](examples/wav2vec/README.md)
* September 2021 [`master` branch renamed to `main`](https://github.com/github/renaming).
* July 2021 [Released DrNMT code](examples/discriminative_reranking_nmt/README.md)
* July 2021 [Released Robust wav2vec 2.0 model](examples/wav2vec/README.md)
* June 2021 [Released XLMR-XL and XLMR-XXL models](examples/xlmr/README.md)
* May 2021 [Released Unsupervised Speech Recognition code](examples/wav2vec/unsupervised/README.md)
* March 2021 [Added full parameter and optimizer state sharding + CPU offloading](examples/fully_sharded_data_parallel/README.md)
* February 2021 [Added LASER training code](examples/laser/README.md)
* December 2020: [Added Adaptive Attention Span code](examples/adaptive_span/README.md)
* December 2020: [GottBERT model and code released](examples/gottbert/README.md)
* November 2020: Adopted the [Hydra](https://github.com/facebookresearch/hydra) configuration framework
* [see documentation explaining how to use it for new and existing projects](docs/hydra_integration.md)
* November 2020: [fairseq 0.10.0 released](https://github.com/pytorch/fairseq/releases/tag/v0.10.0)
* October 2020: [Added R3F/R4F (Better Fine-Tuning) code](examples/rxf/README.md)
* October 2020: [Deep Transformer with Latent Depth code released](examples/latent_depth/README.md)
* October 2020: [Added CRISS models and code](examples/criss/README.md)
<details><summary>Previous updates</summary><p>
* September 2020: [Added Linformer code](examples/linformer/README.md)
* September 2020: [Added pointer-generator networks](examples/pointer_generator/README.md)
* August 2020: [Added lexically constrained decoding](examples/constrained_decoding/README.md)
* August 2020: [wav2vec2 models and code released](examples/wav2vec/README.md)
* July 2020: [Unsupervised Quality Estimation code released](examples/unsupervised_quality_estimation/README.md)
* May 2020: [Follow fairseq on Twitter](https://twitter.com/fairseq)
* April 2020: [Monotonic Multihead Attention code released](examples/simultaneous_translation/README.md)
* April 2020: [Quant-Noise code released](examples/quant_noise/README.md)
* April 2020: [Initial model parallel support and 11B parameters unidirectional LM released](examples/megatron_11b/README.md)
* March 2020: [Byte-level BPE code released](examples/byte_level_bpe/README.md)
* February 2020: [mBART model and code released](examples/mbart/README.md)
* February 2020: [Added tutorial for back-translation](https://github.com/pytorch/fairseq/tree/main/examples/backtranslation#training-your-own-model-wmt18-english-german)
* December 2019: [fairseq 0.9.0 released](https://github.com/pytorch/fairseq/releases/tag/v0.9.0)
* November 2019: [VizSeq released (a visual analysis toolkit for evaluating fairseq models)](https://facebookresearch.github.io/vizseq/docs/getting_started/fairseq_example)
* November 2019: [CamemBERT model and code released](examples/camembert/README.md)
* November 2019: [BART model and code released](examples/bart/README.md)
* November 2019: [XLM-R models and code released](examples/xlmr/README.md)
* September 2019: [Nonautoregressive translation code released](examples/nonautoregressive_translation/README.md)
* August 2019: [WMT'19 models released](examples/wmt19/README.md)
* July 2019: fairseq relicensed under MIT license
* July 2019: [RoBERTa models and code released](examples/roberta/README.md)
* June 2019: [wav2vec models and code released](examples/wav2vec/README.md)
</p></details>
### Features:
* multi-GPU training on one machine or across multiple machines (data and model parallel)
* fast generation on both CPU and GPU with multiple search algorithms implemented:
+ beam search
+ Diverse Beam Search ([Vijayakumar et al., 2016](https://arxiv.org/abs/1610.02424))
+ sampling (unconstrained, top-k and top-p/nucleus)
+ [lexically constrained decoding](examples/constrained_decoding/README.md) (Post & Vilar, 2018)
* [gradient accumulation](https://fairseq.readthedocs.io/en/latest/getting_started.html#large-mini-batch-training-with-delayed-updates) enables training with large mini-batches even on a single GPU
* [mixed precision training](https://fairseq.readthedocs.io/en/latest/getting_started.html#training-with-half-precision-floating-point-fp16) (trains faster with less GPU memory on [NVIDIA tensor cores](https://developer.nvidia.com/tensor-cores))
* [extensible](https://fairseq.readthedocs.io/en/latest/overview.html): easily register new models, criterions, tasks, optimizers and learning rate schedulers
* [flexible configuration](docs/hydra_integration.md) based on [Hydra](https://github.com/facebookresearch/hydra) allowing a combination of code, command-line and file based configuration
* [full parameter and optimizer state sharding](examples/fully_sharded_data_parallel/README.md)
* [offloading parameters to CPU](examples/fully_sharded_data_parallel/README.md)
We also provide [pre-trained models for translation and language modeling](#pre-trained-models-and-examples)
with a convenient `torch.hub` interface:
``` python
en2de = torch.hub.load('pytorch/fairseq', 'transformer.wmt19.en-de.single_model')
en2de.translate('Hello world', beam=5)
# 'Hallo Welt'
```
See the PyTorch Hub tutorials for [translation](https://pytorch.org/hub/pytorch_fairseq_translation/)
and [RoBERTa](https://pytorch.org/hub/pytorch_fairseq_roberta/) for more examples.
# Requirements and Installation
* [PyTorch](http://pytorch.org/) version >= 1.5.0
* Python version >= 3.6
* For training new models, you'll also need an NVIDIA GPU and [NCCL](https://github.com/NVIDIA/nccl)
* **To install fairseq** and develop locally:
``` bash
git clone https://github.com/pytorch/fairseq
cd fairseq
pip install --editable ./
# on MacOS:
# CFLAGS="-stdlib=libc++" pip install --editable ./
# to install the latest stable release (0.10.x)
# pip install fairseq
```
* **For faster training** install NVIDIA's [apex](https://github.com/NVIDIA/apex) library:
``` bash
git clone https://github.com/NVIDIA/apex
cd apex
pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" \
--global-option="--deprecated_fused_adam" --global-option="--xentropy" \
--global-option="--fast_multihead_attn" ./
```
* **For large datasets** install [PyArrow](https://arrow.apache.org/docs/python/install.html#using-pip): `pip install pyarrow`
* If you use Docker make sure to increase the shared memory size either with `--ipc=host` or `--shm-size`
as command line options to `nvidia-docker run` .
# Getting Started
The [full documentation](https://fairseq.readthedocs.io/) contains instructions
for getting started, training new models and extending fairseq with new model
types and tasks.
# Pre-trained models and examples
We provide pre-trained models and pre-processed, binarized test sets for several tasks listed below,
as well as example training and evaluation commands.
* [Translation](examples/translation/README.md): convolutional and transformer models are available
* [Language Modeling](examples/language_model/README.md): convolutional and transformer models are available
We also have more detailed READMEs to reproduce results from specific papers:
* [XLS-R: Self-supervised Cross-lingual Speech Representation Learning at Scale (Babu et al., 2021)](examples/wav2vec/xlsr/README.md)
* [Cross-lingual Retrieval for Iterative Self-Supervised Training (Tran et al., 2020)](examples/criss/README.md)
* [wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations (Baevski et al., 2020)](examples/wav2vec/README.md)
* [Unsupervised Quality Estimation for Neural Machine Translation (Fomicheva et al., 2020)](examples/unsupervised_quality_estimation/README.md)
* [Training with Quantization Noise for Extreme Model Compression ({Fan*, Stock*} et al., 2020)](examples/quant_noise/README.md)
* [Neural Machine Translation with Byte-Level Subwords (Wang et al., 2020)](examples/byte_level_bpe/README.md)
* [Multilingual Denoising Pre-training for Neural Machine Translation (Liu et at., 2020)](examples/mbart/README.md)
* [Reducing Transformer Depth on Demand with Structured Dropout (Fan et al., 2019)](examples/layerdrop/README.md)
* [Jointly Learning to Align and Translate with Transformer Models (Garg et al., 2019)](examples/joint_alignment_translation/README.md)
* [Levenshtein Transformer (Gu et al., 2019)](examples/nonautoregressive_translation/README.md)
* [Facebook FAIR's WMT19 News Translation Task Submission (Ng et al., 2019)](examples/wmt19/README.md)
* [RoBERTa: A Robustly Optimized BERT Pretraining Approach (Liu et al., 2019)](examples/roberta/README.md)
* [wav2vec: Unsupervised Pre-training for Speech Recognition (Schneider et al., 2019)](examples/wav2vec/README.md)
* [Mixture Models for Diverse Machine Translation: Tricks of the Trade (Shen et al., 2019)](examples/translation_moe/README.md)
* [Pay Less Attention with Lightweight and Dynamic Convolutions (Wu et al., 2019)](examples/pay_less_attention_paper/README.md)
* [Understanding Back-Translation at Scale (Edunov et al., 2018)](examples/backtranslation/README.md)
* [Classical Structured Prediction Losses for Sequence to Sequence Learning (Edunov et al., 2018)](https://github.com/pytorch/fairseq/tree/classic_seqlevel)
* [Hierarchical Neural Story Generation (Fan et al., 2018)](examples/stories/README.md)
* [Scaling Neural Machine Translation (Ott et al., 2018)](examples/scaling_nmt/README.md)
* [Convolutional Sequence to Sequence Learning (Gehring et al., 2017)](examples/conv_seq2seq/README.md)
* [Language Modeling with Gated Convolutional Networks (Dauphin et al., 2017)](examples/language_model/README.conv.md)
# Join the fairseq community
* Twitter: https://twitter.com/fairseq
* Facebook page: https://www.facebook.com/groups/fairseq.users
* Google group: https://groups.google.com/forum/#!forum/fairseq-users
# License
fairseq(-py) is MIT-licensed.
The license applies to the pre-trained models as well.
# Citation
Please cite as:
``` bibtex
@inproceedings{ott2019fairseq,
title = {fairseq: A Fast, Extensible Toolkit for Sequence Modeling},
author = {Myle Ott and Sergey Edunov and Alexei Baevski and Angela Fan and Sam Gross and Nathan Ng and David Grangier and Michael Auli},
booktitle = {Proceedings of NAACL-HLT 2019: Demonstrations},
year = {2019},
}
```