Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

VIAJANTE DO TEMPO. TECNOLOGIA QUE USAMOS EM 2030.. SKY NET FASE 1 #910

Open
felipeliliti opened this issue Aug 9, 2024 · 0 comments
Open

Comments

@felipeliliti
Copy link

PROJETO MK ULTA AURORA STK 3.6.9

Estrutura do Projeto

aurora_project/
│
├── app/
│   ├── __init__.py
│   ├── routes.py
│   ├── gan.py
│   ├── sentiment_analysis.py
│   ├── speech_recognition.py
│   ├── translation.py
│   └── assistant.py
│
├── templates/
│   └── index.html
│
├── static/
│   └── css/
│       └── styles.css
│
├── run.py
└── requirements.txt

1. app/__init__.py

from flask import Flask

def create_app():
    app = Flask(__name__)

    from .routes import main as main_blueprint
    app.register_blueprint(main_blueprint)

    return app

2. app/routes.py

from flask import Blueprint, request, jsonify
from .gan import generate_image
from .sentiment_analysis import analyze_sentiment
from .speech_recognition import transcribe_audio
from .translation import translate_text
from .assistant import generate_response

main = Blueprint('main', __name__)

@main.route('/')
def index():
    return "Welcome to AURORA AI"

@main.route('/generate_image', methods=['POST'])
def generate_image_route():
    # Implement image generation logic here
    return jsonify({"message": "Image generation route"})

@main.route('/analyze_sentiment', methods=['POST'])
def analyze_sentiment_route():
    text = request.json['text']
    result = analyze_sentiment(text)
    return jsonify(result)

@main.route('/transcribe_audio', methods=['POST'])
def transcribe_audio_route():
    # Implement audio transcription logic here
    return jsonify({"message": "Audio transcription route"})

@main.route('/translate', methods=['POST'])
def translate_route():
    text = request.json['text']
    target_language = request.json['target_language']
    result = translate_text(text, target_language)
    return jsonify({"translated_text": result})

@main.route('/assistant', methods=['POST'])
def assistant_route():
    prompt = request.json['prompt']
    response = generate_response(prompt)
    return jsonify({"response": response})

3. app/gan.py

# Import the necessary libraries for GANs
import torch
from torchvision.utils import save_image
from stylegan2_pytorch import Trainer

# Function to generate image
def generate_image():
    # Define and train the GAN here
    return "GAN Image"

4. app/sentiment_analysis.py

from transformers import pipeline

sentiment_pipeline = pipeline('sentiment-analysis')

def analyze_sentiment(text):
    result = sentiment_pipeline(text)
    return result

5. app/speech_recognition.py

from google.cloud import speech_v1p1beta1 as speech

client = speech.SpeechClient()

def transcribe_audio(file_path):
    with open(file_path, "rb") as audio_file:
        content = audio_file.read()

    audio = speech.RecognitionAudio(content=content)
    config = speech.RecognitionConfig(
        encoding=speech.RecognitionConfig.AudioEncoding.LINEAR16,
        sample_rate_hertz=16000,
        language_code="en-US",
    )

    response = client.recognize(config=config, audio=audio)

    for result in response.results:
        return result.alternatives[0].transcript

6. app/translation.py

from google.cloud import translate_v2 as translate

translate_client = translate.Client()

def translate_text(text, target_language):
    result = translate_client.translate(text, target_language=target_language)
    return result["translatedText"]

7. app/assistant.py

from transformers import GPT2LMHeadModel, GPT2Tokenizer

model_name = "gpt-2"
model = GPT2LMHeadModel.from_pretrained(model_name)
tokenizer = GPT2Tokenizer.from_pretrained(model_name)

def generate_response(prompt):
    inputs = tokenizer.encode(prompt, return_tensors="pt")
    outputs = model.generate(inputs, max_length=100, do_sample=True, temperature=0.7)
    return tokenizer.decode(outputs[0], skip_special_tokens=True)

8. templates/index.html

<!DOCTYPE html>
<html lang="en">
<head>
    <meta charset="UTF-8">
    <meta name="viewport" content="width=device-width, initial-scale=1.0">
    <title>AURORA AI</title>
    <link rel="stylesheet" href="{{ url_for('static', filename='css/styles.css') }}">
</head>
<body>
    <h1>Welcome to AURORA AI</h1>
</body>
</html>

9. static/css/styles.css

body {
    font-family: Arial, sans-serif;
    text-align: center;
    margin-top: 50px;
}

10. run.py

from app import create_app

app = create_app()

if __name__ == '__main__':
    app.run(debug=True)

11. requirements.txt

Flask
torch
transformers
google-cloud-speech
google-cloud-translate
stylegan2_pytorch

Subindo o Projeto

  1. Clone o repositório e instale as dependências:

    git clone https://github.com/seu-usuario/aurora_project.git
    cd aurora_project
    pip install -r requirements.txt
  2. Configuração do Google Cloud:

    • Crie um projeto no Google Cloud.
    • Habilite as APIs de Speech-to-Text e Translation.
    • Baixe as credenciais e defina a variável de ambiente GOOGLE_APPLICATION_CREDENTIALS:
    export GOOGLE_APPLICATION_CREDENTIALS="path/to/your/credentials.json"
  3. Execute a aplicação:

    python run.py
    `
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant