This repository has been archived by the owner on Dec 29, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 228
/
INSTALL.txt
247 lines (187 loc) · 10.7 KB
/
INSTALL.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
To get started using the library, you need to make sure that the library
and dependencies can be imported. Short instructions:
sudo python setup.py install
or
python setup.py install --home=~
and set your PYTHONPATH to include your home directory.
Long instructions copied from the following article from Aug. 2007:
Getting Started with the Google Data Python Library
http://code.google.com/support/bin/answer.py?answer=75582
==Introduction==
So you've decided to use the Google data Python client library to write an
application using one of the many Google data services. Excellent choice!
My aim with this short tutorial is to quickly get you started in using the
client library to develop your application.
You probably want to jump in and start creating your application right
away. First though, you may need to configure your development environment
and set up the tools you'll need to run the modules included in the client
library. Follow the steps below and you'll be running code in no time.
==Installing Python==
If you're going to be developing with the Python client library, you'll
need a working version of Python 2.2 or higher. Many operating systems
come with a version of Python included, so you may be able to skip the
installation step. To see which version of Python you have, run
python -V in a command line terminal. (Note: the V is uppercase.) This
should result in something like:
Python 2.4.3
If you see version 2.2 or higher, then you can start installing dependencies.
Otherwise, look below to find installation/upgrade instructions for your
operating system.
--Installing Python on Windows--
There are quite a few implementations of Python to choose from in Windows,
but for purposes of this guide, I'll be using the .msi installer found on
python.org.
1. Begin by downloading the installer from the Python download page.
http://www.python.org/download/
2. Run the installer ? you can accept all the default settings
3. To see if your install is working as expected, open a command prompt and
run python -V.
--Installing Python on Mac OS X--
The list of downloads on python.org has .dmg installers for the Mac users out
there. Here are the steps to install one of them:
1. Navigate to http://www.python.org/download/mac/
2. From this page, download the installer for the appropriate version of
Mac OS X. Note: The Python installation page for Mac OS X 10.3.8 and
below is different than newer versions of Mac OS X. To find your OS X
version, choose About This Mac from the Apple menu in the top-left
corner of your screen.
3. After the download finishes, double-click the new disk image file
(ex. python-2.5-macosx.dmg) to mount it. If you're running Safari, this
has already been done for you.
4. Open the mounted image and double-click the installer package inside.
5. Follow the installation instructions and read the information and
license agreements as they're presented to you. Again, the default
settings will work fine here.
6. Verify the installation by opening Terminal.app
(in /Applications/Utilities) and running python -V. The installation's
version should appear.
--Installing Python on Linux--
To install on Linux and other *nix style operating systems, I prefer to
download the source code and compile it. However, you may be able to use your
favorite package manager to install Python. (For example, on Ubuntu this can
be as easy as running sudo apt-get install python on the command line.) To
install from source, follow these steps:
1. Download the source tarball from the Python download page.
http://python.org/download/
2. Once you've downloaded the package, unpack it using the command line.
You can use the following
tar zxvf Python-2.<Your version>.tgz
3. Next, you'll need to compile and install the source code for the Python
interpreter. In the decompressed directory, run ./configure to generate
a makefile.
4. Then, run make. This will create a working Python executable file in
the local directory. If you don't have root permission or you just want
to use Python from your home directory, you can stop here. You'll be
able to run Python from this directory, so you might want to add it to
your PATH environment variable.
5. I prefer to have Python installed in /usr/bin/ where most Python
scripts look for the interpreter. If you have root access, then run
make install as root. This will install Python in the default location
and it will be usable by everyone on your machine.
6. Check to see if your install is working as expected by opening a
terminal and running python -V.
==Installing Dependencies==
Currently, the only external dependency is an XML library named ElementTree.
If you are using Python version 2.5 or higher, you won't need to install
ElementTree since it comes with the Python package.
To see if ElementTree is already present on your system, do the following:
1. Run the Python interpreter. I usually do this by executing python on
the command line.
2. Try importing the ElementTree module. If you are using Python 2.5 or
higher, enter the following in the interpreter:
from xml.etree import ElementTree
For older versions, enter:
from elementtree import ElementTree
3. If the import fails, then you will need to continue reading this
section. If it works, then you can skip to Installing the Google
data library.
4. Download a version which is appropriate for your operating system.
For example, if you are using Windows, download
elementtree-1.2.6-20050316.win32.exe. For other operating systems,
I recommend downloading a compressed version.
5. If you are using a .tar.gz or .zip version of the library, first
unpack, then install it by running ./setup.py install.
Running ./setup.py install attempts to compile the library and place it in
the system directory for your Python modules. If you do not have root access,
you can install the modules in your home directory or an alternate location by
running ./setup.py install --home=~. This will place the code in your home
directory.
There is another option which avoids installing altogether. Once you
decompress the download, you will find a directory named elementtree. This
directory contains the modules which you will need to import. When you call
import from within Python, it looks for a module with the desired name in
several places. The first place it looks is in the current directory, so
if you are always running your code from one directory, you could just put
the elementtree directory there. Python will also look at the directories
listed in your PYTHONPATH environment variable. For instructions on
editing your PYTHONPATH, see the Appendix at the end of this article.
I recommend using ./setup.py install for elementtree.
==Installing the Google Data Library==
Download the Google data Python library if you haven't done so. Look for the
latest version on the Python project's downloads page.
After downloading the library, unpack it using unzip or tar zxvf depending
on the type of download you chose.
Now you are ready to install the library modules so that they can be imported
into Python. There are several ways you can do this:
* If you have the ability to install packages for all users to access,
you can run ./setup.py install from the unpacked archive's main
directory.
* If you want to install these modules for use in your home directory,
you can run ./setup.py install --home=<your home directory>.
In some cases, you want to avoid installing the modules altogether. To do
that, modify your PYTHONPATH environment variable to include a directory
which contains the gdata and atom directories for the Google data Python
client library. For instructions on modifying your PYTHONPATH, see the
Appendix at the end of this article.
* One final option that I'll mention, is copying the gdata and atom
directories from the src directory into whatever directory you are
in when you execute python. Python will look in the current directory
when you do an import, but I don't recommend this method unless you
are creating something quick and simple.
Once you've installed the Google data library, you're ready to take the
library for a test drive.
==Running Tests and Samples==
The Google data Python client library distributions include some test cases
which are used in the development of the library. They can also serve as a
quick check to make sure that your dependencies and library installation are
working. From the top level directory where you've unpacked your copy of the
library, try running:
./tests/run_data_tests.py
If this script runs correctly, you should see output on the command line
like this:
Running all tests in module gdata_test
.......
----------------------------------------------------------------------
Ran 7 tests in 0.025s
OK
Running all tests in module atom_test
..........................................
----------------------------------------------------------------------
Ran 42 tests in 0.016s
OK
...
If you did not see any errors as the tests execute, then you have probably set
up your environment correctly. Congratulations!
For further information see the original article:
http://code.google.com/support/bin/answer.py?answer=75582
==Appendix: Modifying the PYTHONPATH==
When you import a package or module in Python, the interpreter looks for the
file in a series of locations including all of the directories listed in the
PYTHONPATH environment variable. I often modify my PYTHONPATH to point to
modules where I have copied the source code for a library I am using. This
prevents the need to install a module each time it is modified because
Python will load the module directly from directory which contains the
modified source code.
I recommend the PYTHONPATH approach if you are making changes to the client
library code, or if you do not have admin rights on your system. By editing
the PYTHONPATH, you can put the required modules anywhere you like.
I modified my PYTHONPATH on a *nix and Mac OS X system by setting it in my
.bashrc shell configuration file. If you are using the bash shell, you can
set the variable by adding the following line to your ~/.bashrc file.
export PYTHONPATH=$PYTHONPATH:/home/<my_username>/svn/gdata-python-client/src
You can then apply these changes to your current shell session by executing
source ~/.bashrc.
For Windows XP, pull up the Environment Variables for your profile:
Control Panel > System Properties > Advanced > Environment Variables. From
there, you can either create or edit the PYTHONPATH variable and add the
location of your local library copy.