-
Notifications
You must be signed in to change notification settings - Fork 27
/
test_util_test.py
193 lines (179 loc) · 5.59 KB
/
test_util_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
# coding=utf-8
# Copyright 2020 The Google Research Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""Tests for proteinfer.test_util."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from absl.testing import absltest
from absl.testing import parameterized
import numpy as np
import pandas as pd
import test_util
class TestUtilTest(parameterized.TestCase):
@parameterized.named_parameters(
dict(
testcase_name='empty df',
df1=pd.DataFrame(),
df2=pd.DataFrame(),
),
dict(
testcase_name='one column, ints',
df1=pd.DataFrame({'col1': [1, 2, 3]}),
df2=pd.DataFrame({'col1': [1, 2, 3]}),
),
dict(
testcase_name='one column, floats',
df1=pd.DataFrame({'col1': [1., 2.]}),
df2=pd.DataFrame({'col1': [1., 2.]}),
),
dict(
testcase_name='one column, sets',
df1=pd.DataFrame({'col1': [
{1., 2.},
{3., 4.},
]}),
df2=pd.DataFrame({'col1': [
{1., 2.},
{3., 4.},
]}),
),
dict(
testcase_name='one column, np.arrays',
df1=pd.DataFrame({'col1': [
np.array([1., 2.]),
np.array([3., 4.]),
]}),
df2=pd.DataFrame({'col1': [
np.array([1., 2.]),
np.array([3., 4.]),
]}),
),
dict(
testcase_name='two columns, ints and floats',
df1=pd.DataFrame({
'col1': ['a', 'b'],
'col2': [1., 2.],
}),
df2=pd.DataFrame({
'col1': ['a', 'b'],
'col2': [1., 2.],
}),
),
dict(
testcase_name='two columns, strings and floats, reordered',
df1=pd.DataFrame({
'col1': ['a', 'b'],
'col2': [1., 2.],
}),
df2=pd.DataFrame({
'col1': ['b', 'a'],
'col2': [2., 1.],
}),
order_by_column='col1',
),
dict(
testcase_name='two columns, strings and np.arrays, reordered',
df1=pd.DataFrame({
'col1': ['a', 'b'],
'col2': [
np.array([1., 2.]),
np.array([3., 4.]),
],
}),
df2=pd.DataFrame({
'col1': ['b', 'a'],
'col2': [
np.array([3., 4.]),
np.array([1., 2.]),
],
}),
order_by_column='col1',
),
)
def test_assert_dataframes_equal_no_error(self,
df1,
df2,
order_by_column=None):
test_util.assert_dataframes_equal(self, df1, df2, order_by_column)
@parameterized.named_parameters(
dict(
testcase_name='empty df and nonempty df',
df1=pd.DataFrame(),
df2=pd.DataFrame({'col1': [1., 2., 3.]}),
),
dict(
testcase_name='one column, different lengths',
df1=pd.DataFrame({'col1': [1, 2]}),
df2=pd.DataFrame({'col1': [1, 2, 3]}),
),
dict(
testcase_name='one column, sets',
df1=pd.DataFrame({'col1': [
{1., 2.},
{3., 4.},
]}),
df2=pd.DataFrame({'col1': [
{1., 2.},
set([]),
]}),
),
dict(
testcase_name='one column, np.arrays',
df1=pd.DataFrame({'col1': [
np.array([1., 2.]),
np.array([3., 4.]),
]}),
df2=pd.DataFrame({'col1': [
np.array([1., 2.]),
np.array([]),
]}),
),
dict(
testcase_name='two columns, ints and floats',
df1=pd.DataFrame({
'col1': ['a', 'b'],
'col2': [1., 2.],
}),
df2=pd.DataFrame({
'col1': ['a', 'b'],
'col2': [1., 9999999999999.],
}),
),
dict(
testcase_name='two columns, strings and floats, reordered',
df1=pd.DataFrame({
'col1': ['a', 'b'],
'col2': [1., 2.],
}),
df2=pd.DataFrame({
'col1': ['b', 'a'],
'col2': [9999999999999., 1.],
}),
order_by_column='col1',
),
)
def test_assert_dataframes_equal_error(self, df1, df2, order_by_column=None):
with self.assertRaises(AssertionError):
test_util.assert_dataframes_equal(self, df1, df2, order_by_column)
def test_assert_dataframes_equal_nan_equal_nan(self):
df1 = pd.DataFrame({'col1': [float('nan'),]})
test_util.assert_dataframes_equal(self, df1, df1, nan_equals_nan=True)
def test_assert_dataframes_equal_nan_raises(self):
df1 = pd.DataFrame({'col1': [float('nan'),]})
with self.assertRaisesRegex(AssertionError, 'nan'):
test_util.assert_dataframes_equal(self, df1, df1, nan_equals_nan=False)
if __name__ == '__main__':
absltest.main()