This repository has been archived by the owner on May 28, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 161
/
mean_teacher.py
121 lines (103 loc) · 5.05 KB
/
mean_teacher.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
# Copyright 2019 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Mean teachers are better role models:
Weight-averaged consistency targets improve semi-supervised deep learning results.
Reimplementation of https://arxiv.org/abs/1703.01780
"""
import functools
import os
from absl import app
from absl import flags
from easydict import EasyDict
from libml import models, utils
from libml.data_pair import DATASETS
import tensorflow as tf
FLAGS = flags.FLAGS
class MeanTeacher(models.MultiModel):
def model(self, lr, wd, ema, warmup_pos, consistency_weight, **kwargs):
hwc = [self.dataset.height, self.dataset.width, self.dataset.colors]
x_in = tf.placeholder(tf.float32, [None] + hwc, 'x')
y_in = tf.placeholder(tf.float32, [None, 2] + hwc, 'y')
l_in = tf.placeholder(tf.int32, [None], 'labels')
l = tf.one_hot(l_in, self.nclass)
wd *= lr
warmup = tf.clip_by_value(tf.to_float(self.step) / (warmup_pos * (FLAGS.train_kimg << 10)), 0, 1)
classifier = functools.partial(self.classifier, **kwargs)
logits_x = classifier(x_in, training=True)
post_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) # Take only first call to update batch norm.
y = tf.reshape(tf.transpose(y_in, [1, 0, 2, 3, 4]), [-1] + hwc)
y_1, y_2 = tf.split(y, 2)
ema = tf.train.ExponentialMovingAverage(decay=ema)
ema_op = ema.apply(utils.model_vars())
ema_getter = functools.partial(utils.getter_ema, ema)
logits_y = classifier(y_1, training=True, getter=ema_getter)
logits_teacher = tf.stop_gradient(logits_y)
logits_student = classifier(y_2, training=True)
loss_mt = tf.reduce_mean((tf.nn.softmax(logits_teacher) - tf.nn.softmax(logits_student)) ** 2, -1)
loss_mt = tf.reduce_mean(loss_mt)
loss = tf.nn.softmax_cross_entropy_with_logits_v2(labels=l, logits=logits_x)
loss = tf.reduce_mean(loss)
tf.summary.scalar('losses/xe', loss)
tf.summary.scalar('losses/mt', loss_mt)
post_ops.append(ema_op)
post_ops.extend([tf.assign(v, v * (1 - wd)) for v in utils.model_vars('classify') if 'kernel' in v.name])
train_op = tf.train.AdamOptimizer(lr).minimize(loss + loss_mt * warmup * consistency_weight,
colocate_gradients_with_ops=True)
with tf.control_dependencies([train_op]):
train_op = tf.group(*post_ops)
# Tuning op: only retrain batch norm.
skip_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
classifier(x_in, training=True)
train_bn = tf.group(*[v for v in tf.get_collection(tf.GraphKeys.UPDATE_OPS)
if v not in skip_ops])
return EasyDict(
x=x_in, y=y_in, label=l_in, train_op=train_op, tune_op=train_bn,
classify_raw=tf.nn.softmax(classifier(x_in, training=False)), # No EMA, for debugging.
classify_op=tf.nn.softmax(classifier(x_in, getter=ema_getter, training=False)))
def main(argv):
del argv # Unused.
dataset = DATASETS[FLAGS.dataset]()
log_width = utils.ilog2(dataset.width)
model = MeanTeacher(
os.path.join(FLAGS.train_dir, dataset.name),
dataset,
lr=FLAGS.lr,
wd=FLAGS.wd,
arch=FLAGS.arch,
warmup_pos=FLAGS.warmup_pos,
batch=FLAGS.batch,
nclass=dataset.nclass,
ema=FLAGS.ema,
smoothing=FLAGS.smoothing,
consistency_weight=FLAGS.consistency_weight,
scales=FLAGS.scales or (log_width - 2),
filters=FLAGS.filters,
repeat=FLAGS.repeat)
model.train(FLAGS.train_kimg << 10, FLAGS.report_kimg << 10)
if __name__ == '__main__':
utils.setup_tf()
flags.DEFINE_float('consistency_weight', 50., 'Consistency weight.')
flags.DEFINE_float('warmup_pos', 0.4, 'Relative position at which constraint loss warmup ends.')
flags.DEFINE_float('wd', 0.02, 'Weight decay.')
flags.DEFINE_float('ema', 0.999, 'Exponential moving average of params.')
flags.DEFINE_float('smoothing', 0.001, 'Label smoothing.')
flags.DEFINE_integer('scales', 0, 'Number of 2x2 downscalings in the classifier.')
flags.DEFINE_integer('filters', 32, 'Filter size of convolutions.')
flags.DEFINE_integer('repeat', 4, 'Number of residual layers per stage.')
FLAGS.set_default('dataset', 'cifar10.3@250-5000')
FLAGS.set_default('batch', 64)
FLAGS.set_default('lr', 0.002)
FLAGS.set_default('train_kimg', 1 << 16)
flags.register_validator('nu', lambda nu: nu == 2, message='nu must be 2 for pi-model.')
app.run(main)