-
Notifications
You must be signed in to change notification settings - Fork 13
/
preprocess.py
280 lines (240 loc) · 9.16 KB
/
preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
# Copyright 2024 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
r"""Preprocess the LOFT data by filling in the missing fields.
Example usage:
python preprocess.py \
--input_dir=data/loft/retrieval/fiqa \
--dataset=fiqa
"""
from collections.abc import Sequence
import glob
import json
import os
import zipfile
from absl import app
from absl import flags
import cv2
import numpy as np
import tqdm
import wget
# pylint: disable=line-too-long
DATASET_DOWNLOAD_LINKS = {
"fiqa": "https://public.ukp.informatik.tu-darmstadt.de/thakur/BEIR/datasets/fiqa.zip",
"msmarco": "https://public.ukp.informatik.tu-darmstadt.de/thakur/BEIR/datasets/msmarco.zip",
"quora": "https://public.ukp.informatik.tu-darmstadt.de/thakur/BEIR/datasets/quora.zip",
"webis_touche2020": "https://public.ukp.informatik.tu-darmstadt.de/thakur/BEIR/datasets/webis-touche2020.zip",
"msrvtt": (
"https://www.robots.ox.ac.uk/~maxbain/frozen-in-time/data/MSRVTT.zip"
),
}
# pylint: enable=line-too-long
_INPUT_DIR = flags.DEFINE_string(
"input_dir",
default=None,
help="The input directory to extract the LOFT data from.",
required=True,
)
_DATASET = flags.DEFINE_enum(
"dataset",
default=None,
enum_values=list(DATASET_DOWNLOAD_LINKS),
help="Dataset to download and preprocess.",
required=True,
)
_COMPRESSION_TYPE = flags.DEFINE_enum(
"compression_type",
default="zip",
enum_values=["zip"],
help="Compression type of the dataset.",
)
VIDEO_FILEPATTERN = "msrvtt/videos/all/{}.mp4"
DATASET_LENGTHS = ["32k", "128k", "1m"]
QUERY_FILES = [
"dev_queries.jsonl",
"few_shot_queries.jsonl",
"test_queries.jsonl",
]
def extract_frames_from_video(video_path, output_pattern, num_frames=3):
"""Extract video frames from a input video at a given frame rate."""
# Open the video file
video_capture = cv2.VideoCapture(video_path)
# Get the total number of frames in the video
total_frames = int(video_capture.get(cv2.CAP_PROP_FRAME_COUNT))
# Generate the frame indices to sample uniformly
frame_indices = np.linspace(0, total_frames - 1, num_frames, dtype=int)
frame_names = []
for frame_index in frame_indices:
# Set the video capture to the specific frame index
video_capture.set(cv2.CAP_PROP_POS_FRAMES, frame_index)
ret, frame = video_capture.read()
if ret:
# Save the sampled frame to the output folder
frame_name = f"{output_pattern}_{frame_index:08d}.jpg"
cv2.imwrite(frame_name, frame)
frame_names.append(os.path.basename(frame_name))
video_capture.release()
return frame_names
def extract_video_resource(
download_dir: str, resource_dir: str
) -> dict[str, str]:
"""Extract video into image frames."""
if not os.path.exists(resource_dir):
os.makedirs(resource_dir)
video2frames = dict()
video_filepaths = glob.glob(
os.path.join(download_dir, VIDEO_FILEPATTERN.format("*"))
)
for video_filepath in tqdm.tqdm(video_filepaths):
video_id = os.path.basename(video_filepath).split(".")[0]
video_frame_pattern = os.path.join(resource_dir, video_id)
video2frames[video_id] = extract_frames_from_video(
video_filepath, video_frame_pattern
)
return video2frames
def extract_dataset(
dataset: str, input_dir: str, compression_type: str
) -> None:
"""Extracts the dataset from the compressed file."""
if compression_type == "zip":
with zipfile.ZipFile(
os.path.join(input_dir, dataset + ".zip"), "r"
) as zip_ref:
extracted_dir = zip_ref.namelist()[0]
zip_ref.extractall(input_dir)
# Rename the extracted directory to the dataset name. Needed for datasets
# like msrvtt and webis_touche2020 where the extracted directory name is
# different from the dataset name.
os.rename(
os.path.join(input_dir, extracted_dir),
os.path.join(input_dir, dataset),
)
else:
raise ValueError(f"Unsupported compression type: {compression_type}")
def download_dataset(dataset: str, download_dir: str) -> None:
"""Downloads the dataset from the dataset download link."""
os.makedirs(download_dir, exist_ok=True)
zipped_filepath = os.path.join(download_dir, dataset + ".zip")
if not os.path.exists(zipped_filepath):
wget.download(DATASET_DOWNLOAD_LINKS[dataset], out=zipped_filepath)
else:
print("Skipping downloading as the zip file already exists.")
if not os.path.exists(os.path.join(download_dir, dataset)):
extract_dataset(dataset, download_dir, _COMPRESSION_TYPE.value)
else:
print("Skipping extracting as the dataset already exists.")
def load_dataset(
dataset: str, input_dir: str
) -> tuple[dict[str, str], dict[str, dict[str, str]]]:
"""Load the downloaded source dataset."""
qid2text = {}
pid2text = {}
# Other datasets like Flickr will be added later.
if dataset in ["fiqa", "msmarco", "quora", "webis_touche2020"]:
# Fill in the missing fields in the query and corpus files.
source_dir = os.path.join(input_dir, "source", dataset)
with open(os.path.join(source_dir, "queries.jsonl"), "r") as f:
for line in f:
query = json.loads(line)
qid2text[query["_id"]] = query["text"]
with open(os.path.join(source_dir, "corpus.jsonl"), "r") as f:
for line in f:
passage = json.loads(line)
pid2text[passage["_id"]] = {
"title": passage["title"],
"text": passage["text"],
}
else:
raise ValueError(f"Dataset {dataset} not available.")
return qid2text, pid2text
def update_loft_dataset(
qid2text: dict[str, str],
pid2text: dict[str, dict[str, str]],
input_dir: str,
) -> None:
"""Update the LOFT dataset with the missing fields."""
for length in DATASET_LENGTHS:
for query_file in QUERY_FILES:
target_query_file = os.path.join(input_dir, length, query_file)
if not os.path.exists(target_query_file):
print(f"Skipping {target_query_file} as it does not exist.")
continue
queries = []
with open(target_query_file, "r") as f:
for line in f:
query = json.loads(line)
if query["qid"] not in qid2text:
raise ValueError(f"Query {query['qid']} not found in the queries.")
query["query_text"] = qid2text[query["qid"]]
queries.append(query)
with open(target_query_file, "w") as f:
for query in queries:
json.dump(query, f)
f.write("\n")
print(f"Wrote to {target_query_file}.")
target_corpus_file = os.path.join(input_dir, length, "corpus.jsonl")
passages = []
with open(target_corpus_file, "r") as f:
for line in f:
passage = json.loads(line)
if passage["pid"] not in pid2text:
raise ValueError(f"Passage {passage['pid']} not found in the corpus.")
passage["title_text"] = pid2text[passage["pid"]]["title"]
passage["passage_text"] = pid2text[passage["pid"]]["text"]
passages.append(passage)
with open(target_corpus_file, "w") as f:
for passage in passages:
json.dump(passage, f)
f.write("\n")
print(f"Wrote to {target_corpus_file}.")
def update_mm_loft_dataset(
input_dir: str,
resource_mapping: dict[str, str],
) -> None:
"""Update the LOFT dataset with the missing fields."""
for length in DATASET_LENGTHS:
# Loading the corpus file.
target_corpus_file = os.path.join(input_dir, length, "corpus.jsonl")
passages = []
with open(target_corpus_file, "r") as f:
for line in f:
passage = json.loads(line)
resource_id = passage["pid"]
passage["metadata"]["img_paths"] = resource_mapping[resource_id]
passages.append(passage)
# Writing the corpus file.
with open(target_corpus_file, "w") as f:
for passage in passages:
json.dump(passage, f)
f.write("\n")
print(f"Wrote to {target_corpus_file}.")
def main(argv: Sequence[str]) -> None:
if len(argv) > 1:
raise app.UsageError("Too many command-line arguments.")
download_dataset(_DATASET.value, os.path.join(_INPUT_DIR.value, "source"))
if _DATASET.value in ["msrvtt"]:
resource_mapping = extract_video_resource(
os.path.join(_INPUT_DIR.value, "source"),
os.path.join(_INPUT_DIR.value, "resource"),
)
update_mm_loft_dataset(_INPUT_DIR.value, resource_mapping)
elif _DATASET.value in ["fiqa", "msmarco", "quora", "webis_touche2020"]:
qid2text, pid2text = load_dataset(_DATASET.value, _INPUT_DIR.value)
update_loft_dataset(qid2text, pid2text, _INPUT_DIR.value)
else:
raise ValueError(
f"Preprocessor for dataset {_DATASET.value} not available."
)
if __name__ == "__main__":
app.run(main)