-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathtest_utils.py
57 lines (47 loc) · 1.82 KB
/
test_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
# Copyright 2022 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Utilities to avoid redundancy in tests."""
from typing import Optional
import jax.numpy as jnp
import numpy as np
import scipy.special
def get_labels(num_examples: int, num_classes: int) -> jnp.ndarray:
"""Get random labels.
Args:
num_examples: number of examples
num_classes: number of classes
Returns:
Labels
"""
return jnp.array(np.random.randint(0, num_classes, (num_examples)))
def get_probabilities(
labels: jnp.ndarray, dominance: float,
log: Optional[bool] = False) -> jnp.ndarray:
"""Get random probabilities where the logit of the true label dominates.
Args:
labels: labels to generate probabilities for
dominance: float value added to the logit of the true label before
applying softmax; determines whether probability of true class is the
largest
log: return log-probabilities
Returns:
Probabilities
"""
probabilities = np.random.random((labels.shape[0], np.max(labels) + 1))
probabilities[np.arange(probabilities.shape[0]), labels] += dominance
probabilities = scipy.special.softmax(probabilities, axis=1)
if log:
probabilities = np.log(probabilities)
return jnp.array(probabilities)