Skip to content

Files

Latest commit

29537f2 · Jun 20, 2024

History

History
executable file
·
210 lines (160 loc) · 8.45 KB

README.md

File metadata and controls

executable file
·
210 lines (160 loc) · 8.45 KB

Federated Learning for Face Detection using FaceBoxes on WIDER FACE dataset

License

Federated FaceBoxes is a Flower-based implementation of "Federated Learning for Face Detection using FaceBoxes on WIDER FACE dataset", taking inspiration from a PyTorch implementation of "Zhang et al., FaceBoxes: A CPU Real-time Face Detector with High Accuracy" and Flower examples.

The original code can be found here.

Cloud-based Deployment Strategies of Hierarchical Federated Learning Systems for Face Recognition

This repository also contains the materials for Cloud Computing exam project @uniparthenope a.y. 2023/2024 (paper submission, presentation and project implementation).

Authors

All the authors contributed equally to this work.

frontcover

Check out our work (paper and slides) at paper/.

Installation

Clone this repository.

git clone --depth 1 https://github.com/gomax22/Federated-FaceBoxes.git
cd Federated-FaceBoxes

Optional: Compile the nms (for GPU users)

./make.sh

Dataset Preparation

Download

  1. Download WIDER FACE dataset (train split)
  2. Download converted annotations directly from original repository FaceBoxes.Pytorch
  3. Download the images of AFW, PASCAL Face and FDDB for testing purposes
  4. Place the dowloaded datasets into the corresponding folder at data/<dataset>/

N.B. It's mandatory to download at least one of the test datasets in order to test the application.

Extraction

unzip data/WIDER_FACE/WIDER_train.zip -d data/ && mv data/WIDER_train/images data/WIDER_FACE  && rm -rf data/WIDER_train    
unzip data/AFW/afw_images.zip -d data/ && mv data/afw_images data/AFW && rm -rf data/afw_images                             # if downloaded
unzip data/PASCAL/pascal_images.zip -d data/ && mv data/pascal_images data/PASCAL && rm -rf data/pascal_images              # if downloaded
unzip data/FDDB/fddb_images.zip -d data/ && mv data/fddb_images data/FDDB && rm -rf data/fddb_images                        # if downloaded
tar xvf data/WIDER_FACE/annotations.tar.gz -C data/WIDER_FACE/                                                              

Install dependencies using pip, conda or Docker

via pip

Install virtualenv via pip (if not already installed):

pip install virtualenv

Create a virtual environment called faceboxes, activate it and install requirements:

python -m venv faceboxes 
source faceboxes/bin/activate
pip install -r requirements.txt

via Conda

Create a conda environment starting from environment.yml file.

conda env create -f environment.yml

and activate the environment using

conda activate faceboxes

WARNING: in this environment PyTorch has been installed only for CPUs. For installing CUDA-enabled PyTorch, please visit https://pytorch.org/get-started/locally/.

via Docker

Prerequisites: all zipped datasets must be placed into the corresponding folders at data/.

Build the server application using the following commands:

export DOCKER_BUILDKIT=1
docker build -f docker/server/Dockerfile.server -t flwr_client:0.0.3 .

Build the client application using the following commands:

export DOCKER_BUILDKIT=1
docker build -f docker/client/Dockerfile.client -t flwr_client:0.0.3 .

Training

Before starting to train, datasets should be partitioned and distributed among clients in order to simulate a real-world federated scenario.

To simulate this scenario, launch the following commands:

python split.py --img_list data/WIDER_FACE/img_list.txt --partitions 2 --output data/WIDER_FACE

split.py creates n partitions starting from the corresponding img_list.txt file, which we'll be used exclusively by each client.

Train the model starting the server:

python server.py --num_rounds 200 --num_clients 2

Launch python server.py --help for further information.

and then, start the clients:

python client.py --partition_id 0
python client.py --partition_id 1

Launch python client.py --help for further information.

On Docker (build from scratch)

Run the server container specifying the server address and the number of rounds (epochs):

docker run -p 8080:8080 -e NUM_ROUNDS=3 -e NUM_CLIENTS=2 -it flwr_server:1.0.0

Launch docker run -t flwr_server:1.0.0 --help for further information.

Run the client container specifying the server address:

docker run -e SERVER_ADDRESS=<server-address> -e NUM_PARTITIONS=<num_partitions> -e PARTITION_ID=<partition_id> -it flwr_client:1.0.0

Launch docker run -t flwr_client:1.0.0 --help for further information.

N.B.: Docker images can be pulled directly from Docker Hub

docker pull gomax22/flwr_server:1.0.0
docker pull gomax22/flwr_client:1.0.0  

Testing

Evaluate the trained model using:

# dataset choices = ['AFW', 'PASCAL', 'FDDB']
python test.py --trained_model /path/to/trained_model.pth --dataset FDDB
# evaluate using cpu
python test.py --trained_model /path/to/trained_model.pth --cpu
# visualize detection results
python test.py --trained_model /path/to/trained_model.pth -s --vis_thres 0.3

On Docker

docker run -it flwr_client:1.0.0 python3 test.py --trained_model /path/to/trained_model.pth --dataset PASCAL --cpu --save_image

Google Cloud Platform (GCP) deployment using Docker

Prerequisites:

  • Set up a cluster on Google Cloud Platform.
  • Enabled Cloud Dataproc API, Cloud Dataproc Control API, Compute Engine API, Cloud Logging API.
  • Enabled Docker on each VM instance.
  • Docker deamon is running (sudo systemctl start docker).
  • There's a Firewall rule already created for ports where there will be incoming traffic, from workers to master (e.g. tcp/8081 udp/8081).

Master node will act as a Flower server, while all other workers will act as Flower clients.

First, pull the docker images from Docker Hub using the following commands:

sudo docker pull gomax22/flwr_server:1.0.0  # on master
sudo docker pull gomax22/flwr_client:1.0.0  # on workers

Then, start the containers. For example

sudo docker run -p 8081:8081 -e SERVER_ADDRESS=0.0.0.0:8081 -e NUM_CLIENTS=4  -e NUM_ROUNDS=200 -it gomax22/flwr_server:1.0.0   # on master
sudo docker run -e SERVER_ADDRESS=10.200.0.9:8081 -e NUM_PARTITIONS=4 -e PARTITION_ID=0 -it gomax22/flwr_client:1.0.0           # on workers
sudo docker run -e SERVER_ADDRESS=10.200.0.9:8081 -e NUM_PARTITIONS=4 -e PARTITION_ID=1 -it gomax22/flwr_client:1.0.0           # on workers
sudo docker run -e SERVER_ADDRESS=10.200.0.9:8081 -e NUM_PARTITIONS=4 -e PARTITION_ID=2 -it gomax22/flwr_client:1.0.0           # on workers
sudo docker run -e SERVER_ADDRESS=10.200.0.9:8081 -e NUM_PARTITIONS=4 -e PARTITION_ID=3 -it gomax22/flwr_client:1.0.0           # on workers

Hint 1 : add -d options to detach containers. This could be strongly useful when SSH connection to the VM instances is lost.

Hint 2: you can check logs using the command: sudo docker logs <container-id>

Connect again via SSH and then:

sudo docker ps  # get container id
sudo docker attach <container-id>

After training, execute the detection test on the workers using:

# dataset choices = ['AFW', 'PASCAL', 'FDDB']
sudo docker run -it gomax22/flwr_client:1.0.0 python3 test.py --trained_model /path/to/trained_model.pth --dataset PASCAL --cpu --save_image

# or
sudo docker ps -a   # get container id
sudo docker exec -it <container-id> python3 test.py --trained_model /path/to/trained_model.pth --dataset PASCAL --cpu --save_image