-
Notifications
You must be signed in to change notification settings - Fork 0
/
patient_hetero.html
83 lines (72 loc) · 3.08 KB
/
patient_hetero.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
<!DOCTYPE HTML>
<!--
Solarize by TEMPLATED
templated.co @templatedco
Released for free under the Creative Commons Attribution 3.0 license (templated.co/license)
-->
<html>
<head>
<title>Patient Heterogeneity</title>
<meta http-equiv="content-type" content="text/html; charset=utf-8" />
<meta name="description" content="" />
<meta name="keywords" content="" />
<!--[if lte IE 8]><script src="css/ie/html5shiv.js"></script><![endif]-->
<script src="js/jquery.min.js"></script>
<script src="js/jquery.dropotron.min.js"></script>
<script src="js/skel.min.js"></script>
<script src="js/skel-layers.min.js"></script>
<script src="js/init.js"></script>
<noscript>
<link rel="stylesheet" href="css/skel.css" />
<link rel="stylesheet" href="css/style.css" />
</noscript>
<!--[if lte IE 8]><link rel="stylesheet" href="css/ie/v8.css" /><![endif]-->
</head>
<!-- Header Wrapper -->
<div class="wrapper style1">
<!-- Header -->
<div id="header">
<!-- Logo -->
<h1><a id="logo">Goldenberg Lab</a></h1>
<div class="container">
<!-- Nav -->
<nav id="nav">
<ul>
<li class="active"><a href="index.html">Home</a></li>
<li><a href="current.html">Current Research</a>
</li>
<li><a href="people.html">The Team</a>
</li>
<li><a href="Publications.html">Publications</a></li>
<li><a href="job_posting.html">Jobs</a></li>
<li><a href="contact.html">Contact</a></li>
</ul>
</nav>
</div>
</div>
<!-- Main -->
<!-- Section Three -->
<div class="wrapper style6">
<section class="container">
<header class="major">
<h2>Patient Heterogeneity</h2>
</header>
<div class="12u">
<img src="images/portfolio/patient_het_big.png" alt="">
</div>
<div class="text-center" style="color:#000">
Identifying genes associated with complex human diseases is one of the main challenges of human genetics and computational medicine. To increase the power of identifying genes associated with diseases and to account for other potential sources of protein function aberrations, we proposed a novel factor-graph based model, where much of the biological knowledge is incorporated through factors and priors. Our extensive simulations show that our method has superior sensitivity and precision compared to variant aggregating and differential expression methods.
</div>
</section>
<a href="http://arxiv.org/abs/1508.07527">link to paper</a>
</div>
<!-- Footer -->
<div id="footer">
<section class="container">
<header class="major">
<h3><a href="contact.html">Contact Us</a></h3>
</header>
</section>
</div>
</div>
</html>