forked from deanm/pre3d
-
Notifications
You must be signed in to change notification settings - Fork 0
/
pre3d_shape_utils.js
835 lines (730 loc) · 27.8 KB
/
pre3d_shape_utils.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
// Pre3d, a JavaScript software 3d renderer.
// (c) Dean McNamee <[email protected]>, Dec 2008.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to
// deal in the Software without restriction, including without limitation the
// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
// sell copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
// IN THE SOFTWARE.
//
// This file implements helpers related to creating / modifying Shapes. Some
// routines exist for basic primitives (box, sphere, etc), along with some
// routines for procedural shape operations (extrude, subdivide, etc).
//
// The procedural operations were inspired from the demoscene. A lot of the
// ideas are based on similar concepts in Farbrausch's werkkzeug1.
Pre3d.ShapeUtils = (function() {
// TODO(deanm): Having to import all the math like this is a bummer.
var crossProduct = Pre3d.Math.crossProduct;
var dotProduct2d = Pre3d.Math.dotProduct2d;
var dotProduct3d = Pre3d.Math.dotProduct3d;
var subPoints2d = Pre3d.Math.subPoints2d;
var subPoints3d = Pre3d.Math.subPoints3d;
var addPoints2d = Pre3d.Math.addPoints2d;
var addPoints3d = Pre3d.Math.addPoints3d;
var mulPoint2d = Pre3d.Math.mulPoint2d;
var mulPoint3d = Pre3d.Math.mulPoint3d;
var vecMag2d = Pre3d.Math.vecMag2d;
var vecMag3d = Pre3d.Math.vecMag3d;
var unitVector2d = Pre3d.Math.unitVector2d;
var unitVector3d = Pre3d.Math.unitVector3d;
var linearInterpolate = Pre3d.Math.linearInterpolate;
var linearInterpolatePoints3d = Pre3d.Math.linearInterpolatePoints3d;
var averagePoints = Pre3d.Math.averagePoints;
var k2PI = Math.PI * 2;
// averagePoints() specialized for averaging 2 points.
function averagePoints2(a, b) {
return {
x: (a.x + b.x) * 0.5,
y: (a.y + b.y) * 0.5,
z: (a.z + b.z) * 0.5
};
}
// Rebuild the pre-computed "metadata", for the Shape |shape|. This
// calculates the centroids and normal vectors for each QuadFace.
function rebuildMeta(shape) {
var quads = shape.quads;
var num_quads = quads.length;
var vertices = shape.vertices;
// TODO: It's possible we could save some work here, we could mark the
// faces "dirty" which need their centroid or normal recomputed. Right now
// if we do an operation on a single face, we rebuild all of them. A
// simple scheme would be to track any writes to a QuadFace, and to set
// centroid / normal1 / normal2 to null. This would also prevent bugs
// where you forget to call rebuildMeta() and used stale metadata.
for (var i = 0; i < num_quads; ++i) {
var qf = quads[i];
var centroid;
var n1, n2;
var vert0 = vertices[qf.i0];
var vert1 = vertices[qf.i1];
var vert2 = vertices[qf.i2];
var vec01 = subPoints3d(vert1, vert0);
var vec02 = subPoints3d(vert2, vert0);
var n1 = crossProduct(vec01, vec02);
if (qf.isTriangle()) {
n2 = n1;
centroid = averagePoints([vert0, vert1, vert2]);
} else {
var vert3 = vertices[qf.i3];
var vec03 = subPoints3d(vert3, vert0);
n2 = crossProduct(vec02, vec03);
centroid = averagePoints([vert0, vert1, vert2, vert3]);
}
qf.centroid = centroid;
qf.normal1 = n1;
qf.normal2 = n2;
}
return shape;
}
// Convert any quad faces into two triangle faces. After triangulation,
// |shape| should only consist of triangles.
function triangulate(shape) {
var quads = shape.quads;
var num_quads = quads.length;
for (var i = 0; i < num_quads; ++i) {
var qf = quads[i];
if (qf.isTriangle())
continue;
// TODO(deanm): Should we follow some clockwise rule here?
var newtri = new Pre3d.QuadFace(qf.i0, qf.i2, qf.i3, null);
// Convert the original quad into a triangle.
qf.i3 = null;
// Add the new triangle to the list of faces.
quads.push(newtri);
}
rebuildMeta(shape);
return shape;
}
// Call |func| for each face of |shape|. The callback |func| should return
// false to continue iteration, or true to stop. For example:
// forEachFace(shape, function(quad_face, quad_index, shape) {
// return false;
// });
function forEachFace(shape, func) {
var quads = shape.quads;
for (var i = 0, il = quads.length; i < il; ++i) {
if (func(quads[i], i, shape) === true)
break;
}
return shape;
}
function forEachVertex(shape, func) {
var vertices = shape.vertices;
for (var i = 0, il = vertices.length; i < il; ++i) {
if (func(vertices[i], i, shape) === true)
break;
}
return shape;
}
function makePlane(p1, p2, p3, p4) {
var s = new Pre3d.Shape();
s.vertices = [p1, p2, p3, p4];
s.quads = [new Pre3d.QuadFace(0, 1, 2, 3)];
rebuildMeta(s);
return s;
}
// Make a box with width (x) |w|, height (y) |h|, and depth (z) |d|.
function makeBox(w, h, d) {
var s = new Pre3d.Shape();
s.vertices = [
{x: w, y: h, z: -d}, // 0
{x: w, y: h, z: d}, // 1
{x: w, y: -h, z: d}, // 2
{x: w, y: -h, z: -d}, // 3
{x: -w, y: h, z: -d}, // 4
{x: -w, y: h, z: d}, // 5
{x: -w, y: -h, z: d}, // 6
{x: -w, y: -h, z: -d} // 7
];
// 4 -- 0
// /| /| +y
// 5 -- 1 | |__ +x
// | 7 -|-3 /
// |/ |/ +z
// 6 -- 2
s.quads = [
new Pre3d.QuadFace(0, 1, 2, 3), // Right side
new Pre3d.QuadFace(1, 5, 6, 2), // Front side
new Pre3d.QuadFace(5, 4, 7, 6), // Left side
new Pre3d.QuadFace(4, 0, 3, 7), // Back side
new Pre3d.QuadFace(0, 4, 5, 1), // Top side
new Pre3d.QuadFace(2, 6, 7, 3) // Bottom side
];
rebuildMeta(s);
return s;
}
// Make a cube with width, height, and depth |whd|.
function makeCube(whd) {
return makeBox(whd, whd, whd);
}
function makeBoxWithHole(w, h, d, hw, hh) {
var s = new Pre3d.Shape();
s.vertices = [
{x: w, y: h, z: -d}, // 0
{x: w, y: h, z: d}, // 1
{x: w, y: -h, z: d}, // 2
{x: w, y: -h, z: -d}, // 3
{x: -w, y: h, z: -d}, // 4
{x: -w, y: h, z: d}, // 5
{x: -w, y: -h, z: d}, // 6
{x: -w, y: -h, z: -d}, // 7
// The front new points ...
{x: hw, y: h, z: d}, // 8
{x: w, y: hh, z: d}, // 9
{x: hw, y: hh, z: d}, // 10
{x: hw, y: -h, z: d}, // 11
{x: w, y: -hh, z: d}, // 12
{x: hw, y: -hh, z: d}, // 13
{x: -hw, y: h, z: d}, // 14
{x: -w, y: hh, z: d}, // 15
{x: -hw, y: hh, z: d}, // 16
{x: -hw, y: -h, z: d}, // 17
{x: -w, y: -hh, z: d}, // 18
{x: -hw, y: -hh, z: d}, // 19
// The back new points ...
{x: hw, y: h, z: -d}, // 20
{x: w, y: hh, z: -d}, // 21
{x: hw, y: hh, z: -d}, // 22
{x: hw, y: -h, z: -d}, // 23
{x: w, y: -hh, z: -d}, // 24
{x: hw, y: -hh, z: -d}, // 25
{x: -hw, y: h, z: -d}, // 26
{x: -w, y: hh, z: -d}, // 27
{x: -hw, y: hh, z: -d}, // 28
{x: -hw, y: -h, z: -d}, // 29
{x: -w, y: -hh, z: -d}, // 30
{x: -hw, y: -hh, z: -d} // 31
];
// Front Back (looking from front)
// 4 - - 0 05 14 08 01 04 26 20 00
// /| /|
// 5 - - 1 | 15 16--10 09 27 28--22 21
// | 7 - |-3 |////| |////|
// |/ |/ 18 19--13 12 30 31--25 24
// 6 - - 2
// 06 17 11 02 07 29 23 03
s.quads = [
// Front side
new Pre3d.QuadFace( 1, 8, 10, 9),
new Pre3d.QuadFace( 8, 14, 16, 10),
new Pre3d.QuadFace(14, 5, 15, 16),
new Pre3d.QuadFace(16, 15, 18, 19),
new Pre3d.QuadFace(19, 18, 6, 17),
new Pre3d.QuadFace(13, 19, 17, 11),
new Pre3d.QuadFace(12, 13, 11, 2),
new Pre3d.QuadFace( 9, 10, 13, 12),
// Back side
new Pre3d.QuadFace( 4, 26, 28, 27),
new Pre3d.QuadFace(26, 20, 22, 28),
new Pre3d.QuadFace(20, 0, 21, 22),
new Pre3d.QuadFace(22, 21, 24, 25),
new Pre3d.QuadFace(25, 24, 3, 23),
new Pre3d.QuadFace(31, 25, 23, 29),
new Pre3d.QuadFace(30, 31, 29, 7),
new Pre3d.QuadFace(27, 28, 31, 30),
// The hole
new Pre3d.QuadFace(10, 16, 28, 22),
new Pre3d.QuadFace(19, 31, 28, 16),
new Pre3d.QuadFace(13, 25, 31, 19),
new Pre3d.QuadFace(10, 22, 25, 13),
// Bottom side
new Pre3d.QuadFace( 6, 7, 29, 17),
new Pre3d.QuadFace(17, 29, 23, 11),
new Pre3d.QuadFace(11, 23, 3, 2),
// Right side
new Pre3d.QuadFace( 1, 9, 21, 0),
new Pre3d.QuadFace( 9, 12, 24, 21),
new Pre3d.QuadFace(12, 2, 3, 24),
// Left side
new Pre3d.QuadFace( 5, 4, 27, 15),
new Pre3d.QuadFace(15, 27, 30, 18),
new Pre3d.QuadFace(18, 30, 7, 6),
// Top side
new Pre3d.QuadFace(14, 26, 4, 5),
new Pre3d.QuadFace( 8, 20, 26, 14),
new Pre3d.QuadFace( 1, 0, 20, 8)
];
rebuildMeta(s);
return s;
}
// Tessellate a spherical parametric equation.
// (two extras are for zenith and azimuth). There will be |tess_x| vertices
// along the X-axis. It is centered on the Y-axis. It has a radius |r|.
// The implementation is probably still a bit convulted. We just handle the
// middle points like a grid, and special case zenith/aximuth, since we want
// them to share a vertex anyway. The math is pretty much standard spherical
// coordinates, except that we map {x, y, z} -> {z, x, y}. |tess_x| is phi,
// and |tess_y| is theta.
function makeSphericalShape(f, tess_x, tess_y) {
// TODO(deanm): Preallocate the arrays to the final size.
var vertices = [ ];
var quads = [ ];
// We walk theta 0 .. PI and phi from 0 .. 2PI.
var theta_step = Math.PI / (tess_y + 1);
var phi_step = (k2PI) / tess_x;
// Create all of the vertices for the middle grid portion.
for (var i = 0, theta = theta_step;
i < tess_y;
++i, theta += theta_step) { // theta
for (var j = 0; j < tess_x; ++j) { // phi
vertices.push(f(theta, phi_step * j));
}
}
// Generate the quads for the middle grid portion.
for (var i = 0; i < tess_y-1; ++i) {
var stride = i * tess_x;
for (var j = 0; j < tess_x; ++j) {
var n = (j + 1) % tess_x;
quads.push(new Pre3d.QuadFace(
stride + j,
stride + tess_x + j,
stride + tess_x + n,
stride + n
));
}
}
// Special case the zenith / azimuth (top / bottom) portion of triangles.
// We make triangles (degenerated quads).
var last_row = vertices.length - tess_x;
var top_p_i = vertices.length;
var bot_p_i = top_p_i + 1;
vertices.push(f(0, 0));
vertices.push(f(Math.PI, 0));
for (var i = 0; i < tess_x; ++i) {
// Top triangles...
quads.push(new Pre3d.QuadFace(
top_p_i,
i,
((i + 1) % tess_x),
null
));
// Bottom triangles...
quads.push(new Pre3d.QuadFace(
bot_p_i,
last_row + ((i + 2) % tess_x),
last_row + ((i + 1) % tess_x),
null
));
}
var s = new Pre3d.Shape();
s.vertices = vertices;
s.quads = quads;
rebuildMeta(s);
return s;
}
function makeOctahedron() {
var s = new Pre3d.Shape();
s.vertices = [
{x: -1, y: 0, z: 0}, // 0
{x: 0, y: 0, z: 1}, // 1
{x: 1, y: 0, z: 0}, // 2
{x: 0, y: 0, z: -1}, // 3
{x: 0, y: 1, z: 0}, // 4
{x: 0, y: -1, z: 0} // 5
];
// Top 4 triangles: 5 0 1, 5 1 2, 5 2 3, 5 3 0
// Bottom 4 triangles: 0 5 1, 1 5 2, 2 5 3, 3 5 0
quads = Array(8);
for (var i = 0; i < 4; ++i) {
var i2 = (i + 1) & 3;
quads[i*2] = new Pre3d.QuadFace(4, i, i2, null);
quads[i*2+1] = new Pre3d.QuadFace(i, 5, i2, null);
}
s.quads = quads;
Pre3d.ShapeUtils.rebuildMeta(s);
return s;
}
// Tessellate a sphere. There will be |tess_y| + 2 vertices along the Y-axis
// (two extras are for zenith and azimuth). There will be |tess_x| vertices
// along the X-axis. It is centered on the Y-axis. It has a radius |r|.
// The implementation is probably still a bit convulted. We just handle the
// middle points like a grid, and special case zenith/aximuth, since we want
// them to share a vertex anyway. The math is pretty much standard spherical
// coordinates, except that we map {x, y, z} -> {z, x, y}. |tess_x| is phi,
// and |tess_y| is theta.
// TODO(deanm): This code could definitely be more efficent.
function makeSphere(r, tess_x, tess_y) {
return makeSphericalShape(function(theta, phi) {
return {
x: r * Math.sin(theta) * Math.sin(phi),
y: r * Math.cos(theta),
z: r * Math.sin(theta) * Math.cos(phi)
};
}, tess_x, tess_y);
}
// Smooth a Shape by averaging the vertices / faces. This is something like
// Catmull-Clark, but without the proper weighting. The |m| argument is the
// amount to smooth, between 0 and 1, 0 being no smoothing.
function averageSmooth(shape, m) {
// TODO(deanm): Remove this old compat code for calling without arguments.
if (m === void(0))
m = 1;
var vertices = shape.vertices;
var psl = vertices.length;
var new_ps = Array(psl);
// Build a connection mapping of vertex_index -> [ quad indexes ]
var connections = Array(psl);
for (var i = 0; i < psl; ++i)
connections[i] = [ ];
for (var i = 0, il = shape.quads.length; i < il; ++i) {
var qf = shape.quads[i];
connections[qf.i0].push(i);
connections[qf.i1].push(i);
connections[qf.i2].push(i);
if (!qf.isTriangle())
connections[qf.i3].push(i);
}
// For every vertex, average the centroids of the faces it's a part of.
for (var i = 0, il = vertices.length; i < il; ++i) {
var cs = connections[i];
var avg = {x: 0, y: 0, z: 0};
// Sum together the centroids of each face.
for (var j = 0, jl = cs.length; j < jl; ++j) {
var quad = shape.quads[cs[j]];
var p1 = vertices[quad.i0];
var p2 = vertices[quad.i1];
var p3 = vertices[quad.i2];
var p4 = vertices[quad.i3];
// The centroid. TODO(deanm) can't shape just come from the QuadFace?
// That would handle triangles better and avoid some duplication.
avg.x += (p1.x + p2.x + p3.x + p4.x) / 4;
avg.y += (p1.y + p2.y + p3.y + p4.y) / 4;
avg.z += (p1.z + p2.z + p3.z + p4.z) / 4;
// TODO combine all the div / 4 into one divide?
}
// We summed up all of the centroids, take the average for our new point.
var f = 1 / jl;
avg.x *= f;
avg.y *= f;
avg.z *= f;
// Interpolate between the average and the original based on |m|.
new_ps[i] = linearInterpolatePoints3d(vertices[i], avg, m);
}
shape.vertices = new_ps;
rebuildMeta(shape);
return shape;
}
// Small utility function like Array.prototype.map. Return a new array
// based on the result of the function on a current array.
function arrayMap(arr, func) {
var out = Array(arr.length);
for (var i = 0, il = arr.length; i < il; ++i) {
out[i] = func(arr[i], i, arr);
}
return out;
}
// Divide each face of a Shape into 4 equal new faces.
// TODO(deanm): Better document, doesn't support triangles, etc.
function linearSubdivide(shape) {
var num_quads = shape.quads.length;
var share_points = { };
for (var i = 0; i < num_quads; ++i) {
var quad = shape.quads[i];
var i0 = quad.i0;
var i1 = quad.i1;
var i2 = quad.i2;
var i3 = quad.i3;
var p0 = shape.vertices[i0];
var p1 = shape.vertices[i1];
var p2 = shape.vertices[i2];
var p3 = shape.vertices[i3];
// p0 p1 p0 n0 p1
// -> n3 n4 n1
// p3 p2 p3 n2 p2
// We end up with an array of vertex indices of the centroids of each
// side of the quad and the middle centroid. We start with the vertex
// indices that should be averaged. We cache centroids to make sure that
// we share vertices instead of creating two on top of each other.
var ni = [
[i0, i1].sort(),
[i1, i2].sort(),
[i2, i3].sort(),
[i3, i0].sort(),
[i0, i1, i2, i3].sort()
];
for (var j = 0, jl = ni.length; j < jl; ++j) {
var ps = ni[j];
var key = ps.join('-');
var centroid_index = share_points[key];
if (centroid_index === undefined) { // hasn't been seen before
centroid_index = shape.vertices.length;
var s = shape;
shape.vertices.push(averagePoints(
arrayMap(ps, function(x) { return s.vertices[x]; })));
share_points[key] = centroid_index;
}
ni[j] = centroid_index;
}
// New quads ...
var q0 = new Pre3d.QuadFace( i0, ni[0], ni[4], ni[3]);
var q1 = new Pre3d.QuadFace(ni[0], i1, ni[1], ni[4]);
var q2 = new Pre3d.QuadFace(ni[4], ni[1], i2, ni[2]);
var q3 = new Pre3d.QuadFace(ni[3], ni[4], ni[2], i3);
shape.quads[i] = q0;
shape.quads.push(q1);
shape.quads.push(q2);
shape.quads.push(q3);
}
rebuildMeta(shape);
return shape;
}
// Divide each triangle of a Shape into 4 new triangle faces. This is done
// by taking the mid point of each edge, and creating 4 new triangles. You
// can visualize it by inscribing a new upside-down triangle within the
// current triangle, which then defines 4 new sub-triangles.
function linearSubdivideTri(shape) {
var num_tris = shape.quads.length;
var share_points = { };
for (var i = 0; i < num_tris; ++i) {
var tri = shape.quads[i];
var i0 = tri.i0;
var i1 = tri.i1;
var i2 = tri.i2;
var p0 = shape.vertices[i0];
var p1 = shape.vertices[i1];
var p2 = shape.vertices[i2];
// p0 p0
// -> n0 n2
// p1 p2 p1 n1 p2
// We end up with an array of vertex indices of the centroids of each
// side of the triangle. We start with the vertex indices that should be
// averaged. We cache centroids to make sure that we share vertices
// instead of creating two on top of each other.
var ni = [
[i0, i1].sort(),
[i1, i2].sort(),
[i2, i0].sort(),
];
for (var j = 0, jl = ni.length; j < jl; ++j) {
var ps = ni[j];
var key = ps.join('-');
var centroid_index = share_points[key];
if (centroid_index === undefined) { // hasn't been seen before
centroid_index = shape.vertices.length;
var s = shape;
shape.vertices.push(averagePoints(
arrayMap(ps, function(x) { return s.vertices[x]; })));
share_points[key] = centroid_index;
}
ni[j] = centroid_index;
}
// New triangles ...
var q0 = new Pre3d.QuadFace( i0, ni[0], ni[2], null);
var q1 = new Pre3d.QuadFace(ni[0], i1, ni[1], null);
var q2 = new Pre3d.QuadFace(ni[2], ni[1], i2, null);
var q3 = new Pre3d.QuadFace(ni[0], ni[1], ni[2], null);
shape.quads[i] = q0;
shape.quads.push(q1);
shape.quads.push(q2);
shape.quads.push(q3);
}
rebuildMeta(shape);
return shape;
}
// Detach all of the faces from each other. Basically this just duplicates
// all of the vertices for each face, so a vertex is not shared across faces.
function explodeFaces(shape) {
var quads = shape.quads;
var num_quads = quads.length;
var verts = shape.vertices;
var new_verts = [ ];
for (var i = 0; i < num_quads; ++i) {
var q = quads[i];
var pos = new_verts.length;
new_verts.push({x: verts[q.i0].x, y: verts[q.i0].y, z: verts[q.i0].z});
new_verts.push({x: verts[q.i1].x, y: verts[q.i1].y, z: verts[q.i1].z});
new_verts.push({x: verts[q.i2].x, y: verts[q.i2].y, z: verts[q.i2].z});
q.i0 = pos;
q.i1 = pos + 1;
q.i2 = pos + 2;
if (q.isTriangle() !== true) {
new_verts.push({x: verts[q.i3].x, y: verts[q.i3].y, z: verts[q.i3].z});
q.i3 = pos + 3;
}
}
shape.vertices = new_verts;
return shape;
}
// The Extruder implements extruding faces of a Shape. The class mostly
// exists as a place to hold all of the extrusion parameters. The properties
// are meant to be private, please use the getter/setter APIs.
function Extruder() {
// The total distance to extrude, if |count| > 1, then each segment will
// just be a portion of the distance, and together they will be |distance|.
this.distance_ = 1.0;
// The number of segments / steps to perform. This is can be different
// than just running extrude multiple times, since we only operate on the
// originally faces, not our newly inserted faces.
this.count_ = 1;
// Selection mechanism. Access these through the selection APIs.
this.selector_ = null;
this.selectAll();
// TODO(deanm): Need a bunch more settings, controlling which normal the
// extrusion is performed along, etc.
// Set scale and rotation. These are public, you can access them directly.
// TODO(deanm): It would be great to use a Transform here, but there are
// a few problems. Translate doesn't make sense, so it is not really an
// affine. The real problem is that we need to interpolate across the
// values, having them in a matrix is not helpful.
this.scale = {x: 1, y: 1, z: 1};
this.rotate = {x: 0, y: 0, z: 0};
}
// Selection APIs, control which faces are extruded.
Extruder.prototype.selectAll = function() {
this.selector_ = function(shape, vertex_index) { return true; };
};
// Select faces based on the function select_func. For example:
// extruder.selectCustom(function(shape, quad_index) {
// return quad_index == 0;
// });
// The above would select only the first face for extrusion.
Extruder.prototype.selectCustom = function(select_func) {
this.selector_ = select_func;
};
Extruder.prototype.distance = function() {
return this.distance_;
};
Extruder.prototype.set_distance = function(d) {
this.distance_ = d;
};
Extruder.prototype.count = function() {
return this.count_;
};
Extruder.prototype.set_count = function(c) {
this.count_ = c;
};
Extruder.prototype.extrude = function extrude(shape) {
var distance = this.distance();
var count = this.count();
var rx = this.rotate.x;
var ry = this.rotate.y;
var rz = this.rotate.z;
var sx = this.scale.x;
var sy = this.scale.y;
var sz = this.scale.z;
var vertices = shape.vertices;
var quads = shape.quads;
var faces = [ ];
for (var i = 0, il = quads.length; i < il; ++i) {
if (this.selector_(shape, i))
faces.push(i);
}
for (var i = 0, il = faces.length; i < il; ++i) {
// This is the index of the original face. It will eventually be
// replaced with the last iteration's outside face.
var face_index = faces[i];
// As we proceed down a count, we always need to connect to the newest
// new face. We start |quad| as the original face, and it will be
// modified (in place) for each iteration, and then the next iteration
// will connect back to the previous iteration, etc.
var qf = quads[face_index];
var original_cent = qf.centroid;
// This is the surface normal, used to project out the new face. It
// will be rotated, but never scaled. It should be a unit vector.
var surface_normal = unitVector3d(addPoints3d(qf.normal1, qf.normal2));
var is_triangle = qf.isTriangle();
// These are the normals inside the face, from the centroid out to the
// vertices. They will be rotated and scaled to create the new faces.
var inner_normal0 = subPoints3d(vertices[qf.i0], original_cent);
var inner_normal1 = subPoints3d(vertices[qf.i1], original_cent);
var inner_normal2 = subPoints3d(vertices[qf.i2], original_cent);
if (is_triangle !== true) {
var inner_normal3 = subPoints3d(vertices[qf.i3], original_cent);
}
for (var z = 0; z < count; ++z) {
var m = (z + 1) / count;
var t = new Pre3d.Transform();
t.rotateX(rx * m);
t.rotateY(ry * m);
t.rotateZ(rz * m);
// For our new point, we simply want to rotate the original normal
// proportional to how many steps we're at. Then we want to just scale
// it out based on our steps, and add it to the original centorid.
var new_cent = addPoints3d(original_cent,
mulPoint3d(t.transformPoint(surface_normal), m * distance));
// We multiplied the centroid, which should not have been affected by
// the scale. Now we want to scale the inner face normals.
t.scalePre(
linearInterpolate(1, sx, m),
linearInterpolate(1, sy, m),
linearInterpolate(1, sz, m));
var index_before = vertices.length;
vertices.push(addPoints3d(new_cent, t.transformPoint(inner_normal0)));
vertices.push(addPoints3d(new_cent, t.transformPoint(inner_normal1)));
vertices.push(addPoints3d(new_cent, t.transformPoint(inner_normal2)));
if (is_triangle !== true) {
vertices.push(
addPoints3d(new_cent, t.transformPoint(inner_normal3)));
}
// Add the new faces. These faces will always be quads, even if we
// extruded a triangle. We will have 3 or 4 new side faces.
quads.push(new Pre3d.QuadFace(
qf.i1,
index_before + 1,
index_before,
qf.i0));
quads.push(new Pre3d.QuadFace(
qf.i2,
index_before + 2,
index_before + 1,
qf.i1));
if (is_triangle === true) {
quads.push(new Pre3d.QuadFace(
qf.i0,
index_before,
index_before + 2,
qf.i2));
} else {
quads.push(new Pre3d.QuadFace(
qf.i3,
index_before + 3,
index_before + 2,
qf.i2));
quads.push(new Pre3d.QuadFace(
qf.i0,
index_before,
index_before + 3,
qf.i3));
}
// Update (in place) the original face with the new extruded vertices.
qf.i0 = index_before;
qf.i1 = index_before + 1;
qf.i2 = index_before + 2;
if (is_triangle !== true)
qf.i3 = index_before + 3;
}
}
rebuildMeta(shape); // Compute all the new normals, etc.
};
return {
rebuildMeta: rebuildMeta,
triangulate: triangulate,
forEachFace: forEachFace,
forEachVertex: forEachVertex,
makePlane: makePlane,
makeCube: makeCube,
makeBox: makeBox,
makeBoxWithHole: makeBoxWithHole,
makeSphericalShape: makeSphericalShape,
makeSphere: makeSphere,
makeOctahedron: makeOctahedron,
averageSmooth: averageSmooth,
linearSubdivide: linearSubdivide,
linearSubdivideTri: linearSubdivideTri,
explodeFaces: explodeFaces,
Extruder: Extruder
};
})();