forked from webeng/feature_engineering
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlink.py
189 lines (157 loc) · 6.01 KB
/
link.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
from features.title import TitleExtractor
from features.main_text import MainTextExtractor
from features.images import ImagesExtractor
from features.sentiment import getSentimentText, findSentiment
from features.keywords import KeywordsExtractor
from features.entities import Entities
from features.author import AuthorExtractor
from features.category import Classifier
from features.url2text import Url2Text
from goose import Goose
from lxml import etree
from pyteaser_c import Summarize
from pyteaser_c import SummarizePage
from pyteaser_c import GetArticle
from pyteaser_c import keywords
from textblob import TextBlob
import langid
from bs4 import BeautifulSoup
#import lxml.html
from lxml import html
import requests
import pprint
import re
import os
class NoMainTextException(Exception):
pass
class Link(object):
# def is_html(self):
# pass
@classmethod
def extract(self, link, entity_description=False, sentiment=False, data_path='./data/'):
errors, summaries, categories, entities, keywords = [], [], [], [], []
pdf_pattern = re.compile('.*application\/pdf.*|.*application\/octet-stream.*')
html_pattern = re.compile('.*text\/html.*')
article = Goose().extract(link)
content_type = article.__dict__['additional_data']['result'].info()['content-type']
matches_html = len(re.findall(html_pattern, content_type))
matches_pdf = len(re.findall(pdf_pattern, content_type))
if matches_html == 0:
# Textract
url2text = Url2Text()
texts = url2text.extract(link)
k = KeywordsExtractor(num_kewyords=20, verbose=True, data_path=data_path)
ent = Entities()
clf = Classifier(data_path=data_path)
return {
"title": os.path.basename(link),
"link": link,
"author": [],
"cleaned_text": texts[0],
"text_sentiment": getSentimentText(texts[0]),
"main_body": None,
"images": None,
"image": None,
"date": article.__dict__['additional_data']['result'].info()['last-modified'],
"tags": k.extract([texts[0]], None, None, 'news')[0],
"entities": ent.extract(texts[0], entity_description),
"language": langid.classify(texts[0])[0],
"summary": Summarize(None, texts[0]),
"categories": clf.predict(texts[0])
}
pass
else:
valid_html = bool(BeautifulSoup(article.raw_html[0:100], "html.parser").find())
if not valid_html:
headers = {'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_12_5) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/60.0.3112.90 Safari/537.36'}
r = requests.get(link, headers=headers)
article.raw_html = r.text
article.raw_doc = html.fromstring(r.text)
if article.raw_doc is None:
raise NoMainTextException
authors = AuthorExtractor.extract(link, article.raw_html)
publish_date = article.publish_date if article.publish_date else None
if not article.title:
article.title = TitleExtractor.extract(
article.raw_html, article.raw_doc)[0]
k = KeywordsExtractor(num_kewyords=20, verbose=True, data_path=data_path)
if article.top_node is not None:
main_body = etree.tostring(article.top_node)
else:
cleant_text_suggestions = MainTextExtractor.extract(article.raw_html, article.raw_doc)
article.cleaned_text = cleant_text_suggestions[1]
if not article.cleaned_text:
article.cleaned_text = cleant_text_suggestions[2]
if not article.cleaned_text:
raise NoMainTextException
main_body = 'Sorry, we could not detect the main HTML content for this article'
try:
summaries = Summarize(
article.title, article.cleaned_text.encode('utf-8', 'ignore'))
except Exception, e:
summaries.append('We could not make summaries at this time.')
try:
text_sentiment = getSentimentText(article.cleaned_text)
except Exception, e:
text_sentiment = None
text = article.title + " " + article.cleaned_text
keywords = k.extract([text], None, None, 'news')[0]
# Get keywords from meta tag
if not keywords:
keywords = article.meta_keywords.split(',')
# Get keywords from Goose
if not keywords:
keywords = [t for t in article.tags]
if sentiment:
keywords = findSentiment(keywords)
ent = Entities()
try:
entities = ent.extract(text, entity_description)
except Exception, e:
entities.append('We could not extract entities at this time.')
if sentiment:
entities = findSentiment(entities)
language = article.meta_lang
if not language:
language = langid.classify(article.cleaned_text)[0]
if language in ['en', 'eo']:
clf = Classifier(data_path=data_path)
article.categories = clf.predict(text)
else:
article.categories = ["Article classification not ready for: " + language[0]]
images = ImagesExtractor.extract(link, article.raw_html)
if article.top_image:
thumbnail = article.top_image.src
else:
#thumbnail = images[0] if images else None
thumbnail = ImagesExtractor.select_top_image(images[0:50])
return {
"title": article.title,
"link": article.final_url,
"author": authors,
"cleaned_text": article.cleaned_text,
"text_sentiment": text_sentiment,
"main_body": main_body,
"images": images,
"image": thumbnail,
"date": article.publish_date,
"tags": keywords,
"entities": entities,
"language": language,
"summary": summaries,
"categories": article.categories
}
if __name__ == '__main__':
import pprint
l = Link()
url = 'https://www.wired.com/2017/05/google-just-made-email-heckuva-lot-easier-deal/'
# l = l.extract('http://techcrunch.com/2016/03/18/twitter-says-few-users-have-opted-out-of-its-new-algorithmic-timeline/')
#l = l.extract('https://www.wired.com/2017/05/google-just-made-email-heckuva-lot-easier-deal/')
# l = l.extract('http://www.independent.co.uk/life-style/gadgets-and-tech/features/google-lens-ai-preview-features-so-impressive-its-scary-a7745686.html')
# l = l.extract('https://onepagelove-wpengine.netdna-ssl.com/wp-content/uploads/2016/10/opl-small-1.jpg')
target_url = 'http://www.noiseaddicts.com/samples_1w72b820/47.mp3'
l = l.extract(target_url)
pprint.pprint(l)
# import requests
# r = requests.get(url)
# print r.text