diff --git a/knarr/pom.xml b/knarr/pom.xml
index 88e2354..ef017ab 100644
--- a/knarr/pom.xml
+++ b/knarr/pom.xml
@@ -156,7 +156,7 @@
- ${basedir}/../z3-ubuntu-14.04-bin/
+ ${basedir}/../z3-4.8.9-x64-ubuntu-16.04/bin/
diff --git a/z3-4.8.9-x64-ubuntu-16.04/LICENSE.txt b/z3-4.8.9-x64-ubuntu-16.04/LICENSE.txt
new file mode 100644
index 0000000..cc90bed
--- /dev/null
+++ b/z3-4.8.9-x64-ubuntu-16.04/LICENSE.txt
@@ -0,0 +1,10 @@
+Z3
+Copyright (c) Microsoft Corporation
+All rights reserved.
+MIT License
+
+Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
+
+The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
+
+THE SOFTWARE IS PROVIDED *AS IS*, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
\ No newline at end of file
diff --git a/z3-4.8.9-x64-ubuntu-16.04/bin/Microsoft.Z3.deps.json b/z3-4.8.9-x64-ubuntu-16.04/bin/Microsoft.Z3.deps.json
new file mode 100644
index 0000000..b2a8d37
--- /dev/null
+++ b/z3-4.8.9-x64-ubuntu-16.04/bin/Microsoft.Z3.deps.json
@@ -0,0 +1,1047 @@
+{
+ "runtimeTarget": {
+ "name": ".NETStandard,Version=v1.4/",
+ "signature": ""
+ },
+ "compilationOptions": {},
+ "targets": {
+ ".NETStandard,Version=v1.4": {},
+ ".NETStandard,Version=v1.4/": {
+ "Microsoft.Z3/4.8.9": {
+ "dependencies": {
+ "NETStandard.Library": "1.6.1"
+ },
+ "runtime": {
+ "Microsoft.Z3.dll": {}
+ }
+ },
+ "Microsoft.NETCore.Platforms/1.1.0": {},
+ "Microsoft.NETCore.Targets/1.1.0": {},
+ "Microsoft.Win32.Primitives/4.3.0": {
+ "dependencies": {
+ "Microsoft.NETCore.Platforms": "1.1.0",
+ "Microsoft.NETCore.Targets": "1.1.0",
+ "System.Runtime": "4.3.0"
+ }
+ },
+ "NETStandard.Library/1.6.1": {
+ "dependencies": {
+ "Microsoft.NETCore.Platforms": "1.1.0",
+ "Microsoft.Win32.Primitives": "4.3.0",
+ "System.AppContext": "4.3.0",
+ "System.Collections": "4.3.0",
+ "System.Collections.Concurrent": "4.3.0",
+ "System.Console": "4.3.0",
+ "System.Diagnostics.Debug": "4.3.0",
+ "System.Diagnostics.Tools": "4.3.0",
+ "System.Diagnostics.Tracing": "4.3.0",
+ "System.Globalization": "4.3.0",
+ "System.Globalization.Calendars": "4.3.0",
+ "System.IO": "4.3.0",
+ "System.IO.Compression": "4.3.0",
+ "System.IO.Compression.ZipFile": "4.3.0",
+ "System.IO.FileSystem": "4.3.0",
+ "System.IO.FileSystem.Primitives": "4.3.0",
+ "System.Linq": "4.3.0",
+ "System.Linq.Expressions": "4.3.0",
+ "System.Net.Http": "4.3.0",
+ "System.Net.Primitives": "4.3.0",
+ "System.Net.Sockets": "4.3.0",
+ "System.ObjectModel": "4.3.0",
+ "System.Reflection": "4.3.0",
+ "System.Reflection.Extensions": "4.3.0",
+ "System.Reflection.Primitives": "4.3.0",
+ "System.Resources.ResourceManager": "4.3.0",
+ "System.Runtime": "4.3.0",
+ "System.Runtime.Extensions": "4.3.0",
+ "System.Runtime.Handles": "4.3.0",
+ "System.Runtime.InteropServices": "4.3.0",
+ "System.Runtime.InteropServices.RuntimeInformation": "4.3.0",
+ "System.Runtime.Numerics": "4.3.0",
+ "System.Security.Cryptography.Algorithms": "4.3.0",
+ "System.Security.Cryptography.Encoding": "4.3.0",
+ "System.Security.Cryptography.Primitives": "4.3.0",
+ "System.Security.Cryptography.X509Certificates": "4.3.0",
+ "System.Text.Encoding": "4.3.0",
+ "System.Text.Encoding.Extensions": "4.3.0",
+ "System.Text.RegularExpressions": "4.3.0",
+ "System.Threading": "4.3.0",
+ "System.Threading.Tasks": "4.3.0",
+ "System.Threading.Timer": "4.3.0",
+ "System.Xml.ReaderWriter": "4.3.0",
+ "System.Xml.XDocument": "4.3.0"
+ }
+ },
+ "runtime.debian.8-x64.runtime.native.System.Security.Cryptography.OpenSsl/4.3.0": {},
+ "runtime.fedora.23-x64.runtime.native.System.Security.Cryptography.OpenSsl/4.3.0": {},
+ "runtime.fedora.24-x64.runtime.native.System.Security.Cryptography.OpenSsl/4.3.0": {},
+ "runtime.native.System/4.3.0": {
+ "dependencies": {
+ "Microsoft.NETCore.Platforms": "1.1.0",
+ "Microsoft.NETCore.Targets": "1.1.0"
+ }
+ },
+ "runtime.native.System.IO.Compression/4.3.0": {
+ "dependencies": {
+ "Microsoft.NETCore.Platforms": "1.1.0",
+ "Microsoft.NETCore.Targets": "1.1.0"
+ }
+ },
+ "runtime.native.System.Security.Cryptography.OpenSsl/4.3.0": {
+ "dependencies": {
+ "runtime.debian.8-x64.runtime.native.System.Security.Cryptography.OpenSsl": "4.3.0",
+ "runtime.fedora.23-x64.runtime.native.System.Security.Cryptography.OpenSsl": "4.3.0",
+ "runtime.fedora.24-x64.runtime.native.System.Security.Cryptography.OpenSsl": "4.3.0",
+ "runtime.opensuse.13.2-x64.runtime.native.System.Security.Cryptography.OpenSsl": "4.3.0",
+ "runtime.opensuse.42.1-x64.runtime.native.System.Security.Cryptography.OpenSsl": "4.3.0",
+ "runtime.osx.10.10-x64.runtime.native.System.Security.Cryptography.OpenSsl": "4.3.0",
+ "runtime.rhel.7-x64.runtime.native.System.Security.Cryptography.OpenSsl": "4.3.0",
+ "runtime.ubuntu.14.04-x64.runtime.native.System.Security.Cryptography.OpenSsl": "4.3.0",
+ "runtime.ubuntu.16.04-x64.runtime.native.System.Security.Cryptography.OpenSsl": "4.3.0",
+ "runtime.ubuntu.16.10-x64.runtime.native.System.Security.Cryptography.OpenSsl": "4.3.0"
+ }
+ },
+ "runtime.opensuse.13.2-x64.runtime.native.System.Security.Cryptography.OpenSsl/4.3.0": {},
+ "runtime.opensuse.42.1-x64.runtime.native.System.Security.Cryptography.OpenSsl/4.3.0": {},
+ "runtime.osx.10.10-x64.runtime.native.System.Security.Cryptography.OpenSsl/4.3.0": {},
+ "runtime.rhel.7-x64.runtime.native.System.Security.Cryptography.OpenSsl/4.3.0": {},
+ "runtime.ubuntu.14.04-x64.runtime.native.System.Security.Cryptography.OpenSsl/4.3.0": {},
+ "runtime.ubuntu.16.04-x64.runtime.native.System.Security.Cryptography.OpenSsl/4.3.0": {},
+ "runtime.ubuntu.16.10-x64.runtime.native.System.Security.Cryptography.OpenSsl/4.3.0": {},
+ "System.AppContext/4.3.0": {
+ "dependencies": {
+ "System.Runtime": "4.3.0"
+ }
+ },
+ "System.Buffers/4.3.0": {
+ "dependencies": {
+ "System.Diagnostics.Debug": "4.3.0",
+ "System.Diagnostics.Tracing": "4.3.0",
+ "System.Resources.ResourceManager": "4.3.0",
+ "System.Runtime": "4.3.0",
+ "System.Threading": "4.3.0"
+ },
+ "runtime": {
+ "lib/netstandard1.1/System.Buffers.dll": {
+ "assemblyVersion": "4.0.1.0",
+ "fileVersion": "4.6.24705.1"
+ }
+ }
+ },
+ "System.Collections/4.3.0": {
+ "dependencies": {
+ "Microsoft.NETCore.Platforms": "1.1.0",
+ "Microsoft.NETCore.Targets": "1.1.0",
+ "System.Runtime": "4.3.0"
+ }
+ },
+ "System.Collections.Concurrent/4.3.0": {
+ "dependencies": {
+ "System.Collections": "4.3.0",
+ "System.Diagnostics.Debug": "4.3.0",
+ "System.Diagnostics.Tracing": "4.3.0",
+ "System.Globalization": "4.3.0",
+ "System.Reflection": "4.3.0",
+ "System.Resources.ResourceManager": "4.3.0",
+ "System.Runtime": "4.3.0",
+ "System.Runtime.Extensions": "4.3.0",
+ "System.Threading": "4.3.0",
+ "System.Threading.Tasks": "4.3.0"
+ },
+ "runtime": {
+ "lib/netstandard1.3/System.Collections.Concurrent.dll": {
+ "assemblyVersion": "4.0.13.0",
+ "fileVersion": "4.6.24705.1"
+ }
+ }
+ },
+ "System.Console/4.3.0": {
+ "dependencies": {
+ "Microsoft.NETCore.Platforms": "1.1.0",
+ "Microsoft.NETCore.Targets": "1.1.0",
+ "System.IO": "4.3.0",
+ "System.Runtime": "4.3.0",
+ "System.Text.Encoding": "4.3.0"
+ }
+ },
+ "System.Diagnostics.Debug/4.3.0": {
+ "dependencies": {
+ "Microsoft.NETCore.Platforms": "1.1.0",
+ "Microsoft.NETCore.Targets": "1.1.0",
+ "System.Runtime": "4.3.0"
+ }
+ },
+ "System.Diagnostics.DiagnosticSource/4.3.0": {
+ "dependencies": {
+ "System.Collections": "4.3.0",
+ "System.Diagnostics.Tracing": "4.3.0",
+ "System.Reflection": "4.3.0",
+ "System.Runtime": "4.3.0",
+ "System.Threading": "4.3.0"
+ },
+ "runtime": {
+ "lib/netstandard1.3/System.Diagnostics.DiagnosticSource.dll": {
+ "assemblyVersion": "4.0.1.0",
+ "fileVersion": "4.6.24705.1"
+ }
+ }
+ },
+ "System.Diagnostics.Tools/4.3.0": {
+ "dependencies": {
+ "Microsoft.NETCore.Platforms": "1.1.0",
+ "Microsoft.NETCore.Targets": "1.1.0",
+ "System.Runtime": "4.3.0"
+ }
+ },
+ "System.Diagnostics.Tracing/4.3.0": {
+ "dependencies": {
+ "Microsoft.NETCore.Platforms": "1.1.0",
+ "Microsoft.NETCore.Targets": "1.1.0",
+ "System.Runtime": "4.3.0"
+ }
+ },
+ "System.Globalization/4.3.0": {
+ "dependencies": {
+ "Microsoft.NETCore.Platforms": "1.1.0",
+ "Microsoft.NETCore.Targets": "1.1.0",
+ "System.Runtime": "4.3.0"
+ }
+ },
+ "System.Globalization.Calendars/4.3.0": {
+ "dependencies": {
+ "Microsoft.NETCore.Platforms": "1.1.0",
+ "Microsoft.NETCore.Targets": "1.1.0",
+ "System.Globalization": "4.3.0",
+ "System.Runtime": "4.3.0"
+ }
+ },
+ "System.IO/4.3.0": {
+ "dependencies": {
+ "Microsoft.NETCore.Platforms": "1.1.0",
+ "Microsoft.NETCore.Targets": "1.1.0",
+ "System.Runtime": "4.3.0",
+ "System.Text.Encoding": "4.3.0",
+ "System.Threading.Tasks": "4.3.0"
+ }
+ },
+ "System.IO.Compression/4.3.0": {
+ "dependencies": {
+ "Microsoft.NETCore.Platforms": "1.1.0",
+ "System.Buffers": "4.3.0",
+ "System.Collections": "4.3.0",
+ "System.Diagnostics.Debug": "4.3.0",
+ "System.IO": "4.3.0",
+ "System.Resources.ResourceManager": "4.3.0",
+ "System.Runtime": "4.3.0",
+ "System.Runtime.Extensions": "4.3.0",
+ "System.Runtime.Handles": "4.3.0",
+ "System.Runtime.InteropServices": "4.3.0",
+ "System.Text.Encoding": "4.3.0",
+ "System.Threading": "4.3.0",
+ "System.Threading.Tasks": "4.3.0",
+ "runtime.native.System": "4.3.0",
+ "runtime.native.System.IO.Compression": "4.3.0"
+ }
+ },
+ "System.IO.Compression.ZipFile/4.3.0": {
+ "dependencies": {
+ "System.Buffers": "4.3.0",
+ "System.IO": "4.3.0",
+ "System.IO.Compression": "4.3.0",
+ "System.IO.FileSystem": "4.3.0",
+ "System.IO.FileSystem.Primitives": "4.3.0",
+ "System.Resources.ResourceManager": "4.3.0",
+ "System.Runtime": "4.3.0",
+ "System.Runtime.Extensions": "4.3.0",
+ "System.Text.Encoding": "4.3.0"
+ },
+ "runtime": {
+ "lib/netstandard1.3/System.IO.Compression.ZipFile.dll": {
+ "assemblyVersion": "4.0.2.0",
+ "fileVersion": "4.6.24705.1"
+ }
+ }
+ },
+ "System.IO.FileSystem/4.3.0": {
+ "dependencies": {
+ "Microsoft.NETCore.Platforms": "1.1.0",
+ "Microsoft.NETCore.Targets": "1.1.0",
+ "System.IO": "4.3.0",
+ "System.IO.FileSystem.Primitives": "4.3.0",
+ "System.Runtime": "4.3.0",
+ "System.Runtime.Handles": "4.3.0",
+ "System.Text.Encoding": "4.3.0",
+ "System.Threading.Tasks": "4.3.0"
+ }
+ },
+ "System.IO.FileSystem.Primitives/4.3.0": {
+ "dependencies": {
+ "System.Runtime": "4.3.0"
+ },
+ "runtime": {
+ "lib/netstandard1.3/System.IO.FileSystem.Primitives.dll": {
+ "assemblyVersion": "4.0.2.0",
+ "fileVersion": "4.6.24705.1"
+ }
+ }
+ },
+ "System.Linq/4.3.0": {
+ "dependencies": {
+ "System.Collections": "4.3.0",
+ "System.Runtime": "4.3.0"
+ }
+ },
+ "System.Linq.Expressions/4.3.0": {
+ "dependencies": {
+ "System.Reflection": "4.3.0",
+ "System.Runtime": "4.3.0"
+ }
+ },
+ "System.Net.Http/4.3.0": {
+ "dependencies": {
+ "Microsoft.NETCore.Platforms": "1.1.0",
+ "Microsoft.Win32.Primitives": "4.3.0",
+ "System.Collections": "4.3.0",
+ "System.Diagnostics.Debug": "4.3.0",
+ "System.Diagnostics.DiagnosticSource": "4.3.0",
+ "System.Diagnostics.Tracing": "4.3.0",
+ "System.Globalization": "4.3.0",
+ "System.IO": "4.3.0",
+ "System.IO.Compression": "4.3.0",
+ "System.Net.Primitives": "4.3.0",
+ "System.Resources.ResourceManager": "4.3.0",
+ "System.Runtime": "4.3.0",
+ "System.Runtime.Extensions": "4.3.0",
+ "System.Runtime.Handles": "4.3.0",
+ "System.Runtime.InteropServices": "4.3.0",
+ "System.Security.Cryptography.X509Certificates": "4.3.0",
+ "System.Text.Encoding": "4.3.0",
+ "System.Threading": "4.3.0",
+ "System.Threading.Tasks": "4.3.0"
+ }
+ },
+ "System.Net.Primitives/4.3.0": {
+ "dependencies": {
+ "Microsoft.NETCore.Platforms": "1.1.0",
+ "Microsoft.NETCore.Targets": "1.1.0",
+ "System.Runtime": "4.3.0",
+ "System.Runtime.Handles": "4.3.0"
+ }
+ },
+ "System.Net.Sockets/4.3.0": {
+ "dependencies": {
+ "Microsoft.NETCore.Platforms": "1.1.0",
+ "Microsoft.NETCore.Targets": "1.1.0",
+ "System.IO": "4.3.0",
+ "System.Net.Primitives": "4.3.0",
+ "System.Runtime": "4.3.0",
+ "System.Threading.Tasks": "4.3.0"
+ }
+ },
+ "System.ObjectModel/4.3.0": {
+ "dependencies": {
+ "System.Collections": "4.3.0",
+ "System.Diagnostics.Debug": "4.3.0",
+ "System.Resources.ResourceManager": "4.3.0",
+ "System.Runtime": "4.3.0",
+ "System.Threading": "4.3.0"
+ },
+ "runtime": {
+ "lib/netstandard1.3/System.ObjectModel.dll": {
+ "assemblyVersion": "4.0.13.0",
+ "fileVersion": "4.6.24705.1"
+ }
+ }
+ },
+ "System.Reflection/4.3.0": {
+ "dependencies": {
+ "Microsoft.NETCore.Platforms": "1.1.0",
+ "Microsoft.NETCore.Targets": "1.1.0",
+ "System.IO": "4.3.0",
+ "System.Reflection.Primitives": "4.3.0",
+ "System.Runtime": "4.3.0"
+ }
+ },
+ "System.Reflection.Extensions/4.3.0": {
+ "dependencies": {
+ "Microsoft.NETCore.Platforms": "1.1.0",
+ "Microsoft.NETCore.Targets": "1.1.0",
+ "System.Reflection": "4.3.0",
+ "System.Runtime": "4.3.0"
+ }
+ },
+ "System.Reflection.Primitives/4.3.0": {
+ "dependencies": {
+ "Microsoft.NETCore.Platforms": "1.1.0",
+ "Microsoft.NETCore.Targets": "1.1.0",
+ "System.Runtime": "4.3.0"
+ }
+ },
+ "System.Resources.ResourceManager/4.3.0": {
+ "dependencies": {
+ "Microsoft.NETCore.Platforms": "1.1.0",
+ "Microsoft.NETCore.Targets": "1.1.0",
+ "System.Globalization": "4.3.0",
+ "System.Reflection": "4.3.0",
+ "System.Runtime": "4.3.0"
+ }
+ },
+ "System.Runtime/4.3.0": {
+ "dependencies": {
+ "Microsoft.NETCore.Platforms": "1.1.0",
+ "Microsoft.NETCore.Targets": "1.1.0"
+ }
+ },
+ "System.Runtime.Extensions/4.3.0": {
+ "dependencies": {
+ "Microsoft.NETCore.Platforms": "1.1.0",
+ "Microsoft.NETCore.Targets": "1.1.0",
+ "System.Runtime": "4.3.0"
+ }
+ },
+ "System.Runtime.Handles/4.3.0": {
+ "dependencies": {
+ "Microsoft.NETCore.Platforms": "1.1.0",
+ "Microsoft.NETCore.Targets": "1.1.0",
+ "System.Runtime": "4.3.0"
+ }
+ },
+ "System.Runtime.InteropServices/4.3.0": {
+ "dependencies": {
+ "Microsoft.NETCore.Platforms": "1.1.0",
+ "Microsoft.NETCore.Targets": "1.1.0",
+ "System.Reflection": "4.3.0",
+ "System.Reflection.Primitives": "4.3.0",
+ "System.Runtime": "4.3.0",
+ "System.Runtime.Handles": "4.3.0"
+ }
+ },
+ "System.Runtime.InteropServices.RuntimeInformation/4.3.0": {
+ "dependencies": {
+ "System.Reflection": "4.3.0",
+ "System.Reflection.Extensions": "4.3.0",
+ "System.Resources.ResourceManager": "4.3.0",
+ "System.Runtime": "4.3.0",
+ "System.Runtime.InteropServices": "4.3.0",
+ "System.Threading": "4.3.0",
+ "runtime.native.System": "4.3.0"
+ },
+ "runtime": {
+ "lib/netstandard1.1/System.Runtime.InteropServices.RuntimeInformation.dll": {
+ "assemblyVersion": "4.0.1.0",
+ "fileVersion": "4.6.24705.1"
+ }
+ }
+ },
+ "System.Runtime.Numerics/4.3.0": {
+ "dependencies": {
+ "System.Globalization": "4.3.0",
+ "System.Resources.ResourceManager": "4.3.0",
+ "System.Runtime": "4.3.0",
+ "System.Runtime.Extensions": "4.3.0"
+ },
+ "runtime": {
+ "lib/netstandard1.3/System.Runtime.Numerics.dll": {
+ "assemblyVersion": "4.0.2.0",
+ "fileVersion": "4.6.24705.1"
+ }
+ }
+ },
+ "System.Security.Cryptography.Algorithms/4.3.0": {
+ "dependencies": {
+ "System.IO": "4.3.0",
+ "System.Runtime": "4.3.0",
+ "System.Security.Cryptography.Primitives": "4.3.0"
+ }
+ },
+ "System.Security.Cryptography.Encoding/4.3.0": {
+ "dependencies": {
+ "Microsoft.NETCore.Platforms": "1.1.0",
+ "System.Collections": "4.3.0",
+ "System.Collections.Concurrent": "4.3.0",
+ "System.Linq": "4.3.0",
+ "System.Resources.ResourceManager": "4.3.0",
+ "System.Runtime": "4.3.0",
+ "System.Runtime.Extensions": "4.3.0",
+ "System.Runtime.Handles": "4.3.0",
+ "System.Runtime.InteropServices": "4.3.0",
+ "System.Security.Cryptography.Primitives": "4.3.0",
+ "System.Text.Encoding": "4.3.0",
+ "runtime.native.System.Security.Cryptography.OpenSsl": "4.3.0"
+ }
+ },
+ "System.Security.Cryptography.Primitives/4.3.0": {
+ "dependencies": {
+ "System.Diagnostics.Debug": "4.3.0",
+ "System.Globalization": "4.3.0",
+ "System.IO": "4.3.0",
+ "System.Resources.ResourceManager": "4.3.0",
+ "System.Runtime": "4.3.0",
+ "System.Threading": "4.3.0",
+ "System.Threading.Tasks": "4.3.0"
+ },
+ "runtime": {
+ "lib/netstandard1.3/System.Security.Cryptography.Primitives.dll": {
+ "assemblyVersion": "4.0.1.0",
+ "fileVersion": "4.6.24705.1"
+ }
+ }
+ },
+ "System.Security.Cryptography.X509Certificates/4.3.0": {
+ "dependencies": {
+ "System.Runtime": "4.3.0",
+ "System.Runtime.Handles": "4.3.0",
+ "System.Security.Cryptography.Algorithms": "4.3.0",
+ "System.Security.Cryptography.Encoding": "4.3.0"
+ }
+ },
+ "System.Text.Encoding/4.3.0": {
+ "dependencies": {
+ "Microsoft.NETCore.Platforms": "1.1.0",
+ "Microsoft.NETCore.Targets": "1.1.0",
+ "System.Runtime": "4.3.0"
+ }
+ },
+ "System.Text.Encoding.Extensions/4.3.0": {
+ "dependencies": {
+ "Microsoft.NETCore.Platforms": "1.1.0",
+ "Microsoft.NETCore.Targets": "1.1.0",
+ "System.Runtime": "4.3.0",
+ "System.Text.Encoding": "4.3.0"
+ }
+ },
+ "System.Text.RegularExpressions/4.3.0": {
+ "dependencies": {
+ "System.Runtime": "4.3.0"
+ }
+ },
+ "System.Threading/4.3.0": {
+ "dependencies": {
+ "System.Runtime": "4.3.0",
+ "System.Threading.Tasks": "4.3.0"
+ },
+ "runtime": {
+ "lib/netstandard1.3/System.Threading.dll": {
+ "assemblyVersion": "4.0.12.0",
+ "fileVersion": "4.6.24705.1"
+ }
+ }
+ },
+ "System.Threading.Tasks/4.3.0": {
+ "dependencies": {
+ "Microsoft.NETCore.Platforms": "1.1.0",
+ "Microsoft.NETCore.Targets": "1.1.0",
+ "System.Runtime": "4.3.0"
+ }
+ },
+ "System.Threading.Tasks.Extensions/4.3.0": {
+ "dependencies": {
+ "System.Collections": "4.3.0",
+ "System.Runtime": "4.3.0",
+ "System.Threading.Tasks": "4.3.0"
+ },
+ "runtime": {
+ "lib/netstandard1.0/System.Threading.Tasks.Extensions.dll": {
+ "assemblyVersion": "4.1.0.0",
+ "fileVersion": "4.6.24705.1"
+ }
+ }
+ },
+ "System.Threading.Timer/4.3.0": {
+ "dependencies": {
+ "Microsoft.NETCore.Platforms": "1.1.0",
+ "Microsoft.NETCore.Targets": "1.1.0",
+ "System.Runtime": "4.3.0"
+ }
+ },
+ "System.Xml.ReaderWriter/4.3.0": {
+ "dependencies": {
+ "System.Collections": "4.3.0",
+ "System.Diagnostics.Debug": "4.3.0",
+ "System.Globalization": "4.3.0",
+ "System.IO": "4.3.0",
+ "System.IO.FileSystem": "4.3.0",
+ "System.IO.FileSystem.Primitives": "4.3.0",
+ "System.Resources.ResourceManager": "4.3.0",
+ "System.Runtime": "4.3.0",
+ "System.Runtime.Extensions": "4.3.0",
+ "System.Runtime.InteropServices": "4.3.0",
+ "System.Text.Encoding": "4.3.0",
+ "System.Text.Encoding.Extensions": "4.3.0",
+ "System.Text.RegularExpressions": "4.3.0",
+ "System.Threading.Tasks": "4.3.0",
+ "System.Threading.Tasks.Extensions": "4.3.0"
+ },
+ "runtime": {
+ "lib/netstandard1.3/System.Xml.ReaderWriter.dll": {
+ "assemblyVersion": "4.1.0.0",
+ "fileVersion": "4.6.24705.1"
+ }
+ }
+ },
+ "System.Xml.XDocument/4.3.0": {
+ "dependencies": {
+ "System.Collections": "4.3.0",
+ "System.Diagnostics.Debug": "4.3.0",
+ "System.Diagnostics.Tools": "4.3.0",
+ "System.Globalization": "4.3.0",
+ "System.IO": "4.3.0",
+ "System.Reflection": "4.3.0",
+ "System.Resources.ResourceManager": "4.3.0",
+ "System.Runtime": "4.3.0",
+ "System.Runtime.Extensions": "4.3.0",
+ "System.Text.Encoding": "4.3.0",
+ "System.Threading": "4.3.0",
+ "System.Xml.ReaderWriter": "4.3.0"
+ },
+ "runtime": {
+ "lib/netstandard1.3/System.Xml.XDocument.dll": {
+ "assemblyVersion": "4.0.12.0",
+ "fileVersion": "4.6.24705.1"
+ }
+ }
+ }
+ }
+ },
+ "libraries": {
+ "Microsoft.Z3/4.8.9": {
+ "type": "project",
+ "serviceable": false,
+ "sha512": ""
+ },
+ "Microsoft.NETCore.Platforms/1.1.0": {
+ "type": "package",
+ "serviceable": true,
+ "sha512": "sha512-bLpT1f/SFlO1CzqXG12KnJzpZs6lv24uX2Rzi4Fmm0noJpNlnWRVryuO3yK18Ca04t/YHcO1e1Z0WDfjseqNzw==",
+ "path": "microsoft.netcore.platforms/1.1.0",
+ "hashPath": "microsoft.netcore.platforms.1.1.0.nupkg.sha512"
+ },
+ "Microsoft.NETCore.Targets/1.1.0": {
+ "type": "package",
+ "serviceable": true,
+ "sha512": "sha512-aOZA3BWfz9RXjpzt0sRJJMjAscAUm3Hoa4UWAfceV9UTYxgwZ1lZt5nO2myFf+/jetYQo4uTP7zS8sJY67BBxg==",
+ "path": "microsoft.netcore.targets/1.1.0",
+ "hashPath": "microsoft.netcore.targets.1.1.0.nupkg.sha512"
+ },
+ "Microsoft.Win32.Primitives/4.3.0": {
+ "type": "package",
+ "serviceable": true,
+ "sha512": "sha512-9ZQKCWxH7Ijp9BfahvL2Zyf1cJIk8XYLF6Yjzr2yi0b2cOut/HQ31qf1ThHAgCc3WiZMdnWcfJCgN82/0UunxA==",
+ "path": "microsoft.win32.primitives/4.3.0",
+ "hashPath": "microsoft.win32.primitives.4.3.0.nupkg.sha512"
+ },
+ "NETStandard.Library/1.6.1": {
+ "type": "package",
+ "serviceable": true,
+ "sha512": "sha512-WcSp3+vP+yHNgS8EV5J7pZ9IRpeDuARBPN28by8zqff1wJQXm26PVU8L3/fYLBJVU7BtDyqNVWq2KlCVvSSR4A==",
+ "path": "netstandard.library/1.6.1",
+ "hashPath": "netstandard.library.1.6.1.nupkg.sha512"
+ },
+ "runtime.debian.8-x64.runtime.native.System.Security.Cryptography.OpenSsl/4.3.0": {
+ "type": "package",
+ "serviceable": true,
+ "sha512": "sha512-HdSSp5MnJSsg08KMfZThpuLPJpPwE5hBXvHwoKWosyHHfe8Mh5WKT0ylEOf6yNzX6Ngjxe4Whkafh5q7Ymac4Q==",
+ "path": "runtime.debian.8-x64.runtime.native.system.security.cryptography.openssl/4.3.0",
+ "hashPath": "runtime.debian.8-x64.runtime.native.system.security.cryptography.openssl.4.3.0.nupkg.sha512"
+ },
+ "runtime.fedora.23-x64.runtime.native.System.Security.Cryptography.OpenSsl/4.3.0": {
+ "type": "package",
+ "serviceable": true,
+ "sha512": "sha512-+yH1a49wJMy8Zt4yx5RhJrxO/DBDByAiCzNwiETI+1S4mPdCu0OY4djdciC7Vssk0l22wQaDLrXxXkp+3+7bVA==",
+ "path": "runtime.fedora.23-x64.runtime.native.system.security.cryptography.openssl/4.3.0",
+ "hashPath": "runtime.fedora.23-x64.runtime.native.system.security.cryptography.openssl.4.3.0.nupkg.sha512"
+ },
+ "runtime.fedora.24-x64.runtime.native.System.Security.Cryptography.OpenSsl/4.3.0": {
+ "type": "package",
+ "serviceable": true,
+ "sha512": "sha512-c3YNH1GQJbfIPJeCnr4avseugSqPrxwIqzthYyZDN6EuOyNOzq+y2KSUfRcXauya1sF4foESTgwM5e1A8arAKw==",
+ "path": "runtime.fedora.24-x64.runtime.native.system.security.cryptography.openssl/4.3.0",
+ "hashPath": "runtime.fedora.24-x64.runtime.native.system.security.cryptography.openssl.4.3.0.nupkg.sha512"
+ },
+ "runtime.native.System/4.3.0": {
+ "type": "package",
+ "serviceable": true,
+ "sha512": "sha512-c/qWt2LieNZIj1jGnVNsE2Kl23Ya2aSTBuXMD6V7k9KWr6l16Tqdwq+hJScEpWER9753NWC8h96PaVNY5Ld7Jw==",
+ "path": "runtime.native.system/4.3.0",
+ "hashPath": "runtime.native.system.4.3.0.nupkg.sha512"
+ },
+ "runtime.native.System.IO.Compression/4.3.0": {
+ "type": "package",
+ "serviceable": true,
+ "sha512": "sha512-INBPonS5QPEgn7naufQFXJEp3zX6L4bwHgJ/ZH78aBTpeNfQMtf7C6VrAFhlq2xxWBveIOWyFzQjJ8XzHMhdOQ==",
+ "path": "runtime.native.system.io.compression/4.3.0",
+ "hashPath": "runtime.native.system.io.compression.4.3.0.nupkg.sha512"
+ },
+ "runtime.native.System.Security.Cryptography.OpenSsl/4.3.0": {
+ "type": "package",
+ "serviceable": true,
+ "sha512": "sha512-NS1U+700m4KFRHR5o4vo9DSlTmlCKu/u7dtE5sUHVIPB+xpXxYQvgBgA6wEIeCz6Yfn0Z52/72WYsToCEPJnrw==",
+ "path": "runtime.native.system.security.cryptography.openssl/4.3.0",
+ "hashPath": "runtime.native.system.security.cryptography.openssl.4.3.0.nupkg.sha512"
+ },
+ "runtime.opensuse.13.2-x64.runtime.native.System.Security.Cryptography.OpenSsl/4.3.0": {
+ "type": "package",
+ "serviceable": true,
+ "sha512": "sha512-b3pthNgxxFcD+Pc0WSEoC0+md3MyhRS6aCEeenvNE3Fdw1HyJ18ZhRFVJJzIeR/O/jpxPboB805Ho0T3Ul7w8A==",
+ "path": "runtime.opensuse.13.2-x64.runtime.native.system.security.cryptography.openssl/4.3.0",
+ "hashPath": "runtime.opensuse.13.2-x64.runtime.native.system.security.cryptography.openssl.4.3.0.nupkg.sha512"
+ },
+ "runtime.opensuse.42.1-x64.runtime.native.System.Security.Cryptography.OpenSsl/4.3.0": {
+ "type": "package",
+ "serviceable": true,
+ "sha512": "sha512-KeLz4HClKf+nFS7p/6Fi/CqyLXh81FpiGzcmuS8DGi9lUqSnZ6Es23/gv2O+1XVGfrbNmviF7CckBpavkBoIFQ==",
+ "path": "runtime.opensuse.42.1-x64.runtime.native.system.security.cryptography.openssl/4.3.0",
+ "hashPath": "runtime.opensuse.42.1-x64.runtime.native.system.security.cryptography.openssl.4.3.0.nupkg.sha512"
+ },
+ "runtime.osx.10.10-x64.runtime.native.System.Security.Cryptography.OpenSsl/4.3.0": {
+ "type": "package",
+ "serviceable": true,
+ "sha512": "sha512-X7IdhILzr4ROXd8mI1BUCQMSHSQwelUlBjF1JyTKCjXaOGn2fB4EKBxQbCK2VjO3WaWIdlXZL3W6TiIVnrhX4g==",
+ "path": "runtime.osx.10.10-x64.runtime.native.system.security.cryptography.openssl/4.3.0",
+ "hashPath": "runtime.osx.10.10-x64.runtime.native.system.security.cryptography.openssl.4.3.0.nupkg.sha512"
+ },
+ "runtime.rhel.7-x64.runtime.native.System.Security.Cryptography.OpenSsl/4.3.0": {
+ "type": "package",
+ "serviceable": true,
+ "sha512": "sha512-nyFNiCk/r+VOiIqreLix8yN+q3Wga9+SE8BCgkf+2BwEKiNx6DyvFjCgkfV743/grxv8jHJ8gUK4XEQw7yzRYg==",
+ "path": "runtime.rhel.7-x64.runtime.native.system.security.cryptography.openssl/4.3.0",
+ "hashPath": "runtime.rhel.7-x64.runtime.native.system.security.cryptography.openssl.4.3.0.nupkg.sha512"
+ },
+ "runtime.ubuntu.14.04-x64.runtime.native.System.Security.Cryptography.OpenSsl/4.3.0": {
+ "type": "package",
+ "serviceable": true,
+ "sha512": "sha512-ytoewC6wGorL7KoCAvRfsgoJPJbNq+64k2SqW6JcOAebWsFUvCCYgfzQMrnpvPiEl4OrblUlhF2ji+Q1+SVLrQ==",
+ "path": "runtime.ubuntu.14.04-x64.runtime.native.system.security.cryptography.openssl/4.3.0",
+ "hashPath": "runtime.ubuntu.14.04-x64.runtime.native.system.security.cryptography.openssl.4.3.0.nupkg.sha512"
+ },
+ "runtime.ubuntu.16.04-x64.runtime.native.System.Security.Cryptography.OpenSsl/4.3.0": {
+ "type": "package",
+ "serviceable": true,
+ "sha512": "sha512-I8bKw2I8k58Wx7fMKQJn2R8lamboCAiHfHeV/pS65ScKWMMI0+wJkLYlEKvgW1D/XvSl/221clBoR2q9QNNM7A==",
+ "path": "runtime.ubuntu.16.04-x64.runtime.native.system.security.cryptography.openssl/4.3.0",
+ "hashPath": "runtime.ubuntu.16.04-x64.runtime.native.system.security.cryptography.openssl.4.3.0.nupkg.sha512"
+ },
+ "runtime.ubuntu.16.10-x64.runtime.native.System.Security.Cryptography.OpenSsl/4.3.0": {
+ "type": "package",
+ "serviceable": true,
+ "sha512": "sha512-VB5cn/7OzUfzdnC8tqAIMQciVLiq2epm2NrAm1E9OjNRyG4lVhfR61SMcLizejzQP8R8Uf/0l5qOIbUEi+RdEg==",
+ "path": "runtime.ubuntu.16.10-x64.runtime.native.system.security.cryptography.openssl/4.3.0",
+ "hashPath": "runtime.ubuntu.16.10-x64.runtime.native.system.security.cryptography.openssl.4.3.0.nupkg.sha512"
+ },
+ "System.AppContext/4.3.0": {
+ "type": "package",
+ "serviceable": true,
+ "sha512": "sha512-fKC+rmaLfeIzUhagxY17Q9siv/sPrjjKcfNg1Ic8IlQkZLipo8ljcaZQu4VtI4Jqbzjc2VTjzGLF6WmsRXAEgA==",
+ "path": "system.appcontext/4.3.0",
+ "hashPath": "system.appcontext.4.3.0.nupkg.sha512"
+ },
+ "System.Buffers/4.3.0": {
+ "type": "package",
+ "serviceable": true,
+ "sha512": "sha512-ratu44uTIHgeBeI0dE8DWvmXVBSo4u7ozRZZHOMmK/JPpYyo0dAfgSiHlpiObMQ5lEtEyIXA40sKRYg5J6A8uQ==",
+ "path": "system.buffers/4.3.0",
+ "hashPath": "system.buffers.4.3.0.nupkg.sha512"
+ },
+ "System.Collections/4.3.0": {
+ "type": "package",
+ "serviceable": true,
+ "sha512": "sha512-3Dcj85/TBdVpL5Zr+gEEBUuFe2icOnLalmEh9hfck1PTYbbyWuZgh4fmm2ysCLTrqLQw6t3TgTyJ+VLp+Qb+Lw==",
+ "path": "system.collections/4.3.0",
+ "hashPath": "system.collections.4.3.0.nupkg.sha512"
+ },
+ "System.Collections.Concurrent/4.3.0": {
+ "type": "package",
+ "serviceable": true,
+ "sha512": "sha512-ztl69Xp0Y/UXCL+3v3tEU+lIy+bvjKNUmopn1wep/a291pVPK7dxBd6T7WnlQqRog+d1a/hSsgRsmFnIBKTPLQ==",
+ "path": "system.collections.concurrent/4.3.0",
+ "hashPath": "system.collections.concurrent.4.3.0.nupkg.sha512"
+ },
+ "System.Console/4.3.0": {
+ "type": "package",
+ "serviceable": true,
+ "sha512": "sha512-DHDrIxiqk1h03m6khKWV2X8p/uvN79rgSqpilL6uzpmSfxfU5ng8VcPtW4qsDsQDHiTv6IPV9TmD5M/vElPNLg==",
+ "path": "system.console/4.3.0",
+ "hashPath": "system.console.4.3.0.nupkg.sha512"
+ },
+ "System.Diagnostics.Debug/4.3.0": {
+ "type": "package",
+ "serviceable": true,
+ "sha512": "sha512-ZUhUOdqmaG5Jk3Xdb8xi5kIyQYAA4PnTNlHx1mu9ZY3qv4ELIdKbnL/akbGaKi2RnNUWaZsAs31rvzFdewTj2g==",
+ "path": "system.diagnostics.debug/4.3.0",
+ "hashPath": "system.diagnostics.debug.4.3.0.nupkg.sha512"
+ },
+ "System.Diagnostics.DiagnosticSource/4.3.0": {
+ "type": "package",
+ "serviceable": true,
+ "sha512": "sha512-tD6kosZnTAGdrEa0tZSuFyunMbt/5KYDnHdndJYGqZoNy00XVXyACd5d6KnE1YgYv3ne2CjtAfNXo/fwEhnKUA==",
+ "path": "system.diagnostics.diagnosticsource/4.3.0",
+ "hashPath": "system.diagnostics.diagnosticsource.4.3.0.nupkg.sha512"
+ },
+ "System.Diagnostics.Tools/4.3.0": {
+ "type": "package",
+ "serviceable": true,
+ "sha512": "sha512-UUvkJfSYJMM6x527dJg2VyWPSRqIVB0Z7dbjHst1zmwTXz5CcXSYJFWRpuigfbO1Lf7yfZiIaEUesfnl/g5EyA==",
+ "path": "system.diagnostics.tools/4.3.0",
+ "hashPath": "system.diagnostics.tools.4.3.0.nupkg.sha512"
+ },
+ "System.Diagnostics.Tracing/4.3.0": {
+ "type": "package",
+ "serviceable": true,
+ "sha512": "sha512-rswfv0f/Cqkh78rA5S8eN8Neocz234+emGCtTF3lxPY96F+mmmUen6tbn0glN6PMvlKQb9bPAY5e9u7fgPTkKw==",
+ "path": "system.diagnostics.tracing/4.3.0",
+ "hashPath": "system.diagnostics.tracing.4.3.0.nupkg.sha512"
+ },
+ "System.Globalization/4.3.0": {
+ "type": "package",
+ "serviceable": true,
+ "sha512": "sha512-kYdVd2f2PAdFGblzFswE4hkNANJBKRmsfa2X5LG2AcWE1c7/4t0pYae1L8vfZ5xvE2nK/R9JprtToA61OSHWIg==",
+ "path": "system.globalization/4.3.0",
+ "hashPath": "system.globalization.4.3.0.nupkg.sha512"
+ },
+ "System.Globalization.Calendars/4.3.0": {
+ "type": "package",
+ "serviceable": true,
+ "sha512": "sha512-GUlBtdOWT4LTV3I+9/PJW+56AnnChTaOqqTLFtdmype/L500M2LIyXgmtd9X2P2VOkmJd5c67H5SaC2QcL1bFA==",
+ "path": "system.globalization.calendars/4.3.0",
+ "hashPath": "system.globalization.calendars.4.3.0.nupkg.sha512"
+ },
+ "System.IO/4.3.0": {
+ "type": "package",
+ "serviceable": true,
+ "sha512": "sha512-3qjaHvxQPDpSOYICjUoTsmoq5u6QJAFRUITgeT/4gqkF1bajbSmb1kwSxEA8AHlofqgcKJcM8udgieRNhaJ5Cg==",
+ "path": "system.io/4.3.0",
+ "hashPath": "system.io.4.3.0.nupkg.sha512"
+ },
+ "System.IO.Compression/4.3.0": {
+ "type": "package",
+ "serviceable": true,
+ "sha512": "sha512-YHndyoiV90iu4iKG115ibkhrG+S3jBm8Ap9OwoUAzO5oPDAWcr0SFwQFm0HjM8WkEZWo0zvLTyLmbvTkW1bXgg==",
+ "path": "system.io.compression/4.3.0",
+ "hashPath": "system.io.compression.4.3.0.nupkg.sha512"
+ },
+ "System.IO.Compression.ZipFile/4.3.0": {
+ "type": "package",
+ "serviceable": true,
+ "sha512": "sha512-G4HwjEsgIwy3JFBduZ9quBkAu+eUwjIdJleuNSgmUojbH6O3mlvEIme+GHx/cLlTAPcrnnL7GqvB9pTlWRfhOg==",
+ "path": "system.io.compression.zipfile/4.3.0",
+ "hashPath": "system.io.compression.zipfile.4.3.0.nupkg.sha512"
+ },
+ "System.IO.FileSystem/4.3.0": {
+ "type": "package",
+ "serviceable": true,
+ "sha512": "sha512-3wEMARTnuio+ulnvi+hkRNROYwa1kylvYahhcLk4HSoVdl+xxTFVeVlYOfLwrDPImGls0mDqbMhrza8qnWPTdA==",
+ "path": "system.io.filesystem/4.3.0",
+ "hashPath": "system.io.filesystem.4.3.0.nupkg.sha512"
+ },
+ "System.IO.FileSystem.Primitives/4.3.0": {
+ "type": "package",
+ "serviceable": true,
+ "sha512": "sha512-6QOb2XFLch7bEc4lIcJH49nJN2HV+OC3fHDgsLVsBVBk3Y4hFAnOBGzJ2lUu7CyDDFo9IBWkSsnbkT6IBwwiMw==",
+ "path": "system.io.filesystem.primitives/4.3.0",
+ "hashPath": "system.io.filesystem.primitives.4.3.0.nupkg.sha512"
+ },
+ "System.Linq/4.3.0": {
+ "type": "package",
+ "serviceable": true,
+ "sha512": "sha512-5DbqIUpsDp0dFftytzuMmc0oeMdQwjcP/EWxsksIz/w1TcFRkZ3yKKz0PqiYFMmEwPSWw+qNVqD7PJ889JzHbw==",
+ "path": "system.linq/4.3.0",
+ "hashPath": "system.linq.4.3.0.nupkg.sha512"
+ },
+ "System.Linq.Expressions/4.3.0": {
+ "type": "package",
+ "serviceable": true,
+ "sha512": "sha512-PGKkrd2khG4CnlyJwxwwaWWiSiWFNBGlgXvJpeO0xCXrZ89ODrQ6tjEWS/kOqZ8GwEOUATtKtzp1eRgmYNfclg==",
+ "path": "system.linq.expressions/4.3.0",
+ "hashPath": "system.linq.expressions.4.3.0.nupkg.sha512"
+ },
+ "System.Net.Http/4.3.0": {
+ "type": "package",
+ "serviceable": true,
+ "sha512": "sha512-Z1UfSF6dlpCdZdxh6LeoGlYH+q6ptG/iiIWgUUeKhE3DbQACmZkU7Sz2nOX0qdHjz72MOdYRbkSJ5Qwl6sZgvg==",
+ "path": "system.net.http/4.3.0",
+ "hashPath": "system.net.http.4.3.0.nupkg.sha512"
+ },
+ "System.Net.Primitives/4.3.0": {
+ "type": "package",
+ "serviceable": true,
+ "sha512": "sha512-qOu+hDwFwoZPbzPvwut2qATe3ygjeQBDQj91xlsaqGFQUI5i4ZnZb8yyQuLGpDGivEPIt8EJkd1BVzVoP31FXA==",
+ "path": "system.net.primitives/4.3.0",
+ "hashPath": "system.net.primitives.4.3.0.nupkg.sha512"
+ },
+ "System.Net.Sockets/4.3.0": {
+ "type": "package",
+ "serviceable": true,
+ "sha512": "sha512-m6icV6TqQOAdgt5N/9I5KNpjom/5NFtkmGseEH+AK/hny8XrytLH3+b5M8zL/Ycg3fhIocFpUMyl/wpFnVRvdw==",
+ "path": "system.net.sockets/4.3.0",
+ "hashPath": "system.net.sockets.4.3.0.nupkg.sha512"
+ },
+ "System.ObjectModel/4.3.0": {
+ "type": "package",
+ "serviceable": true,
+ "sha512": "sha512-bdX+80eKv9bN6K4N+d77OankKHGn6CH711a6fcOpMQu2Fckp/Ft4L/kW9WznHpyR0NRAvJutzOMHNNlBGvxQzQ==",
+ "path": "system.objectmodel/4.3.0",
+ "hashPath": "system.objectmodel.4.3.0.nupkg.sha512"
+ },
+ "System.Reflection/4.3.0": {
+ "type": "package",
+ "serviceable": true,
+ "sha512": "sha512-KMiAFoW7MfJGa9nDFNcfu+FpEdiHpWgTcS2HdMpDvt9saK3y/G4GwprPyzqjFH9NTaGPQeWNHU+iDlDILj96aQ==",
+ "path": "system.reflection/4.3.0",
+ "hashPath": "system.reflection.4.3.0.nupkg.sha512"
+ },
+ "System.Reflection.Extensions/4.3.0": {
+ "type": "package",
+ "serviceable": true,
+ "sha512": "sha512-rJkrJD3kBI5B712aRu4DpSIiHRtr6QlfZSQsb0hYHrDCZORXCFjQfoipo2LaMUHoT9i1B7j7MnfaEKWDFmFQNQ==",
+ "path": "system.reflection.extensions/4.3.0",
+ "hashPath": "system.reflection.extensions.4.3.0.nupkg.sha512"
+ },
+ "System.Reflection.Primitives/4.3.0": {
+ "type": "package",
+ "serviceable": true,
+ "sha512": "sha512-5RXItQz5As4xN2/YUDxdpsEkMhvw3e6aNveFXUn4Hl/udNTCNhnKp8lT9fnc3MhvGKh1baak5CovpuQUXHAlIA==",
+ "path": "system.reflection.primitives/4.3.0",
+ "hashPath": "system.reflection.primitives.4.3.0.nupkg.sha512"
+ },
+ "System.Resources.ResourceManager/4.3.0": {
+ "type": "package",
+ "serviceable": true,
+ "sha512": "sha512-/zrcPkkWdZmI4F92gL/TPumP98AVDu/Wxr3CSJGQQ+XN6wbRZcyfSKVoPo17ilb3iOr0cCRqJInGwNMolqhS8A==",
+ "path": "system.resources.resourcemanager/4.3.0",
+ "hashPath": "system.resources.resourcemanager.4.3.0.nupkg.sha512"
+ },
+ "System.Runtime/4.3.0": {
+ "type": "package",
+ "serviceable": true,
+ "sha512": "sha512-JufQi0vPQ0xGnAczR13AUFglDyVYt4Kqnz1AZaiKZ5+GICq0/1MH/mO/eAJHt/mHW1zjKBJd7kV26SrxddAhiw==",
+ "path": "system.runtime/4.3.0",
+ "hashPath": "system.runtime.4.3.0.nupkg.sha512"
+ },
+ "System.Runtime.Extensions/4.3.0": {
+ "type": "package",
+ "serviceable": true,
+ "sha512": "sha512-guW0uK0fn5fcJJ1tJVXYd7/1h5F+pea1r7FLSOz/f8vPEqbR2ZAknuRDvTQ8PzAilDveOxNjSfr0CHfIQfFk8g==",
+ "path": "system.runtime.extensions/4.3.0",
+ "hashPath": "system.runtime.extensions.4.3.0.nupkg.sha512"
+ },
+ "System.Runtime.Handles/4.3.0": {
+ "type": "package",
+ "serviceable": true,
+ "sha512": "sha512-OKiSUN7DmTWeYb3l51A7EYaeNMnvxwE249YtZz7yooT4gOZhmTjIn48KgSsw2k2lYdLgTKNJw/ZIfSElwDRVgg==",
+ "path": "system.runtime.handles/4.3.0",
+ "hashPath": "system.runtime.handles.4.3.0.nupkg.sha512"
+ },
+ "System.Runtime.InteropServices/4.3.0": {
+ "type": "package",
+ "serviceable": true,
+ "sha512": "sha512-uv1ynXqiMK8mp1GM3jDqPCFN66eJ5w5XNomaK2XD+TuCroNTLFGeZ+WCmBMcBDyTFKou3P6cR6J/QsaqDp7fGQ==",
+ "path": "system.runtime.interopservices/4.3.0",
+ "hashPath": "system.runtime.interopservices.4.3.0.nupkg.sha512"
+ },
+ "System.Runtime.InteropServices.RuntimeInformation/4.3.0": {
+ "type": "package",
+ "serviceable": true,
+ "sha512": "sha512-cbz4YJMqRDR7oLeMRbdYv7mYzc++17lNhScCX0goO2XpGWdvAt60CGN+FHdePUEHCe/Jy9jUlvNAiNdM+7jsOw==",
+ "path": "system.runtime.interopservices.runtimeinformation/4.3.0",
+ "hashPath": "system.runtime.interopservices.runtimeinformation.4.3.0.nupkg.sha512"
+ },
+ "System.Runtime.Numerics/4.3.0": {
+ "type": "package",
+ "serviceable": true,
+ "sha512": "sha512-yMH+MfdzHjy17l2KESnPiF2dwq7T+xLnSJar7slyimAkUh/gTrS9/UQOtv7xarskJ2/XDSNvfLGOBQPjL7PaHQ==",
+ "path": "system.runtime.numerics/4.3.0",
+ "hashPath": "system.runtime.numerics.4.3.0.nupkg.sha512"
+ },
+ "System.Security.Cryptography.Algorithms/4.3.0": {
+ "type": "package",
+ "serviceable": true,
+ "sha512": "sha512-W1kd2Y8mYSCgc3ULTAZ0hOP2dSdG5YauTb1089T0/kRcN2MpSAW1izOFROrJgxSlMn3ArsgHXagigyi+ibhevg==",
+ "path": "system.security.cryptography.algorithms/4.3.0",
+ "hashPath": "system.security.cryptography.algorithms.4.3.0.nupkg.sha512"
+ },
+ "System.Security.Cryptography.Encoding/4.3.0": {
+ "type": "package",
+ "serviceable": true,
+ "sha512": "sha512-1DEWjZZly9ae9C79vFwqaO5kaOlI5q+3/55ohmq/7dpDyDfc8lYe7YVxJUZ5MF/NtbkRjwFRo14yM4OEo9EmDw==",
+ "path": "system.security.cryptography.encoding/4.3.0",
+ "hashPath": "system.security.cryptography.encoding.4.3.0.nupkg.sha512"
+ },
+ "System.Security.Cryptography.Primitives/4.3.0": {
+ "type": "package",
+ "serviceable": true,
+ "sha512": "sha512-7bDIyVFNL/xKeFHjhobUAQqSpJq9YTOpbEs6mR233Et01STBMXNAc/V+BM6dwYGc95gVh/Zf+iVXWzj3mE8DWg==",
+ "path": "system.security.cryptography.primitives/4.3.0",
+ "hashPath": "system.security.cryptography.primitives.4.3.0.nupkg.sha512"
+ },
+ "System.Security.Cryptography.X509Certificates/4.3.0": {
+ "type": "package",
+ "serviceable": true,
+ "sha512": "sha512-t2Tmu6Y2NtJ2um0RtcuhP7ZdNNxXEgUm2JeoA/0NvlMjAhKCnM1NX07TDl3244mVp3QU6LPEhT3HTtH1uF7IYw==",
+ "path": "system.security.cryptography.x509certificates/4.3.0",
+ "hashPath": "system.security.cryptography.x509certificates.4.3.0.nupkg.sha512"
+ },
+ "System.Text.Encoding/4.3.0": {
+ "type": "package",
+ "serviceable": true,
+ "sha512": "sha512-BiIg+KWaSDOITze6jGQynxg64naAPtqGHBwDrLaCtixsa5bKiR8dpPOHA7ge3C0JJQizJE+sfkz1wV+BAKAYZw==",
+ "path": "system.text.encoding/4.3.0",
+ "hashPath": "system.text.encoding.4.3.0.nupkg.sha512"
+ },
+ "System.Text.Encoding.Extensions/4.3.0": {
+ "type": "package",
+ "serviceable": true,
+ "sha512": "sha512-YVMK0Bt/A43RmwizJoZ22ei2nmrhobgeiYwFzC4YAN+nue8RF6djXDMog0UCn+brerQoYVyaS+ghy9P/MUVcmw==",
+ "path": "system.text.encoding.extensions/4.3.0",
+ "hashPath": "system.text.encoding.extensions.4.3.0.nupkg.sha512"
+ },
+ "System.Text.RegularExpressions/4.3.0": {
+ "type": "package",
+ "serviceable": true,
+ "sha512": "sha512-RpT2DA+L660cBt1FssIE9CAGpLFdFPuheB7pLpKpn6ZXNby7jDERe8Ua/Ne2xGiwLVG2JOqziiaVCGDon5sKFA==",
+ "path": "system.text.regularexpressions/4.3.0",
+ "hashPath": "system.text.regularexpressions.4.3.0.nupkg.sha512"
+ },
+ "System.Threading/4.3.0": {
+ "type": "package",
+ "serviceable": true,
+ "sha512": "sha512-VkUS0kOBcUf3Wwm0TSbrevDDZ6BlM+b/HRiapRFWjM5O0NS0LviG0glKmFK+hhPDd1XFeSdU1GmlLhb2CoVpIw==",
+ "path": "system.threading/4.3.0",
+ "hashPath": "system.threading.4.3.0.nupkg.sha512"
+ },
+ "System.Threading.Tasks/4.3.0": {
+ "type": "package",
+ "serviceable": true,
+ "sha512": "sha512-LbSxKEdOUhVe8BezB/9uOGGppt+nZf6e1VFyw6v3DN6lqitm0OSn2uXMOdtP0M3W4iMcqcivm2J6UgqiwwnXiA==",
+ "path": "system.threading.tasks/4.3.0",
+ "hashPath": "system.threading.tasks.4.3.0.nupkg.sha512"
+ },
+ "System.Threading.Tasks.Extensions/4.3.0": {
+ "type": "package",
+ "serviceable": true,
+ "sha512": "sha512-npvJkVKl5rKXrtl1Kkm6OhOUaYGEiF9wFbppFRWSMoApKzt2PiPHT2Bb8a5sAWxprvdOAtvaARS9QYMznEUtug==",
+ "path": "system.threading.tasks.extensions/4.3.0",
+ "hashPath": "system.threading.tasks.extensions.4.3.0.nupkg.sha512"
+ },
+ "System.Threading.Timer/4.3.0": {
+ "type": "package",
+ "serviceable": true,
+ "sha512": "sha512-Z6YfyYTCg7lOZjJzBjONJTFKGN9/NIYKSxhU5GRd+DTwHSZyvWp1xuI5aR+dLg+ayyC5Xv57KiY4oJ0tMO89fQ==",
+ "path": "system.threading.timer/4.3.0",
+ "hashPath": "system.threading.timer.4.3.0.nupkg.sha512"
+ },
+ "System.Xml.ReaderWriter/4.3.0": {
+ "type": "package",
+ "serviceable": true,
+ "sha512": "sha512-GrprA+Z0RUXaR4N7/eW71j1rgMnEnEVlgii49GZyAjTH7uliMnrOU3HNFBr6fEDBCJCIdlVNq9hHbaDR621XBA==",
+ "path": "system.xml.readerwriter/4.3.0",
+ "hashPath": "system.xml.readerwriter.4.3.0.nupkg.sha512"
+ },
+ "System.Xml.XDocument/4.3.0": {
+ "type": "package",
+ "serviceable": true,
+ "sha512": "sha512-5zJ0XDxAIg8iy+t4aMnQAu0MqVbqyvfoUVl1yDV61xdo3Vth45oA2FoY4pPkxYAH5f8ixpmTqXeEIya95x0aCQ==",
+ "path": "system.xml.xdocument/4.3.0",
+ "hashPath": "system.xml.xdocument.4.3.0.nupkg.sha512"
+ }
+ }
+}
\ No newline at end of file
diff --git a/z3-4.8.9-x64-ubuntu-16.04/bin/Microsoft.Z3.dll b/z3-4.8.9-x64-ubuntu-16.04/bin/Microsoft.Z3.dll
new file mode 100644
index 0000000..4048063
Binary files /dev/null and b/z3-4.8.9-x64-ubuntu-16.04/bin/Microsoft.Z3.dll differ
diff --git a/z3-4.8.9-x64-ubuntu-16.04/bin/Microsoft.Z3.xml b/z3-4.8.9-x64-ubuntu-16.04/bin/Microsoft.Z3.xml
new file mode 100644
index 0000000..946665a
--- /dev/null
+++ b/z3-4.8.9-x64-ubuntu-16.04/bin/Microsoft.Z3.xml
@@ -0,0 +1,7048 @@
+
+
+
+ Microsoft.Z3
+
+
+
+
+ Algebraic numbers
+
+
+
+
+ Return a upper bound for a given real algebraic number.
+ The interval isolating the number is smaller than 1/10^.
+
+
+ the precision of the result
+ A numeral Expr of sort Real
+
+
+
+ Return a lower bound for the given real algebraic number.
+ The interval isolating the number is smaller than 1/10^.
+
+
+
+ A numeral Expr of sort Real
+
+
+
+ Returns a string representation in decimal notation.
+
+ The result has at most decimal places.
+
+
+
+ ApplyResult objects represent the result of an application of a
+ tactic to a goal. It contains the subgoals that were produced.
+
+
+
+
+ The number of Subgoals.
+
+
+
+
+ Retrieves the subgoals from the ApplyResult.
+
+
+
+
+ A string representation of the ApplyResult.
+
+
+
+
+ Arithmetic expressions (int/real)
+
+
+
+ Constructor for ArithExpr
+
+
+ Operator overloading for arithmetical division operator (over reals)
+
+
+ Operator overloading for arithmetical operator
+
+
+ Operator overloading for arithmetical operator
+
+
+ Operator overloading for arithmetical operator
+
+
+ Operator overloading for arithmetical operator
+
+
+ Operator overloading for arithmetical operator
+
+
+ Operator overloading for arithmetical operator
+
+
+ Operator overloading for arithmetical operator
+
+
+ Operator overloading for arithmetical operator
+
+
+ Operator overloading for arithmetical operator
+
+
+ Operator overloading for arithmetical operator
+
+
+ Operator overloading for arithmetical operator
+
+
+ Operator overloading for arithmetical operator
+
+
+ Operator overloading for arithmetical operator
+
+
+ Operator overloading for arithmetical operator
+
+
+ Operator overloading for arithmetical operator
+
+
+ Operator overloading for arithmetical operator
+
+
+ Operator overloading for arithmetical operator
+
+
+ Operator overloading for arithmetical operator
+
+
+ Operator overloading for arithmetical operator
+
+
+ Operator overloading for arithmetical operator
+
+
+ Operator overloading for arithmetical operator
+
+
+ Operator overloading for arithmetical operator
+
+
+ Operator overloading for arithmetical operator
+
+
+ Operator overloading for arithmetical operator
+
+
+ Operator overloading for arithmetical operator
+
+
+ Operator overloading for arithmetical operator
+
+
+ Operator overloading for arithmetical operator
+
+
+ Operator overloading for arithmetical operator
+
+
+ Operator overloading for arithmetical operator
+
+
+ Operator overloading for arithmetical operator
+
+
+ Operator overloading for arithmetical operator
+
+
+ Operator overloading for arithmetical operator
+
+
+ Operator overloading for arithmetical operator
+
+
+ Operator overloading for arithmetical operator
+
+
+ Operator overloading for arithmetical operator
+
+
+ Operator overloading for arithmetical operator
+
+
+ Operator overloading for arithmetical operator
+
+
+ Operator overloading for arithmetical operator
+
+
+ Operator overloading for arithmetical operator
+
+
+ Operator overloading for arithmetical operator
+
+
+
+ An arithmetic sort, i.e., Int or Real.
+
+
+
+
+ Array expressions
+
+
+
+ Constructor for ArrayExpr
+
+
+ Single argument select
+
+
+ Multi argument select
+
+
+
+ Array sorts.
+
+
+
+
+ The domain of the array sort.
+
+
+
+
+ The range of the array sort.
+
+
+
+
+ The abstract syntax tree (AST) class.
+
+
+
+
+ Comparison operator.
+
+ An AST
+ An AST
+ True if and are from the same context
+ and represent the same sort; false otherwise.
+
+
+
+ Comparison operator.
+
+ An AST
+ An AST
+ True if and are not from the same context
+ or represent different sorts; false otherwise.
+
+
+
+ Object comparison.
+
+
+
+
+ Object Comparison.
+
+ Another AST
+ Negative if the object should be sorted before , positive if after else zero.
+
+
+
+ The AST's hash code.
+
+ A hash code
+
+
+
+ A unique identifier for the AST (unique among all ASTs).
+
+
+
+
+ Translates (copies) the AST to the Context .
+
+ A context
+ A copy of the AST which is associated with
+
+
+
+ The kind of the AST.
+
+
+
+
+ Indicates whether the AST is an Expr
+
+
+
+
+ Indicates whether the AST is an application
+
+
+
+
+ Indicates whether the AST is a BoundVariable
+
+
+
+
+ Indicates whether the AST is a Quantifier
+
+
+
+
+ Indicates whether the AST is a Sort
+
+
+
+
+ Indicates whether the AST is a FunctionDeclaration
+
+
+
+
+ A string representation of the AST.
+
+
+
+
+ A string representation of the AST in s-expression notation.
+
+
+
+
+ Map from AST to AST
+
+
+
+
+ Checks whether the map contains the key .
+
+ An AST
+ True if is a key in the map, false otherwise.
+
+
+
+ Finds the value associated with the key .
+
+
+ This function signs an error when is not a key in the map.
+
+ An AST
+
+
+
+ Stores or replaces a new key/value pair in the map.
+
+ The key AST
+ The value AST
+
+
+
+ Erases the key from the map.
+
+ An AST
+
+
+
+ Removes all keys from the map.
+
+
+
+
+ The size of the map
+
+
+
+
+ The keys stored in the map.
+
+
+
+
+ Retrieves a string representation of the map.
+
+
+
+
+ Vectors of ASTs.
+
+
+
+
+ The size of the vector
+
+
+
+
+ Retrieves the i-th object in the vector.
+
+ May throw an IndexOutOfBoundsException when is out of range.
+ Index
+ An AST
+
+
+
+ Resize the vector to .
+
+ The new size of the vector.
+
+
+
+ Add the AST to the back of the vector. The size
+ is increased by 1.
+
+ An AST
+
+
+
+ Translates all ASTs in the vector to .
+
+ A context
+ A new ASTVector
+
+
+
+ Retrieves a string representation of the vector.
+
+
+
+
+ Translates an AST vector into an AST[]
+
+
+
+
+ Translates an ASTVector into an Expr[]
+
+
+
+
+ Translates an ASTVector into a BoolExpr[]
+
+
+
+
+ Translates an ASTVector into a BitVecExpr[]
+
+
+
+
+ Translates an ASTVector into a ArithExpr[]
+
+
+
+
+ Translates an ASTVector into a ArrayExpr[]
+
+
+
+
+ Translates an ASTVector into a DatatypeExpr[]
+
+
+
+
+ Translates an ASTVector into a FPExpr[]
+
+
+
+
+ Translates an ASTVector into a FPRMExpr[]
+
+
+
+
+ Translates an ASTVector into a IntExpr[]
+
+
+
+
+ Translates an ASTVector into a RealExpr[]
+
+
+
+
+ Bit-vector expressions
+
+
+
+
+ The size of the sort of a bit-vector term.
+
+
+
+ Constructor for BitVecExpr
+
+
+
+ Bit-vector numerals
+
+
+
+
+ Retrieve the 64-bit unsigned integer value.
+
+
+
+
+ Retrieve the int value.
+
+
+
+
+ Retrieve the 64-bit int value.
+
+
+
+
+ Retrieve the int value.
+
+
+
+
+ Retrieve the BigInteger value.
+
+
+
+
+ Returns a decimal string representation of the numeral.
+
+
+
+
+ Returns a binary string representation of the numeral.
+
+
+
+
+ Bit-vector sorts.
+
+
+
+
+ The size of the bit-vector sort.
+
+
+
+
+ Boolean expressions
+
+
+
+ Constructor for BoolExpr
+
+
+ Disjunction of Boolean expressions
+
+
+ Conjunction of Boolean expressions
+
+
+ Xor of Boolean expressions
+
+
+ Negation
+
+
+
+ A Boolean sort.
+
+
+
+
+ Constructors are used for datatype sorts.
+
+
+
+
+ The number of fields of the constructor.
+
+
+
+
+ The function declaration of the constructor.
+
+
+
+
+ The function declaration of the tester.
+
+
+
+
+ The function declarations of the accessors
+
+
+
+
+ Destructor.
+
+
+
+
+ Lists of constructors
+
+
+
+
+ Destructor.
+
+
+
+
+ The main interaction with Z3 happens via the Context.
+
+
+
+
+ Constructor.
+
+
+
+
+ Constructor.
+
+
+ The following parameters can be set:
+ - proof (Boolean) Enable proof generation
+ - debug_ref_count (Boolean) Enable debug support for Z3_ast reference counting
+ - trace (Boolean) Tracing support for VCC
+ - trace_file_name (String) Trace out file for VCC traces
+ - timeout (unsigned) default timeout (in milliseconds) used for solvers
+ - well_sorted_check type checker
+ - auto_config use heuristics to automatically select solver and configure it
+ - model model generation for solvers, this parameter can be overwritten when creating a solver
+ - model_validate validate models produced by solvers
+ - unsat_core unsat-core generation for solvers, this parameter can be overwritten when creating a solver
+ Note that in previous versions of Z3, this constructor was also used to set global and module parameters.
+ For this purpose we should now use
+
+
+
+
+ Creates a new symbol using an integer.
+
+
+ Not all integers can be passed to this function.
+ The legal range of unsigned integers is 0 to 2^30-1.
+
+
+
+
+ Create a symbol using a string.
+
+
+
+
+ Create an array of symbols.
+
+
+
+
+ Retrieves the Boolean sort of the context.
+
+
+
+
+ Retrieves the Integer sort of the context.
+
+
+
+
+ Retrieves the Real sort of the context.
+
+
+
+
+ Retrieves the String sort of the context.
+
+
+
+
+ Create a new Boolean sort.
+
+
+
+
+ Create a new uninterpreted sort.
+
+
+
+
+ Create a new uninterpreted sort.
+
+
+
+
+ Create a new integer sort.
+
+
+
+
+ Create a real sort.
+
+
+
+
+ Create a new bit-vector sort.
+
+
+
+
+ Create a new sequence sort.
+
+
+
+
+ Create a new regular expression sort.
+
+
+
+
+ Create a new array sort.
+
+
+
+
+ Create a new n-ary array sort.
+
+
+
+
+ Create a new tuple sort.
+
+
+
+
+ Create a new enumeration sort.
+
+
+
+
+ Create a new enumeration sort.
+
+
+
+
+ Create a new list sort.
+
+
+
+
+ Create a new list sort.
+
+
+
+
+ Create a new finite domain sort.
+ The result is a sort
+
+ The name used to identify the sort
+ The size of the sort
+
+
+
+ Create a new finite domain sort.
+ The result is a sort
+ Elements of the sort are created using ,
+ and the elements range from 0 to size-1.
+
+ The name used to identify the sort
+ The size of the sort
+
+
+
+ Create a datatype constructor.
+
+ constructor name
+ name of recognizer function.
+ names of the constructor fields.
+ field sorts, 0 if the field sort refers to a recursive sort.
+ reference to datatype sort that is an argument to the constructor;
+ if the corresponding sort reference is 0, then the value in sort_refs should be an index
+ referring to one of the recursive datatypes that is declared.
+
+
+
+ Create a datatype constructor.
+
+
+
+
+
+
+
+
+
+
+ Create a new datatype sort.
+
+
+
+
+ Create a new datatype sort.
+
+
+
+
+ Create mutually recursive datatypes.
+
+ names of datatype sorts
+ list of constructors, one list per sort.
+
+
+
+ Create mutually recursive data-types.
+
+
+
+
+
+
+
+ Update a datatype field at expression t with value v.
+ The function performs a record update at t. The field
+ that is passed in as argument is updated with value v,
+ the remaining fields of t are unchanged.
+
+
+
+
+ Creates a new function declaration.
+
+
+
+
+ Creates a new function declaration.
+
+
+
+
+ Creates a new function declaration.
+
+
+
+
+ Creates a new recursive function declaration.
+
+
+
+
+ Bind a definition to a recursive function declaration.
+ The function must have previously been created using
+ MkRecFuncDecl. The body may contain recursive uses of the function or
+ other mutually recursive functions.
+
+
+
+
+ Creates a new function declaration.
+
+
+
+
+ Creates a fresh function declaration with a name prefixed with .
+
+
+
+
+
+
+ Creates a new constant function declaration.
+
+
+
+
+ Creates a new constant function declaration.
+
+
+
+
+ Creates a fresh constant function declaration with a name prefixed with .
+
+
+
+
+
+
+ Creates a new bound variable.
+
+ The de-Bruijn index of the variable
+ The sort of the variable
+
+
+
+ Create a quantifier pattern.
+
+
+
+
+ Creates a new Constant of sort and named .
+
+
+
+
+ Creates a new Constant of sort and named .
+
+
+
+
+ Creates a fresh Constant of sort and a
+ name prefixed with .
+
+
+
+
+ Creates a fresh constant from the FuncDecl .
+
+ A decl of a 0-arity function
+
+
+
+ Create a Boolean constant.
+
+
+
+
+ Create a Boolean constant.
+
+
+
+
+ Creates an integer constant.
+
+
+
+
+ Creates an integer constant.
+
+
+
+
+ Creates a real constant.
+
+
+
+
+ Creates a real constant.
+
+
+
+
+ Creates a bit-vector constant.
+
+
+
+
+ Creates a bit-vector constant.
+
+
+
+
+ Create a new function application.
+
+
+
+
+ Create a new function application.
+
+
+
+
+ The true Term.
+
+
+
+
+ The false Term.
+
+
+
+
+ Creates a Boolean value.
+
+
+
+
+ Creates the equality = .
+
+
+
+
+ Creates a distinct term.
+
+
+
+
+ Mk an expression representing not(a).
+
+
+
+
+ Create an expression representing an if-then-else: ite(t1, t2, t3).
+
+ An expression with Boolean sort
+ An expression
+ An expression with the same sort as
+
+
+
+ Create an expression representing t1 iff t2.
+
+
+
+
+ Create an expression representing t1 -> t2.
+
+
+
+
+ Create an expression representing t1 xor t2.
+
+
+
+
+ Create an expression representing t1 xor t2 xor t3 ... .
+
+
+
+
+ Create an expression representing t[0] and t[1] and ....
+
+
+
+
+ Create an expression representing t[0] and t[1] and ....
+
+
+
+
+ Create an expression representing t[0] or t[1] or ....
+
+
+
+
+ Create an expression representing t[0] or t[1] or ....
+
+
+
+
+ Create an expression representing t[0] + t[1] + ....
+
+
+
+
+ Create an expression representing t[0] + t[1] + ....
+
+
+
+
+ Create an expression representing t[0] * t[1] * ....
+
+
+
+
+ Create an expression representing t[0] * t[1] * ....
+
+
+
+
+ Create an expression representing t[0] - t[1] - ....
+
+
+
+
+ Create an expression representing -t.
+
+
+
+
+ Create an expression representing t1 / t2.
+
+
+
+
+ Create an expression representing t1 mod t2.
+
+ The arguments must have int type.
+
+
+
+ Create an expression representing t1 rem t2.
+
+ The arguments must have int type.
+
+
+
+ Create an expression representing t1 ^ t2.
+
+
+
+
+ Create an expression representing t1 < t2
+
+
+
+
+ Create an expression representing t1 <= t2
+
+
+
+
+ Create an expression representing t1 > t2
+
+
+
+
+ Create an expression representing t1 >= t2
+
+
+
+
+ Coerce an integer to a real.
+
+
+ There is also a converse operation exposed. It follows the semantics prescribed by the SMT-LIB standard.
+
+ You can take the floor of a real by creating an auxiliary integer Term k and
+ and asserting MakeInt2Real(k) <= t1 < MkInt2Real(k)+1.
+ The argument must be of integer sort.
+
+
+
+
+ Coerce a real to an integer.
+
+
+ The semantics of this function follows the SMT-LIB standard for the function to_int.
+ The argument must be of real sort.
+
+
+
+
+ Creates an expression that checks whether a real number is an integer.
+
+
+
+
+ Bitwise negation.
+
+ The argument must have a bit-vector sort.
+
+
+
+ Take conjunction of bits in a vector, return vector of length 1.
+
+ The argument must have a bit-vector sort.
+
+
+
+ Take disjunction of bits in a vector, return vector of length 1.
+
+ The argument must have a bit-vector sort.
+
+
+
+ Bitwise conjunction.
+
+ The arguments must have a bit-vector sort.
+
+
+
+ Bitwise disjunction.
+
+ The arguments must have a bit-vector sort.
+
+
+
+ Bitwise XOR.
+
+ The arguments must have a bit-vector sort.
+
+
+
+ Bitwise NAND.
+
+ The arguments must have a bit-vector sort.
+
+
+
+ Bitwise NOR.
+
+ The arguments must have a bit-vector sort.
+
+
+
+ Bitwise XNOR.
+
+ The arguments must have a bit-vector sort.
+
+
+
+ Standard two's complement unary minus.
+
+ The arguments must have a bit-vector sort.
+
+
+
+ Two's complement addition.
+
+ The arguments must have the same bit-vector sort.
+
+
+
+ Two's complement subtraction.
+
+ The arguments must have the same bit-vector sort.
+
+
+
+ Two's complement multiplication.
+
+ The arguments must have the same bit-vector sort.
+
+
+
+ Unsigned division.
+
+
+ It is defined as the floor of t1/t2 if \c t2 is
+ different from zero. If t2 is zero, then the result
+ is undefined.
+ The arguments must have the same bit-vector sort.
+
+
+
+
+ Signed division.
+
+
+ It is defined in the following way:
+
+ - The \c floor of t1/t2 if \c t2 is different from zero, and t1*t2 >= 0.
+
+ - The \c ceiling of t1/t2 if \c t2 is different from zero, and t1*t2 < 0.
+
+ If t2 is zero, then the result is undefined.
+ The arguments must have the same bit-vector sort.
+
+
+
+
+ Unsigned remainder.
+
+
+ It is defined as t1 - (t1 /u t2) * t2, where /u represents unsigned division.
+ If t2 is zero, then the result is undefined.
+ The arguments must have the same bit-vector sort.
+
+
+
+
+ Signed remainder.
+
+
+ It is defined as t1 - (t1 /s t2) * t2, where /s represents signed division.
+ The most significant bit (sign) of the result is equal to the most significant bit of \c t1.
+
+ If t2 is zero, then the result is undefined.
+ The arguments must have the same bit-vector sort.
+
+
+
+
+ Two's complement signed remainder (sign follows divisor).
+
+
+ If t2 is zero, then the result is undefined.
+ The arguments must have the same bit-vector sort.
+
+
+
+
+ Unsigned less-than
+
+
+ The arguments must have the same bit-vector sort.
+
+
+
+
+ Two's complement signed less-than
+
+
+ The arguments must have the same bit-vector sort.
+
+
+
+
+ Unsigned less-than or equal to.
+
+
+ The arguments must have the same bit-vector sort.
+
+
+
+
+ Two's complement signed less-than or equal to.
+
+
+ The arguments must have the same bit-vector sort.
+
+
+
+
+ Unsigned greater than or equal to.
+
+
+ The arguments must have the same bit-vector sort.
+
+
+
+
+ Two's complement signed greater than or equal to.
+
+
+ The arguments must have the same bit-vector sort.
+
+
+
+
+ Unsigned greater-than.
+
+
+ The arguments must have the same bit-vector sort.
+
+
+
+
+ Two's complement signed greater-than.
+
+
+ The arguments must have the same bit-vector sort.
+
+
+
+
+ Bit-vector concatenation.
+
+
+ The arguments must have a bit-vector sort.
+
+
+ The result is a bit-vector of size n1+n2, where n1 (n2)
+ is the size of t1 (t2).
+
+
+
+
+ Bit-vector extraction.
+
+
+ Extract the bits down to from a bitvector of
+ size m to yield a new bitvector of size n, where
+ n = high - low + 1.
+ The argument must have a bit-vector sort.
+
+
+
+
+ Bit-vector sign extension.
+
+
+ Sign-extends the given bit-vector to the (signed) equivalent bitvector of
+ size m+i, where \c m is the size of the given bit-vector.
+ The argument must have a bit-vector sort.
+
+
+
+
+ Bit-vector zero extension.
+
+
+ Extend the given bit-vector with zeros to the (unsigned) equivalent
+ bitvector of size m+i, where \c m is the size of the
+ given bit-vector.
+ The argument must have a bit-vector sort.
+
+
+
+
+ Bit-vector repetition.
+
+
+ The argument must have a bit-vector sort.
+
+
+
+
+ Shift left.
+
+
+ It is equivalent to multiplication by 2^x where \c x is the value of .
+
+ NB. The semantics of shift operations varies between environments. This
+ definition does not necessarily capture directly the semantics of the
+ programming language or assembly architecture you are modeling.
+
+ The arguments must have a bit-vector sort.
+
+
+
+
+ Logical shift right
+
+
+ It is equivalent to unsigned division by 2^x where \c x is the value of .
+
+ NB. The semantics of shift operations varies between environments. This
+ definition does not necessarily capture directly the semantics of the
+ programming language or assembly architecture you are modeling.
+
+ The arguments must have a bit-vector sort.
+
+
+
+
+ Arithmetic shift right
+
+
+ It is like logical shift right except that the most significant
+ bits of the result always copy the most significant bit of the
+ second argument.
+
+ NB. The semantics of shift operations varies between environments. This
+ definition does not necessarily capture directly the semantics of the
+ programming language or assembly architecture you are modeling.
+
+ The arguments must have a bit-vector sort.
+
+
+
+
+ Rotate Left.
+
+
+ Rotate bits of \c t to the left \c i times.
+ The argument must have a bit-vector sort.
+
+
+
+
+ Rotate Right.
+
+
+ Rotate bits of \c t to the right \c i times.
+ The argument must have a bit-vector sort.
+
+
+
+
+ Rotate Left.
+
+
+ Rotate bits of to the left times.
+ The arguments must have the same bit-vector sort.
+
+
+
+
+ Rotate Right.
+
+
+ Rotate bits of to the right times.
+ The arguments must have the same bit-vector sort.
+
+
+
+
+ Create an bit bit-vector from the integer argument .
+
+
+ NB. This function is essentially treated as uninterpreted.
+ So you cannot expect Z3 to precisely reflect the semantics of this function
+ when solving constraints with this function.
+
+ The argument must be of integer sort.
+
+
+
+
+ Create an integer from the bit-vector argument .
+
+
+ If \c is_signed is false, then the bit-vector \c t1 is treated as unsigned.
+ So the result is non-negative and in the range [0..2^N-1], where
+ N are the number of bits in .
+ If \c is_signed is true, \c t1 is treated as a signed bit-vector.
+
+ NB. This function is essentially treated as uninterpreted.
+ So you cannot expect Z3 to precisely reflect the semantics of this function
+ when solving constraints with this function.
+
+ The argument must be of bit-vector sort.
+
+
+
+
+ Create a predicate that checks that the bit-wise addition does not overflow.
+
+
+ The arguments must be of bit-vector sort.
+
+
+
+
+ Create a predicate that checks that the bit-wise addition does not underflow.
+
+
+ The arguments must be of bit-vector sort.
+
+
+
+
+ Create a predicate that checks that the bit-wise subtraction does not overflow.
+
+
+ The arguments must be of bit-vector sort.
+
+
+
+
+ Create a predicate that checks that the bit-wise subtraction does not underflow.
+
+
+ The arguments must be of bit-vector sort.
+
+
+
+
+ Create a predicate that checks that the bit-wise signed division does not overflow.
+
+
+ The arguments must be of bit-vector sort.
+
+
+
+
+ Create a predicate that checks that the bit-wise negation does not overflow.
+
+
+ The arguments must be of bit-vector sort.
+
+
+
+
+ Create a predicate that checks that the bit-wise multiplication does not overflow.
+
+
+ The arguments must be of bit-vector sort.
+
+
+
+
+ Create a predicate that checks that the bit-wise multiplication does not underflow.
+
+
+ The arguments must be of bit-vector sort.
+
+
+
+
+ Create an array constant.
+
+
+
+
+ Create an array constant.
+
+
+
+
+ Array read.
+
+
+ The argument a is the array and i is the index
+ of the array that gets read.
+
+ The node a must have an array sort [domain -> range],
+ and i must have the sort domain.
+ The sort of the result is range.
+
+
+
+
+
+
+ Array read.
+
+
+ The argument a is the array and args are the indices
+ of the array that gets read.
+
+ The node a must have an array sort [domain1,..,domaink -> range],
+ and args must have the sort domain1,..,domaink.
+ The sort of the result is range.
+
+
+
+
+
+
+ Array update.
+
+
+ The node a must have an array sort [domain -> range],
+ i must have sort domain,
+ v must have sort range. The sort of the result is [domain -> range].
+ The semantics of this function is given by the theory of arrays described in the SMT-LIB
+ standard. See http://smtlib.org for more details.
+ The result of this function is an array that is equal to a
+ (with respect to select)
+ on all indices except for i, where it maps to v
+ (and the select of a with
+ respect to i may be a different value).
+
+
+
+
+
+
+
+ Array update.
+
+
+ The node a must have an array sort [domain1,..,domaink -> range],
+ args must have sort domain1,..,domaink,
+ v must have sort range. The sort of the result is [domain -> range].
+ The semantics of this function is given by the theory of arrays described in the SMT-LIB
+ standard. See http://smtlib.org for more details.
+ The result of this function is an array that is equal to a
+ (with respect to select)
+ on all indices except for args, where it maps to v
+ (and the select of a with
+ respect to args may be a different value).
+
+
+
+
+
+
+
+ Create a constant array.
+
+
+ The resulting term is an array, such that a selecton an arbitrary index
+ produces the value v.
+
+
+
+
+
+
+ Maps f on the argument arrays.
+
+
+ Each element of args must be of an array sort [domain_i -> range_i].
+ The function declaration f must have type range_1 .. range_n -> range.
+ v must have sort range. The sort of the result is [domain_i -> range].
+
+
+
+
+
+
+
+ Access the array default value.
+
+
+ Produces the default range value, for arrays that can be represented as
+ finite maps with a default range value.
+
+
+
+
+ Create Extentionality index. Two arrays are equal if and only if they are equal on the index returned by MkArrayExt.
+
+
+
+
+ Create a set type.
+
+
+
+
+ Create an empty set.
+
+
+
+
+ Create the full set.
+
+
+
+
+ Add an element to the set.
+
+
+
+
+ Remove an element from a set.
+
+
+
+
+ Take the union of a list of sets.
+
+
+
+
+ Take the intersection of a list of sets.
+
+
+
+
+ Take the difference between two sets.
+
+
+
+
+ Take the complement of a set.
+
+
+
+
+ Check for set membership.
+
+
+
+
+ Check for subsetness of sets.
+
+
+
+
+ Create the empty sequence.
+
+
+
+
+ Create the singleton sequence.
+
+
+
+
+ Create a string constant.
+
+
+
+
+ Convert an integer expression to a string.
+
+
+
+
+ Convert an integer expression to a string.
+
+
+
+
+ Concatenate sequences.
+
+
+
+
+ Retrieve the length of a given sequence.
+
+
+
+
+ Check for sequence prefix.
+
+
+
+
+ Check for sequence suffix.
+
+
+
+
+ Check for sequence containment of s2 in s1.
+
+
+
+
+ Check if the string s1 is lexicographically strictly less than s2.
+
+
+
+
+ Check if the string s1 is lexicographically strictly less than s2.
+
+
+
+
+ Retrieve sequence of length one at index.
+
+
+
+
+ Retrieve element at index.
+
+
+
+
+ Extract subsequence.
+
+
+
+
+ Extract index of sub-string starting at offset.
+
+
+
+
+ Replace the first occurrence of src by dst in s.
+
+
+
+
+ Convert a regular expression that accepts sequence s.
+
+
+
+
+ Check for regular expression membership.
+
+
+
+
+ Take the Kleene star of a regular expression.
+
+
+
+
+ Take the bounded Kleene star of a regular expression.
+
+
+
+
+ Take the Kleene plus of a regular expression.
+
+
+
+
+ Create the optional regular expression.
+
+
+
+
+ Create the complement regular expression.
+
+
+
+
+ Create the concatenation of regular languages.
+
+
+
+
+ Create the union of regular languages.
+
+
+
+
+ Create the intersection of regular languages.
+
+
+
+
+ Create the empty regular expression.
+ The sort s should be a regular expression.
+
+
+
+
+ Create the full regular expression.
+ The sort s should be a regular expression.
+
+
+
+
+ Create a range expression.
+
+
+
+
+ Create an at-most-k constraint.
+
+
+
+
+ Create an at-least-k constraint.
+
+
+
+
+ Create a pseudo-Boolean less-or-equal constraint.
+
+
+
+
+ Create a pseudo-Boolean greater-or-equal constraint.
+
+
+
+
+ Create a pseudo-Boolean equal constraint.
+
+
+
+
+ Create a Term of a given sort.
+
+ A string representing the Term value in decimal notation. If the given sort is a real, then the Term can be a rational, that is, a string of the form [num]* / [num]*.
+ The sort of the numeral. In the current implementation, the given sort can be an int, real, or bit-vectors of arbitrary size.
+ A Term with value and sort
+
+
+
+ Create a Term of a given sort. This function can be used to create numerals that fit in a machine integer.
+ It is slightly faster than MakeNumeral since it is not necessary to parse a string.
+
+ Value of the numeral
+ Sort of the numeral
+ A Term with value and type
+
+
+
+ Create a Term of a given sort. This function can be used to create numerals that fit in a machine integer.
+ It is slightly faster than MakeNumeral since it is not necessary to parse a string.
+
+ Value of the numeral
+ Sort of the numeral
+ A Term with value and type
+
+
+
+ Create a Term of a given sort. This function can be used to create numerals that fit in a machine integer.
+ It is slightly faster than MakeNumeral since it is not necessary to parse a string.
+
+ Value of the numeral
+ Sort of the numeral
+ A Term with value and type
+
+
+
+ Create a Term of a given sort. This function can be used to create numerals that fit in a machine integer.
+ It is slightly faster than MakeNumeral since it is not necessary to parse a string.
+
+ Value of the numeral
+ Sort of the numeral
+ A Term with value and type
+
+
+
+ Create a real from a fraction.
+
+ numerator of rational.
+ denominator of rational.
+ A Term with value / and sort Real
+
+
+
+
+ Create a real numeral.
+
+ A string representing the Term value in decimal notation.
+ A Term with value and sort Real
+
+
+
+ Create a real numeral.
+
+ value of the numeral.
+ A Term with value and sort Real
+
+
+
+ Create a real numeral.
+
+ value of the numeral.
+ A Term with value and sort Real
+
+
+
+ Create a real numeral.
+
+ value of the numeral.
+ A Term with value and sort Real
+
+
+
+ Create a real numeral.
+
+ value of the numeral.
+ A Term with value and sort Real
+
+
+
+ Create an integer numeral.
+
+ A string representing the Term value in decimal notation.
+
+
+
+ Create an integer numeral.
+
+ value of the numeral.
+ A Term with value and sort Integer
+
+
+
+ Create an integer numeral.
+
+ value of the numeral.
+ A Term with value and sort Integer
+
+
+
+ Create an integer numeral.
+
+ value of the numeral.
+ A Term with value and sort Integer
+
+
+
+ Create an integer numeral.
+
+ value of the numeral.
+ A Term with value and sort Integer
+
+
+
+ Create a bit-vector numeral.
+
+ A string representing the value in decimal notation.
+ the size of the bit-vector
+
+
+
+ Create a bit-vector numeral.
+
+ value of the numeral.
+ the size of the bit-vector
+
+
+
+ Create a bit-vector numeral.
+
+ value of the numeral.
+ the size of the bit-vector
+
+
+
+ Create a bit-vector numeral.
+
+ value of the numeral.
+ the size of the bit-vector
+
+
+
+ Create a bit-vector numeral.
+
+ value of the numeral.
+ the size of the bit-vector
+
+
+
+ Create a bit-vector numeral.
+
+ An array of bits representing the bit-vector. Least significant bit is at position 0.
+
+
+
+ Create a universal Quantifier.
+
+
+ Creates a forall formula, where is the weight,
+ is an array of patterns, is an array
+ with the sorts of the bound variables, is an array with the
+ 'names' of the bound variables, and is the body of the
+ quantifier. Quantifiers are associated with weights indicating the importance of
+ using the quantifier during instantiation.
+ Note that the bound variables are de-Bruijn indices created using .
+ Z3 applies the convention that the last element in and
+ refers to the variable with index 0, the second to last element
+ of and refers to the variable
+ with index 1, etc.
+
+ the sorts of the bound variables.
+ names of the bound variables
+ the body of the quantifier.
+ quantifiers are associated with weights indicating the importance of using the quantifier during instantiation. By default, pass the weight 0.
+ array containing the patterns created using MkPattern.
+ array containing the anti-patterns created using MkPattern.
+ optional symbol to track quantifier.
+ optional symbol to track skolem constants.
+
+
+
+ Create a universal Quantifier.
+
+
+ Creates a universal quantifier using a list of constants that will
+ form the set of bound variables.
+
+
+
+
+
+ Create an existential Quantifier.
+
+
+ Creates an existential quantifier using de-Bruijn indexed variables.
+ ().
+
+
+
+
+ Create an existential Quantifier.
+
+
+ Creates an existential quantifier using a list of constants that will
+ form the set of bound variables.
+
+
+
+
+
+ Create a Quantifier.
+
+
+
+
+
+ Create a Quantifier.
+
+
+
+
+
+ Create a lambda expression.
+
+
+ Creates a lambda expression.
+ is an array
+ with the sorts of the bound variables, is an array with the
+ 'names' of the bound variables, and is the body of the
+ lambda.
+ Note that the bound variables are de-Bruijn indices created using .
+ Z3 applies the convention that the last element in and
+ refers to the variable with index 0, the second to last element
+ of and refers to the variable
+ with index 1, etc.
+
+ the sorts of the bound variables.
+ names of the bound variables
+ the body of the quantifier.
+
+
+
+ Create a lambda expression.
+
+
+ Creates a lambda expression using a list of constants that will
+ form the set of bound variables.
+
+
+
+
+
+ Selects the format used for pretty-printing expressions.
+
+
+ The default mode for pretty printing expressions is to produce
+ SMT-LIB style output where common subexpressions are printed
+ at each occurrence. The mode is called Z3_PRINT_SMTLIB_FULL.
+ To print shared common subexpressions only once,
+ use the Z3_PRINT_LOW_LEVEL mode.
+ To print in way that conforms to SMT-LIB standards and uses let
+ expressions to share common sub-expressions use Z3_PRINT_SMTLIB_COMPLIANT.
+
+
+
+
+
+
+
+
+ Parse the given string using the SMT-LIB2 parser.
+
+ A conjunction of assertions in the scope (up to push/pop) at the end of the string.
+
+
+
+ Parse the given file using the SMT-LIB2 parser.
+
+
+
+
+
+ Creates a new Goal.
+
+
+ Note that the Context must have been created with proof generation support if
+ is set to true here.
+
+ Indicates whether model generation should be enabled.
+ Indicates whether unsat core generation should be enabled.
+ Indicates whether proof generation should be enabled.
+
+
+
+ Creates a new ParameterSet.
+
+
+
+
+ The number of supported tactics.
+
+
+
+
+ The names of all supported tactics.
+
+
+
+
+ Returns a string containing a description of the tactic with the given name.
+
+
+
+
+ Creates a new Tactic.
+
+
+
+
+ Create a tactic that applies to a Goal and
+ then to every subgoal produced by .
+
+
+
+
+ Create a tactic that applies to a Goal and
+ then to every subgoal produced by .
+
+
+ Shorthand for AndThen.
+
+
+
+
+ Create a tactic that first applies to a Goal and
+ if it fails then returns the result of applied to the Goal.
+
+
+
+
+ Create a tactic that applies to a goal for milliseconds.
+
+
+ If does not terminate within milliseconds, then it fails.
+
+
+
+
+ Create a tactic that applies to a given goal if the probe
+ evaluates to true.
+
+
+ If evaluates to false, then the new tactic behaves like the skip tactic.
+
+
+
+
+ Create a tactic that applies to a given goal if the probe
+ evaluates to true and otherwise.
+
+
+
+
+ Create a tactic that keeps applying until the goal is not
+ modified anymore or the maximum number of iterations is reached.
+
+
+
+
+ Create a tactic that just returns the given goal.
+
+
+
+
+ Create a tactic always fails.
+
+
+
+
+ Create a tactic that fails if the probe evaluates to false.
+
+
+
+
+ Create a tactic that fails if the goal is not trivially satisfiable (i.e., empty)
+ or trivially unsatisfiable (i.e., contains `false').
+
+
+
+
+ Create a tactic that applies using the given set of parameters .
+
+
+
+
+ Create a tactic that applies using the given set of parameters .
+
+ Alias for UsingParams
+
+
+
+ Create a tactic that applies the given tactics in parallel until one of them succeeds (i.e., the first that doesn't fail).
+
+
+
+
+ Create a tactic that applies to a given goal and then
+ to every subgoal produced by . The subgoals are processed in parallel.
+
+
+
+
+ Interrupt the execution of a Z3 procedure.
+
+ This procedure can be used to interrupt: solvers, simplifiers and tactics.
+
+
+
+ The number of supported Probes.
+
+
+
+
+ The names of all supported Probes.
+
+
+
+
+ Returns a string containing a description of the probe with the given name.
+
+
+
+
+ Creates a new Probe.
+
+
+
+
+ Create a probe that always evaluates to .
+
+
+
+
+ Create a probe that evaluates to "true" when the value returned by
+ is less than the value returned by
+
+
+
+
+ Create a probe that evaluates to "true" when the value returned by
+ is greater than the value returned by
+
+
+
+
+ Create a probe that evaluates to "true" when the value returned by
+ is less than or equal the value returned by
+
+
+
+
+ Create a probe that evaluates to "true" when the value returned by
+ is greater than or equal the value returned by
+
+
+
+
+ Create a probe that evaluates to "true" when the value returned by
+ is equal to the value returned by
+
+
+
+
+ Create a probe that evaluates to "true" when the value
+ and evaluate to "true".
+
+
+
+
+ Create a probe that evaluates to "true" when the value
+ or evaluate to "true".
+
+
+
+
+ Create a probe that evaluates to "true" when the value
+ does not evaluate to "true".
+
+
+
+
+ Creates a new (incremental) solver.
+
+
+ This solver also uses a set of builtin tactics for handling the first
+ check-sat command, and check-sat commands that take more than a given
+ number of milliseconds to be solved.
+
+
+
+
+ Creates a new (incremental) solver.
+
+
+
+
+
+ Creates a new (incremental) solver.
+
+
+
+
+ Creates a solver that is implemented using the given tactic.
+
+
+ The solver supports the commands Push and Pop, but it
+ will always solve each check from scratch.
+
+
+
+
+ Create a Fixedpoint context.
+
+
+
+
+ Create an Optimization context.
+
+
+
+
+ Create the floating-point RoundingMode sort.
+
+
+
+
+ Create a numeral of RoundingMode sort which represents the NearestTiesToEven rounding mode.
+
+
+
+
+ Create a numeral of RoundingMode sort which represents the NearestTiesToEven rounding mode.
+
+
+
+
+ Create a numeral of RoundingMode sort which represents the NearestTiesToAway rounding mode.
+
+
+
+
+ Create a numeral of RoundingMode sort which represents the NearestTiesToAway rounding mode.
+
+
+
+
+ Create a numeral of RoundingMode sort which represents the RoundTowardPositive rounding mode.
+
+
+
+
+ Create a numeral of RoundingMode sort which represents the RoundTowardPositive rounding mode.
+
+
+
+
+ Create a numeral of RoundingMode sort which represents the RoundTowardNegative rounding mode.
+
+
+
+
+ Create a numeral of RoundingMode sort which represents the RoundTowardNegative rounding mode.
+
+
+
+
+ Create a numeral of RoundingMode sort which represents the RoundTowardZero rounding mode.
+
+
+
+
+ Create a numeral of RoundingMode sort which represents the RoundTowardZero rounding mode.
+
+
+
+
+ Create a FloatingPoint sort.
+
+ exponent bits in the FloatingPoint sort.
+ significand bits in the FloatingPoint sort.
+
+
+
+ Create the half-precision (16-bit) FloatingPoint sort.
+
+
+
+
+ Create the half-precision (16-bit) FloatingPoint sort.
+
+
+
+
+ Create the single-precision (32-bit) FloatingPoint sort.
+
+
+
+
+ Create the single-precision (32-bit) FloatingPoint sort.
+
+
+
+
+ Create the double-precision (64-bit) FloatingPoint sort.
+
+
+
+
+ Create the double-precision (64-bit) FloatingPoint sort.
+
+
+
+
+ Create the quadruple-precision (128-bit) FloatingPoint sort.
+
+
+
+
+ Create the quadruple-precision (128-bit) FloatingPoint sort.
+
+
+
+
+ Create a NaN of sort s.
+
+ FloatingPoint sort.
+
+
+
+ Create a floating-point infinity of sort s.
+
+ FloatingPoint sort.
+ indicates whether the result should be negative.
+
+
+
+ Create a floating-point zero of sort s.
+
+ FloatingPoint sort.
+ indicates whether the result should be negative.
+
+
+
+ Create a numeral of FloatingPoint sort from a float.
+
+ numeral value.
+ FloatingPoint sort.
+
+
+
+ Create a numeral of FloatingPoint sort from a float.
+
+ numeral value.
+ FloatingPoint sort.
+
+
+
+ Create a numeral of FloatingPoint sort from an int.
+
+ numeral value.
+ FloatingPoint sort.
+
+
+
+ Create a numeral of FloatingPoint sort from a sign bit and two integers.
+
+ the sign.
+ the significand.
+ the exponent.
+ FloatingPoint sort.
+
+
+
+ Create a numeral of FloatingPoint sort from a sign bit and two 64-bit integers.
+
+ the sign.
+ the significand.
+ the exponent.
+ FloatingPoint sort.
+
+
+
+ Create a numeral of FloatingPoint sort from a float.
+
+ numeral value.
+ FloatingPoint sort.
+
+
+
+ Create a numeral of FloatingPoint sort from a float.
+
+ numeral value.
+ FloatingPoint sort.
+
+
+
+ Create a numeral of FloatingPoint sort from an int.
+
+ numeral value.
+ FloatingPoint sort.
+
+
+
+ Create a numeral of FloatingPoint sort from a sign bit and two integers.
+
+ the sign.
+ the exponent.
+ the significand.
+ FloatingPoint sort.
+
+
+
+ Create a numeral of FloatingPoint sort from a sign bit and two 64-bit integers.
+
+ the sign.
+ the exponent.
+ the significand.
+ FloatingPoint sort.
+
+
+
+ Floating-point absolute value
+
+ floating-point term
+
+
+
+ Floating-point negation
+
+ floating-point term
+
+
+
+ Floating-point addition
+
+ rounding mode term
+ floating-point term
+ floating-point term
+
+
+
+ Floating-point subtraction
+
+ rounding mode term
+ floating-point term
+ floating-point term
+
+
+
+ Floating-point multiplication
+
+ rounding mode term
+ floating-point term
+ floating-point term
+
+
+
+ Floating-point division
+
+ rounding mode term
+ floating-point term
+ floating-point term
+
+
+
+ Floating-point fused multiply-add
+
+
+ The result is round((t1 * t2) + t3)
+
+ rounding mode term
+ floating-point term
+ floating-point term
+ floating-point term
+
+
+
+ Floating-point square root
+
+ rounding mode term
+ floating-point term
+
+
+
+ Floating-point remainder
+
+ floating-point term
+ floating-point term
+
+
+
+ Floating-point roundToIntegral. Rounds a floating-point number to
+ the closest integer, again represented as a floating-point number.
+
+ term of RoundingMode sort
+ floating-point term
+
+
+
+ Minimum of floating-point numbers.
+
+ floating-point term
+ floating-point term
+
+
+
+ Maximum of floating-point numbers.
+
+ floating-point term
+ floating-point term
+
+
+
+ Floating-point less than or equal.
+
+ floating-point term
+ floating-point term
+
+
+
+ Floating-point less than.
+
+ floating-point term
+ floating-point term
+
+
+
+ Floating-point greater than or equal.
+
+ floating-point term
+ floating-point term
+
+
+
+ Floating-point greater than.
+
+ floating-point term
+ floating-point term
+
+
+
+ Floating-point equality.
+
+
+ Note that this is IEEE 754 equality (as opposed to standard =).
+
+ floating-point term
+ floating-point term
+
+
+
+ Predicate indicating whether t is a normal floating-point number.
+
+ floating-point term
+
+
+
+ Predicate indicating whether t is a subnormal floating-point number.
+
+ floating-point term
+
+
+
+ Predicate indicating whether t is a floating-point number with zero value, i.e., +0 or -0.
+
+ floating-point term
+
+
+
+ Predicate indicating whether t is a floating-point number representing +oo or -oo.
+
+ floating-point term
+
+
+
+ Predicate indicating whether t is a NaN.
+
+ floating-point term
+
+
+
+ Predicate indicating whether t is a negative floating-point number.
+
+ floating-point term
+
+
+
+ Predicate indicating whether t is a positive floating-point number.
+
+ floating-point term
+
+
+
+ Create an expression of FloatingPoint sort from three bit-vector expressions.
+
+
+ This is the operator named `fp' in the SMT FP theory definition.
+ Note that sgn is required to be a bit-vector of size 1. Significand and exponent
+ are required to be greater than 1 and 2 respectively. The FloatingPoint sort
+ of the resulting expression is automatically determined from the bit-vector sizes
+ of the arguments.
+
+ bit-vector term (of size 1) representing the sign.
+ bit-vector term representing the significand.
+ bit-vector term representing the exponent.
+
+
+
+ Conversion of a single IEEE 754-2008 bit-vector into a floating-point number.
+
+
+ Produces a term that represents the conversion of a bit-vector term bv to a
+ floating-point term of sort s. The bit-vector size of bv (m) must be equal
+ to ebits+sbits of s. The format of the bit-vector is as defined by the
+ IEEE 754-2008 interchange format.
+
+ bit-vector value (of size m).
+ FloatingPoint sort (ebits+sbits == m)
+
+
+
+ Conversion of a FloatingPoint term into another term of different FloatingPoint sort.
+
+
+ Produces a term that represents the conversion of a floating-point term t to a
+ floating-point term of sort s. If necessary, the result will be rounded according
+ to rounding mode rm.
+
+ RoundingMode term.
+ FloatingPoint term.
+ FloatingPoint sort.
+
+
+
+ Conversion of a term of real sort into a term of FloatingPoint sort.
+
+
+ Produces a term that represents the conversion of term t of real sort into a
+ floating-point term of sort s. If necessary, the result will be rounded according
+ to rounding mode rm.
+
+ RoundingMode term.
+ term of Real sort.
+ FloatingPoint sort.
+
+
+
+ Conversion of a 2's complement signed bit-vector term into a term of FloatingPoint sort.
+
+
+ Produces a term that represents the conversion of the bit-vector term t into a
+ floating-point term of sort s. The bit-vector t is taken to be in signed
+ 2's complement format (when signed==true, otherwise unsigned). If necessary, the
+ result will be rounded according to rounding mode rm.
+
+ RoundingMode term.
+ term of bit-vector sort.
+ FloatingPoint sort.
+ flag indicating whether t is interpreted as signed or unsigned bit-vector.
+
+
+
+ Conversion of a floating-point number to another FloatingPoint sort s.
+
+
+ Produces a term that represents the conversion of a floating-point term t to a different
+ FloatingPoint sort s. If necessary, rounding according to rm is applied.
+
+ FloatingPoint sort
+ floating-point rounding mode term
+ floating-point term
+
+
+
+ Conversion of a floating-point term into a bit-vector.
+
+
+ Produces a term that represents the conversion of the floating-point term t into a
+ bit-vector term of size sz in 2's complement format (signed when signed==true). If necessary,
+ the result will be rounded according to rounding mode rm.
+
+ RoundingMode term.
+ FloatingPoint term
+ Size of the resulting bit-vector.
+ Indicates whether the result is a signed or unsigned bit-vector.
+
+
+
+ Conversion of a floating-point term into a real-numbered term.
+
+
+ Produces a term that represents the conversion of the floating-point term t into a
+ real number. Note that this type of conversion will often result in non-linear
+ constraints over real terms.
+
+ FloatingPoint term
+
+
+
+ Conversion of a floating-point term into a bit-vector term in IEEE 754-2008 format.
+
+
+ The size of the resulting bit-vector is automatically determined. Note that
+ IEEE 754-2008 allows multiple different representations of NaN. This conversion
+ knows only one NaN and it will always produce the same bit-vector representation of
+ that NaN.
+
+ FloatingPoint term.
+
+
+
+ Conversion of a real-sorted significand and an integer-sorted exponent into a term of FloatingPoint sort.
+
+
+ Produces a term that represents the conversion of sig * 2^exp into a
+ floating-point term of sort s. If necessary, the result will be rounded
+ according to rounding mode rm.
+
+ RoundingMode term.
+ Exponent term of Int sort.
+ Significand term of Real sort.
+ FloatingPoint sort.
+
+
+
+ Wraps an AST.
+
+ This function is used for transitions between native and
+ managed objects. Note that must be a
+ native object obtained from Z3 (e.g., through )
+ and that it must have a correct reference count (see e.g.,
+ .
+
+ The native pointer to wrap.
+
+
+
+ Unwraps an AST.
+
+ This function is used for transitions between native and
+ managed objects. It returns the native pointer to the AST. Note that
+ AST objects are reference counted and unwrapping an AST disables automatic
+ reference counting, i.e., all references to the IntPtr that is returned
+ must be handled externally and through native calls (see e.g.,
+ ).
+
+ The AST to unwrap.
+
+
+
+ Return a string describing all available parameters to Expr.Simplify.
+
+
+
+
+ Retrieves parameter descriptions for simplifier.
+
+
+
+
+ Update a mutable configuration parameter.
+
+
+ The list of all configuration parameters can be obtained using the Z3 executable:
+ z3.exe -p
+ Only a few configuration parameters are mutable once the context is created.
+ An exception is thrown when trying to modify an immutable parameter.
+
+
+
+
+ AST DRQ
+
+
+
+
+ ASTMap DRQ
+
+
+
+
+ ASTVector DRQ
+
+
+
+
+ ApplyResult DRQ
+
+
+
+
+ FuncEntry DRQ
+
+
+
+
+ FuncInterp DRQ
+
+
+
+
+ Goal DRQ
+
+
+
+
+ Model DRQ
+
+
+
+
+ Params DRQ
+
+
+
+
+ ParamDescrs DRQ
+
+
+
+
+ Probe DRQ
+
+
+
+
+ Solver DRQ
+
+
+
+
+ Statistics DRQ
+
+
+
+
+ Tactic DRQ
+
+
+
+
+ FixedPoint DRQ
+
+
+
+
+ Optimize DRQ
+
+
+
+
+ Finalizer.
+
+
+
+
+ Disposes of the context.
+
+
+
+
+ Datatype expressions
+
+
+
+ Constructor for DatatypeExpr
+
+
+
+ Datatype sorts.
+
+
+
+
+ The number of constructors of the datatype sort.
+
+
+
+
+ The constructors.
+
+
+
+
+ The recognizers.
+
+
+
+
+ The constructor accessors.
+
+
+
+
+ The main interaction with Z3 happens via the Context.
+
+
+
+
+ Enumeration sorts.
+
+
+
+
+ The function declarations of the constants in the enumeration.
+
+
+
+
+ Retrieves the inx'th constant declaration in the enumeration.
+
+
+
+
+
+
+ The constants in the enumeration.
+
+
+
+
+ Retrieves the inx'th constant in the enumeration.
+
+
+
+
+
+
+ The test predicates (recognizers) for the constants in the enumeration.
+
+
+
+
+ Retrieves the inx'th tester/recognizer declaration in the enumeration.
+
+
+
+
+
+
+ Expressions are terms.
+
+
+
+
+ Returns a simplified version of the expression.
+
+ A set of parameters to configure the simplifier
+
+
+
+
+ The function declaration of the function that is applied in this expression.
+
+
+
+
+ Indicates whether the expression is the true or false expression
+ or something else (Z3_L_UNDEF).
+
+
+
+
+ The number of arguments of the expression.
+
+
+
+
+ The arguments of the expression.
+
+
+
+
+ The i'th argument of the expression.
+
+
+
+
+ Update the arguments of the expression using the arguments
+ The number of new arguments should coincide with the current number of arguments.
+
+
+
+
+ Substitute every occurrence of from[i] in the expression with to[i], for i smaller than num_exprs.
+
+
+ The result is the new expression. The arrays from and to must have size num_exprs.
+ For every i smaller than num_exprs, we must have that
+ sort of from[i] must be equal to sort of to[i].
+
+
+
+
+ Substitute every occurrence of from in the expression with to.
+
+
+
+
+
+ Substitute the free variables in the expression with the expressions in
+
+
+ For every i smaller than num_exprs, the variable with de-Bruijn index i is replaced with term to[i].
+
+
+
+
+ Translates (copies) the term to the Context .
+
+ A context
+ A copy of the term which is associated with
+
+
+
+ Returns a string representation of the expression.
+
+
+
+
+ Indicates whether the term is a numeral
+
+
+
+
+ Indicates whether the term is well-sorted.
+
+ True if the term is well-sorted, false otherwise.
+
+
+
+ The Sort of the term.
+
+
+
+
+ Indicates whether the term represents a constant.
+
+
+
+
+ Indicates whether the term is an integer numeral.
+
+
+
+
+ Indicates whether the term is a real numeral.
+
+
+
+
+ Indicates whether the term is an algebraic number
+
+
+
+
+ Indicates whether the term has Boolean sort.
+
+
+
+
+ Indicates whether the term is the constant true.
+
+
+
+
+ Indicates whether the term is the constant false.
+
+
+
+
+ Indicates whether the term is an equality predicate.
+
+
+
+
+ Indicates whether the term is an n-ary distinct predicate (every argument is mutually distinct).
+
+
+
+
+ Indicates whether the term is a ternary if-then-else term
+
+
+
+
+ Indicates whether the term is an n-ary conjunction
+
+
+
+
+ Indicates whether the term is an n-ary disjunction
+
+
+
+
+ Indicates whether the term is an if-and-only-if (Boolean equivalence, binary)
+
+
+
+
+ Indicates whether the term is an exclusive or
+
+
+
+
+ Indicates whether the term is a negation
+
+
+
+
+ Indicates whether the term is an implication
+
+
+
+
+ Indicates whether the term is at-most
+
+
+
+
+ Retrieve bound of at-most
+
+
+
+
+ Indicates whether the term is at-least
+
+
+
+
+ Retrieve bound of at-least
+
+
+
+
+ Indicates whether the term is pbeq
+
+
+
+
+ Indicates whether the term is pble
+
+
+
+
+ Indicates whether the term is pbge
+
+
+
+
+ Indicates whether the term is of integer sort.
+
+
+
+
+ Indicates whether the term is of sort real.
+
+
+
+
+ Indicates whether the term is an arithmetic numeral.
+
+
+
+
+ Indicates whether the term is a less-than-or-equal
+
+
+
+
+ Indicates whether the term is a greater-than-or-equal
+
+
+
+
+ Indicates whether the term is a less-than
+
+
+
+
+ Indicates whether the term is a greater-than
+
+
+
+
+ Indicates whether the term is addition (binary)
+
+
+
+
+ Indicates whether the term is subtraction (binary)
+
+
+
+
+ Indicates whether the term is a unary minus
+
+
+
+
+ Indicates whether the term is multiplication (binary)
+
+
+
+
+ Indicates whether the term is division (binary)
+
+
+
+
+ Indicates whether the term is integer division (binary)
+
+
+
+
+ Indicates whether the term is remainder (binary)
+
+
+
+
+ Indicates whether the term is modulus (binary)
+
+
+
+
+ Indicates whether the term is a coercion of integer to real (unary)
+
+
+
+
+ Indicates whether the term is a coercion of real to integer (unary)
+
+
+
+
+ Indicates whether the term is a check that tests whether a real is integral (unary)
+
+
+
+
+ Indicates whether the term is of an array sort.
+
+
+
+
+ Indicates whether the term is an array store.
+
+ It satisfies select(store(a,i,v),j) = if i = j then v else select(a,j).
+ Array store takes at least 3 arguments.
+
+
+
+ Indicates whether the term is an array select.
+
+
+
+
+ Indicates whether the term is a constant array.
+
+ For example, select(const(v),i) = v holds for every v and i. The function is unary.
+
+
+
+ Indicates whether the term is a default array.
+
+ For example default(const(v)) = v. The function is unary.
+
+
+
+ Indicates whether the term is an array map.
+
+ It satisfies map[f](a1,..,a_n)[i] = f(a1[i],...,a_n[i]) for every i.
+
+
+
+ Indicates whether the term is an as-array term.
+
+ An as-array term is n array value that behaves as the function graph of the
+ function passed as parameter.
+
+
+
+ Indicates whether the term is set union
+
+
+
+
+ Indicates whether the term is set intersection
+
+
+
+
+ Indicates whether the term is set difference
+
+
+
+
+ Indicates whether the term is set complement
+
+
+
+
+ Indicates whether the term is set subset
+
+
+
+
+ Indicates whether the terms is of bit-vector sort.
+
+
+
+
+ Indicates whether the term is a bit-vector numeral
+
+
+
+
+ Indicates whether the term is a one-bit bit-vector with value one
+
+
+
+
+ Indicates whether the term is a one-bit bit-vector with value zero
+
+
+
+
+ Indicates whether the term is a bit-vector unary minus
+
+
+
+
+ Indicates whether the term is a bit-vector addition (binary)
+
+
+
+
+ Indicates whether the term is a bit-vector subtraction (binary)
+
+
+
+
+ Indicates whether the term is a bit-vector multiplication (binary)
+
+
+
+
+ Indicates whether the term is a bit-vector signed division (binary)
+
+
+
+
+ Indicates whether the term is a bit-vector unsigned division (binary)
+
+
+
+
+ Indicates whether the term is a bit-vector signed remainder (binary)
+
+
+
+
+ Indicates whether the term is a bit-vector unsigned remainder (binary)
+
+
+
+
+ Indicates whether the term is a bit-vector signed modulus
+
+
+
+
+ Indicates whether the term is a bit-vector signed division by zero
+
+
+
+
+ Indicates whether the term is a bit-vector unsigned division by zero
+
+
+
+
+ Indicates whether the term is a bit-vector signed remainder by zero
+
+
+
+
+ Indicates whether the term is a bit-vector unsigned remainder by zero
+
+
+
+
+ Indicates whether the term is a bit-vector signed modulus by zero
+
+
+
+
+ Indicates whether the term is an unsigned bit-vector less-than-or-equal
+
+
+
+
+ Indicates whether the term is a signed bit-vector less-than-or-equal
+
+
+
+
+ Indicates whether the term is an unsigned bit-vector greater-than-or-equal
+
+
+
+
+ Indicates whether the term is a signed bit-vector greater-than-or-equal
+
+
+
+
+ Indicates whether the term is an unsigned bit-vector less-than
+
+
+
+
+ Indicates whether the term is a signed bit-vector less-than
+
+
+
+
+ Indicates whether the term is an unsigned bit-vector greater-than
+
+
+
+
+ Indicates whether the term is a signed bit-vector greater-than
+
+
+
+
+ Indicates whether the term is a bit-wise AND
+
+
+
+
+ Indicates whether the term is a bit-wise OR
+
+
+
+
+ Indicates whether the term is a bit-wise NOT
+
+
+
+
+ Indicates whether the term is a bit-wise XOR
+
+
+
+
+ Indicates whether the term is a bit-wise NAND
+
+
+
+
+ Indicates whether the term is a bit-wise NOR
+
+
+
+
+ Indicates whether the term is a bit-wise XNOR
+
+
+
+
+ Indicates whether the term is a bit-vector concatenation (binary)
+
+
+
+
+ Indicates whether the term is a bit-vector sign extension
+
+
+
+
+ Indicates whether the term is a bit-vector zero extension
+
+
+
+
+ Indicates whether the term is a bit-vector extraction
+
+
+
+
+ Indicates whether the term is a bit-vector repetition
+
+
+
+
+ Indicates whether the term is a bit-vector reduce OR
+
+
+
+
+ Indicates whether the term is a bit-vector reduce AND
+
+
+
+
+ Indicates whether the term is a bit-vector comparison
+
+
+
+
+ Indicates whether the term is a bit-vector shift left
+
+
+
+
+ Indicates whether the term is a bit-vector logical shift right
+
+
+
+
+ Indicates whether the term is a bit-vector arithmetic shift left
+
+
+
+
+ Indicates whether the term is a bit-vector rotate left
+
+
+
+
+ Indicates whether the term is a bit-vector rotate right
+
+
+
+
+ Indicates whether the term is a bit-vector rotate left (extended)
+
+ Similar to Z3_OP_ROTATE_LEFT, but it is a binary operator instead of a parametric one.
+
+
+
+ Indicates whether the term is a bit-vector rotate right (extended)
+
+ Similar to Z3_OP_ROTATE_RIGHT, but it is a binary operator instead of a parametric one.
+
+
+
+ Indicates whether the term is a coercion from integer to bit-vector
+
+ This function is not supported by the decision procedures. Only the most
+ rudimentary simplification rules are applied to this function.
+
+
+
+ Indicates whether the term is a coercion from bit-vector to integer
+
+ This function is not supported by the decision procedures. Only the most
+ rudimentary simplification rules are applied to this function.
+
+
+
+ Indicates whether the term is a bit-vector carry
+
+ Compute the carry bit in a full-adder. The meaning is given by the
+ equivalence (carry l1 l2 l3) <=> (or (and l1 l2) (and l1 l3) (and l2 l3)))
+
+
+
+ Indicates whether the term is a bit-vector ternary XOR
+
+ The meaning is given by the equivalence (xor3 l1 l2 l3) <=> (xor (xor l1 l2) l3)
+
+
+
+ Indicates whether the term is a label (used by the Boogie Verification condition generator).
+
+ The label has two parameters, a string and a Boolean polarity. It takes one argument, a formula.
+
+
+
+ Indicates whether the term is a label literal (used by the Boogie Verification condition generator).
+
+ A label literal has a set of string parameters. It takes no arguments.
+
+
+
+ Check whether expression is a string constant.
+
+ a Boolean
+
+
+
+ Retrieve string corresponding to string constant.
+
+ the expression should be a string constant, (IsString should be true).
+
+
+
+ Check whether expression is a concatenation.
+
+ a Boolean
+
+
+
+ Check whether expression is a prefix.
+
+ a Boolean
+
+
+
+ Check whether expression is a suffix.
+
+ a Boolean
+
+
+
+ Check whether expression is a contains.
+
+ a Boolean
+
+
+
+ Check whether expression is an extract.
+
+ a Boolean
+
+
+
+ Check whether expression is a replace.
+
+ a Boolean
+
+
+
+ Check whether expression is an at.
+
+ a Boolean
+
+
+
+ Check whether expression is a sequence length.
+
+ a Boolean
+
+
+
+ Check whether expression is a sequence index.
+
+ a Boolean
+
+
+
+ Indicates whether the term is a binary equivalence modulo namings.
+
+ This binary predicate is used in proof terms.
+ It captures equisatisfiability and equivalence modulo renamings.
+
+
+
+ Indicates whether the term is a Proof for the expression 'true'.
+
+
+
+
+ Indicates whether the term is a proof for a fact asserted by the user.
+
+
+
+
+ Indicates whether the term is a proof for a fact (tagged as goal) asserted by the user.
+
+
+
+
+ Indicates whether the term is proof via modus ponens
+
+
+ Given a proof for p and a proof for (implies p q), produces a proof for q.
+ T1: p
+ T2: (implies p q)
+ [mp T1 T2]: q
+ The second antecedents may also be a proof for (iff p q).
+
+
+
+ Indicates whether the term is a proof for (R t t), where R is a reflexive relation.
+
+ This proof object has no antecedents.
+ The only reflexive relations that are used are
+ equivalence modulo namings, equality and equivalence.
+ That is, R is either '~', '=' or 'iff'.
+
+
+
+ Indicates whether the term is proof by symmetricity of a relation
+
+
+ Given an symmetric relation R and a proof for (R t s), produces a proof for (R s t).
+ T1: (R t s)
+ [symmetry T1]: (R s t)
+ T1 is the antecedent of this proof object.
+
+
+
+
+ Indicates whether the term is a proof by transitivity of a relation
+
+
+ Given a transitive relation R, and proofs for (R t s) and (R s u), produces a proof
+ for (R t u).
+ T1: (R t s)
+ T2: (R s u)
+ [trans T1 T2]: (R t u)
+
+
+
+
+ Indicates whether the term is a proof by condensed transitivity of a relation
+
+
+ Condensed transitivity proof.
+ It combines several symmetry and transitivity proofs.
+ Example:
+ T1: (R a b)
+ T2: (R c b)
+ T3: (R c d)
+ [trans* T1 T2 T3]: (R a d)
+ R must be a symmetric and transitive relation.
+
+ Assuming that this proof object is a proof for (R s t), then
+ a proof checker must check if it is possible to prove (R s t)
+ using the antecedents, symmetry and transitivity. That is,
+ if there is a path from s to t, if we view every
+ antecedent (R a b) as an edge between a and b.
+
+
+
+
+ Indicates whether the term is a monotonicity proof object.
+
+
+ T1: (R t_1 s_1)
+ ...
+ Tn: (R t_n s_n)
+ [monotonicity T1 ... Tn]: (R (f t_1 ... t_n) (f s_1 ... s_n))
+ Remark: if t_i == s_i, then the antecedent Ti is suppressed.
+ That is, reflexivity proofs are suppressed to save space.
+
+
+
+
+ Indicates whether the term is a quant-intro proof
+
+
+ Given a proof for (~ p q), produces a proof for (~ (forall (x) p) (forall (x) q)).
+ T1: (~ p q)
+ [quant-intro T1]: (~ (forall (x) p) (forall (x) q))
+
+
+
+
+ Indicates whether the term is a distributivity proof object.
+
+
+ Given that f (= or) distributes over g (= and), produces a proof for
+ (= (f a (g c d))
+ (g (f a c) (f a d)))
+ If f and g are associative, this proof also justifies the following equality:
+ (= (f (g a b) (g c d))
+ (g (f a c) (f a d) (f b c) (f b d)))
+ where each f and g can have arbitrary number of arguments.
+
+ This proof object has no antecedents.
+ Remark. This rule is used by the CNF conversion pass and
+ instantiated by f = or, and g = and.
+
+
+
+
+ Indicates whether the term is a proof by elimination of AND
+
+
+ Given a proof for (and l_1 ... l_n), produces a proof for l_i
+ T1: (and l_1 ... l_n)
+ [and-elim T1]: l_i
+
+
+
+
+ Indicates whether the term is a proof by elimination of not-or
+
+
+ Given a proof for (not (or l_1 ... l_n)), produces a proof for (not l_i).
+ T1: (not (or l_1 ... l_n))
+ [not-or-elim T1]: (not l_i)
+
+
+
+
+ Indicates whether the term is a proof by rewriting
+
+
+ A proof for a local rewriting step (= t s).
+ The head function symbol of t is interpreted.
+
+ This proof object has no antecedents.
+ The conclusion of a rewrite rule is either an equality (= t s),
+ an equivalence (iff t s), or equi-satisfiability (~ t s).
+ Remark: if f is bool, then = is iff.
+
+ Examples:
+ (= (+ x 0) x)
+ (= (+ x 1 2) (+ 3 x))
+ (iff (or x false) x)
+
+
+
+
+ Indicates whether the term is a proof by rewriting
+
+
+ A proof for rewriting an expression t into an expression s.
+ This proof object can have n antecedents.
+ The antecedents are proofs for equalities used as substitution rules.
+ The object is used in a few cases:
+ - When applying contextual simplification (CONTEXT_SIMPLIFIER=true)
+ - When converting bit-vectors to Booleans (BIT2BOOL=true)
+
+
+
+
+ Indicates whether the term is a proof for pulling quantifiers out.
+
+
+ A proof for (iff (f (forall (x) q(x)) r) (forall (x) (f (q x) r))). This proof object has no antecedents.
+
+
+
+
+ Indicates whether the term is a proof for pushing quantifiers in.
+
+
+ A proof for:
+ (iff (forall (x_1 ... x_m) (and p_1[x_1 ... x_m] ... p_n[x_1 ... x_m]))
+ (and (forall (x_1 ... x_m) p_1[x_1 ... x_m])
+ ...
+ (forall (x_1 ... x_m) p_n[x_1 ... x_m])))
+ This proof object has no antecedents
+
+
+
+
+ Indicates whether the term is a proof for elimination of unused variables.
+
+
+ A proof for (iff (forall (x_1 ... x_n y_1 ... y_m) p[x_1 ... x_n])
+ (forall (x_1 ... x_n) p[x_1 ... x_n]))
+
+ It is used to justify the elimination of unused variables.
+ This proof object has no antecedents.
+
+
+
+
+ Indicates whether the term is a proof for destructive equality resolution
+
+
+ A proof for destructive equality resolution:
+ (iff (forall (x) (or (not (= x t)) P[x])) P[t])
+ if x does not occur in t.
+
+ This proof object has no antecedents.
+
+ Several variables can be eliminated simultaneously.
+
+
+
+
+ Indicates whether the term is a proof for quantifier instantiation
+
+
+ A proof of (or (not (forall (x) (P x))) (P a))
+
+
+
+
+ Indicates whether the term is a hypothesis marker.
+
+ Mark a hypothesis in a natural deduction style proof.
+
+
+
+ Indicates whether the term is a proof by lemma
+
+
+ T1: false
+ [lemma T1]: (or (not l_1) ... (not l_n))
+
+ This proof object has one antecedent: a hypothetical proof for false.
+ It converts the proof in a proof for (or (not l_1) ... (not l_n)),
+ when T1 contains the hypotheses: l_1, ..., l_n.
+
+
+
+
+ Indicates whether the term is a proof by unit resolution
+
+
+ T1: (or l_1 ... l_n l_1' ... l_m')
+ T2: (not l_1)
+ ...
+ T(n+1): (not l_n)
+ [unit-resolution T1 ... T(n+1)]: (or l_1' ... l_m')
+
+
+
+
+ Indicates whether the term is a proof by iff-true
+
+
+ T1: p
+ [iff-true T1]: (iff p true)
+
+
+
+
+ Indicates whether the term is a proof by iff-false
+
+
+ T1: (not p)
+ [iff-false T1]: (iff p false)
+
+
+
+
+ Indicates whether the term is a proof by commutativity
+
+
+ [comm]: (= (f a b) (f b a))
+
+ f is a commutative operator.
+
+ This proof object has no antecedents.
+ Remark: if f is bool, then = is iff.
+
+
+
+
+ Indicates whether the term is a proof for Tseitin-like axioms
+
+
+ Proof object used to justify Tseitin's like axioms:
+
+ (or (not (and p q)) p)
+ (or (not (and p q)) q)
+ (or (not (and p q r)) p)
+ (or (not (and p q r)) q)
+ (or (not (and p q r)) r)
+ ...
+ (or (and p q) (not p) (not q))
+ (or (not (or p q)) p q)
+ (or (or p q) (not p))
+ (or (or p q) (not q))
+ (or (not (iff p q)) (not p) q)
+ (or (not (iff p q)) p (not q))
+ (or (iff p q) (not p) (not q))
+ (or (iff p q) p q)
+ (or (not (ite a b c)) (not a) b)
+ (or (not (ite a b c)) a c)
+ (or (ite a b c) (not a) (not b))
+ (or (ite a b c) a (not c))
+ (or (not (not a)) (not a))
+ (or (not a) a)
+
+ This proof object has no antecedents.
+ Note: all axioms are propositional tautologies.
+ Note also that 'and' and 'or' can take multiple arguments.
+ You can recover the propositional tautologies by
+ unfolding the Boolean connectives in the axioms a small
+ bounded number of steps (=3).
+
+
+
+
+ Indicates whether the term is a proof for introduction of a name
+
+
+ Introduces a name for a formula/term.
+ Suppose e is an expression with free variables x, and def-intro
+ introduces the name n(x). The possible cases are:
+
+ When e is of Boolean type:
+ [def-intro]: (and (or n (not e)) (or (not n) e))
+
+ or:
+ [def-intro]: (or (not n) e)
+ when e only occurs positively.
+
+ When e is of the form (ite cond th el):
+ [def-intro]: (and (or (not cond) (= n th)) (or cond (= n el)))
+
+ Otherwise:
+ [def-intro]: (= n e)
+
+
+
+
+ Indicates whether the term is a proof for application of a definition
+
+
+ [apply-def T1]: F ~ n
+ F is 'equivalent' to n, given that T1 is a proof that
+ n is a name for F.
+
+
+
+
+ Indicates whether the term is a proof iff-oeq
+
+
+ T1: (iff p q)
+ [iff~ T1]: (~ p q)
+
+
+
+
+ Indicates whether the term is a proof for a positive NNF step
+
+
+ Proof for a (positive) NNF step. Example:
+
+ T1: (not s_1) ~ r_1
+ T2: (not s_2) ~ r_2
+ T3: s_1 ~ r_1'
+ T4: s_2 ~ r_2'
+ [nnf-pos T1 T2 T3 T4]: (~ (iff s_1 s_2)
+ (and (or r_1 r_2') (or r_1' r_2)))
+
+ The negation normal form steps NNF_POS and NNF_NEG are used in the following cases:
+ (a) When creating the NNF of a positive force quantifier.
+ The quantifier is retained (unless the bound variables are eliminated).
+ Example
+ T1: q ~ q_new
+ [nnf-pos T1]: (~ (forall (x T) q) (forall (x T) q_new))
+
+ (b) When recursively creating NNF over Boolean formulas, where the top-level
+ connective is changed during NNF conversion. The relevant Boolean connectives
+ for NNF_POS are 'implies', 'iff', 'xor', 'ite'.
+ NNF_NEG furthermore handles the case where negation is pushed
+ over Boolean connectives 'and' and 'or'.
+
+
+
+
+ Indicates whether the term is a proof for a negative NNF step
+
+
+ Proof for a (negative) NNF step. Examples:
+
+ T1: (not s_1) ~ r_1
+ ...
+ Tn: (not s_n) ~ r_n
+ [nnf-neg T1 ... Tn]: (not (and s_1 ... s_n)) ~ (or r_1 ... r_n)
+ and
+ T1: (not s_1) ~ r_1
+ ...
+ Tn: (not s_n) ~ r_n
+ [nnf-neg T1 ... Tn]: (not (or s_1 ... s_n)) ~ (and r_1 ... r_n)
+ and
+ T1: (not s_1) ~ r_1
+ T2: (not s_2) ~ r_2
+ T3: s_1 ~ r_1'
+ T4: s_2 ~ r_2'
+ [nnf-neg T1 T2 T3 T4]: (~ (not (iff s_1 s_2))
+ (and (or r_1 r_2) (or r_1' r_2')))
+
+
+
+
+ Indicates whether the term is a proof for a Skolemization step
+
+
+ Proof for:
+
+ [sk]: (~ (not (forall x (p x y))) (not (p (sk y) y)))
+ [sk]: (~ (exists x (p x y)) (p (sk y) y))
+
+ This proof object has no antecedents.
+
+
+
+
+ Indicates whether the term is a proof by modus ponens for equi-satisfiability.
+
+
+ Modus ponens style rule for equi-satisfiability.
+ T1: p
+ T2: (~ p q)
+ [mp~ T1 T2]: q
+
+
+
+
+ Indicates whether the term is a proof for theory lemma
+
+
+ Generic proof for theory lemmas.
+
+ The theory lemma function comes with one or more parameters.
+ The first parameter indicates the name of the theory.
+ For the theory of arithmetic, additional parameters provide hints for
+ checking the theory lemma.
+ The hints for arithmetic are:
+ - farkas - followed by rational coefficients. Multiply the coefficients to the
+ inequalities in the lemma, add the (negated) inequalities and obtain a contradiction.
+ - triangle-eq - Indicates a lemma related to the equivalence:
+ (iff (= t1 t2) (and (<= t1 t2) (<= t2 t1)))
+ - gcd-test - Indicates an integer linear arithmetic lemma that uses a gcd test.
+
+
+
+
+ Indicates whether the term is of relation sort.
+
+
+
+
+ Indicates whether the term is an relation store
+
+
+ Insert a record into a relation.
+ The function takes n+1 arguments, where the first argument is the relation and the remaining n elements
+ correspond to the n columns of the relation.
+
+
+
+
+ Indicates whether the term is an empty relation
+
+
+
+
+ Indicates whether the term is a test for the emptiness of a relation
+
+
+
+
+ Indicates whether the term is a relational join
+
+
+
+
+ Indicates whether the term is the union or convex hull of two relations.
+
+ The function takes two arguments.
+
+
+
+ Indicates whether the term is the widening of two relations
+
+ The function takes two arguments.
+
+
+
+ Indicates whether the term is a projection of columns (provided as numbers in the parameters).
+
+ The function takes one argument.
+
+
+
+ Indicates whether the term is a relation filter
+
+
+ Filter (restrict) a relation with respect to a predicate.
+ The first argument is a relation.
+ The second argument is a predicate with free de-Bruijn indices
+ corresponding to the columns of the relation.
+ So the first column in the relation has index 0.
+
+
+
+
+ Indicates whether the term is an intersection of a relation with the negation of another.
+
+
+ Intersect the first relation with respect to negation
+ of the second relation (the function takes two arguments).
+ Logically, the specification can be described by a function
+
+ target = filter_by_negation(pos, neg, columns)
+
+ where columns are pairs c1, d1, .., cN, dN of columns from pos and neg, such that
+ target are elements in x in pos, such that there is no y in neg that agrees with
+ x on the columns c1, d1, .., cN, dN.
+
+
+
+
+ Indicates whether the term is the renaming of a column in a relation
+
+
+ The function takes one argument.
+ The parameters contain the renaming as a cycle.
+
+
+
+
+ Indicates whether the term is the complement of a relation
+
+
+
+
+ Indicates whether the term is a relational select
+
+
+ Check if a record is an element of the relation.
+ The function takes n+1 arguments, where the first argument is a relation,
+ and the remaining n arguments correspond to a record.
+
+
+
+
+ Indicates whether the term is a relational clone (copy)
+
+
+ Create a fresh copy (clone) of a relation.
+ The function is logically the identity, but
+ in the context of a register machine allows
+ for terms of kind
+ to perform destructive updates to the first argument.
+
+
+
+
+ Indicates whether the term is of an array sort.
+
+
+
+
+ Indicates whether the term is a less than predicate over a finite domain.
+
+
+
+
+ Indicates whether the terms is of floating-point sort.
+
+
+
+
+ Indicates whether the terms is of floating-point rounding mode sort.
+
+
+
+
+ Indicates whether the term is a floating-point numeral
+
+
+
+
+ Indicates whether the term is a floating-point rounding mode numeral
+
+
+
+
+ Indicates whether the term is the floating-point rounding numeral roundNearestTiesToEven
+
+
+
+
+ Indicates whether the term is the floating-point rounding numeral roundNearestTiesToAway
+
+
+
+
+ Indicates whether the term is the floating-point rounding numeral roundTowardNegative
+
+
+
+
+ Indicates whether the term is the floating-point rounding numeral roundTowardPositive
+
+
+
+
+ Indicates whether the term is the floating-point rounding numeral roundTowardZero
+
+
+
+
+ Indicates whether the term is the floating-point rounding numeral roundNearestTiesToEven
+
+
+
+
+ Indicates whether the term is the floating-point rounding numeral roundNearestTiesToAway
+
+
+
+
+ Indicates whether the term is the floating-point rounding numeral roundTowardNegative
+
+
+
+
+ Indicates whether the term is the floating-point rounding numeral roundTowardPositive
+
+
+
+
+ Indicates whether the term is the floating-point rounding numeral roundTowardZero
+
+
+
+
+ Indicates whether the term is a floating-point rounding mode numeral
+
+
+
+
+ Indicates whether the term is a floating-point +oo
+
+
+
+
+ Indicates whether the term is a floating-point -oo
+
+
+
+
+ Indicates whether the term is a floating-point NaN
+
+
+
+
+ Indicates whether the term is a floating-point +zero
+
+
+
+
+ Indicates whether the term is a floating-point -zero
+
+
+
+
+ Indicates whether the term is a floating-point addition term
+
+
+
+
+ Indicates whether the term is a floating-point subtraction term
+
+
+
+
+ Indicates whether the term is a floating-point negation term
+
+
+
+
+ Indicates whether the term is a floating-point multiplication term
+
+
+
+
+ Indicates whether the term is a floating-point division term
+
+
+
+
+ Indicates whether the term is a floating-point remainder term
+
+
+
+
+ Indicates whether the term is a floating-point term absolute value term
+
+
+
+
+ Indicates whether the term is a floating-point minimum term
+
+
+
+
+ Indicates whether the term is a floating-point maximum term
+
+
+
+
+ Indicates whether the term is a floating-point fused multiply-add term
+
+
+
+
+ Indicates whether the term is a floating-point square root term
+
+
+
+
+ Indicates whether the term is a floating-point roundToIntegral term
+
+
+
+
+ Indicates whether the term is a floating-point equality term
+
+
+
+
+ Indicates whether the term is a floating-point less-than term
+
+
+
+
+ Indicates whether the term is a floating-point greater-than term
+
+
+
+
+ Indicates whether the term is a floating-point less-than or equal term
+
+
+
+
+ Indicates whether the term is a floating-point greater-than or equal term
+
+
+
+
+ Indicates whether the term is a floating-point isNaN predicate term
+
+
+
+
+ Indicates whether the term is a floating-point isInf predicate term
+
+
+
+
+ Indicates whether the term is a floating-point isZero predicate term
+
+
+
+
+ Indicates whether the term is a floating-point isNormal term
+
+
+
+
+ Indicates whether the term is a floating-point isSubnormal predicate term
+
+
+
+
+ Indicates whether the term is a floating-point isNegative predicate term
+
+
+
+
+ Indicates whether the term is a floating-point isPositive predicate term
+
+
+
+
+ Indicates whether the term is a floating-point constructor term
+
+
+
+
+ Indicates whether the term is a floating-point conversion term
+
+
+
+
+ Indicates whether the term is a floating-point conversion from unsigned bit-vector term
+
+
+
+
+ Indicates whether the term is a floating-point conversion to unsigned bit-vector term
+
+
+
+
+ Indicates whether the term is a floating-point conversion to signed bit-vector term
+
+
+
+
+ Indicates whether the term is a floating-point conversion to real term
+
+
+
+
+ Indicates whether the term is a floating-point conversion to IEEE-754 bit-vector term
+
+
+
+
+ The de-Bruijn index of a bound variable.
+
+
+ Bound variables are indexed by de-Bruijn indices. It is perhaps easiest to explain
+ the meaning of de-Bruijn indices by indicating the compilation process from
+ non-de-Bruijn formulas to de-Bruijn format.
+
+ abs(forall (x1) phi) = forall (x1) abs1(phi, x1, 0)
+ abs(forall (x1, x2) phi) = abs(forall (x1) abs(forall (x2) phi))
+ abs1(x, x, n) = b_n
+ abs1(y, x, n) = y
+ abs1(f(t1,...,tn), x, n) = f(abs1(t1,x,n), ..., abs1(tn,x,n))
+ abs1(forall (x1) phi, x, n) = forall (x1) (abs1(phi, x, n+1))
+
+ The last line is significant: the index of a bound variable is different depending
+ on the scope in which it appears. The deeper x appears, the higher is its
+ index.
+
+
+
+
+ Constructor for Expr
+
+
+
+
+ Finite-domain expressions
+
+
+
+ Constructor for DatatypeExpr
+
+
+
+ Finite-domain numerals
+
+
+
+
+ Retrieve the 64-bit unsigned integer value.
+
+
+
+
+ Retrieve the int value.
+
+
+
+
+ Retrieve the 64-bit int value.
+
+
+
+
+ Retrieve the int value.
+
+
+
+
+ Retrieve the BigInteger value.
+
+
+
+
+ Returns a string representation of the numeral.
+
+
+
+
+ Finite domain sorts.
+
+
+
+
+ The size of the finite domain sort.
+
+
+
+
+ Object for managing fixedpoints
+
+
+
+
+ A string that describes all available fixedpoint solver parameters.
+
+
+
+
+ Sets the fixedpoint solver parameters.
+
+
+
+
+ Retrieves parameter descriptions for Fixedpoint solver.
+
+
+
+
+ Assert a constraint (or multiple) into the fixedpoint solver.
+
+
+
+
+ Alias for Assert.
+
+
+
+
+ Register predicate as recursive relation.
+
+
+
+
+ Add rule into the fixedpoint solver.
+
+
+
+
+ Add table fact to the fixedpoint solver.
+
+
+
+
+ Query the fixedpoint solver.
+ A query is a conjunction of constraints. The constraints may include the recursively defined relations.
+ The query is satisfiable if there is an instance of the query variables and a derivation for it.
+ The query is unsatisfiable if there are no derivations satisfying the query variables.
+
+
+
+
+ Query the fixedpoint solver.
+ A query is an array of relations.
+ The query is satisfiable if there is an instance of some relation that is non-empty.
+ The query is unsatisfiable if there are no derivations satisfying any of the relations.
+
+
+
+
+ Update named rule into in the fixedpoint solver.
+
+
+
+
+ Retrieve satisfying instance or instances of solver,
+ or definitions for the recursive predicates that show unsatisfiability.
+
+
+
+
+ Retrieve explanation why fixedpoint engine returned status Unknown.
+
+
+
+
+ Retrieve the number of levels explored for a given predicate.
+
+
+
+
+ Retrieve the cover of a predicate.
+
+
+
+
+ Add property about the predicate.
+ The property is added at level.
+
+
+
+
+ Retrieve internal string representation of fixedpoint object.
+
+
+
+
+ Instrument the Datalog engine on which table representation to use for recursive predicate.
+
+
+
+
+ Convert benchmark given as set of axioms, rules and queries to a string.
+
+
+
+
+ Retrieve set of rules added to fixedpoint context.
+
+
+
+
+ Retrieve set of assertions added to fixedpoint context.
+
+
+
+
+ Fixedpoint statistics.
+
+
+
+
+ Parse an SMT-LIB2 file with fixedpoint rules.
+ Add the rules to the current fixedpoint context.
+ Return the set of queries in the file.
+
+
+
+
+ Similar to ParseFile. Instead it takes as argument a string.
+
+
+
+
+ FloatingPoint Expressions
+
+
+
+
+ The number of exponent bits.
+
+
+
+
+ The number of significand bits.
+
+
+
+ Constructor for FPExpr
+
+
+
+ FloatiungPoint Numerals
+
+
+
+
+ The sign of a floating-point numeral as a bit-vector expression
+
+
+ NaN's do not have a bit-vector sign, so they are invalid arguments.
+
+
+
+
+ Retrieves the sign of a floating-point literal
+
+
+ Remarks: returns true if the numeral is negative
+
+
+
+
+ The significand value of a floating-point numeral as a string
+
+
+ The significand s is always 0 < s < 2.0; the resulting string is long
+ enough to represent the real significand precisely.
+
+
+
+
+ The significand value of a floating-point numeral as a UInt64
+
+
+ This function extracts the significand bits, without the
+ hidden bit or normalization. Throws an exception if the
+ significand does not fit into a UInt64.
+
+
+
+
+ The significand of a floating-point numeral as a bit-vector expression
+
+
+ +oo, -oo and NaN's do not have a bit-vector significand, so they are invalid arguments.
+
+
+
+
+ Return the (biased) exponent value of a floating-point numeral as a string
+
+
+
+
+ Return the exponent value of a floating-point numeral as a signed 64-bit integer
+
+
+
+
+ The exponent of a floating-point numeral as a bit-vector expression
+
+
+ +oo, -oo and NaN's do not have a bit-vector exponent, so they are invalid arguments.
+
+
+
+
+ Indicates whether the numeral is a NaN.
+
+
+
+
+ Indicates whether the numeral is a +oo or -oo.
+
+
+
+
+ Indicates whether the numeral is +zero or -zero.
+
+
+
+
+ Indicates whether the numeral is normal.
+
+
+
+
+ Indicates whether the numeral is subnormal.
+
+
+
+
+ Indicates whether the numeral is positive.
+
+
+
+
+ Indicates whether the numeral is negative.
+
+
+
+
+ Returns a string representation of the numeral.
+
+
+
+
+ FloatingPoint RoundingMode Expressions
+
+
+
+ Constructor for FPRMExpr
+
+
+
+ Floating-point rounding mode numerals
+
+
+
+
+ Indicates whether the term is the floating-point rounding numeral roundNearestTiesToEven
+
+
+
+
+ Indicates whether the term is the floating-point rounding numeral roundNearestTiesToEven
+
+
+
+
+ Indicates whether the term is the floating-point rounding numeral roundNearestTiesToAway
+
+
+
+
+ Indicates whether the term is the floating-point rounding numeral roundNearestTiesToAway
+
+
+
+
+ Indicates whether the term is the floating-point rounding numeral roundTowardPositive
+
+
+
+
+ Indicates whether the term is the floating-point rounding numeral roundTowardPositive
+
+
+
+
+ Indicates whether the term is the floating-point rounding numeral roundTowardNegative
+
+
+
+
+ Indicates whether the term is the floating-point rounding numeral roundTowardNegative
+
+
+
+
+ Indicates whether the term is the floating-point rounding numeral roundTowardZero
+
+
+
+
+ Indicates whether the term is the floating-point rounding numeral roundTowardZero
+
+
+
+
+ Returns a string representation of the numeral.
+
+
+
+ Constructor for FPRMNum
+
+
+
+ The FloatingPoint RoundingMode sort
+
+
+
+
+ FloatingPoint sort
+
+
+
+
+ The number of exponent bits.
+
+
+
+
+ The number of significand bits.
+
+
+
+
+ Function declarations.
+
+
+
+
+ Comparison operator.
+
+ True if and share the same context and are equal, false otherwise.
+
+
+
+ Comparison operator.
+
+ True if and do not share the same context or are not equal, false otherwise.
+
+
+
+ Object comparison.
+
+
+
+
+ A hash code.
+
+
+
+
+ A string representations of the function declaration.
+
+
+
+
+ Returns a unique identifier for the function declaration.
+
+
+
+
+ The arity of the function declaration
+
+
+
+
+ The size of the domain of the function declaration
+
+
+
+
+
+ The domain of the function declaration
+
+
+
+
+ The range of the function declaration
+
+
+
+
+ The kind of the function declaration.
+
+
+
+
+ The name of the function declaration
+
+
+
+
+ The number of parameters of the function declaration
+
+
+
+
+ The parameters of the function declaration
+
+
+
+
+ Function declarations can have Parameters associated with them.
+
+
+
+ The int value of the parameter.
+
+
+ The double value of the parameter.
+
+
+ The Symbol value of the parameter.
+
+
+ The Sort value of the parameter.
+
+
+ The AST value of the parameter.
+
+
+ The FunctionDeclaration value of the parameter.
+
+
+ The rational string value of the parameter.
+
+
+
+ The kind of the parameter.
+
+
+
+
+ Translates (copies) the function declaration to the Context .
+
+ A context
+ A copy of the function declaration which is associated with
+
+
+
+ Create expression that applies function to arguments.
+
+
+
+
+
+
+ Create expression that applies function to arguments.
+
+
+
+
+
+
+ A function interpretation is represented as a finite map and an 'else' value.
+ Each entry in the finite map represents the value of a function given a set of arguments.
+
+
+
+
+ An Entry object represents an element in the finite map used to encode
+ a function interpretation.
+
+
+
+
+ Return the (symbolic) value of this entry.
+
+
+
+
+ The number of arguments of the entry.
+
+
+
+
+ The arguments of the function entry.
+
+
+
+
+ A string representation of the function entry.
+
+
+
+
+ The number of entries in the function interpretation.
+
+
+
+
+ The entries in the function interpretation
+
+
+
+
+ The (symbolic) `else' value of the function interpretation.
+
+
+
+
+ The arity of the function interpretation
+
+
+
+
+ A string representation of the function interpretation.
+
+
+
+
+ Global functions for Z3.
+
+
+ This (static) class contains functions that effect the behaviour of Z3
+ globally across contexts, etc.
+
+
+
+
+ Set a global (or module) parameter, which is shared by all Z3 contexts.
+
+
+ When a Z3 module is initialized it will use the value of these parameters
+ when Z3_params objects are not provided.
+ The name of parameter can be composed of characters [a-z][A-Z], digits [0-9], '-' and '_'.
+ The character '.' is a delimiter (more later).
+ The parameter names are case-insensitive. The character '-' should be viewed as an "alias" for '_'.
+ Thus, the following parameter names are considered equivalent: "pp.decimal-precision" and "PP.DECIMAL_PRECISION".
+ This function can be used to set parameters for a specific Z3 module.
+ This can be done by using [module-name].[parameter-name].
+ For example:
+ Z3_global_param_set('pp.decimal', 'true')
+ will set the parameter "decimal" in the module "pp" to true.
+
+
+
+
+ Get a global (or module) parameter.
+
+
+ Returns null if the parameter does not exist.
+ The caller must invoke #Z3_global_param_del_value to delete the value returned at \c param_value.
+ This function cannot be invoked simultaneously from different threads without synchronization.
+ The result string stored in param_value is stored in a shared location.
+
+
+
+
+ Restore the value of all global (and module) parameters.
+
+
+ This command will not affect already created objects (such as tactics and solvers)
+
+
+
+
+
+ Enable/disable printing of warning messages to the console.
+
+ Note that this function is static and effects the behaviour of
+ all contexts globally.
+
+
+
+ Enable tracing messages tagged as `tag' when Z3 is compiled in debug mode.
+
+
+ It is a NOOP otherwise.
+
+ trace tag
+
+
+
+ Disable tracing messages tagged as `tag' when Z3 is compiled in debug mode.
+
+
+ It is a NOOP otherwise.
+
+ trace tag
+
+
+
+ A goal (aka problem). A goal is essentially a set
+ of formulas, that can be solved and/or transformed using
+ tactics and solvers.
+
+
+
+
+ The precision of the goal.
+
+
+ Goals can be transformed using over and under approximations.
+ An under approximation is applied when the objective is to find a model for a given goal.
+ An over approximation is applied when the objective is to find a proof for a given goal.
+
+
+
+
+ Indicates whether the goal is precise.
+
+
+
+
+ Indicates whether the goal is an under-approximation.
+
+
+
+
+ Indicates whether the goal is an over-approximation.
+
+
+
+
+ Indicates whether the goal is garbage (i.e., the product of over- and under-approximations).
+
+
+
+
+ Adds the to the given goal.
+
+
+
+
+ Alias for Assert.
+
+
+
+
+ Indicates whether the goal contains `false'.
+
+
+
+
+ The depth of the goal.
+
+
+ This tracks how many transformations were applied to it.
+
+
+
+
+ Erases all formulas from the given goal.
+
+
+
+
+ The number of formulas in the goal.
+
+
+
+
+ The formulas in the goal.
+
+
+
+
+ The number of formulas, subformulas and terms in the goal.
+
+
+
+
+ Indicates whether the goal is empty, and it is precise or the product of an under approximation.
+
+
+
+
+ Indicates whether the goal contains `false', and it is precise or the product of an over approximation.
+
+
+
+
+ Convert a model for the goal into a model of the
+ original goal from which this goal was derived.
+
+ A model for g
+
+
+
+ Translates (copies) the Goal to the target Context .
+
+
+
+
+ Simplifies the goal.
+
+ Essentially invokes the `simplify' tactic on the goal.
+
+
+
+ Goal to string conversion.
+
+ A string representation of the Goal.
+
+
+
+ Goal to DIMACS formatted string conversion.
+
+ A string representation of the Goal.
+
+
+
+ Goal to BoolExpr conversion.
+
+ A string representation of the Goal.
+
+
+
+ DecRefQueue interface
+
+
+
+
+ Sets the limit on numbers of objects that are kept back at GC collection.
+
+
+
+
+
+ Int expressions
+
+
+
+ Constructor for IntExpr
+
+
+
+ Integer Numerals
+
+
+
+
+ Retrieve the 64-bit unsigned integer value.
+
+
+
+
+ Retrieve the int value.
+
+
+
+
+ Retrieve the 64-bit int value.
+
+
+
+
+ Retrieve the int value.
+
+
+
+
+ Retrieve the BigInteger value.
+
+
+
+
+ Returns a string representation of the numeral.
+
+
+
+
+ An Integer sort
+
+
+
+
+ Numbered symbols
+
+
+
+
+ The int value of the symbol.
+
+ Throws an exception if the symbol is not of int kind.
+
+
+
+ Lambda expressions.
+
+
+
+
+ The number of bound variables.
+
+
+
+
+ The symbols for the bound variables.
+
+
+
+
+ The sorts of the bound variables.
+
+
+
+
+ The body of the lambda.
+
+
+
+
+ Translates (copies) the lambda to the Context .
+
+ A context
+ A copy of the lambda which is associated with
+
+
+
+ List sorts.
+
+
+
+
+ The declaration of the nil function of this list sort.
+
+
+
+
+ The empty list.
+
+
+
+
+ The declaration of the isNil function of this list sort.
+
+
+
+
+ The declaration of the cons function of this list sort.
+
+
+
+
+ The declaration of the isCons function of this list sort.
+
+
+
+
+
+ The declaration of the head function of this list sort.
+
+
+
+
+ The declaration of the tail function of this list sort.
+
+
+
+
+ Interaction logging for Z3.
+
+
+ Note that this is a global, static log and if multiple Context
+ objects are created, it logs the interaction with all of them.
+
+
+
+
+ Open an interaction log file.
+
+ the name of the file to open
+ True if opening the log file succeeds, false otherwise.
+
+
+
+ Closes the interaction log.
+
+
+
+
+ Appends the user-provided string to the interaction log.
+
+
+
+
+ Checks whether the interaction log is opened.
+
+ True if the interaction log is open, false otherwise.
+
+
+
+ A Model contains interpretations (assignments) of constants and functions.
+
+
+
+
+ Retrieves the interpretation (the assignment) of in the model.
+
+ A Constant
+ An expression if the constant has an interpretation in the model, null otherwise.
+
+
+
+ Retrieves the interpretation (the assignment) of in the model.
+
+ A function declaration of zero arity
+ An expression if the function has an interpretation in the model, null otherwise.
+
+
+
+ Retrieves the interpretation (the assignment) of a non-constant in the model.
+
+ A function declaration of non-zero arity
+ A FunctionInterpretation if the function has an interpretation in the model, null otherwise.
+
+
+
+ The number of constants that have an interpretation in the model.
+
+
+
+
+ The function declarations of the constants in the model.
+
+
+
+
+ Enumerate constants in model.
+
+
+
+
+ The number of function interpretations in the model.
+
+
+
+
+ The function declarations of the function interpretations in the model.
+
+
+
+
+ All symbols that have an interpretation in the model.
+
+
+
+
+ A ModelEvaluationFailedException is thrown when an expression cannot be evaluated by the model.
+
+
+
+
+ An exception that is thrown when model evaluation fails.
+
+
+
+
+ Evaluates the expression in the current model.
+
+
+ This function may fail if contains quantifiers,
+ is partial (MODEL_PARTIAL enabled), or if is not well-sorted.
+ In this case a ModelEvaluationFailedException is thrown.
+
+ An expression
+
+ When this flag is enabled, a model value will be assigned to any constant
+ or function that does not have an interpretation in the model.
+
+ The evaluation of in the model.
+
+
+
+ Alias for Eval.
+
+
+
+
+ Evaluate expression to a double, assuming it is a numeral already.
+
+
+
+
+ The number of uninterpreted sorts that the model has an interpretation for.
+
+
+
+
+ The uninterpreted sorts that the model has an interpretation for.
+
+
+ Z3 also provides an interpretation for uninterpreted sorts used in a formula.
+ The interpretation for a sort is a finite set of distinct values. We say this finite set is
+ the "universe" of the sort.
+
+
+
+
+
+
+ The finite set of distinct values that represent the interpretation for sort .
+
+
+ An uninterpreted sort
+ An array of expressions, where each is an element of the universe of
+
+
+
+ Conversion of models to strings.
+
+ A string representation of the model.
+
+
+
+ Object for managing optimization context
+
+
+
+
+ A string that describes all available optimize solver parameters.
+
+
+
+
+ Sets the optimize solver parameters.
+
+
+
+
+ Sets parameter on the optimize solver
+
+
+
+
+ Sets parameter on the optimize solver
+
+
+
+
+ Sets parameter on the optimize solver
+
+
+
+
+ Sets parameter on the optimize solver
+
+
+
+
+ Sets parameter on the optimize solver
+
+
+
+
+ Sets parameter on the optimize solver
+
+
+
+
+ Sets parameter on the optimize solver
+
+
+
+
+ Sets parameter on the optimize solver
+
+
+
+
+ Sets parameter on the optimize solver
+
+
+
+
+ Sets parameter on the optimize solver
+
+
+
+
+ Retrieves parameter descriptions for Optimize solver.
+
+
+
+
+ Assert a constraint (or multiple) into the optimize solver.
+
+
+
+
+ Assert a constraint (or multiple) into the optimize solver.
+
+
+
+
+ Alias for Assert.
+
+
+
+
+ Alias for Assert.
+
+
+
+
+ Assert a constraint (or multiple) into the optimize solver.
+
+
+
+
+ Handle to objectives returned by objective functions.
+
+
+
+
+ Retrieve a lower bound for the objective handle.
+
+
+
+
+ Retrieve an upper bound for the objective handle.
+
+
+
+
+ Retrieve the value of an objective.
+
+
+
+
+ Retrieve a lower bound for the objective handle.
+
+
+
+
+ Retrieve an upper bound for the objective handle.
+
+
+
+
+ Assert soft constraint
+
+
+ Return an objective which associates with the group of constraints.
+
+
+
+
+ Check satisfiability of asserted constraints.
+ Produce a model that (when the objectives are bounded and
+ don't use strict inequalities) meets the objectives.
+
+
+
+
+
+ Creates a backtracking point.
+
+
+
+
+
+ Backtrack one backtracking point.
+
+ Note that an exception is thrown if Pop is called without a corresponding Push
+
+
+
+
+ The model of the last Check.
+
+
+ The result is null if Check was not invoked before,
+ if its results was not SATISFIABLE, or if model production is not enabled.
+
+
+
+
+ The unsat core of the last Check.
+
+
+ The unsat core is a subset of assumptions
+ The result is empty if Check was not invoked before,
+ if its results was not UNSATISFIABLE, or if core production is disabled.
+
+
+
+
+ Declare an arithmetical maximization objective.
+ Return a handle to the objective. The handle is used as
+ to retrieve the values of objectives after calling Check.
+ The expression can be either an arithmetical expression or bit-vector.
+
+
+
+
+ Declare an arithmetical minimization objective.
+ Similar to MkMaximize.
+
+
+
+
+ Retrieve a lower bound for the objective handle.
+
+
+
+
+ Retrieve an upper bound for the objective handle.
+
+
+
+
+ Retrieve a lower bound for the objective handle.
+
+
+
+
+ Retrieve an upper bound for the objective handle.
+
+
+
+
+ Return a string the describes why the last to check returned unknown
+
+
+
+
+ Print the context to a string (SMT-LIB parseable benchmark).
+
+
+
+
+ Parse an SMT-LIB2 file with optimization objectives and constraints.
+ The parsed constraints and objectives are added to the optimization context.
+
+
+
+
+ Similar to FromFile. Instead it takes as argument a string.
+
+
+
+
+ The set of asserted formulas.
+
+
+
+
+ The set of asserted formulas.
+
+
+
+
+ Optimize statistics.
+
+
+
+
+ A ParamDescrs describes a set of parameters.
+
+
+
+
+ validate a set of parameters.
+
+
+
+
+ Retrieve kind of parameter.
+
+
+
+
+ Retrieve documentation of parameter.
+
+
+
+
+ Retrieve all names of parameters.
+
+
+
+
+ The size of the ParamDescrs.
+
+
+
+
+ Retrieves a string representation of the ParamDescrs.
+
+
+
+
+ A Params objects represents a configuration in the form of Symbol/value pairs.
+
+
+
+
+ Adds a parameter setting.
+
+
+
+
+ Adds a parameter setting.
+
+
+
+
+ Adds a parameter setting.
+
+
+
+
+ Adds a parameter setting.
+
+
+
+
+ Adds a parameter setting.
+
+
+
+
+ Adds a parameter setting.
+
+
+
+
+ Adds a parameter setting.
+
+
+
+
+ Adds a parameter setting.
+
+
+
+
+ Adds a parameter setting.
+
+
+
+
+ Adds a parameter setting.
+
+
+
+
+ A string representation of the parameter set.
+
+
+
+
+ Patterns comprise a list of terms. The list should be
+ non-empty. If the list comprises of more than one term, it is
+ also called a multi-pattern.
+
+
+
+
+ The number of terms in the pattern.
+
+
+
+
+ The terms in the pattern.
+
+
+
+
+ A string representation of the pattern.
+
+
+
+
+ Probes are used to inspect a goal (aka problem) and collect information that may be used to decide
+ which solver and/or preprocessing step will be used.
+ The complete list of probes may be obtained using the procedures Context.NumProbes
+ and Context.ProbeNames.
+ It may also be obtained using the command (help-tactic) in the SMT 2.0 front-end.
+
+
+
+
+ Execute the probe over the goal.
+
+ A probe always produce a double value.
+ "Boolean" probes return 0.0 for false, and a value different from 0.0 for true.
+
+
+
+ Apply the probe to a goal.
+
+
+
+
+ Quantifier expressions.
+
+
+
+
+ Indicates whether the quantifier is universal.
+
+
+
+
+ Indicates whether the quantifier is existential.
+
+
+
+
+ The weight of the quantifier.
+
+
+
+
+ The number of patterns.
+
+
+
+
+ The patterns.
+
+
+
+
+ The number of no-patterns.
+
+
+
+
+ The no-patterns.
+
+
+
+
+ The number of bound variables.
+
+
+
+
+ The symbols for the bound variables.
+
+
+
+
+ The sorts of the bound variables.
+
+
+
+
+ The body of the quantifier.
+
+
+
+
+ Translates (copies) the quantifier to the Context .
+
+ A context
+ A copy of the quantifier which is associated with
+
+
+
+ Rational Numerals
+
+
+
+
+ The numerator of a rational numeral.
+
+
+
+
+ The denominator of a rational numeral.
+
+
+
+
+ Converts the numerator of the rational to a BigInteger
+
+
+
+
+ Converts the denominator of the rational to a BigInteger
+
+
+
+
+ Returns a string representation in decimal notation.
+
+ The result has at most decimal places.
+
+
+
+ Returns a double representing the value.
+
+
+
+
+ Returns a string representation of the numeral.
+
+
+
+
+ Real expressions
+
+
+
+ Constructor for RealExpr
+
+
+
+ A real sort
+
+
+
+
+ Regular expression expressions
+
+
+
+ Constructor for ReExpr
+
+
+
+ Relation sorts.
+
+
+
+
+ The arity of the relation sort.
+
+
+
+
+ The sorts of the columns of the relation sort.
+
+
+
+
+ A regular expression sort
+
+
+
+
+ Sequence expressions
+
+
+
+ Constructor for SeqExpr
+
+
+ Access the nth element of a sequence
+
+
+
+ A Sequence sort
+
+
+
+
+ Set sorts.
+
+
+
+
+ Solvers.
+
+
+
+
+ A string that describes all available solver parameters.
+
+
+
+
+ Sets the solver parameters.
+
+
+
+
+ Sets parameter on the solver
+
+
+
+
+ Sets parameter on the solver
+
+
+
+
+ Sets parameter on the solver
+
+
+
+
+ Sets parameter on the solver
+
+
+
+
+ Sets parameter on the solver
+
+
+
+
+ Sets parameter on the solver
+
+
+
+
+ Sets parameter on the solver
+
+
+
+
+ Sets parameter on the solver
+
+
+
+
+ Sets parameter on the solver
+
+
+
+
+ Sets parameter on the solver
+
+
+
+
+ Retrieves parameter descriptions for solver.
+
+
+
+
+ The current number of backtracking points (scopes).
+
+
+
+
+
+
+ Creates a backtracking point.
+
+
+
+
+
+ Backtracks backtracking points.
+
+ Note that an exception is thrown if is not smaller than NumScopes
+
+
+
+
+ Resets the Solver.
+
+ This removes all assertions from the solver.
+
+
+
+ Assert a constraint (or multiple) into the solver.
+
+
+
+
+ Alias for Assert.
+
+
+
+
+ Alias for Assert.
+
+
+
+
+ Assert multiple constraints into the solver, and track them (in the unsat) core
+ using the Boolean constants in ps.
+
+
+ This API is an alternative to with assumptions for extracting unsat cores.
+ Both APIs can be used in the same solver. The unsat core will contain a combination
+ of the Boolean variables provided using
+ and the Boolean literals
+ provided using with assumptions.
+
+
+
+
+ Assert a constraint into the solver, and track it (in the unsat) core
+ using the Boolean constant p.
+
+
+ This API is an alternative to with assumptions for extracting unsat cores.
+ Both APIs can be used in the same solver. The unsat core will contain a combination
+ of the Boolean variables provided using
+ and the Boolean literals
+ provided using with assumptions.
+
+
+
+
+ Load solver assertions from a file.
+
+
+
+
+ Load solver assertions from a string.
+
+
+
+
+ The number of assertions in the solver.
+
+
+
+
+ The set of asserted formulas.
+
+
+
+
+ Currently inferred units.
+
+
+
+
+ Checks whether the assertions in the solver are consistent or not.
+
+
+
+
+
+
+
+
+
+ Checks whether the assertions in the solver are consistent or not.
+
+
+
+
+
+
+
+
+
+ Retrieve fixed assignments to the set of variables in the form of consequences.
+ Each consequence is an implication of the form
+
+ relevant-assumptions Implies variable = value
+
+ where the relevant assumptions is a subset of the assumptions that are passed in
+ and the equality on the right side of the implication indicates how a variable
+ is fixed.
+
+
+
+
+
+
+
+
+
+ The model of the last Check(params Expr[] assumptions).
+
+
+ The result is null if Check(params Expr[] assumptions) was not invoked before,
+ if its results was not SATISFIABLE, or if model production is not enabled.
+
+
+
+
+ The proof of the last Check(params Expr[] assumptions).
+
+
+ The result is null if Check(params Expr[] assumptions) was not invoked before,
+ if its results was not UNSATISFIABLE, or if proof production is disabled.
+
+
+
+
+ The unsat core of the last Check.
+
+
+ The unsat core is a subset of Assertions
+ The result is empty if Check was not invoked before,
+ if its results was not UNSATISFIABLE, or if core production is disabled.
+
+
+
+
+ A brief justification of why the last call to Check returned UNKNOWN.
+
+
+
+
+ Backtrack level that can be adjusted by conquer process
+
+
+
+
+ Variables available and returned by the cuber.
+
+
+
+
+ Return a set of cubes.
+
+
+
+
+ Create a clone of the current solver with respect to ctx.
+
+
+
+
+ Import model converter from other solver.
+
+
+
+
+ Solver statistics.
+
+
+
+
+ A string representation of the solver.
+
+
+
+
+ The Sort class implements type information for ASTs.
+
+
+
+
+ Comparison operator.
+
+ A Sort
+ A Sort
+ True if and are from the same context
+ and represent the same sort; false otherwise.
+
+
+
+ Comparison operator.
+
+ A Sort
+ A Sort
+ True if and are not from the same context
+ or represent different sorts; false otherwise.
+
+
+
+ Equality operator for objects of type Sort.
+
+
+
+
+
+
+ Hash code generation for Sorts
+
+ A hash code
+
+
+
+ Returns a unique identifier for the sort.
+
+
+
+
+ The kind of the sort.
+
+
+
+
+ The name of the sort
+
+
+
+
+ A string representation of the sort.
+
+
+
+
+ Translates (copies) the sort to the Context .
+
+ A context
+ A copy of the sort which is associated with
+
+
+
+ Sort constructor
+
+
+
+
+ Objects of this class track statistical information about solvers.
+
+
+
+
+ Statistical data is organized into pairs of [Key, Entry], where every
+ Entry is either a DoubleEntry or a UIntEntry
+
+
+
+
+ The key of the entry.
+
+
+
+
+ The uint-value of the entry.
+
+
+
+
+ The double-value of the entry.
+
+
+
+
+ True if the entry is uint-valued.
+
+
+
+
+ True if the entry is double-valued.
+
+
+
+
+ The string representation of the entry's value.
+
+
+
+
+ The string representation of the Entry.
+
+
+
+
+ A string representation of the statistical data.
+
+
+
+
+ The number of statistical data.
+
+
+
+
+ The data entries.
+
+
+
+
+ The statistical counters.
+
+
+
+
+ The value of a particular statistical counter.
+
+ Returns null if the key is unknown.
+
+
+
+ Status values.
+
+
+
+
+ Used to signify an unsatisfiable status.
+
+
+
+
+ Used to signify an unknown status.
+
+
+
+
+ Used to signify a satisfiable status.
+
+
+
+
+ Named symbols
+
+
+
+
+ The string value of the symbol.
+
+ Throws an exception if the symbol is not of string kind.
+
+
+
+ Symbols are used to name several term and type constructors.
+
+
+
+
+ The kind of the symbol (int or string)
+
+
+
+
+ Indicates whether the symbol is of Int kind
+
+
+
+
+ Indicates whether the symbol is of string kind.
+
+
+
+
+ A string representation of the symbol.
+
+
+
+
+ Equality overloading.
+
+
+
+
+ Equality overloading.
+
+
+
+
+ Object comparison.
+
+
+
+
+ The Symbols's hash code.
+
+ A hash code
+
+
+
+ Symbol constructor
+
+
+
+
+ Tactics are the basic building block for creating custom solvers for specific problem domains.
+ The complete list of tactics may be obtained using Context.NumTactics
+ and Context.TacticNames.
+ It may also be obtained using the command (help-tactic) in the SMT 2.0 front-end.
+
+
+
+
+ A string containing a description of parameters accepted by the tactic.
+
+
+
+
+ Retrieves parameter descriptions for Tactics.
+
+
+
+
+ Execute the tactic over the goal.
+
+
+
+
+ Apply the tactic to a goal.
+
+
+
+
+ Creates a solver that is implemented using the given tactic.
+
+
+
+
+
+ DecRefQueue
+
+
+
+
+ Tuple sorts.
+
+
+
+
+ The constructor function of the tuple.
+
+
+
+
+ The number of fields in the tuple.
+
+
+
+
+ The field declarations.
+
+
+
+
+ Uninterpreted Sorts
+
+
+
+
+ Version information.
+
+ Note that this class is static.
+
+
+
+ The major version
+
+
+
+
+ The minor version
+
+
+
+
+ The build version
+
+
+
+
+ The revision
+
+
+
+
+ A full version string
+
+
+
+
+ A string representation of the version information.
+
+
+
+
+ The exception base class for error reporting from Z3
+
+
+
+
+ Constructor.
+
+
+
+
+ Constructor.
+
+
+
+
+ Constructor.
+
+
+
+
+ Internal base class for interfacing with native Z3 objects.
+ Should not be used externally.
+
+
+
+
+ Finalizer.
+
+
+
+
+ Disposes of the underlying native Z3 object.
+
+
+
+ Z3_lbool
+
+
+ Z3_symbol_kind
+
+
+ Z3_parameter_kind
+
+
+ Z3_sort_kind
+
+
+ Z3_ast_kind
+
+
+ Z3_decl_kind
+
+
+ Z3_param_kind
+
+
+ Z3_ast_print_mode
+
+
+ Z3_error_code
+
+
+ Z3_goal_prec
+
+
+
diff --git a/z3-4.8.9-x64-ubuntu-16.04/bin/com.microsoft.z3.jar b/z3-4.8.9-x64-ubuntu-16.04/bin/com.microsoft.z3.jar
new file mode 100644
index 0000000..7485082
Binary files /dev/null and b/z3-4.8.9-x64-ubuntu-16.04/bin/com.microsoft.z3.jar differ
diff --git a/z3-ubuntu-14.04-bin/libz3.a b/z3-4.8.9-x64-ubuntu-16.04/bin/libz3.a
similarity index 73%
rename from z3-ubuntu-14.04-bin/libz3.a
rename to z3-4.8.9-x64-ubuntu-16.04/bin/libz3.a
index 03252b8..01c0c4c 100644
Binary files a/z3-ubuntu-14.04-bin/libz3.a and b/z3-4.8.9-x64-ubuntu-16.04/bin/libz3.a differ
diff --git a/z3-ubuntu-14.04-bin/libz3.so b/z3-4.8.9-x64-ubuntu-16.04/bin/libz3.so
similarity index 63%
rename from z3-ubuntu-14.04-bin/libz3.so
rename to z3-4.8.9-x64-ubuntu-16.04/bin/libz3.so
index 6c8e8bd..d441708 100755
Binary files a/z3-ubuntu-14.04-bin/libz3.so and b/z3-4.8.9-x64-ubuntu-16.04/bin/libz3.so differ
diff --git a/z3-4.8.9-x64-ubuntu-16.04/bin/libz3java.so b/z3-4.8.9-x64-ubuntu-16.04/bin/libz3java.so
new file mode 100755
index 0000000..02151a4
Binary files /dev/null and b/z3-4.8.9-x64-ubuntu-16.04/bin/libz3java.so differ
diff --git a/z3-4.8.9-x64-ubuntu-16.04/bin/python/example.py b/z3-4.8.9-x64-ubuntu-16.04/bin/python/example.py
new file mode 100644
index 0000000..b93ed6a
--- /dev/null
+++ b/z3-4.8.9-x64-ubuntu-16.04/bin/python/example.py
@@ -0,0 +1,36 @@
+# Copyright (c) Microsoft Corporation 2015, 2016
+
+# The Z3 Python API requires libz3.dll/.so/.dylib in the
+# PATH/LD_LIBRARY_PATH/DYLD_LIBRARY_PATH
+# environment variable and the PYTHONPATH environment variable
+# needs to point to the `python' directory that contains `z3/z3.py'
+# (which is at bin/python in our binary releases).
+
+# If you obtained example.py as part of our binary release zip files,
+# which you unzipped into a directory called `MYZ3', then follow these
+# instructions to run the example:
+
+# Running this example on Windows:
+# set PATH=%PATH%;MYZ3\bin
+# set PYTHONPATH=MYZ3\bin\python
+# python example.py
+
+# Running this example on Linux:
+# export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:MYZ3/bin
+# export PYTHONPATH=MYZ3/bin/python
+# python example.py
+
+# Running this example on macOS:
+# export DYLD_LIBRARY_PATH=$DYLD_LIBRARY_PATH:MYZ3/bin
+# export PYTHONPATH=MYZ3/bin/python
+# python example.py
+
+
+from z3 import *
+
+x = Real('x')
+y = Real('y')
+s = Solver()
+s.add(x + y > 5, x > 1, y > 1)
+print(s.check())
+print(s.model())
diff --git a/z3-4.8.9-x64-ubuntu-16.04/bin/python/z3/__init__.py b/z3-4.8.9-x64-ubuntu-16.04/bin/python/z3/__init__.py
new file mode 100644
index 0000000..f7aa29a
--- /dev/null
+++ b/z3-4.8.9-x64-ubuntu-16.04/bin/python/z3/__init__.py
@@ -0,0 +1,12 @@
+from .z3 import *
+
+from . import z3num
+from . import z3poly
+from . import z3printer
+from . import z3rcf
+from . import z3types
+from . import z3util
+
+# generated files
+from . import z3core
+from . import z3consts
diff --git a/z3-4.8.9-x64-ubuntu-16.04/bin/python/z3/__init__.pyc b/z3-4.8.9-x64-ubuntu-16.04/bin/python/z3/__init__.pyc
new file mode 100644
index 0000000..790b6fa
Binary files /dev/null and b/z3-4.8.9-x64-ubuntu-16.04/bin/python/z3/__init__.pyc differ
diff --git a/z3-4.8.9-x64-ubuntu-16.04/bin/python/z3/z3.py b/z3-4.8.9-x64-ubuntu-16.04/bin/python/z3/z3.py
new file mode 100644
index 0000000..2e2de4e
--- /dev/null
+++ b/z3-4.8.9-x64-ubuntu-16.04/bin/python/z3/z3.py
@@ -0,0 +1,10690 @@
+############################################
+# Copyright (c) 2012 Microsoft Corporation
+#
+# Z3 Python interface
+#
+# Author: Leonardo de Moura (leonardo)
+############################################
+
+"""Z3 is a high performance theorem prover developed at Microsoft Research. Z3 is used in many applications such as: software/hardware verification and testing, constraint solving, analysis of hybrid systems, security, biology (in silico analysis), and geometrical problems.
+
+Several online tutorials for Z3Py are available at:
+http://rise4fun.com/Z3Py/tutorial/guide
+
+Please send feedback, comments and/or corrections on the Issue tracker for https://github.com/Z3prover/z3.git. Your comments are very valuable.
+
+Small example:
+
+>>> x = Int('x')
+>>> y = Int('y')
+>>> s = Solver()
+>>> s.add(x > 0)
+>>> s.add(x < 2)
+>>> s.add(y == x + 1)
+>>> s.check()
+sat
+>>> m = s.model()
+>>> m[x]
+1
+>>> m[y]
+2
+
+Z3 exceptions:
+
+>>> try:
+... x = BitVec('x', 32)
+... y = Bool('y')
+... # the expression x + y is type incorrect
+... n = x + y
+... except Z3Exception as ex:
+... print("failed: %s" % ex)
+failed: sort mismatch
+"""
+from . import z3core
+from .z3core import *
+from .z3types import *
+from .z3consts import *
+from .z3printer import *
+from fractions import Fraction
+import sys
+import io
+import math
+import copy
+
+Z3_DEBUG = __debug__
+
+def z3_debug():
+ global Z3_DEBUG
+ return Z3_DEBUG
+
+if sys.version < '3':
+ def _is_int(v):
+ return isinstance(v, (int, long))
+else:
+ def _is_int(v):
+ return isinstance(v, int)
+
+def enable_trace(msg):
+ Z3_enable_trace(msg)
+
+def disable_trace(msg):
+ Z3_disable_trace(msg)
+
+def get_version_string():
+ major = ctypes.c_uint(0)
+ minor = ctypes.c_uint(0)
+ build = ctypes.c_uint(0)
+ rev = ctypes.c_uint(0)
+ Z3_get_version(major, minor, build, rev)
+ return "%s.%s.%s" % (major.value, minor.value, build.value)
+
+def get_version():
+ major = ctypes.c_uint(0)
+ minor = ctypes.c_uint(0)
+ build = ctypes.c_uint(0)
+ rev = ctypes.c_uint(0)
+ Z3_get_version(major, minor, build, rev)
+ return (major.value, minor.value, build.value, rev.value)
+
+def get_full_version():
+ return Z3_get_full_version()
+
+# We use _z3_assert instead of the assert command because we want to
+# produce nice error messages in Z3Py at rise4fun.com
+def _z3_assert(cond, msg):
+ if not cond:
+ raise Z3Exception(msg)
+
+def _z3_check_cint_overflow(n, name):
+ _z3_assert(ctypes.c_int(n).value == n, name + " is too large")
+
+def open_log(fname):
+ """Log interaction to a file. This function must be invoked immediately after init(). """
+ Z3_open_log(fname)
+
+def append_log(s):
+ """Append user-defined string to interaction log. """
+ Z3_append_log(s)
+
+def to_symbol(s, ctx=None):
+ """Convert an integer or string into a Z3 symbol."""
+ if _is_int(s):
+ return Z3_mk_int_symbol(_get_ctx(ctx).ref(), s)
+ else:
+ return Z3_mk_string_symbol(_get_ctx(ctx).ref(), s)
+
+def _symbol2py(ctx, s):
+ """Convert a Z3 symbol back into a Python object. """
+ if Z3_get_symbol_kind(ctx.ref(), s) == Z3_INT_SYMBOL:
+ return "k!%s" % Z3_get_symbol_int(ctx.ref(), s)
+ else:
+ return Z3_get_symbol_string(ctx.ref(), s)
+
+# Hack for having nary functions that can receive one argument that is the
+# list of arguments.
+# Use this when function takes a single list of arguments
+def _get_args(args):
+ try:
+ if len(args) == 1 and (isinstance(args[0], tuple) or isinstance(args[0], list)):
+ return args[0]
+ elif len(args) == 1 and (isinstance(args[0], set) or isinstance(args[0], AstVector)):
+ return [arg for arg in args[0]]
+ else:
+ return args
+ except: # len is not necessarily defined when args is not a sequence (use reflection?)
+ return args
+
+# Use this when function takes multiple arguments
+def _get_args_ast_list(args):
+ try:
+ if isinstance(args, set) or isinstance(args, AstVector) or isinstance(args, tuple):
+ return [arg for arg in args]
+ else:
+ return args
+ except:
+ return args
+
+def _to_param_value(val):
+ if isinstance(val, bool):
+ if val == True:
+ return "true"
+ else:
+ return "false"
+ else:
+ return str(val)
+
+def z3_error_handler(c, e):
+ # Do nothing error handler, just avoid exit(0)
+ # The wrappers in z3core.py will raise a Z3Exception if an error is detected
+ return
+
+class Context:
+ """A Context manages all other Z3 objects, global configuration options, etc.
+
+ Z3Py uses a default global context. For most applications this is sufficient.
+ An application may use multiple Z3 contexts. Objects created in one context
+ cannot be used in another one. However, several objects may be "translated" from
+ one context to another. It is not safe to access Z3 objects from multiple threads.
+ The only exception is the method `interrupt()` that can be used to interrupt() a long
+ computation.
+ The initialization method receives global configuration options for the new context.
+ """
+ def __init__(self, *args, **kws):
+ if z3_debug():
+ _z3_assert(len(args) % 2 == 0, "Argument list must have an even number of elements.")
+ conf = Z3_mk_config()
+ for key in kws:
+ value = kws[key]
+ Z3_set_param_value(conf, str(key).upper(), _to_param_value(value))
+ prev = None
+ for a in args:
+ if prev is None:
+ prev = a
+ else:
+ Z3_set_param_value(conf, str(prev), _to_param_value(a))
+ prev = None
+ self.ctx = Z3_mk_context_rc(conf)
+ self.eh = Z3_set_error_handler(self.ctx, z3_error_handler)
+ Z3_set_ast_print_mode(self.ctx, Z3_PRINT_SMTLIB2_COMPLIANT)
+ Z3_del_config(conf)
+
+ def __del__(self):
+ Z3_del_context(self.ctx)
+ self.ctx = None
+ self.eh = None
+
+ def ref(self):
+ """Return a reference to the actual C pointer to the Z3 context."""
+ return self.ctx
+
+ def interrupt(self):
+ """Interrupt a solver performing a satisfiability test, a tactic processing a goal, or simplify functions.
+
+ This method can be invoked from a thread different from the one executing the
+ interruptible procedure.
+ """
+ Z3_interrupt(self.ref())
+
+
+# Global Z3 context
+_main_ctx = None
+def main_ctx():
+ """Return a reference to the global Z3 context.
+
+ >>> x = Real('x')
+ >>> x.ctx == main_ctx()
+ True
+ >>> c = Context()
+ >>> c == main_ctx()
+ False
+ >>> x2 = Real('x', c)
+ >>> x2.ctx == c
+ True
+ >>> eq(x, x2)
+ False
+ """
+ global _main_ctx
+ if _main_ctx is None:
+ _main_ctx = Context()
+ return _main_ctx
+
+def _get_ctx(ctx):
+ if ctx is None:
+ return main_ctx()
+ else:
+ return ctx
+
+def get_ctx(ctx):
+ return _get_ctx(ctx)
+
+def set_param(*args, **kws):
+ """Set Z3 global (or module) parameters.
+
+ >>> set_param(precision=10)
+ """
+ if z3_debug():
+ _z3_assert(len(args) % 2 == 0, "Argument list must have an even number of elements.")
+ new_kws = {}
+ for k in kws:
+ v = kws[k]
+ if not set_pp_option(k, v):
+ new_kws[k] = v
+ for key in new_kws:
+ value = new_kws[key]
+ Z3_global_param_set(str(key).upper(), _to_param_value(value))
+ prev = None
+ for a in args:
+ if prev is None:
+ prev = a
+ else:
+ Z3_global_param_set(str(prev), _to_param_value(a))
+ prev = None
+
+def reset_params():
+ """Reset all global (or module) parameters.
+ """
+ Z3_global_param_reset_all()
+
+def set_option(*args, **kws):
+ """Alias for 'set_param' for backward compatibility.
+ """
+ return set_param(*args, **kws)
+
+def get_param(name):
+ """Return the value of a Z3 global (or module) parameter
+
+ >>> get_param('nlsat.reorder')
+ 'true'
+ """
+ ptr = (ctypes.c_char_p * 1)()
+ if Z3_global_param_get(str(name), ptr):
+ r = z3core._to_pystr(ptr[0])
+ return r
+ raise Z3Exception("failed to retrieve value for '%s'" % name)
+
+#########################################
+#
+# ASTs base class
+#
+#########################################
+
+# Mark objects that use pretty printer
+class Z3PPObject:
+ """Superclass for all Z3 objects that have support for pretty printing."""
+ def use_pp(self):
+ return True
+
+ def _repr_html_(self):
+ in_html = in_html_mode()
+ set_html_mode(True)
+ res = repr(self)
+ set_html_mode(in_html)
+ return res
+
+
+class AstRef(Z3PPObject):
+ """AST are Direct Acyclic Graphs (DAGs) used to represent sorts, declarations and expressions."""
+ def __init__(self, ast, ctx=None):
+ self.ast = ast
+ self.ctx = _get_ctx(ctx)
+ Z3_inc_ref(self.ctx.ref(), self.as_ast())
+
+ def __del__(self):
+ if self.ctx.ref() is not None and self.ast is not None:
+ Z3_dec_ref(self.ctx.ref(), self.as_ast())
+ self.ast = None
+
+ def __deepcopy__(self, memo={}):
+ return _to_ast_ref(self.ast, self.ctx)
+
+ def __str__(self):
+ return obj_to_string(self)
+
+ def __repr__(self):
+ return obj_to_string(self)
+
+ def __eq__(self, other):
+ return self.eq(other)
+
+ def __hash__(self):
+ return self.hash()
+
+ def __nonzero__(self):
+ return self.__bool__()
+
+ def __bool__(self):
+ if is_true(self):
+ return True
+ elif is_false(self):
+ return False
+ elif is_eq(self) and self.num_args() == 2:
+ return self.arg(0).eq(self.arg(1))
+ else:
+ raise Z3Exception("Symbolic expressions cannot be cast to concrete Boolean values.")
+
+ def sexpr(self):
+ """Return a string representing the AST node in s-expression notation.
+
+ >>> x = Int('x')
+ >>> ((x + 1)*x).sexpr()
+ '(* (+ x 1) x)'
+ """
+ return Z3_ast_to_string(self.ctx_ref(), self.as_ast())
+
+ def as_ast(self):
+ """Return a pointer to the corresponding C Z3_ast object."""
+ return self.ast
+
+ def get_id(self):
+ """Return unique identifier for object. It can be used for hash-tables and maps."""
+ return Z3_get_ast_id(self.ctx_ref(), self.as_ast())
+
+ def ctx_ref(self):
+ """Return a reference to the C context where this AST node is stored."""
+ return self.ctx.ref()
+
+ def eq(self, other):
+ """Return `True` if `self` and `other` are structurally identical.
+
+ >>> x = Int('x')
+ >>> n1 = x + 1
+ >>> n2 = 1 + x
+ >>> n1.eq(n2)
+ False
+ >>> n1 = simplify(n1)
+ >>> n2 = simplify(n2)
+ >>> n1.eq(n2)
+ True
+ """
+ if z3_debug():
+ _z3_assert(is_ast(other), "Z3 AST expected")
+ return Z3_is_eq_ast(self.ctx_ref(), self.as_ast(), other.as_ast())
+
+ def translate(self, target):
+ """Translate `self` to the context `target`. That is, return a copy of `self` in the context `target`.
+
+ >>> c1 = Context()
+ >>> c2 = Context()
+ >>> x = Int('x', c1)
+ >>> y = Int('y', c2)
+ >>> # Nodes in different contexts can't be mixed.
+ >>> # However, we can translate nodes from one context to another.
+ >>> x.translate(c2) + y
+ x + y
+ """
+ if z3_debug():
+ _z3_assert(isinstance(target, Context), "argument must be a Z3 context")
+ return _to_ast_ref(Z3_translate(self.ctx.ref(), self.as_ast(), target.ref()), target)
+
+ def __copy__(self):
+ return self.translate(self.ctx)
+
+ def hash(self):
+ """Return a hashcode for the `self`.
+
+ >>> n1 = simplify(Int('x') + 1)
+ >>> n2 = simplify(2 + Int('x') - 1)
+ >>> n1.hash() == n2.hash()
+ True
+ """
+ return Z3_get_ast_hash(self.ctx_ref(), self.as_ast())
+
+def is_ast(a):
+ """Return `True` if `a` is an AST node.
+
+ >>> is_ast(10)
+ False
+ >>> is_ast(IntVal(10))
+ True
+ >>> is_ast(Int('x'))
+ True
+ >>> is_ast(BoolSort())
+ True
+ >>> is_ast(Function('f', IntSort(), IntSort()))
+ True
+ >>> is_ast("x")
+ False
+ >>> is_ast(Solver())
+ False
+ """
+ return isinstance(a, AstRef)
+
+def eq(a, b):
+ """Return `True` if `a` and `b` are structurally identical AST nodes.
+
+ >>> x = Int('x')
+ >>> y = Int('y')
+ >>> eq(x, y)
+ False
+ >>> eq(x + 1, x + 1)
+ True
+ >>> eq(x + 1, 1 + x)
+ False
+ >>> eq(simplify(x + 1), simplify(1 + x))
+ True
+ """
+ if z3_debug():
+ _z3_assert(is_ast(a) and is_ast(b), "Z3 ASTs expected")
+ return a.eq(b)
+
+def _ast_kind(ctx, a):
+ if is_ast(a):
+ a = a.as_ast()
+ return Z3_get_ast_kind(ctx.ref(), a)
+
+def _ctx_from_ast_arg_list(args, default_ctx=None):
+ ctx = None
+ for a in args:
+ if is_ast(a) or is_probe(a):
+ if ctx is None:
+ ctx = a.ctx
+ else:
+ if z3_debug():
+ _z3_assert(ctx == a.ctx, "Context mismatch")
+ if ctx is None:
+ ctx = default_ctx
+ return ctx
+
+def _ctx_from_ast_args(*args):
+ return _ctx_from_ast_arg_list(args)
+
+def _to_func_decl_array(args):
+ sz = len(args)
+ _args = (FuncDecl * sz)()
+ for i in range(sz):
+ _args[i] = args[i].as_func_decl()
+ return _args, sz
+
+def _to_ast_array(args):
+ sz = len(args)
+ _args = (Ast * sz)()
+ for i in range(sz):
+ _args[i] = args[i].as_ast()
+ return _args, sz
+
+def _to_ref_array(ref, args):
+ sz = len(args)
+ _args = (ref * sz)()
+ for i in range(sz):
+ _args[i] = args[i].as_ast()
+ return _args, sz
+
+def _to_ast_ref(a, ctx):
+ k = _ast_kind(ctx, a)
+ if k == Z3_SORT_AST:
+ return _to_sort_ref(a, ctx)
+ elif k == Z3_FUNC_DECL_AST:
+ return _to_func_decl_ref(a, ctx)
+ else:
+ return _to_expr_ref(a, ctx)
+
+
+#########################################
+#
+# Sorts
+#
+#########################################
+
+def _sort_kind(ctx, s):
+ return Z3_get_sort_kind(ctx.ref(), s)
+
+class SortRef(AstRef):
+ """A Sort is essentially a type. Every Z3 expression has a sort. A sort is an AST node."""
+ def as_ast(self):
+ return Z3_sort_to_ast(self.ctx_ref(), self.ast)
+
+ def get_id(self):
+ return Z3_get_ast_id(self.ctx_ref(), self.as_ast())
+
+ def kind(self):
+ """Return the Z3 internal kind of a sort. This method can be used to test if `self` is one of the Z3 builtin sorts.
+
+ >>> b = BoolSort()
+ >>> b.kind() == Z3_BOOL_SORT
+ True
+ >>> b.kind() == Z3_INT_SORT
+ False
+ >>> A = ArraySort(IntSort(), IntSort())
+ >>> A.kind() == Z3_ARRAY_SORT
+ True
+ >>> A.kind() == Z3_INT_SORT
+ False
+ """
+ return _sort_kind(self.ctx, self.ast)
+
+ def subsort(self, other):
+ """Return `True` if `self` is a subsort of `other`.
+
+ >>> IntSort().subsort(RealSort())
+ True
+ """
+ return False
+
+ def cast(self, val):
+ """Try to cast `val` as an element of sort `self`.
+
+ This method is used in Z3Py to convert Python objects such as integers,
+ floats, longs and strings into Z3 expressions.
+
+ >>> x = Int('x')
+ >>> RealSort().cast(x)
+ ToReal(x)
+ """
+ if z3_debug():
+ _z3_assert(is_expr(val), "Z3 expression expected")
+ _z3_assert(self.eq(val.sort()), "Sort mismatch")
+ return val
+
+ def name(self):
+ """Return the name (string) of sort `self`.
+
+ >>> BoolSort().name()
+ 'Bool'
+ >>> ArraySort(IntSort(), IntSort()).name()
+ 'Array'
+ """
+ return _symbol2py(self.ctx, Z3_get_sort_name(self.ctx_ref(), self.ast))
+
+ def __eq__(self, other):
+ """Return `True` if `self` and `other` are the same Z3 sort.
+
+ >>> p = Bool('p')
+ >>> p.sort() == BoolSort()
+ True
+ >>> p.sort() == IntSort()
+ False
+ """
+ if other is None:
+ return False
+ return Z3_is_eq_sort(self.ctx_ref(), self.ast, other.ast)
+
+ def __ne__(self, other):
+ """Return `True` if `self` and `other` are not the same Z3 sort.
+
+ >>> p = Bool('p')
+ >>> p.sort() != BoolSort()
+ False
+ >>> p.sort() != IntSort()
+ True
+ """
+ return not Z3_is_eq_sort(self.ctx_ref(), self.ast, other.ast)
+
+ def __hash__(self):
+ """ Hash code. """
+ return AstRef.__hash__(self)
+
+def is_sort(s):
+ """Return `True` if `s` is a Z3 sort.
+
+ >>> is_sort(IntSort())
+ True
+ >>> is_sort(Int('x'))
+ False
+ >>> is_expr(Int('x'))
+ True
+ """
+ return isinstance(s, SortRef)
+
+def _to_sort_ref(s, ctx):
+ if z3_debug():
+ _z3_assert(isinstance(s, Sort), "Z3 Sort expected")
+ k = _sort_kind(ctx, s)
+ if k == Z3_BOOL_SORT:
+ return BoolSortRef(s, ctx)
+ elif k == Z3_INT_SORT or k == Z3_REAL_SORT:
+ return ArithSortRef(s, ctx)
+ elif k == Z3_BV_SORT:
+ return BitVecSortRef(s, ctx)
+ elif k == Z3_ARRAY_SORT:
+ return ArraySortRef(s, ctx)
+ elif k == Z3_DATATYPE_SORT:
+ return DatatypeSortRef(s, ctx)
+ elif k == Z3_FINITE_DOMAIN_SORT:
+ return FiniteDomainSortRef(s, ctx)
+ elif k == Z3_FLOATING_POINT_SORT:
+ return FPSortRef(s, ctx)
+ elif k == Z3_ROUNDING_MODE_SORT:
+ return FPRMSortRef(s, ctx)
+ elif k == Z3_RE_SORT:
+ return ReSortRef(s, ctx)
+ elif k == Z3_SEQ_SORT:
+ return SeqSortRef(s, ctx)
+ return SortRef(s, ctx)
+
+def _sort(ctx, a):
+ return _to_sort_ref(Z3_get_sort(ctx.ref(), a), ctx)
+
+def DeclareSort(name, ctx=None):
+ """Create a new uninterpreted sort named `name`.
+
+ If `ctx=None`, then the new sort is declared in the global Z3Py context.
+
+ >>> A = DeclareSort('A')
+ >>> a = Const('a', A)
+ >>> b = Const('b', A)
+ >>> a.sort() == A
+ True
+ >>> b.sort() == A
+ True
+ >>> a == b
+ a == b
+ """
+ ctx = _get_ctx(ctx)
+ return SortRef(Z3_mk_uninterpreted_sort(ctx.ref(), to_symbol(name, ctx)), ctx)
+
+#########################################
+#
+# Function Declarations
+#
+#########################################
+
+class FuncDeclRef(AstRef):
+ """Function declaration. Every constant and function have an associated declaration.
+
+ The declaration assigns a name, a sort (i.e., type), and for function
+ the sort (i.e., type) of each of its arguments. Note that, in Z3,
+ a constant is a function with 0 arguments.
+ """
+ def as_ast(self):
+ return Z3_func_decl_to_ast(self.ctx_ref(), self.ast)
+
+ def get_id(self):
+ return Z3_get_ast_id(self.ctx_ref(), self.as_ast())
+
+ def as_func_decl(self):
+ return self.ast
+
+ def name(self):
+ """Return the name of the function declaration `self`.
+
+ >>> f = Function('f', IntSort(), IntSort())
+ >>> f.name()
+ 'f'
+ >>> isinstance(f.name(), str)
+ True
+ """
+ return _symbol2py(self.ctx, Z3_get_decl_name(self.ctx_ref(), self.ast))
+
+ def arity(self):
+ """Return the number of arguments of a function declaration. If `self` is a constant, then `self.arity()` is 0.
+
+ >>> f = Function('f', IntSort(), RealSort(), BoolSort())
+ >>> f.arity()
+ 2
+ """
+ return int(Z3_get_arity(self.ctx_ref(), self.ast))
+
+ def domain(self, i):
+ """Return the sort of the argument `i` of a function declaration. This method assumes that `0 <= i < self.arity()`.
+
+ >>> f = Function('f', IntSort(), RealSort(), BoolSort())
+ >>> f.domain(0)
+ Int
+ >>> f.domain(1)
+ Real
+ """
+ if z3_debug():
+ _z3_assert(i < self.arity(), "Index out of bounds")
+ return _to_sort_ref(Z3_get_domain(self.ctx_ref(), self.ast, i), self.ctx)
+
+ def range(self):
+ """Return the sort of the range of a function declaration. For constants, this is the sort of the constant.
+
+ >>> f = Function('f', IntSort(), RealSort(), BoolSort())
+ >>> f.range()
+ Bool
+ """
+ return _to_sort_ref(Z3_get_range(self.ctx_ref(), self.ast), self.ctx)
+
+ def kind(self):
+ """Return the internal kind of a function declaration. It can be used to identify Z3 built-in functions such as addition, multiplication, etc.
+
+ >>> x = Int('x')
+ >>> d = (x + 1).decl()
+ >>> d.kind() == Z3_OP_ADD
+ True
+ >>> d.kind() == Z3_OP_MUL
+ False
+ """
+ return Z3_get_decl_kind(self.ctx_ref(), self.ast)
+
+ def params(self):
+ ctx = self.ctx
+ n = Z3_get_decl_num_parameters(self.ctx_ref(), self.ast)
+ result = [ None for i in range(n) ]
+ for i in range(n):
+ k = Z3_get_decl_parameter_kind(self.ctx_ref(), self.ast, i)
+ if k == Z3_PARAMETER_INT:
+ result[i] = Z3_get_decl_int_parameter(self.ctx_ref(), self.ast, i)
+ elif k == Z3_PARAMETER_DOUBLE:
+ result[i] = Z3_get_decl_double_parameter(self.ctx_ref(), self.ast, i)
+ elif k == Z3_PARAMETER_RATIONAL:
+ result[i] = Z3_get_decl_rational_parameter(self.ctx_ref(), self.ast, i)
+ elif k == Z3_PARAMETER_SYMBOL:
+ result[i] = Z3_get_decl_symbol_parameter(self.ctx_ref(), self.ast, i)
+ elif k == Z3_PARAMETER_SORT:
+ result[i] = SortRef(Z3_get_decl_sort_parameter(self.ctx_ref(), self.ast, i), ctx)
+ elif k == Z3_PARAMETER_AST:
+ result[i] = ExprRef(Z3_get_decl_ast_parameter(self.ctx_ref(), self.ast, i), ctx)
+ elif k == Z3_PARAMETER_FUNC_DECL:
+ result[i] = FuncDeclRef(Z3_get_decl_func_decl_parameter(self.ctx_ref(), self.ast, i), ctx)
+ else:
+ assert(False)
+ return result
+
+ def __call__(self, *args):
+ """Create a Z3 application expression using the function `self`, and the given arguments.
+
+ The arguments must be Z3 expressions. This method assumes that
+ the sorts of the elements in `args` match the sorts of the
+ domain. Limited coercion is supported. For example, if
+ args[0] is a Python integer, and the function expects a Z3
+ integer, then the argument is automatically converted into a
+ Z3 integer.
+
+ >>> f = Function('f', IntSort(), RealSort(), BoolSort())
+ >>> x = Int('x')
+ >>> y = Real('y')
+ >>> f(x, y)
+ f(x, y)
+ >>> f(x, x)
+ f(x, ToReal(x))
+ """
+ args = _get_args(args)
+ num = len(args)
+ if z3_debug():
+ _z3_assert(num == self.arity(), "Incorrect number of arguments to %s" % self)
+ _args = (Ast * num)()
+ saved = []
+ for i in range(num):
+ # self.domain(i).cast(args[i]) may create a new Z3 expression,
+ # then we must save in 'saved' to prevent it from being garbage collected.
+ tmp = self.domain(i).cast(args[i])
+ saved.append(tmp)
+ _args[i] = tmp.as_ast()
+ return _to_expr_ref(Z3_mk_app(self.ctx_ref(), self.ast, len(args), _args), self.ctx)
+
+def is_func_decl(a):
+ """Return `True` if `a` is a Z3 function declaration.
+
+ >>> f = Function('f', IntSort(), IntSort())
+ >>> is_func_decl(f)
+ True
+ >>> x = Real('x')
+ >>> is_func_decl(x)
+ False
+ """
+ return isinstance(a, FuncDeclRef)
+
+def Function(name, *sig):
+ """Create a new Z3 uninterpreted function with the given sorts.
+
+ >>> f = Function('f', IntSort(), IntSort())
+ >>> f(f(0))
+ f(f(0))
+ """
+ sig = _get_args(sig)
+ if z3_debug():
+ _z3_assert(len(sig) > 0, "At least two arguments expected")
+ arity = len(sig) - 1
+ rng = sig[arity]
+ if z3_debug():
+ _z3_assert(is_sort(rng), "Z3 sort expected")
+ dom = (Sort * arity)()
+ for i in range(arity):
+ if z3_debug():
+ _z3_assert(is_sort(sig[i]), "Z3 sort expected")
+ dom[i] = sig[i].ast
+ ctx = rng.ctx
+ return FuncDeclRef(Z3_mk_func_decl(ctx.ref(), to_symbol(name, ctx), arity, dom, rng.ast), ctx)
+
+def FreshFunction(*sig):
+ """Create a new fresh Z3 uninterpreted function with the given sorts.
+ """
+ sig = _get_args(sig)
+ if z3_debug():
+ _z3_assert(len(sig) > 0, "At least two arguments expected")
+ arity = len(sig) - 1
+ rng = sig[arity]
+ if z3_debug():
+ _z3_assert(is_sort(rng), "Z3 sort expected")
+ dom = (z3.Sort * arity)()
+ for i in range(arity):
+ if z3_debug():
+ _z3_assert(is_sort(sig[i]), "Z3 sort expected")
+ dom[i] = sig[i].ast
+ ctx = rng.ctx
+ return FuncDeclRef(Z3_mk_fresh_func_decl(ctx.ref(), 'f', arity, dom, rng.ast), ctx)
+
+
+def _to_func_decl_ref(a, ctx):
+ return FuncDeclRef(a, ctx)
+
+def RecFunction(name, *sig):
+ """Create a new Z3 recursive with the given sorts."""
+ sig = _get_args(sig)
+ if z3_debug():
+ _z3_assert(len(sig) > 0, "At least two arguments expected")
+ arity = len(sig) - 1
+ rng = sig[arity]
+ if z3_debug():
+ _z3_assert(is_sort(rng), "Z3 sort expected")
+ dom = (Sort * arity)()
+ for i in range(arity):
+ if z3_debug():
+ _z3_assert(is_sort(sig[i]), "Z3 sort expected")
+ dom[i] = sig[i].ast
+ ctx = rng.ctx
+ return FuncDeclRef(Z3_mk_rec_func_decl(ctx.ref(), to_symbol(name, ctx), arity, dom, rng.ast), ctx)
+
+def RecAddDefinition(f, args, body):
+ """Set the body of a recursive function.
+ Recursive definitions can be simplified if they are applied to ground
+ arguments.
+ >>> ctx = Context()
+ >>> fac = RecFunction('fac', IntSort(ctx), IntSort(ctx))
+ >>> n = Int('n', ctx)
+ >>> RecAddDefinition(fac, n, If(n == 0, 1, n*fac(n-1)))
+ >>> simplify(fac(5))
+ 120
+ >>> s = Solver(ctx=ctx)
+ >>> s.add(fac(n) < 3)
+ >>> s.check()
+ sat
+ >>> s.model().eval(fac(5))
+ 120
+ """
+ if is_app(args):
+ args = [args]
+ ctx = body.ctx
+ args = _get_args(args)
+ n = len(args)
+ _args = (Ast * n)()
+ for i in range(n):
+ _args[i] = args[i].ast
+ Z3_add_rec_def(ctx.ref(), f.ast, n, _args, body.ast)
+
+#########################################
+#
+# Expressions
+#
+#########################################
+
+class ExprRef(AstRef):
+ """Constraints, formulas and terms are expressions in Z3.
+
+ Expressions are ASTs. Every expression has a sort.
+ There are three main kinds of expressions:
+ function applications, quantifiers and bounded variables.
+ A constant is a function application with 0 arguments.
+ For quantifier free problems, all expressions are
+ function applications.
+ """
+ def as_ast(self):
+ return self.ast
+
+ def get_id(self):
+ return Z3_get_ast_id(self.ctx_ref(), self.as_ast())
+
+ def sort(self):
+ """Return the sort of expression `self`.
+
+ >>> x = Int('x')
+ >>> (x + 1).sort()
+ Int
+ >>> y = Real('y')
+ >>> (x + y).sort()
+ Real
+ """
+ return _sort(self.ctx, self.as_ast())
+
+ def sort_kind(self):
+ """Shorthand for `self.sort().kind()`.
+
+ >>> a = Array('a', IntSort(), IntSort())
+ >>> a.sort_kind() == Z3_ARRAY_SORT
+ True
+ >>> a.sort_kind() == Z3_INT_SORT
+ False
+ """
+ return self.sort().kind()
+
+ def __eq__(self, other):
+ """Return a Z3 expression that represents the constraint `self == other`.
+
+ If `other` is `None`, then this method simply returns `False`.
+
+ >>> a = Int('a')
+ >>> b = Int('b')
+ >>> a == b
+ a == b
+ >>> a is None
+ False
+ """
+ if other is None:
+ return False
+ a, b = _coerce_exprs(self, other)
+ return BoolRef(Z3_mk_eq(self.ctx_ref(), a.as_ast(), b.as_ast()), self.ctx)
+
+ def __hash__(self):
+ """ Hash code. """
+ return AstRef.__hash__(self)
+
+ def __ne__(self, other):
+ """Return a Z3 expression that represents the constraint `self != other`.
+
+ If `other` is `None`, then this method simply returns `True`.
+
+ >>> a = Int('a')
+ >>> b = Int('b')
+ >>> a != b
+ a != b
+ >>> a is not None
+ True
+ """
+ if other is None:
+ return True
+ a, b = _coerce_exprs(self, other)
+ _args, sz = _to_ast_array((a, b))
+ return BoolRef(Z3_mk_distinct(self.ctx_ref(), 2, _args), self.ctx)
+
+ def params(self):
+ return self.decl().params()
+
+ def decl(self):
+ """Return the Z3 function declaration associated with a Z3 application.
+
+ >>> f = Function('f', IntSort(), IntSort())
+ >>> a = Int('a')
+ >>> t = f(a)
+ >>> eq(t.decl(), f)
+ True
+ >>> (a + 1).decl()
+ +
+ """
+ if z3_debug():
+ _z3_assert(is_app(self), "Z3 application expected")
+ return FuncDeclRef(Z3_get_app_decl(self.ctx_ref(), self.as_ast()), self.ctx)
+
+ def num_args(self):
+ """Return the number of arguments of a Z3 application.
+
+ >>> a = Int('a')
+ >>> b = Int('b')
+ >>> (a + b).num_args()
+ 2
+ >>> f = Function('f', IntSort(), IntSort(), IntSort(), IntSort())
+ >>> t = f(a, b, 0)
+ >>> t.num_args()
+ 3
+ """
+ if z3_debug():
+ _z3_assert(is_app(self), "Z3 application expected")
+ return int(Z3_get_app_num_args(self.ctx_ref(), self.as_ast()))
+
+ def arg(self, idx):
+ """Return argument `idx` of the application `self`.
+
+ This method assumes that `self` is a function application with at least `idx+1` arguments.
+
+ >>> a = Int('a')
+ >>> b = Int('b')
+ >>> f = Function('f', IntSort(), IntSort(), IntSort(), IntSort())
+ >>> t = f(a, b, 0)
+ >>> t.arg(0)
+ a
+ >>> t.arg(1)
+ b
+ >>> t.arg(2)
+ 0
+ """
+ if z3_debug():
+ _z3_assert(is_app(self), "Z3 application expected")
+ _z3_assert(idx < self.num_args(), "Invalid argument index")
+ return _to_expr_ref(Z3_get_app_arg(self.ctx_ref(), self.as_ast(), idx), self.ctx)
+
+ def children(self):
+ """Return a list containing the children of the given expression
+
+ >>> a = Int('a')
+ >>> b = Int('b')
+ >>> f = Function('f', IntSort(), IntSort(), IntSort(), IntSort())
+ >>> t = f(a, b, 0)
+ >>> t.children()
+ [a, b, 0]
+ """
+ if is_app(self):
+ return [self.arg(i) for i in range(self.num_args())]
+ else:
+ return []
+
+def _to_expr_ref(a, ctx):
+ if isinstance(a, Pattern):
+ return PatternRef(a, ctx)
+ ctx_ref = ctx.ref()
+ k = Z3_get_ast_kind(ctx_ref, a)
+ if k == Z3_QUANTIFIER_AST:
+ return QuantifierRef(a, ctx)
+ sk = Z3_get_sort_kind(ctx_ref, Z3_get_sort(ctx_ref, a))
+ if sk == Z3_BOOL_SORT:
+ return BoolRef(a, ctx)
+ if sk == Z3_INT_SORT:
+ if k == Z3_NUMERAL_AST:
+ return IntNumRef(a, ctx)
+ return ArithRef(a, ctx)
+ if sk == Z3_REAL_SORT:
+ if k == Z3_NUMERAL_AST:
+ return RatNumRef(a, ctx)
+ if _is_algebraic(ctx, a):
+ return AlgebraicNumRef(a, ctx)
+ return ArithRef(a, ctx)
+ if sk == Z3_BV_SORT:
+ if k == Z3_NUMERAL_AST:
+ return BitVecNumRef(a, ctx)
+ else:
+ return BitVecRef(a, ctx)
+ if sk == Z3_ARRAY_SORT:
+ return ArrayRef(a, ctx)
+ if sk == Z3_DATATYPE_SORT:
+ return DatatypeRef(a, ctx)
+ if sk == Z3_FLOATING_POINT_SORT:
+ if k == Z3_APP_AST and _is_numeral(ctx, a):
+ return FPNumRef(a, ctx)
+ else:
+ return FPRef(a, ctx)
+ if sk == Z3_FINITE_DOMAIN_SORT:
+ if k == Z3_NUMERAL_AST:
+ return FiniteDomainNumRef(a, ctx)
+ else:
+ return FiniteDomainRef(a, ctx)
+ if sk == Z3_ROUNDING_MODE_SORT:
+ return FPRMRef(a, ctx)
+ if sk == Z3_SEQ_SORT:
+ return SeqRef(a, ctx)
+ if sk == Z3_RE_SORT:
+ return ReRef(a, ctx)
+ return ExprRef(a, ctx)
+
+def _coerce_expr_merge(s, a):
+ if is_expr(a):
+ s1 = a.sort()
+ if s is None:
+ return s1
+ if s1.eq(s):
+ return s
+ elif s.subsort(s1):
+ return s1
+ elif s1.subsort(s):
+ return s
+ else:
+ if z3_debug():
+ _z3_assert(s1.ctx == s.ctx, "context mismatch")
+ _z3_assert(False, "sort mismatch")
+ else:
+ return s
+
+def _coerce_exprs(a, b, ctx=None):
+ if not is_expr(a) and not is_expr(b):
+ a = _py2expr(a, ctx)
+ b = _py2expr(b, ctx)
+ s = None
+ s = _coerce_expr_merge(s, a)
+ s = _coerce_expr_merge(s, b)
+ a = s.cast(a)
+ b = s.cast(b)
+ return (a, b)
+
+
+def _reduce(f, l, a):
+ r = a
+ for e in l:
+ r = f(r, e)
+ return r
+
+def _coerce_expr_list(alist, ctx=None):
+ has_expr = False
+ for a in alist:
+ if is_expr(a):
+ has_expr = True
+ break
+ if not has_expr:
+ alist = [ _py2expr(a, ctx) for a in alist ]
+ s = _reduce(_coerce_expr_merge, alist, None)
+ return [ s.cast(a) for a in alist ]
+
+def is_expr(a):
+ """Return `True` if `a` is a Z3 expression.
+
+ >>> a = Int('a')
+ >>> is_expr(a)
+ True
+ >>> is_expr(a + 1)
+ True
+ >>> is_expr(IntSort())
+ False
+ >>> is_expr(1)
+ False
+ >>> is_expr(IntVal(1))
+ True
+ >>> x = Int('x')
+ >>> is_expr(ForAll(x, x >= 0))
+ True
+ >>> is_expr(FPVal(1.0))
+ True
+ """
+ return isinstance(a, ExprRef)
+
+def is_app(a):
+ """Return `True` if `a` is a Z3 function application.
+
+ Note that, constants are function applications with 0 arguments.
+
+ >>> a = Int('a')
+ >>> is_app(a)
+ True
+ >>> is_app(a + 1)
+ True
+ >>> is_app(IntSort())
+ False
+ >>> is_app(1)
+ False
+ >>> is_app(IntVal(1))
+ True
+ >>> x = Int('x')
+ >>> is_app(ForAll(x, x >= 0))
+ False
+ """
+ if not isinstance(a, ExprRef):
+ return False
+ k = _ast_kind(a.ctx, a)
+ return k == Z3_NUMERAL_AST or k == Z3_APP_AST
+
+def is_const(a):
+ """Return `True` if `a` is Z3 constant/variable expression.
+
+ >>> a = Int('a')
+ >>> is_const(a)
+ True
+ >>> is_const(a + 1)
+ False
+ >>> is_const(1)
+ False
+ >>> is_const(IntVal(1))
+ True
+ >>> x = Int('x')
+ >>> is_const(ForAll(x, x >= 0))
+ False
+ """
+ return is_app(a) and a.num_args() == 0
+
+def is_var(a):
+ """Return `True` if `a` is variable.
+
+ Z3 uses de-Bruijn indices for representing bound variables in
+ quantifiers.
+
+ >>> x = Int('x')
+ >>> is_var(x)
+ False
+ >>> is_const(x)
+ True
+ >>> f = Function('f', IntSort(), IntSort())
+ >>> # Z3 replaces x with bound variables when ForAll is executed.
+ >>> q = ForAll(x, f(x) == x)
+ >>> b = q.body()
+ >>> b
+ f(Var(0)) == Var(0)
+ >>> b.arg(1)
+ Var(0)
+ >>> is_var(b.arg(1))
+ True
+ """
+ return is_expr(a) and _ast_kind(a.ctx, a) == Z3_VAR_AST
+
+def get_var_index(a):
+ """Return the de-Bruijn index of the Z3 bounded variable `a`.
+
+ >>> x = Int('x')
+ >>> y = Int('y')
+ >>> is_var(x)
+ False
+ >>> is_const(x)
+ True
+ >>> f = Function('f', IntSort(), IntSort(), IntSort())
+ >>> # Z3 replaces x and y with bound variables when ForAll is executed.
+ >>> q = ForAll([x, y], f(x, y) == x + y)
+ >>> q.body()
+ f(Var(1), Var(0)) == Var(1) + Var(0)
+ >>> b = q.body()
+ >>> b.arg(0)
+ f(Var(1), Var(0))
+ >>> v1 = b.arg(0).arg(0)
+ >>> v2 = b.arg(0).arg(1)
+ >>> v1
+ Var(1)
+ >>> v2
+ Var(0)
+ >>> get_var_index(v1)
+ 1
+ >>> get_var_index(v2)
+ 0
+ """
+ if z3_debug():
+ _z3_assert(is_var(a), "Z3 bound variable expected")
+ return int(Z3_get_index_value(a.ctx.ref(), a.as_ast()))
+
+def is_app_of(a, k):
+ """Return `True` if `a` is an application of the given kind `k`.
+
+ >>> x = Int('x')
+ >>> n = x + 1
+ >>> is_app_of(n, Z3_OP_ADD)
+ True
+ >>> is_app_of(n, Z3_OP_MUL)
+ False
+ """
+ return is_app(a) and a.decl().kind() == k
+
+def If(a, b, c, ctx=None):
+ """Create a Z3 if-then-else expression.
+
+ >>> x = Int('x')
+ >>> y = Int('y')
+ >>> max = If(x > y, x, y)
+ >>> max
+ If(x > y, x, y)
+ >>> simplify(max)
+ If(x <= y, y, x)
+ """
+ if isinstance(a, Probe) or isinstance(b, Tactic) or isinstance(c, Tactic):
+ return Cond(a, b, c, ctx)
+ else:
+ ctx = _get_ctx(_ctx_from_ast_arg_list([a, b, c], ctx))
+ s = BoolSort(ctx)
+ a = s.cast(a)
+ b, c = _coerce_exprs(b, c, ctx)
+ if z3_debug():
+ _z3_assert(a.ctx == b.ctx, "Context mismatch")
+ return _to_expr_ref(Z3_mk_ite(ctx.ref(), a.as_ast(), b.as_ast(), c.as_ast()), ctx)
+
+def Distinct(*args):
+ """Create a Z3 distinct expression.
+
+ >>> x = Int('x')
+ >>> y = Int('y')
+ >>> Distinct(x, y)
+ x != y
+ >>> z = Int('z')
+ >>> Distinct(x, y, z)
+ Distinct(x, y, z)
+ >>> simplify(Distinct(x, y, z))
+ Distinct(x, y, z)
+ >>> simplify(Distinct(x, y, z), blast_distinct=True)
+ And(Not(x == y), Not(x == z), Not(y == z))
+ """
+ args = _get_args(args)
+ ctx = _ctx_from_ast_arg_list(args)
+ if z3_debug():
+ _z3_assert(ctx is not None, "At least one of the arguments must be a Z3 expression")
+ args = _coerce_expr_list(args, ctx)
+ _args, sz = _to_ast_array(args)
+ return BoolRef(Z3_mk_distinct(ctx.ref(), sz, _args), ctx)
+
+def _mk_bin(f, a, b):
+ args = (Ast * 2)()
+ if z3_debug():
+ _z3_assert(a.ctx == b.ctx, "Context mismatch")
+ args[0] = a.as_ast()
+ args[1] = b.as_ast()
+ return f(a.ctx.ref(), 2, args)
+
+def Const(name, sort):
+ """Create a constant of the given sort.
+
+ >>> Const('x', IntSort())
+ x
+ """
+ if z3_debug():
+ _z3_assert(isinstance(sort, SortRef), "Z3 sort expected")
+ ctx = sort.ctx
+ return _to_expr_ref(Z3_mk_const(ctx.ref(), to_symbol(name, ctx), sort.ast), ctx)
+
+def Consts(names, sort):
+ """Create several constants of the given sort.
+
+ `names` is a string containing the names of all constants to be created.
+ Blank spaces separate the names of different constants.
+
+ >>> x, y, z = Consts('x y z', IntSort())
+ >>> x + y + z
+ x + y + z
+ """
+ if isinstance(names, str):
+ names = names.split(" ")
+ return [Const(name, sort) for name in names]
+
+def FreshConst(sort, prefix='c'):
+ """Create a fresh constant of a specified sort"""
+ ctx = _get_ctx(sort.ctx)
+ return _to_expr_ref(Z3_mk_fresh_const(ctx.ref(), prefix, sort.ast), ctx)
+
+def Var(idx, s):
+ """Create a Z3 free variable. Free variables are used to create quantified formulas.
+
+ >>> Var(0, IntSort())
+ Var(0)
+ >>> eq(Var(0, IntSort()), Var(0, BoolSort()))
+ False
+ """
+ if z3_debug():
+ _z3_assert(is_sort(s), "Z3 sort expected")
+ return _to_expr_ref(Z3_mk_bound(s.ctx_ref(), idx, s.ast), s.ctx)
+
+def RealVar(idx, ctx=None):
+ """
+ Create a real free variable. Free variables are used to create quantified formulas.
+ They are also used to create polynomials.
+
+ >>> RealVar(0)
+ Var(0)
+ """
+ return Var(idx, RealSort(ctx))
+
+def RealVarVector(n, ctx=None):
+ """
+ Create a list of Real free variables.
+ The variables have ids: 0, 1, ..., n-1
+
+ >>> x0, x1, x2, x3 = RealVarVector(4)
+ >>> x2
+ Var(2)
+ """
+ return [ RealVar(i, ctx) for i in range(n) ]
+
+#########################################
+#
+# Booleans
+#
+#########################################
+
+class BoolSortRef(SortRef):
+ """Boolean sort."""
+ def cast(self, val):
+ """Try to cast `val` as a Boolean.
+
+ >>> x = BoolSort().cast(True)
+ >>> x
+ True
+ >>> is_expr(x)
+ True
+ >>> is_expr(True)
+ False
+ >>> x.sort()
+ Bool
+ """
+ if isinstance(val, bool):
+ return BoolVal(val, self.ctx)
+ if z3_debug():
+ if not is_expr(val):
+ _z3_assert(is_expr(val), "True, False or Z3 Boolean expression expected. Received %s of type %s" % (val, type(val)))
+ if not self.eq(val.sort()):
+ _z3_assert(self.eq(val.sort()), "Value cannot be converted into a Z3 Boolean value")
+ return val
+
+ def subsort(self, other):
+ return isinstance(other, ArithSortRef)
+
+ def is_int(self):
+ return True
+
+ def is_bool(self):
+ return True
+
+
+class BoolRef(ExprRef):
+ """All Boolean expressions are instances of this class."""
+ def sort(self):
+ return BoolSortRef(Z3_get_sort(self.ctx_ref(), self.as_ast()), self.ctx)
+
+ def __rmul__(self, other):
+ return self * other
+
+ def __mul__(self, other):
+ """Create the Z3 expression `self * other`.
+ """
+ if other == 1:
+ return self
+ if other == 0:
+ return 0
+ return If(self, other, 0)
+
+
+def is_bool(a):
+ """Return `True` if `a` is a Z3 Boolean expression.
+
+ >>> p = Bool('p')
+ >>> is_bool(p)
+ True
+ >>> q = Bool('q')
+ >>> is_bool(And(p, q))
+ True
+ >>> x = Real('x')
+ >>> is_bool(x)
+ False
+ >>> is_bool(x == 0)
+ True
+ """
+ return isinstance(a, BoolRef)
+
+def is_true(a):
+ """Return `True` if `a` is the Z3 true expression.
+
+ >>> p = Bool('p')
+ >>> is_true(p)
+ False
+ >>> is_true(simplify(p == p))
+ True
+ >>> x = Real('x')
+ >>> is_true(x == 0)
+ False
+ >>> # True is a Python Boolean expression
+ >>> is_true(True)
+ False
+ """
+ return is_app_of(a, Z3_OP_TRUE)
+
+def is_false(a):
+ """Return `True` if `a` is the Z3 false expression.
+
+ >>> p = Bool('p')
+ >>> is_false(p)
+ False
+ >>> is_false(False)
+ False
+ >>> is_false(BoolVal(False))
+ True
+ """
+ return is_app_of(a, Z3_OP_FALSE)
+
+def is_and(a):
+ """Return `True` if `a` is a Z3 and expression.
+
+ >>> p, q = Bools('p q')
+ >>> is_and(And(p, q))
+ True
+ >>> is_and(Or(p, q))
+ False
+ """
+ return is_app_of(a, Z3_OP_AND)
+
+def is_or(a):
+ """Return `True` if `a` is a Z3 or expression.
+
+ >>> p, q = Bools('p q')
+ >>> is_or(Or(p, q))
+ True
+ >>> is_or(And(p, q))
+ False
+ """
+ return is_app_of(a, Z3_OP_OR)
+
+def is_implies(a):
+ """Return `True` if `a` is a Z3 implication expression.
+
+ >>> p, q = Bools('p q')
+ >>> is_implies(Implies(p, q))
+ True
+ >>> is_implies(And(p, q))
+ False
+ """
+ return is_app_of(a, Z3_OP_IMPLIES)
+
+def is_not(a):
+ """Return `True` if `a` is a Z3 not expression.
+
+ >>> p = Bool('p')
+ >>> is_not(p)
+ False
+ >>> is_not(Not(p))
+ True
+ """
+ return is_app_of(a, Z3_OP_NOT)
+
+def is_eq(a):
+ """Return `True` if `a` is a Z3 equality expression.
+
+ >>> x, y = Ints('x y')
+ >>> is_eq(x == y)
+ True
+ """
+ return is_app_of(a, Z3_OP_EQ)
+
+def is_distinct(a):
+ """Return `True` if `a` is a Z3 distinct expression.
+
+ >>> x, y, z = Ints('x y z')
+ >>> is_distinct(x == y)
+ False
+ >>> is_distinct(Distinct(x, y, z))
+ True
+ """
+ return is_app_of(a, Z3_OP_DISTINCT)
+
+def BoolSort(ctx=None):
+ """Return the Boolean Z3 sort. If `ctx=None`, then the global context is used.
+
+ >>> BoolSort()
+ Bool
+ >>> p = Const('p', BoolSort())
+ >>> is_bool(p)
+ True
+ >>> r = Function('r', IntSort(), IntSort(), BoolSort())
+ >>> r(0, 1)
+ r(0, 1)
+ >>> is_bool(r(0, 1))
+ True
+ """
+ ctx = _get_ctx(ctx)
+ return BoolSortRef(Z3_mk_bool_sort(ctx.ref()), ctx)
+
+def BoolVal(val, ctx=None):
+ """Return the Boolean value `True` or `False`. If `ctx=None`, then the global context is used.
+
+ >>> BoolVal(True)
+ True
+ >>> is_true(BoolVal(True))
+ True
+ >>> is_true(True)
+ False
+ >>> is_false(BoolVal(False))
+ True
+ """
+ ctx = _get_ctx(ctx)
+ if val == False:
+ return BoolRef(Z3_mk_false(ctx.ref()), ctx)
+ else:
+ return BoolRef(Z3_mk_true(ctx.ref()), ctx)
+
+def Bool(name, ctx=None):
+ """Return a Boolean constant named `name`. If `ctx=None`, then the global context is used.
+
+ >>> p = Bool('p')
+ >>> q = Bool('q')
+ >>> And(p, q)
+ And(p, q)
+ """
+ ctx = _get_ctx(ctx)
+ return BoolRef(Z3_mk_const(ctx.ref(), to_symbol(name, ctx), BoolSort(ctx).ast), ctx)
+
+def Bools(names, ctx=None):
+ """Return a tuple of Boolean constants.
+
+ `names` is a single string containing all names separated by blank spaces.
+ If `ctx=None`, then the global context is used.
+
+ >>> p, q, r = Bools('p q r')
+ >>> And(p, Or(q, r))
+ And(p, Or(q, r))
+ """
+ ctx = _get_ctx(ctx)
+ if isinstance(names, str):
+ names = names.split(" ")
+ return [Bool(name, ctx) for name in names]
+
+def BoolVector(prefix, sz, ctx=None):
+ """Return a list of Boolean constants of size `sz`.
+
+ The constants are named using the given prefix.
+ If `ctx=None`, then the global context is used.
+
+ >>> P = BoolVector('p', 3)
+ >>> P
+ [p__0, p__1, p__2]
+ >>> And(P)
+ And(p__0, p__1, p__2)
+ """
+ return [ Bool('%s__%s' % (prefix, i)) for i in range(sz) ]
+
+def FreshBool(prefix='b', ctx=None):
+ """Return a fresh Boolean constant in the given context using the given prefix.
+
+ If `ctx=None`, then the global context is used.
+
+ >>> b1 = FreshBool()
+ >>> b2 = FreshBool()
+ >>> eq(b1, b2)
+ False
+ """
+ ctx = _get_ctx(ctx)
+ return BoolRef(Z3_mk_fresh_const(ctx.ref(), prefix, BoolSort(ctx).ast), ctx)
+
+def Implies(a, b, ctx=None):
+ """Create a Z3 implies expression.
+
+ >>> p, q = Bools('p q')
+ >>> Implies(p, q)
+ Implies(p, q)
+ """
+ ctx = _get_ctx(_ctx_from_ast_arg_list([a, b], ctx))
+ s = BoolSort(ctx)
+ a = s.cast(a)
+ b = s.cast(b)
+ return BoolRef(Z3_mk_implies(ctx.ref(), a.as_ast(), b.as_ast()), ctx)
+
+def Xor(a, b, ctx=None):
+ """Create a Z3 Xor expression.
+
+ >>> p, q = Bools('p q')
+ >>> Xor(p, q)
+ Xor(p, q)
+ >>> simplify(Xor(p, q))
+ Not(p) == q
+ """
+ ctx = _get_ctx(_ctx_from_ast_arg_list([a, b], ctx))
+ s = BoolSort(ctx)
+ a = s.cast(a)
+ b = s.cast(b)
+ return BoolRef(Z3_mk_xor(ctx.ref(), a.as_ast(), b.as_ast()), ctx)
+
+def Not(a, ctx=None):
+ """Create a Z3 not expression or probe.
+
+ >>> p = Bool('p')
+ >>> Not(Not(p))
+ Not(Not(p))
+ >>> simplify(Not(Not(p)))
+ p
+ """
+ ctx = _get_ctx(_ctx_from_ast_arg_list([a], ctx))
+ if is_probe(a):
+ # Not is also used to build probes
+ return Probe(Z3_probe_not(ctx.ref(), a.probe), ctx)
+ else:
+ s = BoolSort(ctx)
+ a = s.cast(a)
+ return BoolRef(Z3_mk_not(ctx.ref(), a.as_ast()), ctx)
+
+def mk_not(a):
+ if is_not(a):
+ return a.arg(0)
+ else:
+ return Not(a)
+
+def _has_probe(args):
+ """Return `True` if one of the elements of the given collection is a Z3 probe."""
+ for arg in args:
+ if is_probe(arg):
+ return True
+ return False
+
+def And(*args):
+ """Create a Z3 and-expression or and-probe.
+
+ >>> p, q, r = Bools('p q r')
+ >>> And(p, q, r)
+ And(p, q, r)
+ >>> P = BoolVector('p', 5)
+ >>> And(P)
+ And(p__0, p__1, p__2, p__3, p__4)
+ """
+ last_arg = None
+ if len(args) > 0:
+ last_arg = args[len(args)-1]
+ if isinstance(last_arg, Context):
+ ctx = args[len(args)-1]
+ args = args[:len(args)-1]
+ elif len(args) == 1 and isinstance(args[0], AstVector):
+ ctx = args[0].ctx
+ args = [a for a in args[0]]
+ else:
+ ctx = None
+ args = _get_args(args)
+ ctx = _get_ctx(_ctx_from_ast_arg_list(args, ctx))
+ if z3_debug():
+ _z3_assert(ctx is not None, "At least one of the arguments must be a Z3 expression or probe")
+ if _has_probe(args):
+ return _probe_and(args, ctx)
+ else:
+ args = _coerce_expr_list(args, ctx)
+ _args, sz = _to_ast_array(args)
+ return BoolRef(Z3_mk_and(ctx.ref(), sz, _args), ctx)
+
+def Or(*args):
+ """Create a Z3 or-expression or or-probe.
+
+ >>> p, q, r = Bools('p q r')
+ >>> Or(p, q, r)
+ Or(p, q, r)
+ >>> P = BoolVector('p', 5)
+ >>> Or(P)
+ Or(p__0, p__1, p__2, p__3, p__4)
+ """
+ last_arg = None
+ if len(args) > 0:
+ last_arg = args[len(args)-1]
+ if isinstance(last_arg, Context):
+ ctx = args[len(args)-1]
+ args = args[:len(args)-1]
+ elif len(args) == 1 and isinstance(args[0], AstVector):
+ ctx = args[0].ctx
+ args = [a for a in args[0]]
+ else:
+ ctx = None
+ args = _get_args(args)
+ ctx = _get_ctx(_ctx_from_ast_arg_list(args, ctx))
+ if z3_debug():
+ _z3_assert(ctx is not None, "At least one of the arguments must be a Z3 expression or probe")
+ if _has_probe(args):
+ return _probe_or(args, ctx)
+ else:
+ args = _coerce_expr_list(args, ctx)
+ _args, sz = _to_ast_array(args)
+ return BoolRef(Z3_mk_or(ctx.ref(), sz, _args), ctx)
+
+#########################################
+#
+# Patterns
+#
+#########################################
+
+class PatternRef(ExprRef):
+ """Patterns are hints for quantifier instantiation.
+
+ """
+ def as_ast(self):
+ return Z3_pattern_to_ast(self.ctx_ref(), self.ast)
+
+ def get_id(self):
+ return Z3_get_ast_id(self.ctx_ref(), self.as_ast())
+
+def is_pattern(a):
+ """Return `True` if `a` is a Z3 pattern (hint for quantifier instantiation.
+
+ >>> f = Function('f', IntSort(), IntSort())
+ >>> x = Int('x')
+ >>> q = ForAll(x, f(x) == 0, patterns = [ f(x) ])
+ >>> q
+ ForAll(x, f(x) == 0)
+ >>> q.num_patterns()
+ 1
+ >>> is_pattern(q.pattern(0))
+ True
+ >>> q.pattern(0)
+ f(Var(0))
+ """
+ return isinstance(a, PatternRef)
+
+def MultiPattern(*args):
+ """Create a Z3 multi-pattern using the given expressions `*args`
+
+ >>> f = Function('f', IntSort(), IntSort())
+ >>> g = Function('g', IntSort(), IntSort())
+ >>> x = Int('x')
+ >>> q = ForAll(x, f(x) != g(x), patterns = [ MultiPattern(f(x), g(x)) ])
+ >>> q
+ ForAll(x, f(x) != g(x))
+ >>> q.num_patterns()
+ 1
+ >>> is_pattern(q.pattern(0))
+ True
+ >>> q.pattern(0)
+ MultiPattern(f(Var(0)), g(Var(0)))
+ """
+ if z3_debug():
+ _z3_assert(len(args) > 0, "At least one argument expected")
+ _z3_assert(all([ is_expr(a) for a in args ]), "Z3 expressions expected")
+ ctx = args[0].ctx
+ args, sz = _to_ast_array(args)
+ return PatternRef(Z3_mk_pattern(ctx.ref(), sz, args), ctx)
+
+def _to_pattern(arg):
+ if is_pattern(arg):
+ return arg
+ else:
+ return MultiPattern(arg)
+
+#########################################
+#
+# Quantifiers
+#
+#########################################
+
+class QuantifierRef(BoolRef):
+ """Universally and Existentially quantified formulas."""
+
+ def as_ast(self):
+ return self.ast
+
+ def get_id(self):
+ return Z3_get_ast_id(self.ctx_ref(), self.as_ast())
+
+ def sort(self):
+ """Return the Boolean sort or sort of Lambda."""
+ if self.is_lambda():
+ return _sort(self.ctx, self.as_ast())
+ return BoolSort(self.ctx)
+
+ def is_forall(self):
+ """Return `True` if `self` is a universal quantifier.
+
+ >>> f = Function('f', IntSort(), IntSort())
+ >>> x = Int('x')
+ >>> q = ForAll(x, f(x) == 0)
+ >>> q.is_forall()
+ True
+ >>> q = Exists(x, f(x) != 0)
+ >>> q.is_forall()
+ False
+ """
+ return Z3_is_quantifier_forall(self.ctx_ref(), self.ast)
+
+ def is_exists(self):
+ """Return `True` if `self` is an existential quantifier.
+
+ >>> f = Function('f', IntSort(), IntSort())
+ >>> x = Int('x')
+ >>> q = ForAll(x, f(x) == 0)
+ >>> q.is_exists()
+ False
+ >>> q = Exists(x, f(x) != 0)
+ >>> q.is_exists()
+ True
+ """
+ return Z3_is_quantifier_exists(self.ctx_ref(), self.ast)
+
+ def is_lambda(self):
+ """Return `True` if `self` is a lambda expression.
+
+ >>> f = Function('f', IntSort(), IntSort())
+ >>> x = Int('x')
+ >>> q = Lambda(x, f(x))
+ >>> q.is_lambda()
+ True
+ >>> q = Exists(x, f(x) != 0)
+ >>> q.is_lambda()
+ False
+ """
+ return Z3_is_lambda(self.ctx_ref(), self.ast)
+
+ def __getitem__(self, arg):
+ """Return the Z3 expression `self[arg]`.
+ """
+ if z3_debug():
+ _z3_assert(self.is_lambda(), "quantifier should be a lambda expression")
+ arg = self.sort().domain().cast(arg)
+ return _to_expr_ref(Z3_mk_select(self.ctx_ref(), self.as_ast(), arg.as_ast()), self.ctx)
+
+
+ def weight(self):
+ """Return the weight annotation of `self`.
+
+ >>> f = Function('f', IntSort(), IntSort())
+ >>> x = Int('x')
+ >>> q = ForAll(x, f(x) == 0)
+ >>> q.weight()
+ 1
+ >>> q = ForAll(x, f(x) == 0, weight=10)
+ >>> q.weight()
+ 10
+ """
+ return int(Z3_get_quantifier_weight(self.ctx_ref(), self.ast))
+
+ def num_patterns(self):
+ """Return the number of patterns (i.e., quantifier instantiation hints) in `self`.
+
+ >>> f = Function('f', IntSort(), IntSort())
+ >>> g = Function('g', IntSort(), IntSort())
+ >>> x = Int('x')
+ >>> q = ForAll(x, f(x) != g(x), patterns = [ f(x), g(x) ])
+ >>> q.num_patterns()
+ 2
+ """
+ return int(Z3_get_quantifier_num_patterns(self.ctx_ref(), self.ast))
+
+ def pattern(self, idx):
+ """Return a pattern (i.e., quantifier instantiation hints) in `self`.
+
+ >>> f = Function('f', IntSort(), IntSort())
+ >>> g = Function('g', IntSort(), IntSort())
+ >>> x = Int('x')
+ >>> q = ForAll(x, f(x) != g(x), patterns = [ f(x), g(x) ])
+ >>> q.num_patterns()
+ 2
+ >>> q.pattern(0)
+ f(Var(0))
+ >>> q.pattern(1)
+ g(Var(0))
+ """
+ if z3_debug():
+ _z3_assert(idx < self.num_patterns(), "Invalid pattern idx")
+ return PatternRef(Z3_get_quantifier_pattern_ast(self.ctx_ref(), self.ast, idx), self.ctx)
+
+ def num_no_patterns(self):
+ """Return the number of no-patterns."""
+ return Z3_get_quantifier_num_no_patterns(self.ctx_ref(), self.ast)
+
+ def no_pattern(self, idx):
+ """Return a no-pattern."""
+ if z3_debug():
+ _z3_assert(idx < self.num_no_patterns(), "Invalid no-pattern idx")
+ return _to_expr_ref(Z3_get_quantifier_no_pattern_ast(self.ctx_ref(), self.ast, idx), self.ctx)
+
+ def body(self):
+ """Return the expression being quantified.
+
+ >>> f = Function('f', IntSort(), IntSort())
+ >>> x = Int('x')
+ >>> q = ForAll(x, f(x) == 0)
+ >>> q.body()
+ f(Var(0)) == 0
+ """
+ return _to_expr_ref(Z3_get_quantifier_body(self.ctx_ref(), self.ast), self.ctx)
+
+ def num_vars(self):
+ """Return the number of variables bounded by this quantifier.
+
+ >>> f = Function('f', IntSort(), IntSort(), IntSort())
+ >>> x = Int('x')
+ >>> y = Int('y')
+ >>> q = ForAll([x, y], f(x, y) >= x)
+ >>> q.num_vars()
+ 2
+ """
+ return int(Z3_get_quantifier_num_bound(self.ctx_ref(), self.ast))
+
+ def var_name(self, idx):
+ """Return a string representing a name used when displaying the quantifier.
+
+ >>> f = Function('f', IntSort(), IntSort(), IntSort())
+ >>> x = Int('x')
+ >>> y = Int('y')
+ >>> q = ForAll([x, y], f(x, y) >= x)
+ >>> q.var_name(0)
+ 'x'
+ >>> q.var_name(1)
+ 'y'
+ """
+ if z3_debug():
+ _z3_assert(idx < self.num_vars(), "Invalid variable idx")
+ return _symbol2py(self.ctx, Z3_get_quantifier_bound_name(self.ctx_ref(), self.ast, idx))
+
+ def var_sort(self, idx):
+ """Return the sort of a bound variable.
+
+ >>> f = Function('f', IntSort(), RealSort(), IntSort())
+ >>> x = Int('x')
+ >>> y = Real('y')
+ >>> q = ForAll([x, y], f(x, y) >= x)
+ >>> q.var_sort(0)
+ Int
+ >>> q.var_sort(1)
+ Real
+ """
+ if z3_debug():
+ _z3_assert(idx < self.num_vars(), "Invalid variable idx")
+ return _to_sort_ref(Z3_get_quantifier_bound_sort(self.ctx_ref(), self.ast, idx), self.ctx)
+
+ def children(self):
+ """Return a list containing a single element self.body()
+
+ >>> f = Function('f', IntSort(), IntSort())
+ >>> x = Int('x')
+ >>> q = ForAll(x, f(x) == 0)
+ >>> q.children()
+ [f(Var(0)) == 0]
+ """
+ return [ self.body() ]
+
+def is_quantifier(a):
+ """Return `True` if `a` is a Z3 quantifier.
+
+ >>> f = Function('f', IntSort(), IntSort())
+ >>> x = Int('x')
+ >>> q = ForAll(x, f(x) == 0)
+ >>> is_quantifier(q)
+ True
+ >>> is_quantifier(f(x))
+ False
+ """
+ return isinstance(a, QuantifierRef)
+
+def _mk_quantifier(is_forall, vs, body, weight=1, qid="", skid="", patterns=[], no_patterns=[]):
+ if z3_debug():
+ _z3_assert(is_bool(body) or is_app(vs) or (len(vs) > 0 and is_app(vs[0])), "Z3 expression expected")
+ _z3_assert(is_const(vs) or (len(vs) > 0 and all([ is_const(v) for v in vs])), "Invalid bounded variable(s)")
+ _z3_assert(all([is_pattern(a) or is_expr(a) for a in patterns]), "Z3 patterns expected")
+ _z3_assert(all([is_expr(p) for p in no_patterns]), "no patterns are Z3 expressions")
+ if is_app(vs):
+ ctx = vs.ctx
+ vs = [vs]
+ else:
+ ctx = vs[0].ctx
+ if not is_expr(body):
+ body = BoolVal(body, ctx)
+ num_vars = len(vs)
+ if num_vars == 0:
+ return body
+ _vs = (Ast * num_vars)()
+ for i in range(num_vars):
+ ## TODO: Check if is constant
+ _vs[i] = vs[i].as_ast()
+ patterns = [ _to_pattern(p) for p in patterns ]
+ num_pats = len(patterns)
+ _pats = (Pattern * num_pats)()
+ for i in range(num_pats):
+ _pats[i] = patterns[i].ast
+ _no_pats, num_no_pats = _to_ast_array(no_patterns)
+ qid = to_symbol(qid, ctx)
+ skid = to_symbol(skid, ctx)
+ return QuantifierRef(Z3_mk_quantifier_const_ex(ctx.ref(), is_forall, weight, qid, skid,
+ num_vars, _vs,
+ num_pats, _pats,
+ num_no_pats, _no_pats,
+ body.as_ast()), ctx)
+
+def ForAll(vs, body, weight=1, qid="", skid="", patterns=[], no_patterns=[]):
+ """Create a Z3 forall formula.
+
+ The parameters `weight`, `qid`, `skid`, `patterns` and `no_patterns` are optional annotations.
+
+ >>> f = Function('f', IntSort(), IntSort(), IntSort())
+ >>> x = Int('x')
+ >>> y = Int('y')
+ >>> ForAll([x, y], f(x, y) >= x)
+ ForAll([x, y], f(x, y) >= x)
+ >>> ForAll([x, y], f(x, y) >= x, patterns=[ f(x, y) ])
+ ForAll([x, y], f(x, y) >= x)
+ >>> ForAll([x, y], f(x, y) >= x, weight=10)
+ ForAll([x, y], f(x, y) >= x)
+ """
+ return _mk_quantifier(True, vs, body, weight, qid, skid, patterns, no_patterns)
+
+def Exists(vs, body, weight=1, qid="", skid="", patterns=[], no_patterns=[]):
+ """Create a Z3 exists formula.
+
+ The parameters `weight`, `qif`, `skid`, `patterns` and `no_patterns` are optional annotations.
+
+
+ >>> f = Function('f', IntSort(), IntSort(), IntSort())
+ >>> x = Int('x')
+ >>> y = Int('y')
+ >>> q = Exists([x, y], f(x, y) >= x, skid="foo")
+ >>> q
+ Exists([x, y], f(x, y) >= x)
+ >>> is_quantifier(q)
+ True
+ >>> r = Tactic('nnf')(q).as_expr()
+ >>> is_quantifier(r)
+ False
+ """
+ return _mk_quantifier(False, vs, body, weight, qid, skid, patterns, no_patterns)
+
+def Lambda(vs, body):
+ """Create a Z3 lambda expression.
+
+ >>> f = Function('f', IntSort(), IntSort(), IntSort())
+ >>> mem0 = Array('mem0', IntSort(), IntSort())
+ >>> lo, hi, e, i = Ints('lo hi e i')
+ >>> mem1 = Lambda([i], If(And(lo <= i, i <= hi), e, mem0[i]))
+ >>> mem1
+ Lambda(i, If(And(lo <= i, i <= hi), e, mem0[i]))
+ """
+ ctx = body.ctx
+ if is_app(vs):
+ vs = [vs]
+ num_vars = len(vs)
+ _vs = (Ast * num_vars)()
+ for i in range(num_vars):
+ ## TODO: Check if is constant
+ _vs[i] = vs[i].as_ast()
+ return QuantifierRef(Z3_mk_lambda_const(ctx.ref(), num_vars, _vs, body.as_ast()), ctx)
+
+#########################################
+#
+# Arithmetic
+#
+#########################################
+
+class ArithSortRef(SortRef):
+ """Real and Integer sorts."""
+
+ def is_real(self):
+ """Return `True` if `self` is of the sort Real.
+
+ >>> x = Real('x')
+ >>> x.is_real()
+ True
+ >>> (x + 1).is_real()
+ True
+ >>> x = Int('x')
+ >>> x.is_real()
+ False
+ """
+ return self.kind() == Z3_REAL_SORT
+
+ def is_int(self):
+ """Return `True` if `self` is of the sort Integer.
+
+ >>> x = Int('x')
+ >>> x.is_int()
+ True
+ >>> (x + 1).is_int()
+ True
+ >>> x = Real('x')
+ >>> x.is_int()
+ False
+ """
+ return self.kind() == Z3_INT_SORT
+
+ def subsort(self, other):
+ """Return `True` if `self` is a subsort of `other`."""
+ return self.is_int() and is_arith_sort(other) and other.is_real()
+
+ def cast(self, val):
+ """Try to cast `val` as an Integer or Real.
+
+ >>> IntSort().cast(10)
+ 10
+ >>> is_int(IntSort().cast(10))
+ True
+ >>> is_int(10)
+ False
+ >>> RealSort().cast(10)
+ 10
+ >>> is_real(RealSort().cast(10))
+ True
+ """
+ if is_expr(val):
+ if z3_debug():
+ _z3_assert(self.ctx == val.ctx, "Context mismatch")
+ val_s = val.sort()
+ if self.eq(val_s):
+ return val
+ if val_s.is_int() and self.is_real():
+ return ToReal(val)
+ if val_s.is_bool() and self.is_int():
+ return If(val, 1, 0)
+ if val_s.is_bool() and self.is_real():
+ return ToReal(If(val, 1, 0))
+ if z3_debug():
+ _z3_assert(False, "Z3 Integer/Real expression expected" )
+ else:
+ if self.is_int():
+ return IntVal(val, self.ctx)
+ if self.is_real():
+ return RealVal(val, self.ctx)
+ if z3_debug():
+ _z3_assert(False, "int, long, float, string (numeral), or Z3 Integer/Real expression expected. Got %s" % self)
+
+def is_arith_sort(s):
+ """Return `True` if s is an arithmetical sort (type).
+
+ >>> is_arith_sort(IntSort())
+ True
+ >>> is_arith_sort(RealSort())
+ True
+ >>> is_arith_sort(BoolSort())
+ False
+ >>> n = Int('x') + 1
+ >>> is_arith_sort(n.sort())
+ True
+ """
+ return isinstance(s, ArithSortRef)
+
+class ArithRef(ExprRef):
+ """Integer and Real expressions."""
+
+ def sort(self):
+ """Return the sort (type) of the arithmetical expression `self`.
+
+ >>> Int('x').sort()
+ Int
+ >>> (Real('x') + 1).sort()
+ Real
+ """
+ return ArithSortRef(Z3_get_sort(self.ctx_ref(), self.as_ast()), self.ctx)
+
+ def is_int(self):
+ """Return `True` if `self` is an integer expression.
+
+ >>> x = Int('x')
+ >>> x.is_int()
+ True
+ >>> (x + 1).is_int()
+ True
+ >>> y = Real('y')
+ >>> (x + y).is_int()
+ False
+ """
+ return self.sort().is_int()
+
+ def is_real(self):
+ """Return `True` if `self` is an real expression.
+
+ >>> x = Real('x')
+ >>> x.is_real()
+ True
+ >>> (x + 1).is_real()
+ True
+ """
+ return self.sort().is_real()
+
+ def __add__(self, other):
+ """Create the Z3 expression `self + other`.
+
+ >>> x = Int('x')
+ >>> y = Int('y')
+ >>> x + y
+ x + y
+ >>> (x + y).sort()
+ Int
+ """
+ a, b = _coerce_exprs(self, other)
+ return ArithRef(_mk_bin(Z3_mk_add, a, b), self.ctx)
+
+ def __radd__(self, other):
+ """Create the Z3 expression `other + self`.
+
+ >>> x = Int('x')
+ >>> 10 + x
+ 10 + x
+ """
+ a, b = _coerce_exprs(self, other)
+ return ArithRef(_mk_bin(Z3_mk_add, b, a), self.ctx)
+
+ def __mul__(self, other):
+ """Create the Z3 expression `self * other`.
+
+ >>> x = Real('x')
+ >>> y = Real('y')
+ >>> x * y
+ x*y
+ >>> (x * y).sort()
+ Real
+ """
+ if isinstance(other, BoolRef):
+ return If(other, self, 0)
+ a, b = _coerce_exprs(self, other)
+ return ArithRef(_mk_bin(Z3_mk_mul, a, b), self.ctx)
+
+ def __rmul__(self, other):
+ """Create the Z3 expression `other * self`.
+
+ >>> x = Real('x')
+ >>> 10 * x
+ 10*x
+ """
+ a, b = _coerce_exprs(self, other)
+ return ArithRef(_mk_bin(Z3_mk_mul, b, a), self.ctx)
+
+ def __sub__(self, other):
+ """Create the Z3 expression `self - other`.
+
+ >>> x = Int('x')
+ >>> y = Int('y')
+ >>> x - y
+ x - y
+ >>> (x - y).sort()
+ Int
+ """
+ a, b = _coerce_exprs(self, other)
+ return ArithRef(_mk_bin(Z3_mk_sub, a, b), self.ctx)
+
+ def __rsub__(self, other):
+ """Create the Z3 expression `other - self`.
+
+ >>> x = Int('x')
+ >>> 10 - x
+ 10 - x
+ """
+ a, b = _coerce_exprs(self, other)
+ return ArithRef(_mk_bin(Z3_mk_sub, b, a), self.ctx)
+
+ def __pow__(self, other):
+ """Create the Z3 expression `self**other` (** is the power operator).
+
+ >>> x = Real('x')
+ >>> x**3
+ x**3
+ >>> (x**3).sort()
+ Real
+ >>> simplify(IntVal(2)**8)
+ 256
+ """
+ a, b = _coerce_exprs(self, other)
+ return ArithRef(Z3_mk_power(self.ctx_ref(), a.as_ast(), b.as_ast()), self.ctx)
+
+ def __rpow__(self, other):
+ """Create the Z3 expression `other**self` (** is the power operator).
+
+ >>> x = Real('x')
+ >>> 2**x
+ 2**x
+ >>> (2**x).sort()
+ Real
+ >>> simplify(2**IntVal(8))
+ 256
+ """
+ a, b = _coerce_exprs(self, other)
+ return ArithRef(Z3_mk_power(self.ctx_ref(), b.as_ast(), a.as_ast()), self.ctx)
+
+ def __div__(self, other):
+ """Create the Z3 expression `other/self`.
+
+ >>> x = Int('x')
+ >>> y = Int('y')
+ >>> x/y
+ x/y
+ >>> (x/y).sort()
+ Int
+ >>> (x/y).sexpr()
+ '(div x y)'
+ >>> x = Real('x')
+ >>> y = Real('y')
+ >>> x/y
+ x/y
+ >>> (x/y).sort()
+ Real
+ >>> (x/y).sexpr()
+ '(/ x y)'
+ """
+ a, b = _coerce_exprs(self, other)
+ return ArithRef(Z3_mk_div(self.ctx_ref(), a.as_ast(), b.as_ast()), self.ctx)
+
+ def __truediv__(self, other):
+ """Create the Z3 expression `other/self`."""
+ return self.__div__(other)
+
+ def __rdiv__(self, other):
+ """Create the Z3 expression `other/self`.
+
+ >>> x = Int('x')
+ >>> 10/x
+ 10/x
+ >>> (10/x).sexpr()
+ '(div 10 x)'
+ >>> x = Real('x')
+ >>> 10/x
+ 10/x
+ >>> (10/x).sexpr()
+ '(/ 10.0 x)'
+ """
+ a, b = _coerce_exprs(self, other)
+ return ArithRef(Z3_mk_div(self.ctx_ref(), b.as_ast(), a.as_ast()), self.ctx)
+
+ def __rtruediv__(self, other):
+ """Create the Z3 expression `other/self`."""
+ return self.__rdiv__(other)
+
+ def __mod__(self, other):
+ """Create the Z3 expression `other%self`.
+
+ >>> x = Int('x')
+ >>> y = Int('y')
+ >>> x % y
+ x%y
+ >>> simplify(IntVal(10) % IntVal(3))
+ 1
+ """
+ a, b = _coerce_exprs(self, other)
+ if z3_debug():
+ _z3_assert(a.is_int(), "Z3 integer expression expected")
+ return ArithRef(Z3_mk_mod(self.ctx_ref(), a.as_ast(), b.as_ast()), self.ctx)
+
+ def __rmod__(self, other):
+ """Create the Z3 expression `other%self`.
+
+ >>> x = Int('x')
+ >>> 10 % x
+ 10%x
+ """
+ a, b = _coerce_exprs(self, other)
+ if z3_debug():
+ _z3_assert(a.is_int(), "Z3 integer expression expected")
+ return ArithRef(Z3_mk_mod(self.ctx_ref(), b.as_ast(), a.as_ast()), self.ctx)
+
+ def __neg__(self):
+ """Return an expression representing `-self`.
+
+ >>> x = Int('x')
+ >>> -x
+ -x
+ >>> simplify(-(-x))
+ x
+ """
+ return ArithRef(Z3_mk_unary_minus(self.ctx_ref(), self.as_ast()), self.ctx)
+
+ def __pos__(self):
+ """Return `self`.
+
+ >>> x = Int('x')
+ >>> +x
+ x
+ """
+ return self
+
+ def __le__(self, other):
+ """Create the Z3 expression `other <= self`.
+
+ >>> x, y = Ints('x y')
+ >>> x <= y
+ x <= y
+ >>> y = Real('y')
+ >>> x <= y
+ ToReal(x) <= y
+ """
+ a, b = _coerce_exprs(self, other)
+ return BoolRef(Z3_mk_le(self.ctx_ref(), a.as_ast(), b.as_ast()), self.ctx)
+
+ def __lt__(self, other):
+ """Create the Z3 expression `other < self`.
+
+ >>> x, y = Ints('x y')
+ >>> x < y
+ x < y
+ >>> y = Real('y')
+ >>> x < y
+ ToReal(x) < y
+ """
+ a, b = _coerce_exprs(self, other)
+ return BoolRef(Z3_mk_lt(self.ctx_ref(), a.as_ast(), b.as_ast()), self.ctx)
+
+ def __gt__(self, other):
+ """Create the Z3 expression `other > self`.
+
+ >>> x, y = Ints('x y')
+ >>> x > y
+ x > y
+ >>> y = Real('y')
+ >>> x > y
+ ToReal(x) > y
+ """
+ a, b = _coerce_exprs(self, other)
+ return BoolRef(Z3_mk_gt(self.ctx_ref(), a.as_ast(), b.as_ast()), self.ctx)
+
+ def __ge__(self, other):
+ """Create the Z3 expression `other >= self`.
+
+ >>> x, y = Ints('x y')
+ >>> x >= y
+ x >= y
+ >>> y = Real('y')
+ >>> x >= y
+ ToReal(x) >= y
+ """
+ a, b = _coerce_exprs(self, other)
+ return BoolRef(Z3_mk_ge(self.ctx_ref(), a.as_ast(), b.as_ast()), self.ctx)
+
+def is_arith(a):
+ """Return `True` if `a` is an arithmetical expression.
+
+ >>> x = Int('x')
+ >>> is_arith(x)
+ True
+ >>> is_arith(x + 1)
+ True
+ >>> is_arith(1)
+ False
+ >>> is_arith(IntVal(1))
+ True
+ >>> y = Real('y')
+ >>> is_arith(y)
+ True
+ >>> is_arith(y + 1)
+ True
+ """
+ return isinstance(a, ArithRef)
+
+def is_int(a):
+ """Return `True` if `a` is an integer expression.
+
+ >>> x = Int('x')
+ >>> is_int(x + 1)
+ True
+ >>> is_int(1)
+ False
+ >>> is_int(IntVal(1))
+ True
+ >>> y = Real('y')
+ >>> is_int(y)
+ False
+ >>> is_int(y + 1)
+ False
+ """
+ return is_arith(a) and a.is_int()
+
+def is_real(a):
+ """Return `True` if `a` is a real expression.
+
+ >>> x = Int('x')
+ >>> is_real(x + 1)
+ False
+ >>> y = Real('y')
+ >>> is_real(y)
+ True
+ >>> is_real(y + 1)
+ True
+ >>> is_real(1)
+ False
+ >>> is_real(RealVal(1))
+ True
+ """
+ return is_arith(a) and a.is_real()
+
+def _is_numeral(ctx, a):
+ return Z3_is_numeral_ast(ctx.ref(), a)
+
+def _is_algebraic(ctx, a):
+ return Z3_is_algebraic_number(ctx.ref(), a)
+
+def is_int_value(a):
+ """Return `True` if `a` is an integer value of sort Int.
+
+ >>> is_int_value(IntVal(1))
+ True
+ >>> is_int_value(1)
+ False
+ >>> is_int_value(Int('x'))
+ False
+ >>> n = Int('x') + 1
+ >>> n
+ x + 1
+ >>> n.arg(1)
+ 1
+ >>> is_int_value(n.arg(1))
+ True
+ >>> is_int_value(RealVal("1/3"))
+ False
+ >>> is_int_value(RealVal(1))
+ False
+ """
+ return is_arith(a) and a.is_int() and _is_numeral(a.ctx, a.as_ast())
+
+def is_rational_value(a):
+ """Return `True` if `a` is rational value of sort Real.
+
+ >>> is_rational_value(RealVal(1))
+ True
+ >>> is_rational_value(RealVal("3/5"))
+ True
+ >>> is_rational_value(IntVal(1))
+ False
+ >>> is_rational_value(1)
+ False
+ >>> n = Real('x') + 1
+ >>> n.arg(1)
+ 1
+ >>> is_rational_value(n.arg(1))
+ True
+ >>> is_rational_value(Real('x'))
+ False
+ """
+ return is_arith(a) and a.is_real() and _is_numeral(a.ctx, a.as_ast())
+
+def is_algebraic_value(a):
+ """Return `True` if `a` is an algebraic value of sort Real.
+
+ >>> is_algebraic_value(RealVal("3/5"))
+ False
+ >>> n = simplify(Sqrt(2))
+ >>> n
+ 1.4142135623?
+ >>> is_algebraic_value(n)
+ True
+ """
+ return is_arith(a) and a.is_real() and _is_algebraic(a.ctx, a.as_ast())
+
+def is_add(a):
+ """Return `True` if `a` is an expression of the form b + c.
+
+ >>> x, y = Ints('x y')
+ >>> is_add(x + y)
+ True
+ >>> is_add(x - y)
+ False
+ """
+ return is_app_of(a, Z3_OP_ADD)
+
+def is_mul(a):
+ """Return `True` if `a` is an expression of the form b * c.
+
+ >>> x, y = Ints('x y')
+ >>> is_mul(x * y)
+ True
+ >>> is_mul(x - y)
+ False
+ """
+ return is_app_of(a, Z3_OP_MUL)
+
+def is_sub(a):
+ """Return `True` if `a` is an expression of the form b - c.
+
+ >>> x, y = Ints('x y')
+ >>> is_sub(x - y)
+ True
+ >>> is_sub(x + y)
+ False
+ """
+ return is_app_of(a, Z3_OP_SUB)
+
+def is_div(a):
+ """Return `True` if `a` is an expression of the form b / c.
+
+ >>> x, y = Reals('x y')
+ >>> is_div(x / y)
+ True
+ >>> is_div(x + y)
+ False
+ >>> x, y = Ints('x y')
+ >>> is_div(x / y)
+ False
+ >>> is_idiv(x / y)
+ True
+ """
+ return is_app_of(a, Z3_OP_DIV)
+
+def is_idiv(a):
+ """Return `True` if `a` is an expression of the form b div c.
+
+ >>> x, y = Ints('x y')
+ >>> is_idiv(x / y)
+ True
+ >>> is_idiv(x + y)
+ False
+ """
+ return is_app_of(a, Z3_OP_IDIV)
+
+def is_mod(a):
+ """Return `True` if `a` is an expression of the form b % c.
+
+ >>> x, y = Ints('x y')
+ >>> is_mod(x % y)
+ True
+ >>> is_mod(x + y)
+ False
+ """
+ return is_app_of(a, Z3_OP_MOD)
+
+def is_le(a):
+ """Return `True` if `a` is an expression of the form b <= c.
+
+ >>> x, y = Ints('x y')
+ >>> is_le(x <= y)
+ True
+ >>> is_le(x < y)
+ False
+ """
+ return is_app_of(a, Z3_OP_LE)
+
+def is_lt(a):
+ """Return `True` if `a` is an expression of the form b < c.
+
+ >>> x, y = Ints('x y')
+ >>> is_lt(x < y)
+ True
+ >>> is_lt(x == y)
+ False
+ """
+ return is_app_of(a, Z3_OP_LT)
+
+def is_ge(a):
+ """Return `True` if `a` is an expression of the form b >= c.
+
+ >>> x, y = Ints('x y')
+ >>> is_ge(x >= y)
+ True
+ >>> is_ge(x == y)
+ False
+ """
+ return is_app_of(a, Z3_OP_GE)
+
+def is_gt(a):
+ """Return `True` if `a` is an expression of the form b > c.
+
+ >>> x, y = Ints('x y')
+ >>> is_gt(x > y)
+ True
+ >>> is_gt(x == y)
+ False
+ """
+ return is_app_of(a, Z3_OP_GT)
+
+def is_is_int(a):
+ """Return `True` if `a` is an expression of the form IsInt(b).
+
+ >>> x = Real('x')
+ >>> is_is_int(IsInt(x))
+ True
+ >>> is_is_int(x)
+ False
+ """
+ return is_app_of(a, Z3_OP_IS_INT)
+
+def is_to_real(a):
+ """Return `True` if `a` is an expression of the form ToReal(b).
+
+ >>> x = Int('x')
+ >>> n = ToReal(x)
+ >>> n
+ ToReal(x)
+ >>> is_to_real(n)
+ True
+ >>> is_to_real(x)
+ False
+ """
+ return is_app_of(a, Z3_OP_TO_REAL)
+
+def is_to_int(a):
+ """Return `True` if `a` is an expression of the form ToInt(b).
+
+ >>> x = Real('x')
+ >>> n = ToInt(x)
+ >>> n
+ ToInt(x)
+ >>> is_to_int(n)
+ True
+ >>> is_to_int(x)
+ False
+ """
+ return is_app_of(a, Z3_OP_TO_INT)
+
+class IntNumRef(ArithRef):
+ """Integer values."""
+
+ def as_long(self):
+ """Return a Z3 integer numeral as a Python long (bignum) numeral.
+
+ >>> v = IntVal(1)
+ >>> v + 1
+ 1 + 1
+ >>> v.as_long() + 1
+ 2
+ """
+ if z3_debug():
+ _z3_assert(self.is_int(), "Integer value expected")
+ return int(self.as_string())
+
+ def as_string(self):
+ """Return a Z3 integer numeral as a Python string.
+ >>> v = IntVal(100)
+ >>> v.as_string()
+ '100'
+ """
+ return Z3_get_numeral_string(self.ctx_ref(), self.as_ast())
+
+ def as_binary_string(self):
+ """Return a Z3 integer numeral as a Python binary string.
+ >>> v = IntVal(10)
+ >>> v.as_binary_string()
+ '1010'
+ """
+ return Z3_get_numeral_binary_string(self.ctx_ref(), self.as_ast())
+
+class RatNumRef(ArithRef):
+ """Rational values."""
+
+ def numerator(self):
+ """ Return the numerator of a Z3 rational numeral.
+
+ >>> is_rational_value(RealVal("3/5"))
+ True
+ >>> n = RealVal("3/5")
+ >>> n.numerator()
+ 3
+ >>> is_rational_value(Q(3,5))
+ True
+ >>> Q(3,5).numerator()
+ 3
+ """
+ return IntNumRef(Z3_get_numerator(self.ctx_ref(), self.as_ast()), self.ctx)
+
+ def denominator(self):
+ """ Return the denominator of a Z3 rational numeral.
+
+ >>> is_rational_value(Q(3,5))
+ True
+ >>> n = Q(3,5)
+ >>> n.denominator()
+ 5
+ """
+ return IntNumRef(Z3_get_denominator(self.ctx_ref(), self.as_ast()), self.ctx)
+
+ def numerator_as_long(self):
+ """ Return the numerator as a Python long.
+
+ >>> v = RealVal(10000000000)
+ >>> v
+ 10000000000
+ >>> v + 1
+ 10000000000 + 1
+ >>> v.numerator_as_long() + 1 == 10000000001
+ True
+ """
+ return self.numerator().as_long()
+
+ def denominator_as_long(self):
+ """ Return the denominator as a Python long.
+
+ >>> v = RealVal("1/3")
+ >>> v
+ 1/3
+ >>> v.denominator_as_long()
+ 3
+ """
+ return self.denominator().as_long()
+
+ def is_int(self):
+ return False
+
+ def is_real(self):
+ return True
+
+ def is_int_value(self):
+ return self.denominator().is_int() and self.denominator_as_long() == 1
+
+ def as_long(self):
+ _z3_assert(self.is_int_value(), "Expected integer fraction")
+ return self.numerator_as_long()
+
+ def as_decimal(self, prec):
+ """ Return a Z3 rational value as a string in decimal notation using at most `prec` decimal places.
+
+ >>> v = RealVal("1/5")
+ >>> v.as_decimal(3)
+ '0.2'
+ >>> v = RealVal("1/3")
+ >>> v.as_decimal(3)
+ '0.333?'
+ """
+ return Z3_get_numeral_decimal_string(self.ctx_ref(), self.as_ast(), prec)
+
+ def as_string(self):
+ """Return a Z3 rational numeral as a Python string.
+
+ >>> v = Q(3,6)
+ >>> v.as_string()
+ '1/2'
+ """
+ return Z3_get_numeral_string(self.ctx_ref(), self.as_ast())
+
+ def as_fraction(self):
+ """Return a Z3 rational as a Python Fraction object.
+
+ >>> v = RealVal("1/5")
+ >>> v.as_fraction()
+ Fraction(1, 5)
+ """
+ return Fraction(self.numerator_as_long(), self.denominator_as_long())
+
+class AlgebraicNumRef(ArithRef):
+ """Algebraic irrational values."""
+
+ def approx(self, precision=10):
+ """Return a Z3 rational number that approximates the algebraic number `self`.
+ The result `r` is such that |r - self| <= 1/10^precision
+
+ >>> x = simplify(Sqrt(2))
+ >>> x.approx(20)
+ 6838717160008073720548335/4835703278458516698824704
+ >>> x.approx(5)
+ 2965821/2097152
+ """
+ return RatNumRef(Z3_get_algebraic_number_upper(self.ctx_ref(), self.as_ast(), precision), self.ctx)
+ def as_decimal(self, prec):
+ """Return a string representation of the algebraic number `self` in decimal notation using `prec` decimal places
+
+ >>> x = simplify(Sqrt(2))
+ >>> x.as_decimal(10)
+ '1.4142135623?'
+ >>> x.as_decimal(20)
+ '1.41421356237309504880?'
+ """
+ return Z3_get_numeral_decimal_string(self.ctx_ref(), self.as_ast(), prec)
+
+ def poly(self):
+ return AstVector(Z3_algebraic_get_poly(self.ctx_ref(), self.as_ast()), self.ctx)
+
+ def index(self):
+ return Z3_algebraic_get_i(self.ctx_ref(), self.as_ast())
+
+def _py2expr(a, ctx=None):
+ if isinstance(a, bool):
+ return BoolVal(a, ctx)
+ if _is_int(a):
+ return IntVal(a, ctx)
+ if isinstance(a, float):
+ return RealVal(a, ctx)
+ if is_expr(a):
+ return a
+ if z3_debug():
+ _z3_assert(False, "Python bool, int, long or float expected")
+
+def IntSort(ctx=None):
+ """Return the integer sort in the given context. If `ctx=None`, then the global context is used.
+
+ >>> IntSort()
+ Int
+ >>> x = Const('x', IntSort())
+ >>> is_int(x)
+ True
+ >>> x.sort() == IntSort()
+ True
+ >>> x.sort() == BoolSort()
+ False
+ """
+ ctx = _get_ctx(ctx)
+ return ArithSortRef(Z3_mk_int_sort(ctx.ref()), ctx)
+
+def RealSort(ctx=None):
+ """Return the real sort in the given context. If `ctx=None`, then the global context is used.
+
+ >>> RealSort()
+ Real
+ >>> x = Const('x', RealSort())
+ >>> is_real(x)
+ True
+ >>> is_int(x)
+ False
+ >>> x.sort() == RealSort()
+ True
+ """
+ ctx = _get_ctx(ctx)
+ return ArithSortRef(Z3_mk_real_sort(ctx.ref()), ctx)
+
+def _to_int_str(val):
+ if isinstance(val, float):
+ return str(int(val))
+ elif isinstance(val, bool):
+ if val:
+ return "1"
+ else:
+ return "0"
+ elif _is_int(val):
+ return str(val)
+ elif isinstance(val, str):
+ return val
+ if z3_debug():
+ _z3_assert(False, "Python value cannot be used as a Z3 integer")
+
+def IntVal(val, ctx=None):
+ """Return a Z3 integer value. If `ctx=None`, then the global context is used.
+
+ >>> IntVal(1)
+ 1
+ >>> IntVal("100")
+ 100
+ """
+ ctx = _get_ctx(ctx)
+ return IntNumRef(Z3_mk_numeral(ctx.ref(), _to_int_str(val), IntSort(ctx).ast), ctx)
+
+def RealVal(val, ctx=None):
+ """Return a Z3 real value.
+
+ `val` may be a Python int, long, float or string representing a number in decimal or rational notation.
+ If `ctx=None`, then the global context is used.
+
+ >>> RealVal(1)
+ 1
+ >>> RealVal(1).sort()
+ Real
+ >>> RealVal("3/5")
+ 3/5
+ >>> RealVal("1.5")
+ 3/2
+ """
+ ctx = _get_ctx(ctx)
+ return RatNumRef(Z3_mk_numeral(ctx.ref(), str(val), RealSort(ctx).ast), ctx)
+
+def RatVal(a, b, ctx=None):
+ """Return a Z3 rational a/b.
+
+ If `ctx=None`, then the global context is used.
+
+ >>> RatVal(3,5)
+ 3/5
+ >>> RatVal(3,5).sort()
+ Real
+ """
+ if z3_debug():
+ _z3_assert(_is_int(a) or isinstance(a, str), "First argument cannot be converted into an integer")
+ _z3_assert(_is_int(b) or isinstance(b, str), "Second argument cannot be converted into an integer")
+ return simplify(RealVal(a, ctx)/RealVal(b, ctx))
+
+def Q(a, b, ctx=None):
+ """Return a Z3 rational a/b.
+
+ If `ctx=None`, then the global context is used.
+
+ >>> Q(3,5)
+ 3/5
+ >>> Q(3,5).sort()
+ Real
+ """
+ return simplify(RatVal(a, b))
+
+def Int(name, ctx=None):
+ """Return an integer constant named `name`. If `ctx=None`, then the global context is used.
+
+ >>> x = Int('x')
+ >>> is_int(x)
+ True
+ >>> is_int(x + 1)
+ True
+ """
+ ctx = _get_ctx(ctx)
+ return ArithRef(Z3_mk_const(ctx.ref(), to_symbol(name, ctx), IntSort(ctx).ast), ctx)
+
+def Ints(names, ctx=None):
+ """Return a tuple of Integer constants.
+
+ >>> x, y, z = Ints('x y z')
+ >>> Sum(x, y, z)
+ x + y + z
+ """
+ ctx = _get_ctx(ctx)
+ if isinstance(names, str):
+ names = names.split(" ")
+ return [Int(name, ctx) for name in names]
+
+def IntVector(prefix, sz, ctx=None):
+ """Return a list of integer constants of size `sz`.
+
+ >>> X = IntVector('x', 3)
+ >>> X
+ [x__0, x__1, x__2]
+ >>> Sum(X)
+ x__0 + x__1 + x__2
+ """
+ ctx = _get_ctx(ctx)
+ return [ Int('%s__%s' % (prefix, i), ctx) for i in range(sz) ]
+
+def FreshInt(prefix='x', ctx=None):
+ """Return a fresh integer constant in the given context using the given prefix.
+
+ >>> x = FreshInt()
+ >>> y = FreshInt()
+ >>> eq(x, y)
+ False
+ >>> x.sort()
+ Int
+ """
+ ctx = _get_ctx(ctx)
+ return ArithRef(Z3_mk_fresh_const(ctx.ref(), prefix, IntSort(ctx).ast), ctx)
+
+def Real(name, ctx=None):
+ """Return a real constant named `name`. If `ctx=None`, then the global context is used.
+
+ >>> x = Real('x')
+ >>> is_real(x)
+ True
+ >>> is_real(x + 1)
+ True
+ """
+ ctx = _get_ctx(ctx)
+ return ArithRef(Z3_mk_const(ctx.ref(), to_symbol(name, ctx), RealSort(ctx).ast), ctx)
+
+def Reals(names, ctx=None):
+ """Return a tuple of real constants.
+
+ >>> x, y, z = Reals('x y z')
+ >>> Sum(x, y, z)
+ x + y + z
+ >>> Sum(x, y, z).sort()
+ Real
+ """
+ ctx = _get_ctx(ctx)
+ if isinstance(names, str):
+ names = names.split(" ")
+ return [Real(name, ctx) for name in names]
+
+def RealVector(prefix, sz, ctx=None):
+ """Return a list of real constants of size `sz`.
+
+ >>> X = RealVector('x', 3)
+ >>> X
+ [x__0, x__1, x__2]
+ >>> Sum(X)
+ x__0 + x__1 + x__2
+ >>> Sum(X).sort()
+ Real
+ """
+ ctx = _get_ctx(ctx)
+ return [ Real('%s__%s' % (prefix, i), ctx) for i in range(sz) ]
+
+def FreshReal(prefix='b', ctx=None):
+ """Return a fresh real constant in the given context using the given prefix.
+
+ >>> x = FreshReal()
+ >>> y = FreshReal()
+ >>> eq(x, y)
+ False
+ >>> x.sort()
+ Real
+ """
+ ctx = _get_ctx(ctx)
+ return ArithRef(Z3_mk_fresh_const(ctx.ref(), prefix, RealSort(ctx).ast), ctx)
+
+def ToReal(a):
+ """ Return the Z3 expression ToReal(a).
+
+ >>> x = Int('x')
+ >>> x.sort()
+ Int
+ >>> n = ToReal(x)
+ >>> n
+ ToReal(x)
+ >>> n.sort()
+ Real
+ """
+ if z3_debug():
+ _z3_assert(a.is_int(), "Z3 integer expression expected.")
+ ctx = a.ctx
+ return ArithRef(Z3_mk_int2real(ctx.ref(), a.as_ast()), ctx)
+
+def ToInt(a):
+ """ Return the Z3 expression ToInt(a).
+
+ >>> x = Real('x')
+ >>> x.sort()
+ Real
+ >>> n = ToInt(x)
+ >>> n
+ ToInt(x)
+ >>> n.sort()
+ Int
+ """
+ if z3_debug():
+ _z3_assert(a.is_real(), "Z3 real expression expected.")
+ ctx = a.ctx
+ return ArithRef(Z3_mk_real2int(ctx.ref(), a.as_ast()), ctx)
+
+def IsInt(a):
+ """ Return the Z3 predicate IsInt(a).
+
+ >>> x = Real('x')
+ >>> IsInt(x + "1/2")
+ IsInt(x + 1/2)
+ >>> solve(IsInt(x + "1/2"), x > 0, x < 1)
+ [x = 1/2]
+ >>> solve(IsInt(x + "1/2"), x > 0, x < 1, x != "1/2")
+ no solution
+ """
+ if z3_debug():
+ _z3_assert(a.is_real(), "Z3 real expression expected.")
+ ctx = a.ctx
+ return BoolRef(Z3_mk_is_int(ctx.ref(), a.as_ast()), ctx)
+
+def Sqrt(a, ctx=None):
+ """ Return a Z3 expression which represents the square root of a.
+
+ >>> x = Real('x')
+ >>> Sqrt(x)
+ x**(1/2)
+ """
+ if not is_expr(a):
+ ctx = _get_ctx(ctx)
+ a = RealVal(a, ctx)
+ return a ** "1/2"
+
+def Cbrt(a, ctx=None):
+ """ Return a Z3 expression which represents the cubic root of a.
+
+ >>> x = Real('x')
+ >>> Cbrt(x)
+ x**(1/3)
+ """
+ if not is_expr(a):
+ ctx = _get_ctx(ctx)
+ a = RealVal(a, ctx)
+ return a ** "1/3"
+
+#########################################
+#
+# Bit-Vectors
+#
+#########################################
+
+class BitVecSortRef(SortRef):
+ """Bit-vector sort."""
+
+ def size(self):
+ """Return the size (number of bits) of the bit-vector sort `self`.
+
+ >>> b = BitVecSort(32)
+ >>> b.size()
+ 32
+ """
+ return int(Z3_get_bv_sort_size(self.ctx_ref(), self.ast))
+
+ def subsort(self, other):
+ return is_bv_sort(other) and self.size() < other.size()
+
+ def cast(self, val):
+ """Try to cast `val` as a Bit-Vector.
+
+ >>> b = BitVecSort(32)
+ >>> b.cast(10)
+ 10
+ >>> b.cast(10).sexpr()
+ '#x0000000a'
+ """
+ if is_expr(val):
+ if z3_debug():
+ _z3_assert(self.ctx == val.ctx, "Context mismatch")
+ # Idea: use sign_extend if sort of val is a bitvector of smaller size
+ return val
+ else:
+ return BitVecVal(val, self)
+
+def is_bv_sort(s):
+ """Return True if `s` is a Z3 bit-vector sort.
+
+ >>> is_bv_sort(BitVecSort(32))
+ True
+ >>> is_bv_sort(IntSort())
+ False
+ """
+ return isinstance(s, BitVecSortRef)
+
+class BitVecRef(ExprRef):
+ """Bit-vector expressions."""
+
+ def sort(self):
+ """Return the sort of the bit-vector expression `self`.
+
+ >>> x = BitVec('x', 32)
+ >>> x.sort()
+ BitVec(32)
+ >>> x.sort() == BitVecSort(32)
+ True
+ """
+ return BitVecSortRef(Z3_get_sort(self.ctx_ref(), self.as_ast()), self.ctx)
+
+ def size(self):
+ """Return the number of bits of the bit-vector expression `self`.
+
+ >>> x = BitVec('x', 32)
+ >>> (x + 1).size()
+ 32
+ >>> Concat(x, x).size()
+ 64
+ """
+ return self.sort().size()
+
+ def __add__(self, other):
+ """Create the Z3 expression `self + other`.
+
+ >>> x = BitVec('x', 32)
+ >>> y = BitVec('y', 32)
+ >>> x + y
+ x + y
+ >>> (x + y).sort()
+ BitVec(32)
+ """
+ a, b = _coerce_exprs(self, other)
+ return BitVecRef(Z3_mk_bvadd(self.ctx_ref(), a.as_ast(), b.as_ast()), self.ctx)
+
+ def __radd__(self, other):
+ """Create the Z3 expression `other + self`.
+
+ >>> x = BitVec('x', 32)
+ >>> 10 + x
+ 10 + x
+ """
+ a, b = _coerce_exprs(self, other)
+ return BitVecRef(Z3_mk_bvadd(self.ctx_ref(), b.as_ast(), a.as_ast()), self.ctx)
+
+ def __mul__(self, other):
+ """Create the Z3 expression `self * other`.
+
+ >>> x = BitVec('x', 32)
+ >>> y = BitVec('y', 32)
+ >>> x * y
+ x*y
+ >>> (x * y).sort()
+ BitVec(32)
+ """
+ a, b = _coerce_exprs(self, other)
+ return BitVecRef(Z3_mk_bvmul(self.ctx_ref(), a.as_ast(), b.as_ast()), self.ctx)
+
+ def __rmul__(self, other):
+ """Create the Z3 expression `other * self`.
+
+ >>> x = BitVec('x', 32)
+ >>> 10 * x
+ 10*x
+ """
+ a, b = _coerce_exprs(self, other)
+ return BitVecRef(Z3_mk_bvmul(self.ctx_ref(), b.as_ast(), a.as_ast()), self.ctx)
+
+ def __sub__(self, other):
+ """Create the Z3 expression `self - other`.
+
+ >>> x = BitVec('x', 32)
+ >>> y = BitVec('y', 32)
+ >>> x - y
+ x - y
+ >>> (x - y).sort()
+ BitVec(32)
+ """
+ a, b = _coerce_exprs(self, other)
+ return BitVecRef(Z3_mk_bvsub(self.ctx_ref(), a.as_ast(), b.as_ast()), self.ctx)
+
+ def __rsub__(self, other):
+ """Create the Z3 expression `other - self`.
+
+ >>> x = BitVec('x', 32)
+ >>> 10 - x
+ 10 - x
+ """
+ a, b = _coerce_exprs(self, other)
+ return BitVecRef(Z3_mk_bvsub(self.ctx_ref(), b.as_ast(), a.as_ast()), self.ctx)
+
+ def __or__(self, other):
+ """Create the Z3 expression bitwise-or `self | other`.
+
+ >>> x = BitVec('x', 32)
+ >>> y = BitVec('y', 32)
+ >>> x | y
+ x | y
+ >>> (x | y).sort()
+ BitVec(32)
+ """
+ a, b = _coerce_exprs(self, other)
+ return BitVecRef(Z3_mk_bvor(self.ctx_ref(), a.as_ast(), b.as_ast()), self.ctx)
+
+ def __ror__(self, other):
+ """Create the Z3 expression bitwise-or `other | self`.
+
+ >>> x = BitVec('x', 32)
+ >>> 10 | x
+ 10 | x
+ """
+ a, b = _coerce_exprs(self, other)
+ return BitVecRef(Z3_mk_bvor(self.ctx_ref(), b.as_ast(), a.as_ast()), self.ctx)
+
+ def __and__(self, other):
+ """Create the Z3 expression bitwise-and `self & other`.
+
+ >>> x = BitVec('x', 32)
+ >>> y = BitVec('y', 32)
+ >>> x & y
+ x & y
+ >>> (x & y).sort()
+ BitVec(32)
+ """
+ a, b = _coerce_exprs(self, other)
+ return BitVecRef(Z3_mk_bvand(self.ctx_ref(), a.as_ast(), b.as_ast()), self.ctx)
+
+ def __rand__(self, other):
+ """Create the Z3 expression bitwise-or `other & self`.
+
+ >>> x = BitVec('x', 32)
+ >>> 10 & x
+ 10 & x
+ """
+ a, b = _coerce_exprs(self, other)
+ return BitVecRef(Z3_mk_bvand(self.ctx_ref(), b.as_ast(), a.as_ast()), self.ctx)
+
+ def __xor__(self, other):
+ """Create the Z3 expression bitwise-xor `self ^ other`.
+
+ >>> x = BitVec('x', 32)
+ >>> y = BitVec('y', 32)
+ >>> x ^ y
+ x ^ y
+ >>> (x ^ y).sort()
+ BitVec(32)
+ """
+ a, b = _coerce_exprs(self, other)
+ return BitVecRef(Z3_mk_bvxor(self.ctx_ref(), a.as_ast(), b.as_ast()), self.ctx)
+
+ def __rxor__(self, other):
+ """Create the Z3 expression bitwise-xor `other ^ self`.
+
+ >>> x = BitVec('x', 32)
+ >>> 10 ^ x
+ 10 ^ x
+ """
+ a, b = _coerce_exprs(self, other)
+ return BitVecRef(Z3_mk_bvxor(self.ctx_ref(), b.as_ast(), a.as_ast()), self.ctx)
+
+ def __pos__(self):
+ """Return `self`.
+
+ >>> x = BitVec('x', 32)
+ >>> +x
+ x
+ """
+ return self
+
+ def __neg__(self):
+ """Return an expression representing `-self`.
+
+ >>> x = BitVec('x', 32)
+ >>> -x
+ -x
+ >>> simplify(-(-x))
+ x
+ """
+ return BitVecRef(Z3_mk_bvneg(self.ctx_ref(), self.as_ast()), self.ctx)
+
+ def __invert__(self):
+ """Create the Z3 expression bitwise-not `~self`.
+
+ >>> x = BitVec('x', 32)
+ >>> ~x
+ ~x
+ >>> simplify(~(~x))
+ x
+ """
+ return BitVecRef(Z3_mk_bvnot(self.ctx_ref(), self.as_ast()), self.ctx)
+
+ def __div__(self, other):
+ """Create the Z3 expression (signed) division `self / other`.
+
+ Use the function UDiv() for unsigned division.
+
+ >>> x = BitVec('x', 32)
+ >>> y = BitVec('y', 32)
+ >>> x / y
+ x/y
+ >>> (x / y).sort()
+ BitVec(32)
+ >>> (x / y).sexpr()
+ '(bvsdiv x y)'
+ >>> UDiv(x, y).sexpr()
+ '(bvudiv x y)'
+ """
+ a, b = _coerce_exprs(self, other)
+ return BitVecRef(Z3_mk_bvsdiv(self.ctx_ref(), a.as_ast(), b.as_ast()), self.ctx)
+
+ def __truediv__(self, other):
+ """Create the Z3 expression (signed) division `self / other`."""
+ return self.__div__(other)
+
+ def __rdiv__(self, other):
+ """Create the Z3 expression (signed) division `other / self`.
+
+ Use the function UDiv() for unsigned division.
+
+ >>> x = BitVec('x', 32)
+ >>> 10 / x
+ 10/x
+ >>> (10 / x).sexpr()
+ '(bvsdiv #x0000000a x)'
+ >>> UDiv(10, x).sexpr()
+ '(bvudiv #x0000000a x)'
+ """
+ a, b = _coerce_exprs(self, other)
+ return BitVecRef(Z3_mk_bvsdiv(self.ctx_ref(), b.as_ast(), a.as_ast()), self.ctx)
+
+ def __rtruediv__(self, other):
+ """Create the Z3 expression (signed) division `other / self`."""
+ return self.__rdiv__(other)
+
+ def __mod__(self, other):
+ """Create the Z3 expression (signed) mod `self % other`.
+
+ Use the function URem() for unsigned remainder, and SRem() for signed remainder.
+
+ >>> x = BitVec('x', 32)
+ >>> y = BitVec('y', 32)
+ >>> x % y
+ x%y
+ >>> (x % y).sort()
+ BitVec(32)
+ >>> (x % y).sexpr()
+ '(bvsmod x y)'
+ >>> URem(x, y).sexpr()
+ '(bvurem x y)'
+ >>> SRem(x, y).sexpr()
+ '(bvsrem x y)'
+ """
+ a, b = _coerce_exprs(self, other)
+ return BitVecRef(Z3_mk_bvsmod(self.ctx_ref(), a.as_ast(), b.as_ast()), self.ctx)
+
+ def __rmod__(self, other):
+ """Create the Z3 expression (signed) mod `other % self`.
+
+ Use the function URem() for unsigned remainder, and SRem() for signed remainder.
+
+ >>> x = BitVec('x', 32)
+ >>> 10 % x
+ 10%x
+ >>> (10 % x).sexpr()
+ '(bvsmod #x0000000a x)'
+ >>> URem(10, x).sexpr()
+ '(bvurem #x0000000a x)'
+ >>> SRem(10, x).sexpr()
+ '(bvsrem #x0000000a x)'
+ """
+ a, b = _coerce_exprs(self, other)
+ return BitVecRef(Z3_mk_bvsmod(self.ctx_ref(), b.as_ast(), a.as_ast()), self.ctx)
+
+ def __le__(self, other):
+ """Create the Z3 expression (signed) `other <= self`.
+
+ Use the function ULE() for unsigned less than or equal to.
+
+ >>> x, y = BitVecs('x y', 32)
+ >>> x <= y
+ x <= y
+ >>> (x <= y).sexpr()
+ '(bvsle x y)'
+ >>> ULE(x, y).sexpr()
+ '(bvule x y)'
+ """
+ a, b = _coerce_exprs(self, other)
+ return BoolRef(Z3_mk_bvsle(self.ctx_ref(), a.as_ast(), b.as_ast()), self.ctx)
+
+ def __lt__(self, other):
+ """Create the Z3 expression (signed) `other < self`.
+
+ Use the function ULT() for unsigned less than.
+
+ >>> x, y = BitVecs('x y', 32)
+ >>> x < y
+ x < y
+ >>> (x < y).sexpr()
+ '(bvslt x y)'
+ >>> ULT(x, y).sexpr()
+ '(bvult x y)'
+ """
+ a, b = _coerce_exprs(self, other)
+ return BoolRef(Z3_mk_bvslt(self.ctx_ref(), a.as_ast(), b.as_ast()), self.ctx)
+
+ def __gt__(self, other):
+ """Create the Z3 expression (signed) `other > self`.
+
+ Use the function UGT() for unsigned greater than.
+
+ >>> x, y = BitVecs('x y', 32)
+ >>> x > y
+ x > y
+ >>> (x > y).sexpr()
+ '(bvsgt x y)'
+ >>> UGT(x, y).sexpr()
+ '(bvugt x y)'
+ """
+ a, b = _coerce_exprs(self, other)
+ return BoolRef(Z3_mk_bvsgt(self.ctx_ref(), a.as_ast(), b.as_ast()), self.ctx)
+
+ def __ge__(self, other):
+ """Create the Z3 expression (signed) `other >= self`.
+
+ Use the function UGE() for unsigned greater than or equal to.
+
+ >>> x, y = BitVecs('x y', 32)
+ >>> x >= y
+ x >= y
+ >>> (x >= y).sexpr()
+ '(bvsge x y)'
+ >>> UGE(x, y).sexpr()
+ '(bvuge x y)'
+ """
+ a, b = _coerce_exprs(self, other)
+ return BoolRef(Z3_mk_bvsge(self.ctx_ref(), a.as_ast(), b.as_ast()), self.ctx)
+
+ def __rshift__(self, other):
+ """Create the Z3 expression (arithmetical) right shift `self >> other`
+
+ Use the function LShR() for the right logical shift
+
+ >>> x, y = BitVecs('x y', 32)
+ >>> x >> y
+ x >> y
+ >>> (x >> y).sexpr()
+ '(bvashr x y)'
+ >>> LShR(x, y).sexpr()
+ '(bvlshr x y)'
+ >>> BitVecVal(4, 3)
+ 4
+ >>> BitVecVal(4, 3).as_signed_long()
+ -4
+ >>> simplify(BitVecVal(4, 3) >> 1).as_signed_long()
+ -2
+ >>> simplify(BitVecVal(4, 3) >> 1)
+ 6
+ >>> simplify(LShR(BitVecVal(4, 3), 1))
+ 2
+ >>> simplify(BitVecVal(2, 3) >> 1)
+ 1
+ >>> simplify(LShR(BitVecVal(2, 3), 1))
+ 1
+ """
+ a, b = _coerce_exprs(self, other)
+ return BitVecRef(Z3_mk_bvashr(self.ctx_ref(), a.as_ast(), b.as_ast()), self.ctx)
+
+ def __lshift__(self, other):
+ """Create the Z3 expression left shift `self << other`
+
+ >>> x, y = BitVecs('x y', 32)
+ >>> x << y
+ x << y
+ >>> (x << y).sexpr()
+ '(bvshl x y)'
+ >>> simplify(BitVecVal(2, 3) << 1)
+ 4
+ """
+ a, b = _coerce_exprs(self, other)
+ return BitVecRef(Z3_mk_bvshl(self.ctx_ref(), a.as_ast(), b.as_ast()), self.ctx)
+
+ def __rrshift__(self, other):
+ """Create the Z3 expression (arithmetical) right shift `other` >> `self`.
+
+ Use the function LShR() for the right logical shift
+
+ >>> x = BitVec('x', 32)
+ >>> 10 >> x
+ 10 >> x
+ >>> (10 >> x).sexpr()
+ '(bvashr #x0000000a x)'
+ """
+ a, b = _coerce_exprs(self, other)
+ return BitVecRef(Z3_mk_bvashr(self.ctx_ref(), b.as_ast(), a.as_ast()), self.ctx)
+
+ def __rlshift__(self, other):
+ """Create the Z3 expression left shift `other << self`.
+
+ Use the function LShR() for the right logical shift
+
+ >>> x = BitVec('x', 32)
+ >>> 10 << x
+ 10 << x
+ >>> (10 << x).sexpr()
+ '(bvshl #x0000000a x)'
+ """
+ a, b = _coerce_exprs(self, other)
+ return BitVecRef(Z3_mk_bvshl(self.ctx_ref(), b.as_ast(), a.as_ast()), self.ctx)
+
+class BitVecNumRef(BitVecRef):
+ """Bit-vector values."""
+
+ def as_long(self):
+ """Return a Z3 bit-vector numeral as a Python long (bignum) numeral.
+
+ >>> v = BitVecVal(0xbadc0de, 32)
+ >>> v
+ 195936478
+ >>> print("0x%.8x" % v.as_long())
+ 0x0badc0de
+ """
+ return int(self.as_string())
+
+ def as_signed_long(self):
+ """Return a Z3 bit-vector numeral as a Python long (bignum) numeral. The most significant bit is assumed to be the sign.
+
+ >>> BitVecVal(4, 3).as_signed_long()
+ -4
+ >>> BitVecVal(7, 3).as_signed_long()
+ -1
+ >>> BitVecVal(3, 3).as_signed_long()
+ 3
+ >>> BitVecVal(2**32 - 1, 32).as_signed_long()
+ -1
+ >>> BitVecVal(2**64 - 1, 64).as_signed_long()
+ -1
+ """
+ sz = self.size()
+ val = self.as_long()
+ if val >= 2**(sz - 1):
+ val = val - 2**sz
+ if val < -2**(sz - 1):
+ val = val + 2**sz
+ return int(val)
+
+ def as_string(self):
+ return Z3_get_numeral_string(self.ctx_ref(), self.as_ast())
+
+ def as_binary_string(self):
+ return Z3_get_numeral_binary_string(self.ctx_ref(), self.as_ast())
+
+
+def is_bv(a):
+ """Return `True` if `a` is a Z3 bit-vector expression.
+
+ >>> b = BitVec('b', 32)
+ >>> is_bv(b)
+ True
+ >>> is_bv(b + 10)
+ True
+ >>> is_bv(Int('x'))
+ False
+ """
+ return isinstance(a, BitVecRef)
+
+def is_bv_value(a):
+ """Return `True` if `a` is a Z3 bit-vector numeral value.
+
+ >>> b = BitVec('b', 32)
+ >>> is_bv_value(b)
+ False
+ >>> b = BitVecVal(10, 32)
+ >>> b
+ 10
+ >>> is_bv_value(b)
+ True
+ """
+ return is_bv(a) and _is_numeral(a.ctx, a.as_ast())
+
+def BV2Int(a, is_signed=False):
+ """Return the Z3 expression BV2Int(a).
+
+ >>> b = BitVec('b', 3)
+ >>> BV2Int(b).sort()
+ Int
+ >>> x = Int('x')
+ >>> x > BV2Int(b)
+ x > BV2Int(b)
+ >>> x > BV2Int(b, is_signed=False)
+ x > BV2Int(b)
+ >>> x > BV2Int(b, is_signed=True)
+ x > If(b < 0, BV2Int(b) - 8, BV2Int(b))
+ >>> solve(x > BV2Int(b), b == 1, x < 3)
+ [x = 2, b = 1]
+ """
+ if z3_debug():
+ _z3_assert(is_bv(a), "First argument must be a Z3 bit-vector expression")
+ ctx = a.ctx
+ ## investigate problem with bv2int
+ return ArithRef(Z3_mk_bv2int(ctx.ref(), a.as_ast(), is_signed), ctx)
+
+def Int2BV(a, num_bits):
+ """Return the z3 expression Int2BV(a, num_bits).
+ It is a bit-vector of width num_bits and represents the
+ modulo of a by 2^num_bits
+ """
+ ctx = a.ctx
+ return BitVecRef(Z3_mk_int2bv(ctx.ref(), num_bits, a.as_ast()), ctx)
+
+def BitVecSort(sz, ctx=None):
+ """Return a Z3 bit-vector sort of the given size. If `ctx=None`, then the global context is used.
+
+ >>> Byte = BitVecSort(8)
+ >>> Word = BitVecSort(16)
+ >>> Byte
+ BitVec(8)
+ >>> x = Const('x', Byte)
+ >>> eq(x, BitVec('x', 8))
+ True
+ """
+ ctx = _get_ctx(ctx)
+ return BitVecSortRef(Z3_mk_bv_sort(ctx.ref(), sz), ctx)
+
+def BitVecVal(val, bv, ctx=None):
+ """Return a bit-vector value with the given number of bits. If `ctx=None`, then the global context is used.
+
+ >>> v = BitVecVal(10, 32)
+ >>> v
+ 10
+ >>> print("0x%.8x" % v.as_long())
+ 0x0000000a
+ """
+ if is_bv_sort(bv):
+ ctx = bv.ctx
+ return BitVecNumRef(Z3_mk_numeral(ctx.ref(), _to_int_str(val), bv.ast), ctx)
+ else:
+ ctx = _get_ctx(ctx)
+ return BitVecNumRef(Z3_mk_numeral(ctx.ref(), _to_int_str(val), BitVecSort(bv, ctx).ast), ctx)
+
+def BitVec(name, bv, ctx=None):
+ """Return a bit-vector constant named `name`. `bv` may be the number of bits of a bit-vector sort.
+ If `ctx=None`, then the global context is used.
+
+ >>> x = BitVec('x', 16)
+ >>> is_bv(x)
+ True
+ >>> x.size()
+ 16
+ >>> x.sort()
+ BitVec(16)
+ >>> word = BitVecSort(16)
+ >>> x2 = BitVec('x', word)
+ >>> eq(x, x2)
+ True
+ """
+ if isinstance(bv, BitVecSortRef):
+ ctx = bv.ctx
+ else:
+ ctx = _get_ctx(ctx)
+ bv = BitVecSort(bv, ctx)
+ return BitVecRef(Z3_mk_const(ctx.ref(), to_symbol(name, ctx), bv.ast), ctx)
+
+def BitVecs(names, bv, ctx=None):
+ """Return a tuple of bit-vector constants of size bv.
+
+ >>> x, y, z = BitVecs('x y z', 16)
+ >>> x.size()
+ 16
+ >>> x.sort()
+ BitVec(16)
+ >>> Sum(x, y, z)
+ 0 + x + y + z
+ >>> Product(x, y, z)
+ 1*x*y*z
+ >>> simplify(Product(x, y, z))
+ x*y*z
+ """
+ ctx = _get_ctx(ctx)
+ if isinstance(names, str):
+ names = names.split(" ")
+ return [BitVec(name, bv, ctx) for name in names]
+
+def Concat(*args):
+ """Create a Z3 bit-vector concatenation expression.
+
+ >>> v = BitVecVal(1, 4)
+ >>> Concat(v, v+1, v)
+ Concat(Concat(1, 1 + 1), 1)
+ >>> simplify(Concat(v, v+1, v))
+ 289
+ >>> print("%.3x" % simplify(Concat(v, v+1, v)).as_long())
+ 121
+ """
+ args = _get_args(args)
+ sz = len(args)
+ if z3_debug():
+ _z3_assert(sz >= 2, "At least two arguments expected.")
+
+ ctx = None
+ for a in args:
+ if is_expr(a):
+ ctx = a.ctx
+ break
+ if is_seq(args[0]) or isinstance(args[0], str):
+ args = [_coerce_seq(s, ctx) for s in args]
+ if z3_debug():
+ _z3_assert(all([is_seq(a) for a in args]), "All arguments must be sequence expressions.")
+ v = (Ast * sz)()
+ for i in range(sz):
+ v[i] = args[i].as_ast()
+ return SeqRef(Z3_mk_seq_concat(ctx.ref(), sz, v), ctx)
+
+ if is_re(args[0]):
+ if z3_debug():
+ _z3_assert(all([is_re(a) for a in args]), "All arguments must be regular expressions.")
+ v = (Ast * sz)()
+ for i in range(sz):
+ v[i] = args[i].as_ast()
+ return ReRef(Z3_mk_re_concat(ctx.ref(), sz, v), ctx)
+
+ if z3_debug():
+ _z3_assert(all([is_bv(a) for a in args]), "All arguments must be Z3 bit-vector expressions.")
+ r = args[0]
+ for i in range(sz - 1):
+ r = BitVecRef(Z3_mk_concat(ctx.ref(), r.as_ast(), args[i+1].as_ast()), ctx)
+ return r
+
+def Extract(high, low, a):
+ """Create a Z3 bit-vector extraction expression, or create a string extraction expression.
+
+ >>> x = BitVec('x', 8)
+ >>> Extract(6, 2, x)
+ Extract(6, 2, x)
+ >>> Extract(6, 2, x).sort()
+ BitVec(5)
+ >>> simplify(Extract(StringVal("abcd"),2,1))
+ "c"
+ """
+ if isinstance(high, str):
+ high = StringVal(high)
+ if is_seq(high):
+ s = high
+ offset, length = _coerce_exprs(low, a, s.ctx)
+ return SeqRef(Z3_mk_seq_extract(s.ctx_ref(), s.as_ast(), offset.as_ast(), length.as_ast()), s.ctx)
+ if z3_debug():
+ _z3_assert(low <= high, "First argument must be greater than or equal to second argument")
+ _z3_assert(_is_int(high) and high >= 0 and _is_int(low) and low >= 0, "First and second arguments must be non negative integers")
+ _z3_assert(is_bv(a), "Third argument must be a Z3 bit-vector expression")
+ return BitVecRef(Z3_mk_extract(a.ctx_ref(), high, low, a.as_ast()), a.ctx)
+
+def _check_bv_args(a, b):
+ if z3_debug():
+ _z3_assert(is_bv(a) or is_bv(b), "First or second argument must be a Z3 bit-vector expression")
+
+def ULE(a, b):
+ """Create the Z3 expression (unsigned) `other <= self`.
+
+ Use the operator <= for signed less than or equal to.
+
+ >>> x, y = BitVecs('x y', 32)
+ >>> ULE(x, y)
+ ULE(x, y)
+ >>> (x <= y).sexpr()
+ '(bvsle x y)'
+ >>> ULE(x, y).sexpr()
+ '(bvule x y)'
+ """
+ _check_bv_args(a, b)
+ a, b = _coerce_exprs(a, b)
+ return BoolRef(Z3_mk_bvule(a.ctx_ref(), a.as_ast(), b.as_ast()), a.ctx)
+
+def ULT(a, b):
+ """Create the Z3 expression (unsigned) `other < self`.
+
+ Use the operator < for signed less than.
+
+ >>> x, y = BitVecs('x y', 32)
+ >>> ULT(x, y)
+ ULT(x, y)
+ >>> (x < y).sexpr()
+ '(bvslt x y)'
+ >>> ULT(x, y).sexpr()
+ '(bvult x y)'
+ """
+ _check_bv_args(a, b)
+ a, b = _coerce_exprs(a, b)
+ return BoolRef(Z3_mk_bvult(a.ctx_ref(), a.as_ast(), b.as_ast()), a.ctx)
+
+def UGE(a, b):
+ """Create the Z3 expression (unsigned) `other >= self`.
+
+ Use the operator >= for signed greater than or equal to.
+
+ >>> x, y = BitVecs('x y', 32)
+ >>> UGE(x, y)
+ UGE(x, y)
+ >>> (x >= y).sexpr()
+ '(bvsge x y)'
+ >>> UGE(x, y).sexpr()
+ '(bvuge x y)'
+ """
+ _check_bv_args(a, b)
+ a, b = _coerce_exprs(a, b)
+ return BoolRef(Z3_mk_bvuge(a.ctx_ref(), a.as_ast(), b.as_ast()), a.ctx)
+
+def UGT(a, b):
+ """Create the Z3 expression (unsigned) `other > self`.
+
+ Use the operator > for signed greater than.
+
+ >>> x, y = BitVecs('x y', 32)
+ >>> UGT(x, y)
+ UGT(x, y)
+ >>> (x > y).sexpr()
+ '(bvsgt x y)'
+ >>> UGT(x, y).sexpr()
+ '(bvugt x y)'
+ """
+ _check_bv_args(a, b)
+ a, b = _coerce_exprs(a, b)
+ return BoolRef(Z3_mk_bvugt(a.ctx_ref(), a.as_ast(), b.as_ast()), a.ctx)
+
+def UDiv(a, b):
+ """Create the Z3 expression (unsigned) division `self / other`.
+
+ Use the operator / for signed division.
+
+ >>> x = BitVec('x', 32)
+ >>> y = BitVec('y', 32)
+ >>> UDiv(x, y)
+ UDiv(x, y)
+ >>> UDiv(x, y).sort()
+ BitVec(32)
+ >>> (x / y).sexpr()
+ '(bvsdiv x y)'
+ >>> UDiv(x, y).sexpr()
+ '(bvudiv x y)'
+ """
+ _check_bv_args(a, b)
+ a, b = _coerce_exprs(a, b)
+ return BitVecRef(Z3_mk_bvudiv(a.ctx_ref(), a.as_ast(), b.as_ast()), a.ctx)
+
+def URem(a, b):
+ """Create the Z3 expression (unsigned) remainder `self % other`.
+
+ Use the operator % for signed modulus, and SRem() for signed remainder.
+
+ >>> x = BitVec('x', 32)
+ >>> y = BitVec('y', 32)
+ >>> URem(x, y)
+ URem(x, y)
+ >>> URem(x, y).sort()
+ BitVec(32)
+ >>> (x % y).sexpr()
+ '(bvsmod x y)'
+ >>> URem(x, y).sexpr()
+ '(bvurem x y)'
+ """
+ _check_bv_args(a, b)
+ a, b = _coerce_exprs(a, b)
+ return BitVecRef(Z3_mk_bvurem(a.ctx_ref(), a.as_ast(), b.as_ast()), a.ctx)
+
+def SRem(a, b):
+ """Create the Z3 expression signed remainder.
+
+ Use the operator % for signed modulus, and URem() for unsigned remainder.
+
+ >>> x = BitVec('x', 32)
+ >>> y = BitVec('y', 32)
+ >>> SRem(x, y)
+ SRem(x, y)
+ >>> SRem(x, y).sort()
+ BitVec(32)
+ >>> (x % y).sexpr()
+ '(bvsmod x y)'
+ >>> SRem(x, y).sexpr()
+ '(bvsrem x y)'
+ """
+ _check_bv_args(a, b)
+ a, b = _coerce_exprs(a, b)
+ return BitVecRef(Z3_mk_bvsrem(a.ctx_ref(), a.as_ast(), b.as_ast()), a.ctx)
+
+def LShR(a, b):
+ """Create the Z3 expression logical right shift.
+
+ Use the operator >> for the arithmetical right shift.
+
+ >>> x, y = BitVecs('x y', 32)
+ >>> LShR(x, y)
+ LShR(x, y)
+ >>> (x >> y).sexpr()
+ '(bvashr x y)'
+ >>> LShR(x, y).sexpr()
+ '(bvlshr x y)'
+ >>> BitVecVal(4, 3)
+ 4
+ >>> BitVecVal(4, 3).as_signed_long()
+ -4
+ >>> simplify(BitVecVal(4, 3) >> 1).as_signed_long()
+ -2
+ >>> simplify(BitVecVal(4, 3) >> 1)
+ 6
+ >>> simplify(LShR(BitVecVal(4, 3), 1))
+ 2
+ >>> simplify(BitVecVal(2, 3) >> 1)
+ 1
+ >>> simplify(LShR(BitVecVal(2, 3), 1))
+ 1
+ """
+ _check_bv_args(a, b)
+ a, b = _coerce_exprs(a, b)
+ return BitVecRef(Z3_mk_bvlshr(a.ctx_ref(), a.as_ast(), b.as_ast()), a.ctx)
+
+def RotateLeft(a, b):
+ """Return an expression representing `a` rotated to the left `b` times.
+
+ >>> a, b = BitVecs('a b', 16)
+ >>> RotateLeft(a, b)
+ RotateLeft(a, b)
+ >>> simplify(RotateLeft(a, 0))
+ a
+ >>> simplify(RotateLeft(a, 16))
+ a
+ """
+ _check_bv_args(a, b)
+ a, b = _coerce_exprs(a, b)
+ return BitVecRef(Z3_mk_ext_rotate_left(a.ctx_ref(), a.as_ast(), b.as_ast()), a.ctx)
+
+def RotateRight(a, b):
+ """Return an expression representing `a` rotated to the right `b` times.
+
+ >>> a, b = BitVecs('a b', 16)
+ >>> RotateRight(a, b)
+ RotateRight(a, b)
+ >>> simplify(RotateRight(a, 0))
+ a
+ >>> simplify(RotateRight(a, 16))
+ a
+ """
+ _check_bv_args(a, b)
+ a, b = _coerce_exprs(a, b)
+ return BitVecRef(Z3_mk_ext_rotate_right(a.ctx_ref(), a.as_ast(), b.as_ast()), a.ctx)
+
+def SignExt(n, a):
+ """Return a bit-vector expression with `n` extra sign-bits.
+
+ >>> x = BitVec('x', 16)
+ >>> n = SignExt(8, x)
+ >>> n.size()
+ 24
+ >>> n
+ SignExt(8, x)
+ >>> n.sort()
+ BitVec(24)
+ >>> v0 = BitVecVal(2, 2)
+ >>> v0
+ 2
+ >>> v0.size()
+ 2
+ >>> v = simplify(SignExt(6, v0))
+ >>> v
+ 254
+ >>> v.size()
+ 8
+ >>> print("%.x" % v.as_long())
+ fe
+ """
+ if z3_debug():
+ _z3_assert(_is_int(n), "First argument must be an integer")
+ _z3_assert(is_bv(a), "Second argument must be a Z3 bit-vector expression")
+ return BitVecRef(Z3_mk_sign_ext(a.ctx_ref(), n, a.as_ast()), a.ctx)
+
+def ZeroExt(n, a):
+ """Return a bit-vector expression with `n` extra zero-bits.
+
+ >>> x = BitVec('x', 16)
+ >>> n = ZeroExt(8, x)
+ >>> n.size()
+ 24
+ >>> n
+ ZeroExt(8, x)
+ >>> n.sort()
+ BitVec(24)
+ >>> v0 = BitVecVal(2, 2)
+ >>> v0
+ 2
+ >>> v0.size()
+ 2
+ >>> v = simplify(ZeroExt(6, v0))
+ >>> v
+ 2
+ >>> v.size()
+ 8
+ """
+ if z3_debug():
+ _z3_assert(_is_int(n), "First argument must be an integer")
+ _z3_assert(is_bv(a), "Second argument must be a Z3 bit-vector expression")
+ return BitVecRef(Z3_mk_zero_ext(a.ctx_ref(), n, a.as_ast()), a.ctx)
+
+def RepeatBitVec(n, a):
+ """Return an expression representing `n` copies of `a`.
+
+ >>> x = BitVec('x', 8)
+ >>> n = RepeatBitVec(4, x)
+ >>> n
+ RepeatBitVec(4, x)
+ >>> n.size()
+ 32
+ >>> v0 = BitVecVal(10, 4)
+ >>> print("%.x" % v0.as_long())
+ a
+ >>> v = simplify(RepeatBitVec(4, v0))
+ >>> v.size()
+ 16
+ >>> print("%.x" % v.as_long())
+ aaaa
+ """
+ if z3_debug():
+ _z3_assert(_is_int(n), "First argument must be an integer")
+ _z3_assert(is_bv(a), "Second argument must be a Z3 bit-vector expression")
+ return BitVecRef(Z3_mk_repeat(a.ctx_ref(), n, a.as_ast()), a.ctx)
+
+def BVRedAnd(a):
+ """Return the reduction-and expression of `a`."""
+ if z3_debug():
+ _z3_assert(is_bv(a), "First argument must be a Z3 bit-vector expression")
+ return BitVecRef(Z3_mk_bvredand(a.ctx_ref(), a.as_ast()), a.ctx)
+
+def BVRedOr(a):
+ """Return the reduction-or expression of `a`."""
+ if z3_debug():
+ _z3_assert(is_bv(a), "First argument must be a Z3 bit-vector expression")
+ return BitVecRef(Z3_mk_bvredor(a.ctx_ref(), a.as_ast()), a.ctx)
+
+def BVAddNoOverflow(a, b, signed):
+ """A predicate the determines that bit-vector addition does not overflow"""
+ _check_bv_args(a, b)
+ a, b = _coerce_exprs(a, b)
+ return BoolRef(Z3_mk_bvadd_no_overflow(a.ctx_ref(), a.as_ast(), b.as_ast(), signed), a.ctx)
+
+def BVAddNoUnderflow(a, b):
+ """A predicate the determines that signed bit-vector addition does not underflow"""
+ _check_bv_args(a, b)
+ a, b = _coerce_exprs(a, b)
+ return BoolRef(Z3_mk_bvadd_no_underflow(a.ctx_ref(), a.as_ast(), b.as_ast()), a.ctx)
+
+def BVSubNoOverflow(a, b):
+ """A predicate the determines that bit-vector subtraction does not overflow"""
+ _check_bv_args(a, b)
+ a, b = _coerce_exprs(a, b)
+ return BoolRef(Z3_mk_bvsub_no_overflow(a.ctx_ref(), a.as_ast(), b.as_ast()), a.ctx)
+
+
+def BVSubNoUnderflow(a, b, signed):
+ """A predicate the determines that bit-vector subtraction does not underflow"""
+ _check_bv_args(a, b)
+ a, b = _coerce_exprs(a, b)
+ return BoolRef(Z3_mk_bvsub_no_underflow(a.ctx_ref(), a.as_ast(), b.as_ast(), signed), a.ctx)
+
+def BVSDivNoOverflow(a, b):
+ """A predicate the determines that bit-vector signed division does not overflow"""
+ _check_bv_args(a, b)
+ a, b = _coerce_exprs(a, b)
+ return BoolRef(Z3_mk_bvsdiv_no_overflow(a.ctx_ref(), a.as_ast(), b.as_ast()), a.ctx)
+
+def BVSNegNoOverflow(a):
+ """A predicate the determines that bit-vector unary negation does not overflow"""
+ if z3_debug():
+ _z3_assert(is_bv(a), "First argument must be a Z3 bit-vector expression")
+ return BoolRef(Z3_mk_bvneg_no_overflow(a.ctx_ref(), a.as_ast()), a.ctx)
+
+def BVMulNoOverflow(a, b, signed):
+ """A predicate the determines that bit-vector multiplication does not overflow"""
+ _check_bv_args(a, b)
+ a, b = _coerce_exprs(a, b)
+ return BoolRef(Z3_mk_bvmul_no_overflow(a.ctx_ref(), a.as_ast(), b.as_ast(), signed), a.ctx)
+
+
+def BVMulNoUnderflow(a, b):
+ """A predicate the determines that bit-vector signed multiplication does not underflow"""
+ _check_bv_args(a, b)
+ a, b = _coerce_exprs(a, b)
+ return BoolRef(Z3_mk_bvmul_no_underflow(a.ctx_ref(), a.as_ast(), b.as_ast()), a.ctx)
+
+
+
+#########################################
+#
+# Arrays
+#
+#########################################
+
+class ArraySortRef(SortRef):
+ """Array sorts."""
+
+ def domain(self):
+ """Return the domain of the array sort `self`.
+
+ >>> A = ArraySort(IntSort(), BoolSort())
+ >>> A.domain()
+ Int
+ """
+ return _to_sort_ref(Z3_get_array_sort_domain(self.ctx_ref(), self.ast), self.ctx)
+
+ def range(self):
+ """Return the range of the array sort `self`.
+
+ >>> A = ArraySort(IntSort(), BoolSort())
+ >>> A.range()
+ Bool
+ """
+ return _to_sort_ref(Z3_get_array_sort_range(self.ctx_ref(), self.ast), self.ctx)
+
+class ArrayRef(ExprRef):
+ """Array expressions. """
+
+ def sort(self):
+ """Return the array sort of the array expression `self`.
+
+ >>> a = Array('a', IntSort(), BoolSort())
+ >>> a.sort()
+ Array(Int, Bool)
+ """
+ return ArraySortRef(Z3_get_sort(self.ctx_ref(), self.as_ast()), self.ctx)
+
+ def domain(self):
+ """Shorthand for `self.sort().domain()`.
+
+ >>> a = Array('a', IntSort(), BoolSort())
+ >>> a.domain()
+ Int
+ """
+ return self.sort().domain()
+
+ def range(self):
+ """Shorthand for `self.sort().range()`.
+
+ >>> a = Array('a', IntSort(), BoolSort())
+ >>> a.range()
+ Bool
+ """
+ return self.sort().range()
+
+ def __getitem__(self, arg):
+ """Return the Z3 expression `self[arg]`.
+
+ >>> a = Array('a', IntSort(), BoolSort())
+ >>> i = Int('i')
+ >>> a[i]
+ a[i]
+ >>> a[i].sexpr()
+ '(select a i)'
+ """
+ arg = self.domain().cast(arg)
+ return _to_expr_ref(Z3_mk_select(self.ctx_ref(), self.as_ast(), arg.as_ast()), self.ctx)
+
+ def default(self):
+ return _to_expr_ref(Z3_mk_array_default(self.ctx_ref(), self.as_ast()), self.ctx)
+
+def is_array_sort(a):
+ return Z3_get_sort_kind(a.ctx.ref(), Z3_get_sort(a.ctx.ref(), a.ast)) == Z3_ARRAY_SORT
+
+
+def is_array(a):
+ """Return `True` if `a` is a Z3 array expression.
+
+ >>> a = Array('a', IntSort(), IntSort())
+ >>> is_array(a)
+ True
+ >>> is_array(Store(a, 0, 1))
+ True
+ >>> is_array(a[0])
+ False
+ """
+ return isinstance(a, ArrayRef)
+
+def is_const_array(a):
+ """Return `True` if `a` is a Z3 constant array.
+
+ >>> a = K(IntSort(), 10)
+ >>> is_const_array(a)
+ True
+ >>> a = Array('a', IntSort(), IntSort())
+ >>> is_const_array(a)
+ False
+ """
+ return is_app_of(a, Z3_OP_CONST_ARRAY)
+
+def is_K(a):
+ """Return `True` if `a` is a Z3 constant array.
+
+ >>> a = K(IntSort(), 10)
+ >>> is_K(a)
+ True
+ >>> a = Array('a', IntSort(), IntSort())
+ >>> is_K(a)
+ False
+ """
+ return is_app_of(a, Z3_OP_CONST_ARRAY)
+
+def is_map(a):
+ """Return `True` if `a` is a Z3 map array expression.
+
+ >>> f = Function('f', IntSort(), IntSort())
+ >>> b = Array('b', IntSort(), IntSort())
+ >>> a = Map(f, b)
+ >>> a
+ Map(f, b)
+ >>> is_map(a)
+ True
+ >>> is_map(b)
+ False
+ """
+ return is_app_of(a, Z3_OP_ARRAY_MAP)
+
+def is_default(a):
+ """Return `True` if `a` is a Z3 default array expression.
+ >>> d = Default(K(IntSort(), 10))
+ >>> is_default(d)
+ True
+ """
+ return is_app_of(a, Z3_OP_ARRAY_DEFAULT)
+
+def get_map_func(a):
+ """Return the function declaration associated with a Z3 map array expression.
+
+ >>> f = Function('f', IntSort(), IntSort())
+ >>> b = Array('b', IntSort(), IntSort())
+ >>> a = Map(f, b)
+ >>> eq(f, get_map_func(a))
+ True
+ >>> get_map_func(a)
+ f
+ >>> get_map_func(a)(0)
+ f(0)
+ """
+ if z3_debug():
+ _z3_assert(is_map(a), "Z3 array map expression expected.")
+ return FuncDeclRef(Z3_to_func_decl(a.ctx_ref(), Z3_get_decl_ast_parameter(a.ctx_ref(), a.decl().ast, 0)), a.ctx)
+
+def ArraySort(*sig):
+ """Return the Z3 array sort with the given domain and range sorts.
+
+ >>> A = ArraySort(IntSort(), BoolSort())
+ >>> A
+ Array(Int, Bool)
+ >>> A.domain()
+ Int
+ >>> A.range()
+ Bool
+ >>> AA = ArraySort(IntSort(), A)
+ >>> AA
+ Array(Int, Array(Int, Bool))
+ """
+ sig = _get_args(sig)
+ if z3_debug():
+ _z3_assert(len(sig) > 1, "At least two arguments expected")
+ arity = len(sig) - 1
+ r = sig[arity]
+ d = sig[0]
+ if z3_debug():
+ for s in sig:
+ _z3_assert(is_sort(s), "Z3 sort expected")
+ _z3_assert(s.ctx == r.ctx, "Context mismatch")
+ ctx = d.ctx
+ if len(sig) == 2:
+ return ArraySortRef(Z3_mk_array_sort(ctx.ref(), d.ast, r.ast), ctx)
+ dom = (Sort * arity)()
+ for i in range(arity):
+ dom[i] = sig[i].ast
+ return ArraySortRef(Z3_mk_array_sort_n(ctx.ref(), arity, dom, r.ast), ctx)
+
+def Array(name, dom, rng):
+ """Return an array constant named `name` with the given domain and range sorts.
+
+ >>> a = Array('a', IntSort(), IntSort())
+ >>> a.sort()
+ Array(Int, Int)
+ >>> a[0]
+ a[0]
+ """
+ s = ArraySort(dom, rng)
+ ctx = s.ctx
+ return ArrayRef(Z3_mk_const(ctx.ref(), to_symbol(name, ctx), s.ast), ctx)
+
+def Update(a, i, v):
+ """Return a Z3 store array expression.
+
+ >>> a = Array('a', IntSort(), IntSort())
+ >>> i, v = Ints('i v')
+ >>> s = Update(a, i, v)
+ >>> s.sort()
+ Array(Int, Int)
+ >>> prove(s[i] == v)
+ proved
+ >>> j = Int('j')
+ >>> prove(Implies(i != j, s[j] == a[j]))
+ proved
+ """
+ if z3_debug():
+ _z3_assert(is_array_sort(a), "First argument must be a Z3 array expression")
+ i = a.sort().domain().cast(i)
+ v = a.sort().range().cast(v)
+ ctx = a.ctx
+ return _to_expr_ref(Z3_mk_store(ctx.ref(), a.as_ast(), i.as_ast(), v.as_ast()), ctx)
+
+def Default(a):
+ """ Return a default value for array expression.
+ >>> b = K(IntSort(), 1)
+ >>> prove(Default(b) == 1)
+ proved
+ """
+ if z3_debug():
+ _z3_assert(is_array_sort(a), "First argument must be a Z3 array expression")
+ return a.default()
+
+
+def Store(a, i, v):
+ """Return a Z3 store array expression.
+
+ >>> a = Array('a', IntSort(), IntSort())
+ >>> i, v = Ints('i v')
+ >>> s = Store(a, i, v)
+ >>> s.sort()
+ Array(Int, Int)
+ >>> prove(s[i] == v)
+ proved
+ >>> j = Int('j')
+ >>> prove(Implies(i != j, s[j] == a[j]))
+ proved
+ """
+ return Update(a, i, v)
+
+def Select(a, i):
+ """Return a Z3 select array expression.
+
+ >>> a = Array('a', IntSort(), IntSort())
+ >>> i = Int('i')
+ >>> Select(a, i)
+ a[i]
+ >>> eq(Select(a, i), a[i])
+ True
+ """
+ if z3_debug():
+ _z3_assert(is_array_sort(a), "First argument must be a Z3 array expression")
+ return a[i]
+
+
+def Map(f, *args):
+ """Return a Z3 map array expression.
+
+ >>> f = Function('f', IntSort(), IntSort(), IntSort())
+ >>> a1 = Array('a1', IntSort(), IntSort())
+ >>> a2 = Array('a2', IntSort(), IntSort())
+ >>> b = Map(f, a1, a2)
+ >>> b
+ Map(f, a1, a2)
+ >>> prove(b[0] == f(a1[0], a2[0]))
+ proved
+ """
+ args = _get_args(args)
+ if z3_debug():
+ _z3_assert(len(args) > 0, "At least one Z3 array expression expected")
+ _z3_assert(is_func_decl(f), "First argument must be a Z3 function declaration")
+ _z3_assert(all([is_array(a) for a in args]), "Z3 array expected expected")
+ _z3_assert(len(args) == f.arity(), "Number of arguments mismatch")
+ _args, sz = _to_ast_array(args)
+ ctx = f.ctx
+ return ArrayRef(Z3_mk_map(ctx.ref(), f.ast, sz, _args), ctx)
+
+def K(dom, v):
+ """Return a Z3 constant array expression.
+
+ >>> a = K(IntSort(), 10)
+ >>> a
+ K(Int, 10)
+ >>> a.sort()
+ Array(Int, Int)
+ >>> i = Int('i')
+ >>> a[i]
+ K(Int, 10)[i]
+ >>> simplify(a[i])
+ 10
+ """
+ if z3_debug():
+ _z3_assert(is_sort(dom), "Z3 sort expected")
+ ctx = dom.ctx
+ if not is_expr(v):
+ v = _py2expr(v, ctx)
+ return ArrayRef(Z3_mk_const_array(ctx.ref(), dom.ast, v.as_ast()), ctx)
+
+def Ext(a, b):
+ """Return extensionality index for one-dimensional arrays.
+ >> a, b = Consts('a b', SetSort(IntSort()))
+ >> Ext(a, b)
+ Ext(a, b)
+ """
+ ctx = a.ctx
+ if z3_debug():
+ _z3_assert(is_array_sort(a) and is_array(b), "arguments must be arrays")
+ return _to_expr_ref(Z3_mk_array_ext(ctx.ref(), a.as_ast(), b.as_ast()), ctx)
+
+def SetHasSize(a, k):
+ ctx = a.ctx
+ k = _py2expr(k, ctx)
+ return _to_expr_ref(Z3_mk_set_has_size(ctx.ref(), a.as_ast(), k.as_ast()), ctx)
+
+def is_select(a):
+ """Return `True` if `a` is a Z3 array select application.
+
+ >>> a = Array('a', IntSort(), IntSort())
+ >>> is_select(a)
+ False
+ >>> i = Int('i')
+ >>> is_select(a[i])
+ True
+ """
+ return is_app_of(a, Z3_OP_SELECT)
+
+def is_store(a):
+ """Return `True` if `a` is a Z3 array store application.
+
+ >>> a = Array('a', IntSort(), IntSort())
+ >>> is_store(a)
+ False
+ >>> is_store(Store(a, 0, 1))
+ True
+ """
+ return is_app_of(a, Z3_OP_STORE)
+
+#########################################
+#
+# Sets
+#
+#########################################
+
+
+def SetSort(s):
+ """ Create a set sort over element sort s"""
+ return ArraySort(s, BoolSort())
+
+def EmptySet(s):
+ """Create the empty set
+ >>> EmptySet(IntSort())
+ K(Int, False)
+ """
+ ctx = s.ctx
+ return ArrayRef(Z3_mk_empty_set(ctx.ref(), s.ast), ctx)
+
+def FullSet(s):
+ """Create the full set
+ >>> FullSet(IntSort())
+ K(Int, True)
+ """
+ ctx = s.ctx
+ return ArrayRef(Z3_mk_full_set(ctx.ref(), s.ast), ctx)
+
+def SetUnion(*args):
+ """ Take the union of sets
+ >>> a = Const('a', SetSort(IntSort()))
+ >>> b = Const('b', SetSort(IntSort()))
+ >>> SetUnion(a, b)
+ union(a, b)
+ """
+ args = _get_args(args)
+ ctx = _ctx_from_ast_arg_list(args)
+ _args, sz = _to_ast_array(args)
+ return ArrayRef(Z3_mk_set_union(ctx.ref(), sz, _args), ctx)
+
+def SetIntersect(*args):
+ """ Take the union of sets
+ >>> a = Const('a', SetSort(IntSort()))
+ >>> b = Const('b', SetSort(IntSort()))
+ >>> SetIntersect(a, b)
+ intersection(a, b)
+ """
+ args = _get_args(args)
+ ctx = _ctx_from_ast_arg_list(args)
+ _args, sz = _to_ast_array(args)
+ return ArrayRef(Z3_mk_set_intersect(ctx.ref(), sz, _args), ctx)
+
+def SetAdd(s, e):
+ """ Add element e to set s
+ >>> a = Const('a', SetSort(IntSort()))
+ >>> SetAdd(a, 1)
+ Store(a, 1, True)
+ """
+ ctx = _ctx_from_ast_arg_list([s,e])
+ e = _py2expr(e, ctx)
+ return ArrayRef(Z3_mk_set_add(ctx.ref(), s.as_ast(), e.as_ast()), ctx)
+
+def SetDel(s, e):
+ """ Remove element e to set s
+ >>> a = Const('a', SetSort(IntSort()))
+ >>> SetDel(a, 1)
+ Store(a, 1, False)
+ """
+ ctx = _ctx_from_ast_arg_list([s,e])
+ e = _py2expr(e, ctx)
+ return ArrayRef(Z3_mk_set_del(ctx.ref(), s.as_ast(), e.as_ast()), ctx)
+
+def SetComplement(s):
+ """ The complement of set s
+ >>> a = Const('a', SetSort(IntSort()))
+ >>> SetComplement(a)
+ complement(a)
+ """
+ ctx = s.ctx
+ return ArrayRef(Z3_mk_set_complement(ctx.ref(), s.as_ast()), ctx)
+
+def SetDifference(a, b):
+ """ The set difference of a and b
+ >>> a = Const('a', SetSort(IntSort()))
+ >>> b = Const('b', SetSort(IntSort()))
+ >>> SetDifference(a, b)
+ setminus(a, b)
+ """
+ ctx = _ctx_from_ast_arg_list([a, b])
+ return ArrayRef(Z3_mk_set_difference(ctx.ref(), a.as_ast(), b.as_ast()), ctx)
+
+def IsMember(e, s):
+ """ Check if e is a member of set s
+ >>> a = Const('a', SetSort(IntSort()))
+ >>> IsMember(1, a)
+ a[1]
+ """
+ ctx = _ctx_from_ast_arg_list([s,e])
+ e = _py2expr(e, ctx)
+ return BoolRef(Z3_mk_set_member(ctx.ref(), e.as_ast(), s.as_ast()), ctx)
+
+def IsSubset(a, b):
+ """ Check if a is a subset of b
+ >>> a = Const('a', SetSort(IntSort()))
+ >>> b = Const('b', SetSort(IntSort()))
+ >>> IsSubset(a, b)
+ subset(a, b)
+ """
+ ctx = _ctx_from_ast_arg_list([a, b])
+ return BoolRef(Z3_mk_set_subset(ctx.ref(), a.as_ast(), b.as_ast()), ctx)
+
+
+#########################################
+#
+# Datatypes
+#
+#########################################
+
+def _valid_accessor(acc):
+ """Return `True` if acc is pair of the form (String, Datatype or Sort). """
+ return isinstance(acc, tuple) and len(acc) == 2 and isinstance(acc[0], str) and (isinstance(acc[1], Datatype) or is_sort(acc[1]))
+
+class Datatype:
+ """Helper class for declaring Z3 datatypes.
+
+ >>> List = Datatype('List')
+ >>> List.declare('cons', ('car', IntSort()), ('cdr', List))
+ >>> List.declare('nil')
+ >>> List = List.create()
+ >>> # List is now a Z3 declaration
+ >>> List.nil
+ nil
+ >>> List.cons(10, List.nil)
+ cons(10, nil)
+ >>> List.cons(10, List.nil).sort()
+ List
+ >>> cons = List.cons
+ >>> nil = List.nil
+ >>> car = List.car
+ >>> cdr = List.cdr
+ >>> n = cons(1, cons(0, nil))
+ >>> n
+ cons(1, cons(0, nil))
+ >>> simplify(cdr(n))
+ cons(0, nil)
+ >>> simplify(car(n))
+ 1
+ """
+ def __init__(self, name, ctx=None):
+ self.ctx = _get_ctx(ctx)
+ self.name = name
+ self.constructors = []
+
+ def __deepcopy__(self, memo={}):
+ r = Datatype(self.name, self.ctx)
+ r.constructors = copy.deepcopy(self.constructors)
+ return r
+
+ def declare_core(self, name, rec_name, *args):
+ if z3_debug():
+ _z3_assert(isinstance(name, str), "String expected")
+ _z3_assert(isinstance(rec_name, str), "String expected")
+ _z3_assert(all([_valid_accessor(a) for a in args]), "Valid list of accessors expected. An accessor is a pair of the form (String, Datatype|Sort)")
+ self.constructors.append((name, rec_name, args))
+
+ def declare(self, name, *args):
+ """Declare constructor named `name` with the given accessors `args`.
+ Each accessor is a pair `(name, sort)`, where `name` is a string and `sort` a Z3 sort or a reference to the datatypes being declared.
+
+ In the following example `List.declare('cons', ('car', IntSort()), ('cdr', List))`
+ declares the constructor named `cons` that builds a new List using an integer and a List.
+ It also declares the accessors `car` and `cdr`. The accessor `car` extracts the integer of a `cons` cell,
+ and `cdr` the list of a `cons` cell. After all constructors were declared, we use the method create() to create
+ the actual datatype in Z3.
+
+ >>> List = Datatype('List')
+ >>> List.declare('cons', ('car', IntSort()), ('cdr', List))
+ >>> List.declare('nil')
+ >>> List = List.create()
+ """
+ if z3_debug():
+ _z3_assert(isinstance(name, str), "String expected")
+ _z3_assert(name != "", "Constructor name cannot be empty")
+ return self.declare_core(name, "is-" + name, *args)
+
+ def __repr__(self):
+ return "Datatype(%s, %s)" % (self.name, self.constructors)
+
+ def create(self):
+ """Create a Z3 datatype based on the constructors declared using the method `declare()`.
+
+ The function `CreateDatatypes()` must be used to define mutually recursive datatypes.
+
+ >>> List = Datatype('List')
+ >>> List.declare('cons', ('car', IntSort()), ('cdr', List))
+ >>> List.declare('nil')
+ >>> List = List.create()
+ >>> List.nil
+ nil
+ >>> List.cons(10, List.nil)
+ cons(10, nil)
+ """
+ return CreateDatatypes([self])[0]
+
+class ScopedConstructor:
+ """Auxiliary object used to create Z3 datatypes."""
+ def __init__(self, c, ctx):
+ self.c = c
+ self.ctx = ctx
+ def __del__(self):
+ if self.ctx.ref() is not None:
+ Z3_del_constructor(self.ctx.ref(), self.c)
+
+class ScopedConstructorList:
+ """Auxiliary object used to create Z3 datatypes."""
+ def __init__(self, c, ctx):
+ self.c = c
+ self.ctx = ctx
+ def __del__(self):
+ if self.ctx.ref() is not None:
+ Z3_del_constructor_list(self.ctx.ref(), self.c)
+
+def CreateDatatypes(*ds):
+ """Create mutually recursive Z3 datatypes using 1 or more Datatype helper objects.
+
+ In the following example we define a Tree-List using two mutually recursive datatypes.
+
+ >>> TreeList = Datatype('TreeList')
+ >>> Tree = Datatype('Tree')
+ >>> # Tree has two constructors: leaf and node
+ >>> Tree.declare('leaf', ('val', IntSort()))
+ >>> # a node contains a list of trees
+ >>> Tree.declare('node', ('children', TreeList))
+ >>> TreeList.declare('nil')
+ >>> TreeList.declare('cons', ('car', Tree), ('cdr', TreeList))
+ >>> Tree, TreeList = CreateDatatypes(Tree, TreeList)
+ >>> Tree.val(Tree.leaf(10))
+ val(leaf(10))
+ >>> simplify(Tree.val(Tree.leaf(10)))
+ 10
+ >>> n1 = Tree.node(TreeList.cons(Tree.leaf(10), TreeList.cons(Tree.leaf(20), TreeList.nil)))
+ >>> n1
+ node(cons(leaf(10), cons(leaf(20), nil)))
+ >>> n2 = Tree.node(TreeList.cons(n1, TreeList.nil))
+ >>> simplify(n2 == n1)
+ False
+ >>> simplify(TreeList.car(Tree.children(n2)) == n1)
+ True
+ """
+ ds = _get_args(ds)
+ if z3_debug():
+ _z3_assert(len(ds) > 0, "At least one Datatype must be specified")
+ _z3_assert(all([isinstance(d, Datatype) for d in ds]), "Arguments must be Datatypes")
+ _z3_assert(all([d.ctx == ds[0].ctx for d in ds]), "Context mismatch")
+ _z3_assert(all([d.constructors != [] for d in ds]), "Non-empty Datatypes expected")
+ ctx = ds[0].ctx
+ num = len(ds)
+ names = (Symbol * num)()
+ out = (Sort * num)()
+ clists = (ConstructorList * num)()
+ to_delete = []
+ for i in range(num):
+ d = ds[i]
+ names[i] = to_symbol(d.name, ctx)
+ num_cs = len(d.constructors)
+ cs = (Constructor * num_cs)()
+ for j in range(num_cs):
+ c = d.constructors[j]
+ cname = to_symbol(c[0], ctx)
+ rname = to_symbol(c[1], ctx)
+ fs = c[2]
+ num_fs = len(fs)
+ fnames = (Symbol * num_fs)()
+ sorts = (Sort * num_fs)()
+ refs = (ctypes.c_uint * num_fs)()
+ for k in range(num_fs):
+ fname = fs[k][0]
+ ftype = fs[k][1]
+ fnames[k] = to_symbol(fname, ctx)
+ if isinstance(ftype, Datatype):
+ if z3_debug():
+ _z3_assert(ds.count(ftype) == 1, "One and only one occurrence of each datatype is expected")
+ sorts[k] = None
+ refs[k] = ds.index(ftype)
+ else:
+ if z3_debug():
+ _z3_assert(is_sort(ftype), "Z3 sort expected")
+ sorts[k] = ftype.ast
+ refs[k] = 0
+ cs[j] = Z3_mk_constructor(ctx.ref(), cname, rname, num_fs, fnames, sorts, refs)
+ to_delete.append(ScopedConstructor(cs[j], ctx))
+ clists[i] = Z3_mk_constructor_list(ctx.ref(), num_cs, cs)
+ to_delete.append(ScopedConstructorList(clists[i], ctx))
+ Z3_mk_datatypes(ctx.ref(), num, names, out, clists)
+ result = []
+ ## Create a field for every constructor, recognizer and accessor
+ for i in range(num):
+ dref = DatatypeSortRef(out[i], ctx)
+ num_cs = dref.num_constructors()
+ for j in range(num_cs):
+ cref = dref.constructor(j)
+ cref_name = cref.name()
+ cref_arity = cref.arity()
+ if cref.arity() == 0:
+ cref = cref()
+ setattr(dref, cref_name, cref)
+ rref = dref.recognizer(j)
+ setattr(dref, "is_" + cref_name, rref)
+ for k in range(cref_arity):
+ aref = dref.accessor(j, k)
+ setattr(dref, aref.name(), aref)
+ result.append(dref)
+ return tuple(result)
+
+class DatatypeSortRef(SortRef):
+ """Datatype sorts."""
+ def num_constructors(self):
+ """Return the number of constructors in the given Z3 datatype.
+
+ >>> List = Datatype('List')
+ >>> List.declare('cons', ('car', IntSort()), ('cdr', List))
+ >>> List.declare('nil')
+ >>> List = List.create()
+ >>> # List is now a Z3 declaration
+ >>> List.num_constructors()
+ 2
+ """
+ return int(Z3_get_datatype_sort_num_constructors(self.ctx_ref(), self.ast))
+
+ def constructor(self, idx):
+ """Return a constructor of the datatype `self`.
+
+ >>> List = Datatype('List')
+ >>> List.declare('cons', ('car', IntSort()), ('cdr', List))
+ >>> List.declare('nil')
+ >>> List = List.create()
+ >>> # List is now a Z3 declaration
+ >>> List.num_constructors()
+ 2
+ >>> List.constructor(0)
+ cons
+ >>> List.constructor(1)
+ nil
+ """
+ if z3_debug():
+ _z3_assert(idx < self.num_constructors(), "Invalid constructor index")
+ return FuncDeclRef(Z3_get_datatype_sort_constructor(self.ctx_ref(), self.ast, idx), self.ctx)
+
+ def recognizer(self, idx):
+ """In Z3, each constructor has an associated recognizer predicate.
+
+ If the constructor is named `name`, then the recognizer `is_name`.
+
+ >>> List = Datatype('List')
+ >>> List.declare('cons', ('car', IntSort()), ('cdr', List))
+ >>> List.declare('nil')
+ >>> List = List.create()
+ >>> # List is now a Z3 declaration
+ >>> List.num_constructors()
+ 2
+ >>> List.recognizer(0)
+ is(cons)
+ >>> List.recognizer(1)
+ is(nil)
+ >>> simplify(List.is_nil(List.cons(10, List.nil)))
+ False
+ >>> simplify(List.is_cons(List.cons(10, List.nil)))
+ True
+ >>> l = Const('l', List)
+ >>> simplify(List.is_cons(l))
+ is(cons, l)
+ """
+ if z3_debug():
+ _z3_assert(idx < self.num_constructors(), "Invalid recognizer index")
+ return FuncDeclRef(Z3_get_datatype_sort_recognizer(self.ctx_ref(), self.ast, idx), self.ctx)
+
+ def accessor(self, i, j):
+ """In Z3, each constructor has 0 or more accessor. The number of accessors is equal to the arity of the constructor.
+
+ >>> List = Datatype('List')
+ >>> List.declare('cons', ('car', IntSort()), ('cdr', List))
+ >>> List.declare('nil')
+ >>> List = List.create()
+ >>> List.num_constructors()
+ 2
+ >>> List.constructor(0)
+ cons
+ >>> num_accs = List.constructor(0).arity()
+ >>> num_accs
+ 2
+ >>> List.accessor(0, 0)
+ car
+ >>> List.accessor(0, 1)
+ cdr
+ >>> List.constructor(1)
+ nil
+ >>> num_accs = List.constructor(1).arity()
+ >>> num_accs
+ 0
+ """
+ if z3_debug():
+ _z3_assert(i < self.num_constructors(), "Invalid constructor index")
+ _z3_assert(j < self.constructor(i).arity(), "Invalid accessor index")
+ return FuncDeclRef(Z3_get_datatype_sort_constructor_accessor(self.ctx_ref(), self.ast, i, j), self.ctx)
+
+class DatatypeRef(ExprRef):
+ """Datatype expressions."""
+ def sort(self):
+ """Return the datatype sort of the datatype expression `self`."""
+ return DatatypeSortRef(Z3_get_sort(self.ctx_ref(), self.as_ast()), self.ctx)
+
+def TupleSort(name, sorts, ctx = None):
+ """Create a named tuple sort base on a set of underlying sorts
+ Example:
+ >>> pair, mk_pair, (first, second) = TupleSort("pair", [IntSort(), StringSort()])
+ """
+ tuple = Datatype(name, ctx)
+ projects = [ ('project%d' % i, sorts[i]) for i in range(len(sorts)) ]
+ tuple.declare(name, *projects)
+ tuple = tuple.create()
+ return tuple, tuple.constructor(0), [tuple.accessor(0, i) for i in range(len(sorts))]
+
+def DisjointSum(name, sorts, ctx=None):
+ """Create a named tagged union sort base on a set of underlying sorts
+ Example:
+ >>> sum, ((inject0, extract0), (inject1, extract1)) = DisjointSum("+", [IntSort(), StringSort()])
+ """
+ sum = Datatype(name, ctx)
+ for i in range(len(sorts)):
+ sum.declare("inject%d" % i, ("project%d" % i, sorts[i]))
+ sum = sum.create()
+ return sum, [(sum.constructor(i), sum.accessor(i, 0)) for i in range(len(sorts))]
+
+
+def EnumSort(name, values, ctx=None):
+ """Return a new enumeration sort named `name` containing the given values.
+
+ The result is a pair (sort, list of constants).
+ Example:
+ >>> Color, (red, green, blue) = EnumSort('Color', ['red', 'green', 'blue'])
+ """
+ if z3_debug():
+ _z3_assert(isinstance(name, str), "Name must be a string")
+ _z3_assert(all([isinstance(v, str) for v in values]), "Eumeration sort values must be strings")
+ _z3_assert(len(values) > 0, "At least one value expected")
+ ctx = _get_ctx(ctx)
+ num = len(values)
+ _val_names = (Symbol * num)()
+ for i in range(num):
+ _val_names[i] = to_symbol(values[i])
+ _values = (FuncDecl * num)()
+ _testers = (FuncDecl * num)()
+ name = to_symbol(name)
+ S = DatatypeSortRef(Z3_mk_enumeration_sort(ctx.ref(), name, num, _val_names, _values, _testers), ctx)
+ V = []
+ for i in range(num):
+ V.append(FuncDeclRef(_values[i], ctx))
+ V = [a() for a in V]
+ return S, V
+
+#########################################
+#
+# Parameter Sets
+#
+#########################################
+
+class ParamsRef:
+ """Set of parameters used to configure Solvers, Tactics and Simplifiers in Z3.
+
+ Consider using the function `args2params` to create instances of this object.
+ """
+ def __init__(self, ctx=None, params=None):
+ self.ctx = _get_ctx(ctx)
+ if params is None:
+ self.params = Z3_mk_params(self.ctx.ref())
+ else:
+ self.params = params
+ Z3_params_inc_ref(self.ctx.ref(), self.params)
+
+ def __deepcopy__(self, memo={}):
+ return ParamsRef(self.ctx, self.params)
+
+ def __del__(self):
+ if self.ctx.ref() is not None:
+ Z3_params_dec_ref(self.ctx.ref(), self.params)
+
+ def set(self, name, val):
+ """Set parameter name with value val."""
+ if z3_debug():
+ _z3_assert(isinstance(name, str), "parameter name must be a string")
+ name_sym = to_symbol(name, self.ctx)
+ if isinstance(val, bool):
+ Z3_params_set_bool(self.ctx.ref(), self.params, name_sym, val)
+ elif _is_int(val):
+ Z3_params_set_uint(self.ctx.ref(), self.params, name_sym, val)
+ elif isinstance(val, float):
+ Z3_params_set_double(self.ctx.ref(), self.params, name_sym, val)
+ elif isinstance(val, str):
+ Z3_params_set_symbol(self.ctx.ref(), self.params, name_sym, to_symbol(val, self.ctx))
+ else:
+ if z3_debug():
+ _z3_assert(False, "invalid parameter value")
+
+ def __repr__(self):
+ return Z3_params_to_string(self.ctx.ref(), self.params)
+
+ def validate(self, ds):
+ _z3_assert(isinstance(ds, ParamDescrsRef), "parameter description set expected")
+ Z3_params_validate(self.ctx.ref(), self.params, ds.descr)
+
+def args2params(arguments, keywords, ctx=None):
+ """Convert python arguments into a Z3_params object.
+ A ':' is added to the keywords, and '_' is replaced with '-'
+
+ >>> args2params(['model', True, 'relevancy', 2], {'elim_and' : True})
+ (params model true relevancy 2 elim_and true)
+ """
+ if z3_debug():
+ _z3_assert(len(arguments) % 2 == 0, "Argument list must have an even number of elements.")
+ prev = None
+ r = ParamsRef(ctx)
+ for a in arguments:
+ if prev is None:
+ prev = a
+ else:
+ r.set(prev, a)
+ prev = None
+ for k in keywords:
+ v = keywords[k]
+ r.set(k, v)
+ return r
+
+class ParamDescrsRef:
+ """Set of parameter descriptions for Solvers, Tactics and Simplifiers in Z3.
+ """
+ def __init__(self, descr, ctx=None):
+ _z3_assert(isinstance(descr, ParamDescrs), "parameter description object expected")
+ self.ctx = _get_ctx(ctx)
+ self.descr = descr
+ Z3_param_descrs_inc_ref(self.ctx.ref(), self.descr)
+
+ def __deepcopy__(self, memo={}):
+ return ParamsDescrsRef(self.descr, self.ctx)
+
+ def __del__(self):
+ if self.ctx.ref() is not None:
+ Z3_param_descrs_dec_ref(self.ctx.ref(), self.descr)
+
+ def size(self):
+ """Return the size of in the parameter description `self`.
+ """
+ return int(Z3_param_descrs_size(self.ctx.ref(), self.descr))
+
+ def __len__(self):
+ """Return the size of in the parameter description `self`.
+ """
+ return self.size()
+
+ def get_name(self, i):
+ """Return the i-th parameter name in the parameter description `self`.
+ """
+ return _symbol2py(self.ctx, Z3_param_descrs_get_name(self.ctx.ref(), self.descr, i))
+
+ def get_kind(self, n):
+ """Return the kind of the parameter named `n`.
+ """
+ return Z3_param_descrs_get_kind(self.ctx.ref(), self.descr, to_symbol(n, self.ctx))
+
+ def get_documentation(self, n):
+ """Return the documentation string of the parameter named `n`.
+ """
+ return Z3_param_descrs_get_documentation(self.ctx.ref(), self.descr, to_symbol(n, self.ctx))
+
+ def __getitem__(self, arg):
+ if _is_int(arg):
+ return self.get_name(arg)
+ else:
+ return self.get_kind(arg)
+
+ def __repr__(self):
+ return Z3_param_descrs_to_string(self.ctx.ref(), self.descr)
+
+#########################################
+#
+# Goals
+#
+#########################################
+
+class Goal(Z3PPObject):
+ """Goal is a collection of constraints we want to find a solution or show to be unsatisfiable (infeasible).
+
+ Goals are processed using Tactics. A Tactic transforms a goal into a set of subgoals.
+ A goal has a solution if one of its subgoals has a solution.
+ A goal is unsatisfiable if all subgoals are unsatisfiable.
+ """
+
+ def __init__(self, models=True, unsat_cores=False, proofs=False, ctx=None, goal=None):
+ if z3_debug():
+ _z3_assert(goal is None or ctx is not None, "If goal is different from None, then ctx must be also different from None")
+ self.ctx = _get_ctx(ctx)
+ self.goal = goal
+ if self.goal is None:
+ self.goal = Z3_mk_goal(self.ctx.ref(), models, unsat_cores, proofs)
+ Z3_goal_inc_ref(self.ctx.ref(), self.goal)
+
+ def __deepcopy__(self, memo={}):
+ return Goal(False, False, False, self.ctx, self.goal)
+
+ def __del__(self):
+ if self.goal is not None and self.ctx.ref() is not None:
+ Z3_goal_dec_ref(self.ctx.ref(), self.goal)
+
+ def depth(self):
+ """Return the depth of the goal `self`. The depth corresponds to the number of tactics applied to `self`.
+
+ >>> x, y = Ints('x y')
+ >>> g = Goal()
+ >>> g.add(x == 0, y >= x + 1)
+ >>> g.depth()
+ 0
+ >>> r = Then('simplify', 'solve-eqs')(g)
+ >>> # r has 1 subgoal
+ >>> len(r)
+ 1
+ >>> r[0].depth()
+ 2
+ """
+ return int(Z3_goal_depth(self.ctx.ref(), self.goal))
+
+ def inconsistent(self):
+ """Return `True` if `self` contains the `False` constraints.
+
+ >>> x, y = Ints('x y')
+ >>> g = Goal()
+ >>> g.inconsistent()
+ False
+ >>> g.add(x == 0, x == 1)
+ >>> g
+ [x == 0, x == 1]
+ >>> g.inconsistent()
+ False
+ >>> g2 = Tactic('propagate-values')(g)[0]
+ >>> g2.inconsistent()
+ True
+ """
+ return Z3_goal_inconsistent(self.ctx.ref(), self.goal)
+
+ def prec(self):
+ """Return the precision (under-approximation, over-approximation, or precise) of the goal `self`.
+
+ >>> g = Goal()
+ >>> g.prec() == Z3_GOAL_PRECISE
+ True
+ >>> x, y = Ints('x y')
+ >>> g.add(x == y + 1)
+ >>> g.prec() == Z3_GOAL_PRECISE
+ True
+ >>> t = With(Tactic('add-bounds'), add_bound_lower=0, add_bound_upper=10)
+ >>> g2 = t(g)[0]
+ >>> g2
+ [x == y + 1, x <= 10, x >= 0, y <= 10, y >= 0]
+ >>> g2.prec() == Z3_GOAL_PRECISE
+ False
+ >>> g2.prec() == Z3_GOAL_UNDER
+ True
+ """
+ return Z3_goal_precision(self.ctx.ref(), self.goal)
+
+ def precision(self):
+ """Alias for `prec()`.
+
+ >>> g = Goal()
+ >>> g.precision() == Z3_GOAL_PRECISE
+ True
+ """
+ return self.prec()
+
+ def size(self):
+ """Return the number of constraints in the goal `self`.
+
+ >>> g = Goal()
+ >>> g.size()
+ 0
+ >>> x, y = Ints('x y')
+ >>> g.add(x == 0, y > x)
+ >>> g.size()
+ 2
+ """
+ return int(Z3_goal_size(self.ctx.ref(), self.goal))
+
+ def __len__(self):
+ """Return the number of constraints in the goal `self`.
+
+ >>> g = Goal()
+ >>> len(g)
+ 0
+ >>> x, y = Ints('x y')
+ >>> g.add(x == 0, y > x)
+ >>> len(g)
+ 2
+ """
+ return self.size()
+
+ def get(self, i):
+ """Return a constraint in the goal `self`.
+
+ >>> g = Goal()
+ >>> x, y = Ints('x y')
+ >>> g.add(x == 0, y > x)
+ >>> g.get(0)
+ x == 0
+ >>> g.get(1)
+ y > x
+ """
+ return _to_expr_ref(Z3_goal_formula(self.ctx.ref(), self.goal, i), self.ctx)
+
+ def __getitem__(self, arg):
+ """Return a constraint in the goal `self`.
+
+ >>> g = Goal()
+ >>> x, y = Ints('x y')
+ >>> g.add(x == 0, y > x)
+ >>> g[0]
+ x == 0
+ >>> g[1]
+ y > x
+ """
+ if arg >= len(self):
+ raise IndexError
+ return self.get(arg)
+
+ def assert_exprs(self, *args):
+ """Assert constraints into the goal.
+
+ >>> x = Int('x')
+ >>> g = Goal()
+ >>> g.assert_exprs(x > 0, x < 2)
+ >>> g
+ [x > 0, x < 2]
+ """
+ args = _get_args(args)
+ s = BoolSort(self.ctx)
+ for arg in args:
+ arg = s.cast(arg)
+ Z3_goal_assert(self.ctx.ref(), self.goal, arg.as_ast())
+
+ def append(self, *args):
+ """Add constraints.
+
+ >>> x = Int('x')
+ >>> g = Goal()
+ >>> g.append(x > 0, x < 2)
+ >>> g
+ [x > 0, x < 2]
+ """
+ self.assert_exprs(*args)
+
+ def insert(self, *args):
+ """Add constraints.
+
+ >>> x = Int('x')
+ >>> g = Goal()
+ >>> g.insert(x > 0, x < 2)
+ >>> g
+ [x > 0, x < 2]
+ """
+ self.assert_exprs(*args)
+
+ def add(self, *args):
+ """Add constraints.
+
+ >>> x = Int('x')
+ >>> g = Goal()
+ >>> g.add(x > 0, x < 2)
+ >>> g
+ [x > 0, x < 2]
+ """
+ self.assert_exprs(*args)
+
+ def convert_model(self, model):
+ """Retrieve model from a satisfiable goal
+ >>> a, b = Ints('a b')
+ >>> g = Goal()
+ >>> g.add(Or(a == 0, a == 1), Or(b == 0, b == 1), a > b)
+ >>> t = Then(Tactic('split-clause'), Tactic('solve-eqs'))
+ >>> r = t(g)
+ >>> r[0]
+ [Or(b == 0, b == 1), Not(0 <= b)]
+ >>> r[1]
+ [Or(b == 0, b == 1), Not(1 <= b)]
+ >>> # Remark: the subgoal r[0] is unsatisfiable
+ >>> # Creating a solver for solving the second subgoal
+ >>> s = Solver()
+ >>> s.add(r[1])
+ >>> s.check()
+ sat
+ >>> s.model()
+ [b = 0]
+ >>> # Model s.model() does not assign a value to `a`
+ >>> # It is a model for subgoal `r[1]`, but not for goal `g`
+ >>> # The method convert_model creates a model for `g` from a model for `r[1]`.
+ >>> r[1].convert_model(s.model())
+ [b = 0, a = 1]
+ """
+ if z3_debug():
+ _z3_assert(isinstance(model, ModelRef), "Z3 Model expected")
+ return ModelRef(Z3_goal_convert_model(self.ctx.ref(), self.goal, model.model), self.ctx)
+
+ def __repr__(self):
+ return obj_to_string(self)
+
+ def sexpr(self):
+ """Return a textual representation of the s-expression representing the goal."""
+ return Z3_goal_to_string(self.ctx.ref(), self.goal)
+
+ def dimacs(self, include_names = True):
+ """Return a textual representation of the goal in DIMACS format."""
+ return Z3_goal_to_dimacs_string(self.ctx.ref(), self.goal, include_names)
+
+ def translate(self, target):
+ """Copy goal `self` to context `target`.
+
+ >>> x = Int('x')
+ >>> g = Goal()
+ >>> g.add(x > 10)
+ >>> g
+ [x > 10]
+ >>> c2 = Context()
+ >>> g2 = g.translate(c2)
+ >>> g2
+ [x > 10]
+ >>> g.ctx == main_ctx()
+ True
+ >>> g2.ctx == c2
+ True
+ >>> g2.ctx == main_ctx()
+ False
+ """
+ if z3_debug():
+ _z3_assert(isinstance(target, Context), "target must be a context")
+ return Goal(goal=Z3_goal_translate(self.ctx.ref(), self.goal, target.ref()), ctx=target)
+
+ def __copy__(self):
+ return self.translate(self.ctx)
+
+ def __deepcopy__(self, memo={}):
+ return self.translate(self.ctx)
+
+ def simplify(self, *arguments, **keywords):
+ """Return a new simplified goal.
+
+ This method is essentially invoking the simplify tactic.
+
+ >>> g = Goal()
+ >>> x = Int('x')
+ >>> g.add(x + 1 >= 2)
+ >>> g
+ [x + 1 >= 2]
+ >>> g2 = g.simplify()
+ >>> g2
+ [x >= 1]
+ >>> # g was not modified
+ >>> g
+ [x + 1 >= 2]
+ """
+ t = Tactic('simplify')
+ return t.apply(self, *arguments, **keywords)[0]
+
+ def as_expr(self):
+ """Return goal `self` as a single Z3 expression.
+
+ >>> x = Int('x')
+ >>> g = Goal()
+ >>> g.as_expr()
+ True
+ >>> g.add(x > 1)
+ >>> g.as_expr()
+ x > 1
+ >>> g.add(x < 10)
+ >>> g.as_expr()
+ And(x > 1, x < 10)
+ """
+ sz = len(self)
+ if sz == 0:
+ return BoolVal(True, self.ctx)
+ elif sz == 1:
+ return self.get(0)
+ else:
+ return And([ self.get(i) for i in range(len(self)) ], self.ctx)
+
+#########################################
+#
+# AST Vector
+#
+#########################################
+class AstVector(Z3PPObject):
+ """A collection (vector) of ASTs."""
+
+ def __init__(self, v=None, ctx=None):
+ self.vector = None
+ if v is None:
+ self.ctx = _get_ctx(ctx)
+ self.vector = Z3_mk_ast_vector(self.ctx.ref())
+ else:
+ self.vector = v
+ assert ctx is not None
+ self.ctx = ctx
+ Z3_ast_vector_inc_ref(self.ctx.ref(), self.vector)
+
+ def __deepcopy__(self, memo={}):
+ return AstVector(self.vector, self.ctx)
+
+ def __del__(self):
+ if self.vector is not None and self.ctx.ref() is not None:
+ Z3_ast_vector_dec_ref(self.ctx.ref(), self.vector)
+
+ def __len__(self):
+ """Return the size of the vector `self`.
+
+ >>> A = AstVector()
+ >>> len(A)
+ 0
+ >>> A.push(Int('x'))
+ >>> A.push(Int('x'))
+ >>> len(A)
+ 2
+ """
+ return int(Z3_ast_vector_size(self.ctx.ref(), self.vector))
+
+ def __getitem__(self, i):
+ """Return the AST at position `i`.
+
+ >>> A = AstVector()
+ >>> A.push(Int('x') + 1)
+ >>> A.push(Int('y'))
+ >>> A[0]
+ x + 1
+ >>> A[1]
+ y
+ """
+
+ if isinstance(i, int):
+ if i < 0:
+ i += self.__len__()
+
+ if i >= self.__len__():
+ raise IndexError
+ return _to_ast_ref(Z3_ast_vector_get(self.ctx.ref(), self.vector, i), self.ctx)
+
+ elif isinstance(i, slice):
+ return [_to_ast_ref(Z3_ast_vector_get(self.ctx.ref(), self.vector, ii), self.ctx) for ii in range(*i.indices(self.__len__()))]
+
+
+ def __setitem__(self, i, v):
+ """Update AST at position `i`.
+
+ >>> A = AstVector()
+ >>> A.push(Int('x') + 1)
+ >>> A.push(Int('y'))
+ >>> A[0]
+ x + 1
+ >>> A[0] = Int('x')
+ >>> A[0]
+ x
+ """
+ if i >= self.__len__():
+ raise IndexError
+ Z3_ast_vector_set(self.ctx.ref(), self.vector, i, v.as_ast())
+
+ def push(self, v):
+ """Add `v` in the end of the vector.
+
+ >>> A = AstVector()
+ >>> len(A)
+ 0
+ >>> A.push(Int('x'))
+ >>> len(A)
+ 1
+ """
+ Z3_ast_vector_push(self.ctx.ref(), self.vector, v.as_ast())
+
+ def resize(self, sz):
+ """Resize the vector to `sz` elements.
+
+ >>> A = AstVector()
+ >>> A.resize(10)
+ >>> len(A)
+ 10
+ >>> for i in range(10): A[i] = Int('x')
+ >>> A[5]
+ x
+ """
+ Z3_ast_vector_resize(self.ctx.ref(), self.vector, sz)
+
+ def __contains__(self, item):
+ """Return `True` if the vector contains `item`.
+
+ >>> x = Int('x')
+ >>> A = AstVector()
+ >>> x in A
+ False
+ >>> A.push(x)
+ >>> x in A
+ True
+ >>> (x+1) in A
+ False
+ >>> A.push(x+1)
+ >>> (x+1) in A
+ True
+ >>> A
+ [x, x + 1]
+ """
+ for elem in self:
+ if elem.eq(item):
+ return True
+ return False
+
+ def translate(self, other_ctx):
+ """Copy vector `self` to context `other_ctx`.
+
+ >>> x = Int('x')
+ >>> A = AstVector()
+ >>> A.push(x)
+ >>> c2 = Context()
+ >>> B = A.translate(c2)
+ >>> B
+ [x]
+ """
+ return AstVector(Z3_ast_vector_translate(self.ctx.ref(), self.vector, other_ctx.ref()), other_ctx)
+
+ def __copy__(self):
+ return self.translate(self.ctx)
+
+ def __deepcopy__(self, memo={}):
+ return self.translate(self.ctx)
+
+ def __repr__(self):
+ return obj_to_string(self)
+
+ def sexpr(self):
+ """Return a textual representation of the s-expression representing the vector."""
+ return Z3_ast_vector_to_string(self.ctx.ref(), self.vector)
+
+#########################################
+#
+# AST Map
+#
+#########################################
+class AstMap:
+ """A mapping from ASTs to ASTs."""
+
+ def __init__(self, m=None, ctx=None):
+ self.map = None
+ if m is None:
+ self.ctx = _get_ctx(ctx)
+ self.map = Z3_mk_ast_map(self.ctx.ref())
+ else:
+ self.map = m
+ assert ctx is not None
+ self.ctx = ctx
+ Z3_ast_map_inc_ref(self.ctx.ref(), self.map)
+
+ def __deepcopy__(self, memo={}):
+ return AstMap(self.map, self.ctx)
+
+ def __del__(self):
+ if self.map is not None and self.ctx.ref() is not None:
+ Z3_ast_map_dec_ref(self.ctx.ref(), self.map)
+
+ def __len__(self):
+ """Return the size of the map.
+
+ >>> M = AstMap()
+ >>> len(M)
+ 0
+ >>> x = Int('x')
+ >>> M[x] = IntVal(1)
+ >>> len(M)
+ 1
+ """
+ return int(Z3_ast_map_size(self.ctx.ref(), self.map))
+
+ def __contains__(self, key):
+ """Return `True` if the map contains key `key`.
+
+ >>> M = AstMap()
+ >>> x = Int('x')
+ >>> M[x] = x + 1
+ >>> x in M
+ True
+ >>> x+1 in M
+ False
+ """
+ return Z3_ast_map_contains(self.ctx.ref(), self.map, key.as_ast())
+
+ def __getitem__(self, key):
+ """Retrieve the value associated with key `key`.
+
+ >>> M = AstMap()
+ >>> x = Int('x')
+ >>> M[x] = x + 1
+ >>> M[x]
+ x + 1
+ """
+ return _to_ast_ref(Z3_ast_map_find(self.ctx.ref(), self.map, key.as_ast()), self.ctx)
+
+ def __setitem__(self, k, v):
+ """Add/Update key `k` with value `v`.
+
+ >>> M = AstMap()
+ >>> x = Int('x')
+ >>> M[x] = x + 1
+ >>> len(M)
+ 1
+ >>> M[x]
+ x + 1
+ >>> M[x] = IntVal(1)
+ >>> M[x]
+ 1
+ """
+ Z3_ast_map_insert(self.ctx.ref(), self.map, k.as_ast(), v.as_ast())
+
+ def __repr__(self):
+ return Z3_ast_map_to_string(self.ctx.ref(), self.map)
+
+ def erase(self, k):
+ """Remove the entry associated with key `k`.
+
+ >>> M = AstMap()
+ >>> x = Int('x')
+ >>> M[x] = x + 1
+ >>> len(M)
+ 1
+ >>> M.erase(x)
+ >>> len(M)
+ 0
+ """
+ Z3_ast_map_erase(self.ctx.ref(), self.map, k.as_ast())
+
+ def reset(self):
+ """Remove all entries from the map.
+
+ >>> M = AstMap()
+ >>> x = Int('x')
+ >>> M[x] = x + 1
+ >>> M[x+x] = IntVal(1)
+ >>> len(M)
+ 2
+ >>> M.reset()
+ >>> len(M)
+ 0
+ """
+ Z3_ast_map_reset(self.ctx.ref(), self.map)
+
+ def keys(self):
+ """Return an AstVector containing all keys in the map.
+
+ >>> M = AstMap()
+ >>> x = Int('x')
+ >>> M[x] = x + 1
+ >>> M[x+x] = IntVal(1)
+ >>> M.keys()
+ [x, x + x]
+ """
+ return AstVector(Z3_ast_map_keys(self.ctx.ref(), self.map), self.ctx)
+
+#########################################
+#
+# Model
+#
+#########################################
+
+class FuncEntry:
+ """Store the value of the interpretation of a function in a particular point."""
+
+ def __init__(self, entry, ctx):
+ self.entry = entry
+ self.ctx = ctx
+ Z3_func_entry_inc_ref(self.ctx.ref(), self.entry)
+
+ def __deepcopy__(self, memo={}):
+ return FuncEntry(self.entry, self.ctx)
+
+ def __del__(self):
+ if self.ctx.ref() is not None:
+ Z3_func_entry_dec_ref(self.ctx.ref(), self.entry)
+
+ def num_args(self):
+ """Return the number of arguments in the given entry.
+
+ >>> f = Function('f', IntSort(), IntSort(), IntSort())
+ >>> s = Solver()
+ >>> s.add(f(0, 1) == 10, f(1, 2) == 20, f(1, 0) == 10)
+ >>> s.check()
+ sat
+ >>> m = s.model()
+ >>> f_i = m[f]
+ >>> f_i.num_entries()
+ 1
+ >>> e = f_i.entry(0)
+ >>> e.num_args()
+ 2
+ """
+ return int(Z3_func_entry_get_num_args(self.ctx.ref(), self.entry))
+
+ def arg_value(self, idx):
+ """Return the value of argument `idx`.
+
+ >>> f = Function('f', IntSort(), IntSort(), IntSort())
+ >>> s = Solver()
+ >>> s.add(f(0, 1) == 10, f(1, 2) == 20, f(1, 0) == 10)
+ >>> s.check()
+ sat
+ >>> m = s.model()
+ >>> f_i = m[f]
+ >>> f_i.num_entries()
+ 1
+ >>> e = f_i.entry(0)
+ >>> e
+ [1, 2, 20]
+ >>> e.num_args()
+ 2
+ >>> e.arg_value(0)
+ 1
+ >>> e.arg_value(1)
+ 2
+ >>> try:
+ ... e.arg_value(2)
+ ... except IndexError:
+ ... print("index error")
+ index error
+ """
+ if idx >= self.num_args():
+ raise IndexError
+ return _to_expr_ref(Z3_func_entry_get_arg(self.ctx.ref(), self.entry, idx), self.ctx)
+
+ def value(self):
+ """Return the value of the function at point `self`.
+
+ >>> f = Function('f', IntSort(), IntSort(), IntSort())
+ >>> s = Solver()
+ >>> s.add(f(0, 1) == 10, f(1, 2) == 20, f(1, 0) == 10)
+ >>> s.check()
+ sat
+ >>> m = s.model()
+ >>> f_i = m[f]
+ >>> f_i.num_entries()
+ 1
+ >>> e = f_i.entry(0)
+ >>> e
+ [1, 2, 20]
+ >>> e.num_args()
+ 2
+ >>> e.value()
+ 20
+ """
+ return _to_expr_ref(Z3_func_entry_get_value(self.ctx.ref(), self.entry), self.ctx)
+
+ def as_list(self):
+ """Return entry `self` as a Python list.
+ >>> f = Function('f', IntSort(), IntSort(), IntSort())
+ >>> s = Solver()
+ >>> s.add(f(0, 1) == 10, f(1, 2) == 20, f(1, 0) == 10)
+ >>> s.check()
+ sat
+ >>> m = s.model()
+ >>> f_i = m[f]
+ >>> f_i.num_entries()
+ 1
+ >>> e = f_i.entry(0)
+ >>> e.as_list()
+ [1, 2, 20]
+ """
+ args = [ self.arg_value(i) for i in range(self.num_args())]
+ args.append(self.value())
+ return args
+
+ def __repr__(self):
+ return repr(self.as_list())
+
+class FuncInterp(Z3PPObject):
+ """Stores the interpretation of a function in a Z3 model."""
+
+ def __init__(self, f, ctx):
+ self.f = f
+ self.ctx = ctx
+ if self.f is not None:
+ Z3_func_interp_inc_ref(self.ctx.ref(), self.f)
+
+ def __deepcopy__(self, memo={}):
+ return FuncInterp(self.f, self.ctx)
+
+ def __del__(self):
+ if self.f is not None and self.ctx.ref() is not None:
+ Z3_func_interp_dec_ref(self.ctx.ref(), self.f)
+
+ def else_value(self):
+ """
+ Return the `else` value for a function interpretation.
+ Return None if Z3 did not specify the `else` value for
+ this object.
+
+ >>> f = Function('f', IntSort(), IntSort())
+ >>> s = Solver()
+ >>> s.add(f(0) == 1, f(1) == 1, f(2) == 0)
+ >>> s.check()
+ sat
+ >>> m = s.model()
+ >>> m[f]
+ [2 -> 0, else -> 1]
+ >>> m[f].else_value()
+ 1
+ """
+ r = Z3_func_interp_get_else(self.ctx.ref(), self.f)
+ if r:
+ return _to_expr_ref(r, self.ctx)
+ else:
+ return None
+
+ def num_entries(self):
+ """Return the number of entries/points in the function interpretation `self`.
+
+ >>> f = Function('f', IntSort(), IntSort())
+ >>> s = Solver()
+ >>> s.add(f(0) == 1, f(1) == 1, f(2) == 0)
+ >>> s.check()
+ sat
+ >>> m = s.model()
+ >>> m[f]
+ [2 -> 0, else -> 1]
+ >>> m[f].num_entries()
+ 1
+ """
+ return int(Z3_func_interp_get_num_entries(self.ctx.ref(), self.f))
+
+ def arity(self):
+ """Return the number of arguments for each entry in the function interpretation `self`.
+
+ >>> f = Function('f', IntSort(), IntSort())
+ >>> s = Solver()
+ >>> s.add(f(0) == 1, f(1) == 1, f(2) == 0)
+ >>> s.check()
+ sat
+ >>> m = s.model()
+ >>> m[f].arity()
+ 1
+ """
+ return int(Z3_func_interp_get_arity(self.ctx.ref(), self.f))
+
+ def entry(self, idx):
+ """Return an entry at position `idx < self.num_entries()` in the function interpretation `self`.
+
+ >>> f = Function('f', IntSort(), IntSort())
+ >>> s = Solver()
+ >>> s.add(f(0) == 1, f(1) == 1, f(2) == 0)
+ >>> s.check()
+ sat
+ >>> m = s.model()
+ >>> m[f]
+ [2 -> 0, else -> 1]
+ >>> m[f].num_entries()
+ 1
+ >>> m[f].entry(0)
+ [2, 0]
+ """
+ if idx >= self.num_entries():
+ raise IndexError
+ return FuncEntry(Z3_func_interp_get_entry(self.ctx.ref(), self.f, idx), self.ctx)
+
+ def translate(self, other_ctx):
+ """Copy model 'self' to context 'other_ctx'.
+ """
+ return ModelRef(Z3_model_translate(self.ctx.ref(), self.model, other_ctx.ref()), other_ctx)
+
+ def __copy__(self):
+ return self.translate(self.ctx)
+
+ def __deepcopy__(self, memo={}):
+ return self.translate(self.ctx)
+
+ def as_list(self):
+ """Return the function interpretation as a Python list.
+ >>> f = Function('f', IntSort(), IntSort())
+ >>> s = Solver()
+ >>> s.add(f(0) == 1, f(1) == 1, f(2) == 0)
+ >>> s.check()
+ sat
+ >>> m = s.model()
+ >>> m[f]
+ [2 -> 0, else -> 1]
+ >>> m[f].as_list()
+ [[2, 0], 1]
+ """
+ r = [ self.entry(i).as_list() for i in range(self.num_entries())]
+ r.append(self.else_value())
+ return r
+
+ def __repr__(self):
+ return obj_to_string(self)
+
+class ModelRef(Z3PPObject):
+ """Model/Solution of a satisfiability problem (aka system of constraints)."""
+
+ def __init__(self, m, ctx):
+ assert ctx is not None
+ self.model = m
+ self.ctx = ctx
+ Z3_model_inc_ref(self.ctx.ref(), self.model)
+
+ def __del__(self):
+ if self.ctx.ref() is not None:
+ Z3_model_dec_ref(self.ctx.ref(), self.model)
+
+ def __repr__(self):
+ return obj_to_string(self)
+
+ def sexpr(self):
+ """Return a textual representation of the s-expression representing the model."""
+ return Z3_model_to_string(self.ctx.ref(), self.model)
+
+ def eval(self, t, model_completion=False):
+ """Evaluate the expression `t` in the model `self`. If `model_completion` is enabled, then a default interpretation is automatically added for symbols that do not have an interpretation in the model `self`.
+
+ >>> x = Int('x')
+ >>> s = Solver()
+ >>> s.add(x > 0, x < 2)
+ >>> s.check()
+ sat
+ >>> m = s.model()
+ >>> m.eval(x + 1)
+ 2
+ >>> m.eval(x == 1)
+ True
+ >>> y = Int('y')
+ >>> m.eval(y + x)
+ 1 + y
+ >>> m.eval(y)
+ y
+ >>> m.eval(y, model_completion=True)
+ 0
+ >>> # Now, m contains an interpretation for y
+ >>> m.eval(y + x)
+ 1
+ """
+ r = (Ast * 1)()
+ if Z3_model_eval(self.ctx.ref(), self.model, t.as_ast(), model_completion, r):
+ return _to_expr_ref(r[0], self.ctx)
+ raise Z3Exception("failed to evaluate expression in the model")
+
+ def evaluate(self, t, model_completion=False):
+ """Alias for `eval`.
+
+ >>> x = Int('x')
+ >>> s = Solver()
+ >>> s.add(x > 0, x < 2)
+ >>> s.check()
+ sat
+ >>> m = s.model()
+ >>> m.evaluate(x + 1)
+ 2
+ >>> m.evaluate(x == 1)
+ True
+ >>> y = Int('y')
+ >>> m.evaluate(y + x)
+ 1 + y
+ >>> m.evaluate(y)
+ y
+ >>> m.evaluate(y, model_completion=True)
+ 0
+ >>> # Now, m contains an interpretation for y
+ >>> m.evaluate(y + x)
+ 1
+ """
+ return self.eval(t, model_completion)
+
+ def __len__(self):
+ """Return the number of constant and function declarations in the model `self`.
+
+ >>> f = Function('f', IntSort(), IntSort())
+ >>> x = Int('x')
+ >>> s = Solver()
+ >>> s.add(x > 0, f(x) != x)
+ >>> s.check()
+ sat
+ >>> m = s.model()
+ >>> len(m)
+ 2
+ """
+ return int(Z3_model_get_num_consts(self.ctx.ref(), self.model)) + int(Z3_model_get_num_funcs(self.ctx.ref(), self.model))
+
+ def get_interp(self, decl):
+ """Return the interpretation for a given declaration or constant.
+
+ >>> f = Function('f', IntSort(), IntSort())
+ >>> x = Int('x')
+ >>> s = Solver()
+ >>> s.add(x > 0, x < 2, f(x) == 0)
+ >>> s.check()
+ sat
+ >>> m = s.model()
+ >>> m[x]
+ 1
+ >>> m[f]
+ [else -> 0]
+ """
+ if z3_debug():
+ _z3_assert(isinstance(decl, FuncDeclRef) or is_const(decl), "Z3 declaration expected")
+ if is_const(decl):
+ decl = decl.decl()
+ try:
+ if decl.arity() == 0:
+ _r = Z3_model_get_const_interp(self.ctx.ref(), self.model, decl.ast)
+ if _r.value is None:
+ return None
+ r = _to_expr_ref(_r, self.ctx)
+ if is_as_array(r):
+ return self.get_interp(get_as_array_func(r))
+ else:
+ return r
+ else:
+ return FuncInterp(Z3_model_get_func_interp(self.ctx.ref(), self.model, decl.ast), self.ctx)
+ except Z3Exception:
+ return None
+
+ def num_sorts(self):
+ """Return the number of uninterpreted sorts that contain an interpretation in the model `self`.
+
+ >>> A = DeclareSort('A')
+ >>> a, b = Consts('a b', A)
+ >>> s = Solver()
+ >>> s.add(a != b)
+ >>> s.check()
+ sat
+ >>> m = s.model()
+ >>> m.num_sorts()
+ 1
+ """
+ return int(Z3_model_get_num_sorts(self.ctx.ref(), self.model))
+
+ def get_sort(self, idx):
+ """Return the uninterpreted sort at position `idx` < self.num_sorts().
+
+ >>> A = DeclareSort('A')
+ >>> B = DeclareSort('B')
+ >>> a1, a2 = Consts('a1 a2', A)
+ >>> b1, b2 = Consts('b1 b2', B)
+ >>> s = Solver()
+ >>> s.add(a1 != a2, b1 != b2)
+ >>> s.check()
+ sat
+ >>> m = s.model()
+ >>> m.num_sorts()
+ 2
+ >>> m.get_sort(0)
+ A
+ >>> m.get_sort(1)
+ B
+ """
+ if idx >= self.num_sorts():
+ raise IndexError
+ return _to_sort_ref(Z3_model_get_sort(self.ctx.ref(), self.model, idx), self.ctx)
+
+ def sorts(self):
+ """Return all uninterpreted sorts that have an interpretation in the model `self`.
+
+ >>> A = DeclareSort('A')
+ >>> B = DeclareSort('B')
+ >>> a1, a2 = Consts('a1 a2', A)
+ >>> b1, b2 = Consts('b1 b2', B)
+ >>> s = Solver()
+ >>> s.add(a1 != a2, b1 != b2)
+ >>> s.check()
+ sat
+ >>> m = s.model()
+ >>> m.sorts()
+ [A, B]
+ """
+ return [ self.get_sort(i) for i in range(self.num_sorts()) ]
+
+ def get_universe(self, s):
+ """Return the interpretation for the uninterpreted sort `s` in the model `self`.
+
+ >>> A = DeclareSort('A')
+ >>> a, b = Consts('a b', A)
+ >>> s = Solver()
+ >>> s.add(a != b)
+ >>> s.check()
+ sat
+ >>> m = s.model()
+ >>> m.get_universe(A)
+ [A!val!0, A!val!1]
+ """
+ if z3_debug():
+ _z3_assert(isinstance(s, SortRef), "Z3 sort expected")
+ try:
+ return AstVector(Z3_model_get_sort_universe(self.ctx.ref(), self.model, s.ast), self.ctx)
+ except Z3Exception:
+ return None
+
+ def __getitem__(self, idx):
+ """If `idx` is an integer, then the declaration at position `idx` in the model `self` is returned. If `idx` is a declaration, then the actual interpretation is returned.
+
+ The elements can be retrieved using position or the actual declaration.
+
+ >>> f = Function('f', IntSort(), IntSort())
+ >>> x = Int('x')
+ >>> s = Solver()
+ >>> s.add(x > 0, x < 2, f(x) == 0)
+ >>> s.check()
+ sat
+ >>> m = s.model()
+ >>> len(m)
+ 2
+ >>> m[0]
+ x
+ >>> m[1]
+ f
+ >>> m[x]
+ 1
+ >>> m[f]
+ [else -> 0]
+ >>> for d in m: print("%s -> %s" % (d, m[d]))
+ x -> 1
+ f -> [else -> 0]
+ """
+ if _is_int(idx):
+ if idx >= len(self):
+ raise IndexError
+ num_consts = Z3_model_get_num_consts(self.ctx.ref(), self.model)
+ if (idx < num_consts):
+ return FuncDeclRef(Z3_model_get_const_decl(self.ctx.ref(), self.model, idx), self.ctx)
+ else:
+ return FuncDeclRef(Z3_model_get_func_decl(self.ctx.ref(), self.model, idx - num_consts), self.ctx)
+ if isinstance(idx, FuncDeclRef):
+ return self.get_interp(idx)
+ if is_const(idx):
+ return self.get_interp(idx.decl())
+ if isinstance(idx, SortRef):
+ return self.get_universe(idx)
+ if z3_debug():
+ _z3_assert(False, "Integer, Z3 declaration, or Z3 constant expected")
+ return None
+
+ def decls(self):
+ """Return a list with all symbols that have an interpretation in the model `self`.
+ >>> f = Function('f', IntSort(), IntSort())
+ >>> x = Int('x')
+ >>> s = Solver()
+ >>> s.add(x > 0, x < 2, f(x) == 0)
+ >>> s.check()
+ sat
+ >>> m = s.model()
+ >>> m.decls()
+ [x, f]
+ """
+ r = []
+ for i in range(Z3_model_get_num_consts(self.ctx.ref(), self.model)):
+ r.append(FuncDeclRef(Z3_model_get_const_decl(self.ctx.ref(), self.model, i), self.ctx))
+ for i in range(Z3_model_get_num_funcs(self.ctx.ref(), self.model)):
+ r.append(FuncDeclRef(Z3_model_get_func_decl(self.ctx.ref(), self.model, i), self.ctx))
+ return r
+
+ def translate(self, target):
+ """Translate `self` to the context `target`. That is, return a copy of `self` in the context `target`.
+ """
+ if z3_debug():
+ _z3_assert(isinstance(target, Context), "argument must be a Z3 context")
+ model = Z3_model_translate(self.ctx.ref(), self.model, target.ref())
+ return Model(model, target)
+
+ def __copy__(self):
+ return self.translate(self.ctx)
+
+ def __deepcopy__(self, memo={}):
+ return self.translate(self.ctx)
+
+def Model(ctx = None):
+ ctx = _get_ctx(ctx)
+ return ModelRef(Z3_mk_model(ctx.ref()), ctx)
+
+def is_as_array(n):
+ """Return true if n is a Z3 expression of the form (_ as-array f)."""
+ return isinstance(n, ExprRef) and Z3_is_as_array(n.ctx.ref(), n.as_ast())
+
+def get_as_array_func(n):
+ """Return the function declaration f associated with a Z3 expression of the form (_ as-array f)."""
+ if z3_debug():
+ _z3_assert(is_as_array(n), "as-array Z3 expression expected.")
+ return FuncDeclRef(Z3_get_as_array_func_decl(n.ctx.ref(), n.as_ast()), n.ctx)
+
+#########################################
+#
+# Statistics
+#
+#########################################
+class Statistics:
+ """Statistics for `Solver.check()`."""
+
+ def __init__(self, stats, ctx):
+ self.stats = stats
+ self.ctx = ctx
+ Z3_stats_inc_ref(self.ctx.ref(), self.stats)
+
+ def __deepcopy__(self, memo={}):
+ return Statistics(self.stats, self.ctx)
+
+ def __del__(self):
+ if self.ctx.ref() is not None:
+ Z3_stats_dec_ref(self.ctx.ref(), self.stats)
+
+ def __repr__(self):
+ if in_html_mode():
+ out = io.StringIO()
+ even = True
+ out.write(u('
'))
+ for k, v in self:
+ if even:
+ out.write(u(''))
+ even = False
+ else:
+ out.write(u('
'))
+ even = True
+ out.write(u('%s | %s |
' % (k, v)))
+ out.write(u('
'))
+ return out.getvalue()
+ else:
+ return Z3_stats_to_string(self.ctx.ref(), self.stats)
+
+ def __len__(self):
+ """Return the number of statistical counters.
+
+ >>> x = Int('x')
+ >>> s = Then('simplify', 'nlsat').solver()
+ >>> s.add(x > 0)
+ >>> s.check()
+ sat
+ >>> st = s.statistics()
+ >>> len(st)
+ 6
+ """
+ return int(Z3_stats_size(self.ctx.ref(), self.stats))
+
+ def __getitem__(self, idx):
+ """Return the value of statistical counter at position `idx`. The result is a pair (key, value).
+
+ >>> x = Int('x')
+ >>> s = Then('simplify', 'nlsat').solver()
+ >>> s.add(x > 0)
+ >>> s.check()
+ sat
+ >>> st = s.statistics()
+ >>> len(st)
+ 6
+ >>> st[0]
+ ('nlsat propagations', 2)
+ >>> st[1]
+ ('nlsat stages', 2)
+ """
+ if idx >= len(self):
+ raise IndexError
+ if Z3_stats_is_uint(self.ctx.ref(), self.stats, idx):
+ val = int(Z3_stats_get_uint_value(self.ctx.ref(), self.stats, idx))
+ else:
+ val = Z3_stats_get_double_value(self.ctx.ref(), self.stats, idx)
+ return (Z3_stats_get_key(self.ctx.ref(), self.stats, idx), val)
+
+ def keys(self):
+ """Return the list of statistical counters.
+
+ >>> x = Int('x')
+ >>> s = Then('simplify', 'nlsat').solver()
+ >>> s.add(x > 0)
+ >>> s.check()
+ sat
+ >>> st = s.statistics()
+ """
+ return [Z3_stats_get_key(self.ctx.ref(), self.stats, idx) for idx in range(len(self))]
+
+ def get_key_value(self, key):
+ """Return the value of a particular statistical counter.
+
+ >>> x = Int('x')
+ >>> s = Then('simplify', 'nlsat').solver()
+ >>> s.add(x > 0)
+ >>> s.check()
+ sat
+ >>> st = s.statistics()
+ >>> st.get_key_value('nlsat propagations')
+ 2
+ """
+ for idx in range(len(self)):
+ if key == Z3_stats_get_key(self.ctx.ref(), self.stats, idx):
+ if Z3_stats_is_uint(self.ctx.ref(), self.stats, idx):
+ return int(Z3_stats_get_uint_value(self.ctx.ref(), self.stats, idx))
+ else:
+ return Z3_stats_get_double_value(self.ctx.ref(), self.stats, idx)
+ raise Z3Exception("unknown key")
+
+ def __getattr__(self, name):
+ """Access the value of statistical using attributes.
+
+ Remark: to access a counter containing blank spaces (e.g., 'nlsat propagations'),
+ we should use '_' (e.g., 'nlsat_propagations').
+
+ >>> x = Int('x')
+ >>> s = Then('simplify', 'nlsat').solver()
+ >>> s.add(x > 0)
+ >>> s.check()
+ sat
+ >>> st = s.statistics()
+ >>> st.nlsat_propagations
+ 2
+ >>> st.nlsat_stages
+ 2
+ """
+ key = name.replace('_', ' ')
+ try:
+ return self.get_key_value(key)
+ except Z3Exception:
+ raise AttributeError
+
+#########################################
+#
+# Solver
+#
+#########################################
+class CheckSatResult:
+ """Represents the result of a satisfiability check: sat, unsat, unknown.
+
+ >>> s = Solver()
+ >>> s.check()
+ sat
+ >>> r = s.check()
+ >>> isinstance(r, CheckSatResult)
+ True
+ """
+
+ def __init__(self, r):
+ self.r = r
+
+ def __deepcopy__(self, memo={}):
+ return CheckSatResult(self.r)
+
+ def __eq__(self, other):
+ return isinstance(other, CheckSatResult) and self.r == other.r
+
+ def __ne__(self, other):
+ return not self.__eq__(other)
+
+ def __repr__(self):
+ if in_html_mode():
+ if self.r == Z3_L_TRUE:
+ return "sat"
+ elif self.r == Z3_L_FALSE:
+ return "unsat"
+ else:
+ return "unknown"
+ else:
+ if self.r == Z3_L_TRUE:
+ return "sat"
+ elif self.r == Z3_L_FALSE:
+ return "unsat"
+ else:
+ return "unknown"
+
+ def _repr_html_(self):
+ in_html = in_html_mode()
+ set_html_mode(True)
+ res = repr(self)
+ set_html_mode(in_html)
+ return res
+
+sat = CheckSatResult(Z3_L_TRUE)
+unsat = CheckSatResult(Z3_L_FALSE)
+unknown = CheckSatResult(Z3_L_UNDEF)
+
+class Solver(Z3PPObject):
+ """Solver API provides methods for implementing the main SMT 2.0 commands: push, pop, check, get-model, etc."""
+
+ def __init__(self, solver=None, ctx=None, logFile=None):
+ assert solver is None or ctx is not None
+ self.ctx = _get_ctx(ctx)
+ self.backtrack_level = 4000000000
+ self.solver = None
+ if solver is None:
+ self.solver = Z3_mk_solver(self.ctx.ref())
+ else:
+ self.solver = solver
+ Z3_solver_inc_ref(self.ctx.ref(), self.solver)
+ if logFile is not None:
+ self.set("smtlib2_log", logFile)
+
+ def __del__(self):
+ if self.solver is not None and self.ctx.ref() is not None:
+ Z3_solver_dec_ref(self.ctx.ref(), self.solver)
+
+ def set(self, *args, **keys):
+ """Set a configuration option. The method `help()` return a string containing all available options.
+
+ >>> s = Solver()
+ >>> # The option MBQI can be set using three different approaches.
+ >>> s.set(mbqi=True)
+ >>> s.set('MBQI', True)
+ >>> s.set(':mbqi', True)
+ """
+ p = args2params(args, keys, self.ctx)
+ Z3_solver_set_params(self.ctx.ref(), self.solver, p.params)
+
+ def push(self):
+ """Create a backtracking point.
+
+ >>> x = Int('x')
+ >>> s = Solver()
+ >>> s.add(x > 0)
+ >>> s
+ [x > 0]
+ >>> s.push()
+ >>> s.add(x < 1)
+ >>> s
+ [x > 0, x < 1]
+ >>> s.check()
+ unsat
+ >>> s.pop()
+ >>> s.check()
+ sat
+ >>> s
+ [x > 0]
+ """
+ Z3_solver_push(self.ctx.ref(), self.solver)
+
+ def pop(self, num=1):
+ """Backtrack \c num backtracking points.
+
+ >>> x = Int('x')
+ >>> s = Solver()
+ >>> s.add(x > 0)
+ >>> s
+ [x > 0]
+ >>> s.push()
+ >>> s.add(x < 1)
+ >>> s
+ [x > 0, x < 1]
+ >>> s.check()
+ unsat
+ >>> s.pop()
+ >>> s.check()
+ sat
+ >>> s
+ [x > 0]
+ """
+ Z3_solver_pop(self.ctx.ref(), self.solver, num)
+
+ def num_scopes(self):
+ """Return the current number of backtracking points.
+
+ >>> s = Solver()
+ >>> s.num_scopes()
+ 0L
+ >>> s.push()
+ >>> s.num_scopes()
+ 1L
+ >>> s.push()
+ >>> s.num_scopes()
+ 2L
+ >>> s.pop()
+ >>> s.num_scopes()
+ 1L
+ """
+ return Z3_solver_get_num_scopes(self.ctx.ref(), self.solver)
+
+ def reset(self):
+ """Remove all asserted constraints and backtracking points created using `push()`.
+
+ >>> x = Int('x')
+ >>> s = Solver()
+ >>> s.add(x > 0)
+ >>> s
+ [x > 0]
+ >>> s.reset()
+ >>> s
+ []
+ """
+ Z3_solver_reset(self.ctx.ref(), self.solver)
+
+ def assert_exprs(self, *args):
+ """Assert constraints into the solver.
+
+ >>> x = Int('x')
+ >>> s = Solver()
+ >>> s.assert_exprs(x > 0, x < 2)
+ >>> s
+ [x > 0, x < 2]
+ """
+ args = _get_args(args)
+ s = BoolSort(self.ctx)
+ for arg in args:
+ if isinstance(arg, Goal) or isinstance(arg, AstVector):
+ for f in arg:
+ Z3_solver_assert(self.ctx.ref(), self.solver, f.as_ast())
+ else:
+ arg = s.cast(arg)
+ Z3_solver_assert(self.ctx.ref(), self.solver, arg.as_ast())
+
+ def add(self, *args):
+ """Assert constraints into the solver.
+
+ >>> x = Int('x')
+ >>> s = Solver()
+ >>> s.add(x > 0, x < 2)
+ >>> s
+ [x > 0, x < 2]
+ """
+ self.assert_exprs(*args)
+
+ def __iadd__(self, fml):
+ self.add(fml)
+ return self
+
+ def append(self, *args):
+ """Assert constraints into the solver.
+
+ >>> x = Int('x')
+ >>> s = Solver()
+ >>> s.append(x > 0, x < 2)
+ >>> s
+ [x > 0, x < 2]
+ """
+ self.assert_exprs(*args)
+
+ def insert(self, *args):
+ """Assert constraints into the solver.
+
+ >>> x = Int('x')
+ >>> s = Solver()
+ >>> s.insert(x > 0, x < 2)
+ >>> s
+ [x > 0, x < 2]
+ """
+ self.assert_exprs(*args)
+
+ def assert_and_track(self, a, p):
+ """Assert constraint `a` and track it in the unsat core using the Boolean constant `p`.
+
+ If `p` is a string, it will be automatically converted into a Boolean constant.
+
+ >>> x = Int('x')
+ >>> p3 = Bool('p3')
+ >>> s = Solver()
+ >>> s.set(unsat_core=True)
+ >>> s.assert_and_track(x > 0, 'p1')
+ >>> s.assert_and_track(x != 1, 'p2')
+ >>> s.assert_and_track(x < 0, p3)
+ >>> print(s.check())
+ unsat
+ >>> c = s.unsat_core()
+ >>> len(c)
+ 2
+ >>> Bool('p1') in c
+ True
+ >>> Bool('p2') in c
+ False
+ >>> p3 in c
+ True
+ """
+ if isinstance(p, str):
+ p = Bool(p, self.ctx)
+ _z3_assert(isinstance(a, BoolRef), "Boolean expression expected")
+ _z3_assert(isinstance(p, BoolRef) and is_const(p), "Boolean expression expected")
+ Z3_solver_assert_and_track(self.ctx.ref(), self.solver, a.as_ast(), p.as_ast())
+
+ def check(self, *assumptions):
+ """Check whether the assertions in the given solver plus the optional assumptions are consistent or not.
+
+ >>> x = Int('x')
+ >>> s = Solver()
+ >>> s.check()
+ sat
+ >>> s.add(x > 0, x < 2)
+ >>> s.check()
+ sat
+ >>> s.model().eval(x)
+ 1
+ >>> s.add(x < 1)
+ >>> s.check()
+ unsat
+ >>> s.reset()
+ >>> s.add(2**x == 4)
+ >>> s.check()
+ unknown
+ """
+ s = BoolSort(self.ctx)
+ assumptions = _get_args(assumptions)
+ num = len(assumptions)
+ _assumptions = (Ast * num)()
+ for i in range(num):
+ _assumptions[i] = s.cast(assumptions[i]).as_ast()
+ r = Z3_solver_check_assumptions(self.ctx.ref(), self.solver, num, _assumptions)
+ return CheckSatResult(r)
+
+ def model(self):
+ """Return a model for the last `check()`.
+
+ This function raises an exception if
+ a model is not available (e.g., last `check()` returned unsat).
+
+ >>> s = Solver()
+ >>> a = Int('a')
+ >>> s.add(a + 2 == 0)
+ >>> s.check()
+ sat
+ >>> s.model()
+ [a = -2]
+ """
+ try:
+ return ModelRef(Z3_solver_get_model(self.ctx.ref(), self.solver), self.ctx)
+ except Z3Exception:
+ raise Z3Exception("model is not available")
+
+ def import_model_converter(self, other):
+ """Import model converter from other into the current solver"""
+ Z3_solver_import_model_converter(self.ctx.ref(), other.solver, self.solver)
+
+ def unsat_core(self):
+ """Return a subset (as an AST vector) of the assumptions provided to the last check().
+
+ These are the assumptions Z3 used in the unsatisfiability proof.
+ Assumptions are available in Z3. They are used to extract unsatisfiable cores.
+ They may be also used to "retract" assumptions. Note that, assumptions are not really
+ "soft constraints", but they can be used to implement them.
+
+ >>> p1, p2, p3 = Bools('p1 p2 p3')
+ >>> x, y = Ints('x y')
+ >>> s = Solver()
+ >>> s.add(Implies(p1, x > 0))
+ >>> s.add(Implies(p2, y > x))
+ >>> s.add(Implies(p2, y < 1))
+ >>> s.add(Implies(p3, y > -3))
+ >>> s.check(p1, p2, p3)
+ unsat
+ >>> core = s.unsat_core()
+ >>> len(core)
+ 2
+ >>> p1 in core
+ True
+ >>> p2 in core
+ True
+ >>> p3 in core
+ False
+ >>> # "Retracting" p2
+ >>> s.check(p1, p3)
+ sat
+ """
+ return AstVector(Z3_solver_get_unsat_core(self.ctx.ref(), self.solver), self.ctx)
+
+ def consequences(self, assumptions, variables):
+ """Determine fixed values for the variables based on the solver state and assumptions.
+ >>> s = Solver()
+ >>> a, b, c, d = Bools('a b c d')
+ >>> s.add(Implies(a,b), Implies(b, c))
+ >>> s.consequences([a],[b,c,d])
+ (sat, [Implies(a, b), Implies(a, c)])
+ >>> s.consequences([Not(c),d],[a,b,c,d])
+ (sat, [Implies(d, d), Implies(Not(c), Not(c)), Implies(Not(c), Not(b)), Implies(Not(c), Not(a))])
+ """
+ if isinstance(assumptions, list):
+ _asms = AstVector(None, self.ctx)
+ for a in assumptions:
+ _asms.push(a)
+ assumptions = _asms
+ if isinstance(variables, list):
+ _vars = AstVector(None, self.ctx)
+ for a in variables:
+ _vars.push(a)
+ variables = _vars
+ _z3_assert(isinstance(assumptions, AstVector), "ast vector expected")
+ _z3_assert(isinstance(variables, AstVector), "ast vector expected")
+ consequences = AstVector(None, self.ctx)
+ r = Z3_solver_get_consequences(self.ctx.ref(), self.solver, assumptions.vector, variables.vector, consequences.vector)
+ sz = len(consequences)
+ consequences = [ consequences[i] for i in range(sz) ]
+ return CheckSatResult(r), consequences
+
+ def from_file(self, filename):
+ """Parse assertions from a file"""
+ Z3_solver_from_file(self.ctx.ref(), self.solver, filename)
+
+ def from_string(self, s):
+ """Parse assertions from a string"""
+ Z3_solver_from_string(self.ctx.ref(), self.solver, s)
+
+ def cube(self, vars = None):
+ """Get set of cubes
+ The method takes an optional set of variables that restrict which
+ variables may be used as a starting point for cubing.
+ If vars is not None, then the first case split is based on a variable in
+ this set.
+ """
+ self.cube_vs = AstVector(None, self.ctx)
+ if vars is not None:
+ for v in vars:
+ self.cube_vs.push(v)
+ while True:
+ lvl = self.backtrack_level
+ self.backtrack_level = 4000000000
+ r = AstVector(Z3_solver_cube(self.ctx.ref(), self.solver, self.cube_vs.vector, lvl), self.ctx)
+ if (len(r) == 1 and is_false(r[0])):
+ return
+ yield r
+ if (len(r) == 0):
+ return
+
+ def cube_vars(self):
+ """Access the set of variables that were touched by the most recently generated cube.
+ This set of variables can be used as a starting point for additional cubes.
+ The idea is that variables that appear in clauses that are reduced by the most recent
+ cube are likely more useful to cube on."""
+ return self.cube_vs
+
+ def proof(self):
+ """Return a proof for the last `check()`. Proof construction must be enabled."""
+ return _to_expr_ref(Z3_solver_get_proof(self.ctx.ref(), self.solver), self.ctx)
+
+ def assertions(self):
+ """Return an AST vector containing all added constraints.
+
+ >>> s = Solver()
+ >>> s.assertions()
+ []
+ >>> a = Int('a')
+ >>> s.add(a > 0)
+ >>> s.add(a < 10)
+ >>> s.assertions()
+ [a > 0, a < 10]
+ """
+ return AstVector(Z3_solver_get_assertions(self.ctx.ref(), self.solver), self.ctx)
+
+ def units(self):
+ """Return an AST vector containing all currently inferred units.
+ """
+ return AstVector(Z3_solver_get_units(self.ctx.ref(), self.solver), self.ctx)
+
+ def non_units(self):
+ """Return an AST vector containing all atomic formulas in solver state that are not units.
+ """
+ return AstVector(Z3_solver_get_non_units(self.ctx.ref(), self.solver), self.ctx)
+
+ def trail_levels(self):
+ """Return trail and decision levels of the solver state after a check() call.
+ """
+ trail = self.trail()
+ levels = (ctypes.c_uint * len(trail))()
+ Z3_solver_get_levels(self.ctx.ref(), self.solver, trail.vector, len(trail), levels)
+ return trail, levels
+
+ def trail(self):
+ """Return trail of the solver state after a check() call.
+ """
+ return AstVector(Z3_solver_get_trail(self.ctx.ref(), self.solver), self.ctx)
+
+ def value(self, e):
+ """Return value of term in solver, if any is given.
+ """
+ return _to_expr_ref(Z3_solver_get_implied_value(self.ctx.ref(), self.solver, e.as_ast()), self.ctx)
+
+ def lower(self, e):
+ """Return lower bound known to solver based on the last call.
+ """
+ return _to_expr_ref(Z3_solver_get_implied_lower(self.ctx.ref(), self.solver, e.as_ast()), self.ctx)
+
+ def upper(self, e):
+ """Return upper bound known to solver based on the last call.
+ """
+ return _to_expr_ref(Z3_solver_get_implied_upper(self.ctx.ref(), self.solver, e.as_ast()), self.ctx)
+
+ def statistics(self):
+ """Return statistics for the last `check()`.
+
+ >>> s = SimpleSolver()
+ >>> x = Int('x')
+ >>> s.add(x > 0)
+ >>> s.check()
+ sat
+ >>> st = s.statistics()
+ >>> st.get_key_value('final checks')
+ 1
+ >>> len(st) > 0
+ True
+ >>> st[0] != 0
+ True
+ """
+ return Statistics(Z3_solver_get_statistics(self.ctx.ref(), self.solver), self.ctx)
+
+ def reason_unknown(self):
+ """Return a string describing why the last `check()` returned `unknown`.
+
+ >>> x = Int('x')
+ >>> s = SimpleSolver()
+ >>> s.add(2**x == 4)
+ >>> s.check()
+ unknown
+ >>> s.reason_unknown()
+ '(incomplete (theory arithmetic))'
+ """
+ return Z3_solver_get_reason_unknown(self.ctx.ref(), self.solver)
+
+ def help(self):
+ """Display a string describing all available options."""
+ print(Z3_solver_get_help(self.ctx.ref(), self.solver))
+
+ def param_descrs(self):
+ """Return the parameter description set."""
+ return ParamDescrsRef(Z3_solver_get_param_descrs(self.ctx.ref(), self.solver), self.ctx)
+
+ def __repr__(self):
+ """Return a formatted string with all added constraints."""
+ return obj_to_string(self)
+
+ def translate(self, target):
+ """Translate `self` to the context `target`. That is, return a copy of `self` in the context `target`.
+
+ >>> c1 = Context()
+ >>> c2 = Context()
+ >>> s1 = Solver(ctx=c1)
+ >>> s2 = s1.translate(c2)
+ """
+ if z3_debug():
+ _z3_assert(isinstance(target, Context), "argument must be a Z3 context")
+ solver = Z3_solver_translate(self.ctx.ref(), self.solver, target.ref())
+ return Solver(solver, target)
+
+ def __copy__(self):
+ return self.translate(self.ctx)
+
+ def __deepcopy__(self, memo={}):
+ return self.translate(self.ctx)
+
+ def sexpr(self):
+ """Return a formatted string (in Lisp-like format) with all added constraints. We say the string is in s-expression format.
+
+ >>> x = Int('x')
+ >>> s = Solver()
+ >>> s.add(x > 0)
+ >>> s.add(x < 2)
+ >>> r = s.sexpr()
+ """
+ return Z3_solver_to_string(self.ctx.ref(), self.solver)
+
+ def dimacs(self, include_names=True):
+ """Return a textual representation of the solver in DIMACS format."""
+ return Z3_solver_to_dimacs_string(self.ctx.ref(), self.solver, include_names)
+
+ def to_smt2(self):
+ """return SMTLIB2 formatted benchmark for solver's assertions"""
+ es = self.assertions()
+ sz = len(es)
+ sz1 = sz
+ if sz1 > 0:
+ sz1 -= 1
+ v = (Ast * sz1)()
+ for i in range(sz1):
+ v[i] = es[i].as_ast()
+ if sz > 0:
+ e = es[sz1].as_ast()
+ else:
+ e = BoolVal(True, self.ctx).as_ast()
+ return Z3_benchmark_to_smtlib_string(self.ctx.ref(), "benchmark generated from python API", "", "unknown", "", sz1, v, e)
+
+def SolverFor(logic, ctx=None, logFile=None):
+ """Create a solver customized for the given logic.
+
+ The parameter `logic` is a string. It should be contains
+ the name of a SMT-LIB logic.
+ See http://www.smtlib.org/ for the name of all available logics.
+
+ >>> s = SolverFor("QF_LIA")
+ >>> x = Int('x')
+ >>> s.add(x > 0)
+ >>> s.add(x < 2)
+ >>> s.check()
+ sat
+ >>> s.model()
+ [x = 1]
+ """
+ ctx = _get_ctx(ctx)
+ logic = to_symbol(logic)
+ return Solver(Z3_mk_solver_for_logic(ctx.ref(), logic), ctx, logFile)
+
+def SimpleSolver(ctx=None, logFile=None):
+ """Return a simple general purpose solver with limited amount of preprocessing.
+
+ >>> s = SimpleSolver()
+ >>> x = Int('x')
+ >>> s.add(x > 0)
+ >>> s.check()
+ sat
+ """
+ ctx = _get_ctx(ctx)
+ return Solver(Z3_mk_simple_solver(ctx.ref()), ctx, logFile)
+
+#########################################
+#
+# Fixedpoint
+#
+#########################################
+
+class Fixedpoint(Z3PPObject):
+ """Fixedpoint API provides methods for solving with recursive predicates"""
+
+ def __init__(self, fixedpoint=None, ctx=None):
+ assert fixedpoint is None or ctx is not None
+ self.ctx = _get_ctx(ctx)
+ self.fixedpoint = None
+ if fixedpoint is None:
+ self.fixedpoint = Z3_mk_fixedpoint(self.ctx.ref())
+ else:
+ self.fixedpoint = fixedpoint
+ Z3_fixedpoint_inc_ref(self.ctx.ref(), self.fixedpoint)
+ self.vars = []
+
+ def __deepcopy__(self, memo={}):
+ return FixedPoint(self.fixedpoint, self.ctx)
+
+ def __del__(self):
+ if self.fixedpoint is not None and self.ctx.ref() is not None:
+ Z3_fixedpoint_dec_ref(self.ctx.ref(), self.fixedpoint)
+
+ def set(self, *args, **keys):
+ """Set a configuration option. The method `help()` return a string containing all available options.
+ """
+ p = args2params(args, keys, self.ctx)
+ Z3_fixedpoint_set_params(self.ctx.ref(), self.fixedpoint, p.params)
+
+ def help(self):
+ """Display a string describing all available options."""
+ print(Z3_fixedpoint_get_help(self.ctx.ref(), self.fixedpoint))
+
+ def param_descrs(self):
+ """Return the parameter description set."""
+ return ParamDescrsRef(Z3_fixedpoint_get_param_descrs(self.ctx.ref(), self.fixedpoint), self.ctx)
+
+ def assert_exprs(self, *args):
+ """Assert constraints as background axioms for the fixedpoint solver."""
+ args = _get_args(args)
+ s = BoolSort(self.ctx)
+ for arg in args:
+ if isinstance(arg, Goal) or isinstance(arg, AstVector):
+ for f in arg:
+ f = self.abstract(f)
+ Z3_fixedpoint_assert(self.ctx.ref(), self.fixedpoint, f.as_ast())
+ else:
+ arg = s.cast(arg)
+ arg = self.abstract(arg)
+ Z3_fixedpoint_assert(self.ctx.ref(), self.fixedpoint, arg.as_ast())
+
+ def add(self, *args):
+ """Assert constraints as background axioms for the fixedpoint solver. Alias for assert_expr."""
+ self.assert_exprs(*args)
+
+ def __iadd__(self, fml):
+ self.add(fml)
+ return self
+
+ def append(self, *args):
+ """Assert constraints as background axioms for the fixedpoint solver. Alias for assert_expr."""
+ self.assert_exprs(*args)
+
+ def insert(self, *args):
+ """Assert constraints as background axioms for the fixedpoint solver. Alias for assert_expr."""
+ self.assert_exprs(*args)
+
+ def add_rule(self, head, body = None, name = None):
+ """Assert rules defining recursive predicates to the fixedpoint solver.
+ >>> a = Bool('a')
+ >>> b = Bool('b')
+ >>> s = Fixedpoint()
+ >>> s.register_relation(a.decl())
+ >>> s.register_relation(b.decl())
+ >>> s.fact(a)
+ >>> s.rule(b, a)
+ >>> s.query(b)
+ sat
+ """
+ if name is None:
+ name = ""
+ name = to_symbol(name, self.ctx)
+ if body is None:
+ head = self.abstract(head)
+ Z3_fixedpoint_add_rule(self.ctx.ref(), self.fixedpoint, head.as_ast(), name)
+ else:
+ body = _get_args(body)
+ f = self.abstract(Implies(And(body, self.ctx),head))
+ Z3_fixedpoint_add_rule(self.ctx.ref(), self.fixedpoint, f.as_ast(), name)
+
+ def rule(self, head, body = None, name = None):
+ """Assert rules defining recursive predicates to the fixedpoint solver. Alias for add_rule."""
+ self.add_rule(head, body, name)
+
+ def fact(self, head, name = None):
+ """Assert facts defining recursive predicates to the fixedpoint solver. Alias for add_rule."""
+ self.add_rule(head, None, name)
+
+ def query(self, *query):
+ """Query the fixedpoint engine whether formula is derivable.
+ You can also pass an tuple or list of recursive predicates.
+ """
+ query = _get_args(query)
+ sz = len(query)
+ if sz >= 1 and isinstance(query[0], FuncDeclRef):
+ _decls = (FuncDecl * sz)()
+ i = 0
+ for q in query:
+ _decls[i] = q.ast
+ i = i + 1
+ r = Z3_fixedpoint_query_relations(self.ctx.ref(), self.fixedpoint, sz, _decls)
+ else:
+ if sz == 1:
+ query = query[0]
+ else:
+ query = And(query, self.ctx)
+ query = self.abstract(query, False)
+ r = Z3_fixedpoint_query(self.ctx.ref(), self.fixedpoint, query.as_ast())
+ return CheckSatResult(r)
+
+ def query_from_lvl (self, lvl, *query):
+ """Query the fixedpoint engine whether formula is derivable starting at the given query level.
+ """
+ query = _get_args(query)
+ sz = len(query)
+ if sz >= 1 and isinstance(query[0], FuncDecl):
+ _z3_assert (False, "unsupported")
+ else:
+ if sz == 1:
+ query = query[0]
+ else:
+ query = And(query)
+ query = self.abstract(query, False)
+ r = Z3_fixedpoint_query_from_lvl (self.ctx.ref(), self.fixedpoint, query.as_ast(), lvl)
+ return CheckSatResult(r)
+
+ def update_rule(self, head, body, name):
+ """update rule"""
+ if name is None:
+ name = ""
+ name = to_symbol(name, self.ctx)
+ body = _get_args(body)
+ f = self.abstract(Implies(And(body, self.ctx),head))
+ Z3_fixedpoint_update_rule(self.ctx.ref(), self.fixedpoint, f.as_ast(), name)
+
+ def get_answer(self):
+ """Retrieve answer from last query call."""
+ r = Z3_fixedpoint_get_answer(self.ctx.ref(), self.fixedpoint)
+ return _to_expr_ref(r, self.ctx)
+
+ def get_ground_sat_answer(self):
+ """Retrieve a ground cex from last query call."""
+ r = Z3_fixedpoint_get_ground_sat_answer(self.ctx.ref(), self.fixedpoint)
+ return _to_expr_ref(r, self.ctx)
+
+ def get_rules_along_trace(self):
+ """retrieve rules along the counterexample trace"""
+ return AstVector(Z3_fixedpoint_get_rules_along_trace(self.ctx.ref(), self.fixedpoint), self.ctx)
+
+ def get_rule_names_along_trace(self):
+ """retrieve rule names along the counterexample trace"""
+ # this is a hack as I don't know how to return a list of symbols from C++;
+ # obtain names as a single string separated by semicolons
+ names = _symbol2py (self.ctx, Z3_fixedpoint_get_rule_names_along_trace(self.ctx.ref(), self.fixedpoint))
+ # split into individual names
+ return names.split (';')
+
+ def get_num_levels(self, predicate):
+ """Retrieve number of levels used for predicate in PDR engine"""
+ return Z3_fixedpoint_get_num_levels(self.ctx.ref(), self.fixedpoint, predicate.ast)
+
+ def get_cover_delta(self, level, predicate):
+ """Retrieve properties known about predicate for the level'th unfolding. -1 is treated as the limit (infinity)"""
+ r = Z3_fixedpoint_get_cover_delta(self.ctx.ref(), self.fixedpoint, level, predicate.ast)
+ return _to_expr_ref(r, self.ctx)
+
+ def add_cover(self, level, predicate, property):
+ """Add property to predicate for the level'th unfolding. -1 is treated as infinity (infinity)"""
+ Z3_fixedpoint_add_cover(self.ctx.ref(), self.fixedpoint, level, predicate.ast, property.ast)
+
+ def register_relation(self, *relations):
+ """Register relation as recursive"""
+ relations = _get_args(relations)
+ for f in relations:
+ Z3_fixedpoint_register_relation(self.ctx.ref(), self.fixedpoint, f.ast)
+
+ def set_predicate_representation(self, f, *representations):
+ """Control how relation is represented"""
+ representations = _get_args(representations)
+ representations = [to_symbol(s) for s in representations]
+ sz = len(representations)
+ args = (Symbol * sz)()
+ for i in range(sz):
+ args[i] = representations[i]
+ Z3_fixedpoint_set_predicate_representation(self.ctx.ref(), self.fixedpoint, f.ast, sz, args)
+
+ def parse_string(self, s):
+ """Parse rules and queries from a string"""
+ return AstVector(Z3_fixedpoint_from_string(self.ctx.ref(), self.fixedpoint, s), self.ctx)
+
+ def parse_file(self, f):
+ """Parse rules and queries from a file"""
+ return AstVector(Z3_fixedpoint_from_file(self.ctx.ref(), self.fixedpoint, f), self.ctx)
+
+ def get_rules(self):
+ """retrieve rules that have been added to fixedpoint context"""
+ return AstVector(Z3_fixedpoint_get_rules(self.ctx.ref(), self.fixedpoint), self.ctx)
+
+ def get_assertions(self):
+ """retrieve assertions that have been added to fixedpoint context"""
+ return AstVector(Z3_fixedpoint_get_assertions(self.ctx.ref(), self.fixedpoint), self.ctx)
+
+ def __repr__(self):
+ """Return a formatted string with all added rules and constraints."""
+ return self.sexpr()
+
+ def sexpr(self):
+ """Return a formatted string (in Lisp-like format) with all added constraints. We say the string is in s-expression format.
+ """
+ return Z3_fixedpoint_to_string(self.ctx.ref(), self.fixedpoint, 0, (Ast * 0)())
+
+ def to_string(self, queries):
+ """Return a formatted string (in Lisp-like format) with all added constraints.
+ We say the string is in s-expression format.
+ Include also queries.
+ """
+ args, len = _to_ast_array(queries)
+ return Z3_fixedpoint_to_string(self.ctx.ref(), self.fixedpoint, len, args)
+
+ def statistics(self):
+ """Return statistics for the last `query()`.
+ """
+ return Statistics(Z3_fixedpoint_get_statistics(self.ctx.ref(), self.fixedpoint), self.ctx)
+
+ def reason_unknown(self):
+ """Return a string describing why the last `query()` returned `unknown`.
+ """
+ return Z3_fixedpoint_get_reason_unknown(self.ctx.ref(), self.fixedpoint)
+
+ def declare_var(self, *vars):
+ """Add variable or several variables.
+ The added variable or variables will be bound in the rules
+ and queries
+ """
+ vars = _get_args(vars)
+ for v in vars:
+ self.vars += [v]
+
+ def abstract(self, fml, is_forall=True):
+ if self.vars == []:
+ return fml
+ if is_forall:
+ return ForAll(self.vars, fml)
+ else:
+ return Exists(self.vars, fml)
+
+
+#########################################
+#
+# Finite domains
+#
+#########################################
+
+class FiniteDomainSortRef(SortRef):
+ """Finite domain sort."""
+
+ def size(self):
+ """Return the size of the finite domain sort"""
+ r = (ctypes.c_ulonglong * 1)()
+ if Z3_get_finite_domain_sort_size(self.ctx_ref(), self.ast, r):
+ return r[0]
+ else:
+ raise Z3Exception("Failed to retrieve finite domain sort size")
+
+def FiniteDomainSort(name, sz, ctx=None):
+ """Create a named finite domain sort of a given size sz"""
+ if not isinstance(name, Symbol):
+ name = to_symbol(name)
+ ctx = _get_ctx(ctx)
+ return FiniteDomainSortRef(Z3_mk_finite_domain_sort(ctx.ref(), name, sz), ctx)
+
+def is_finite_domain_sort(s):
+ """Return True if `s` is a Z3 finite-domain sort.
+
+ >>> is_finite_domain_sort(FiniteDomainSort('S', 100))
+ True
+ >>> is_finite_domain_sort(IntSort())
+ False
+ """
+ return isinstance(s, FiniteDomainSortRef)
+
+
+class FiniteDomainRef(ExprRef):
+ """Finite-domain expressions."""
+
+ def sort(self):
+ """Return the sort of the finite-domain expression `self`."""
+ return FiniteDomainSortRef(Z3_get_sort(self.ctx_ref(), self.as_ast()), self.ctx)
+
+ def as_string(self):
+ """Return a Z3 floating point expression as a Python string."""
+ return Z3_ast_to_string(self.ctx_ref(), self.as_ast())
+
+def is_finite_domain(a):
+ """Return `True` if `a` is a Z3 finite-domain expression.
+
+ >>> s = FiniteDomainSort('S', 100)
+ >>> b = Const('b', s)
+ >>> is_finite_domain(b)
+ True
+ >>> is_finite_domain(Int('x'))
+ False
+ """
+ return isinstance(a, FiniteDomainRef)
+
+
+class FiniteDomainNumRef(FiniteDomainRef):
+ """Integer values."""
+
+ def as_long(self):
+ """Return a Z3 finite-domain numeral as a Python long (bignum) numeral.
+
+ >>> s = FiniteDomainSort('S', 100)
+ >>> v = FiniteDomainVal(3, s)
+ >>> v
+ 3
+ >>> v.as_long() + 1
+ 4
+ """
+ return int(self.as_string())
+
+ def as_string(self):
+ """Return a Z3 finite-domain numeral as a Python string.
+
+ >>> s = FiniteDomainSort('S', 100)
+ >>> v = FiniteDomainVal(42, s)
+ >>> v.as_string()
+ '42'
+ """
+ return Z3_get_numeral_string(self.ctx_ref(), self.as_ast())
+
+
+def FiniteDomainVal(val, sort, ctx=None):
+ """Return a Z3 finite-domain value. If `ctx=None`, then the global context is used.
+
+ >>> s = FiniteDomainSort('S', 256)
+ >>> FiniteDomainVal(255, s)
+ 255
+ >>> FiniteDomainVal('100', s)
+ 100
+ """
+ if z3_debug():
+ _z3_assert(is_finite_domain_sort(sort), "Expected finite-domain sort" )
+ ctx = sort.ctx
+ return FiniteDomainNumRef(Z3_mk_numeral(ctx.ref(), _to_int_str(val), sort.ast), ctx)
+
+def is_finite_domain_value(a):
+ """Return `True` if `a` is a Z3 finite-domain value.
+
+ >>> s = FiniteDomainSort('S', 100)
+ >>> b = Const('b', s)
+ >>> is_finite_domain_value(b)
+ False
+ >>> b = FiniteDomainVal(10, s)
+ >>> b
+ 10
+ >>> is_finite_domain_value(b)
+ True
+ """
+ return is_finite_domain(a) and _is_numeral(a.ctx, a.as_ast())
+
+
+#########################################
+#
+# Optimize
+#
+#########################################
+
+class OptimizeObjective:
+ def __init__(self, opt, value, is_max):
+ self._opt = opt
+ self._value = value
+ self._is_max = is_max
+
+ def lower(self):
+ opt = self._opt
+ return _to_expr_ref(Z3_optimize_get_lower(opt.ctx.ref(), opt.optimize, self._value), opt.ctx)
+
+ def upper(self):
+ opt = self._opt
+ return _to_expr_ref(Z3_optimize_get_upper(opt.ctx.ref(), opt.optimize, self._value), opt.ctx)
+
+ def lower_values(self):
+ opt = self._opt
+ return AstVector(Z3_optimize_get_lower_as_vector(opt.ctx.ref(), opt.optimize, self._value), opt.ctx)
+
+ def upper_values(self):
+ opt = self._opt
+ return AstVector(Z3_optimize_get_upper_as_vector(opt.ctx.ref(), opt.optimize, self._value), opt.ctx)
+
+ def value(self):
+ if self._is_max:
+ return self.upper()
+ else:
+ return self.lower()
+
+ def __str__(self):
+ return "%s:%s" % (self._value, self._is_max)
+
+
+class Optimize(Z3PPObject):
+ """Optimize API provides methods for solving using objective functions and weighted soft constraints"""
+
+ def __init__(self, ctx=None):
+ self.ctx = _get_ctx(ctx)
+ self.optimize = Z3_mk_optimize(self.ctx.ref())
+ Z3_optimize_inc_ref(self.ctx.ref(), self.optimize)
+
+ def __deepcopy__(self, memo={}):
+ return Optimize(self.optimize, self.ctx)
+
+ def __del__(self):
+ if self.optimize is not None and self.ctx.ref() is not None:
+ Z3_optimize_dec_ref(self.ctx.ref(), self.optimize)
+
+ def set(self, *args, **keys):
+ """Set a configuration option. The method `help()` return a string containing all available options.
+ """
+ p = args2params(args, keys, self.ctx)
+ Z3_optimize_set_params(self.ctx.ref(), self.optimize, p.params)
+
+ def help(self):
+ """Display a string describing all available options."""
+ print(Z3_optimize_get_help(self.ctx.ref(), self.optimize))
+
+ def param_descrs(self):
+ """Return the parameter description set."""
+ return ParamDescrsRef(Z3_optimize_get_param_descrs(self.ctx.ref(), self.optimize), self.ctx)
+
+ def assert_exprs(self, *args):
+ """Assert constraints as background axioms for the optimize solver."""
+ args = _get_args(args)
+ s = BoolSort(self.ctx)
+ for arg in args:
+ if isinstance(arg, Goal) or isinstance(arg, AstVector):
+ for f in arg:
+ Z3_optimize_assert(self.ctx.ref(), self.optimize, f.as_ast())
+ else:
+ arg = s.cast(arg)
+ Z3_optimize_assert(self.ctx.ref(), self.optimize, arg.as_ast())
+
+ def add(self, *args):
+ """Assert constraints as background axioms for the optimize solver. Alias for assert_expr."""
+ self.assert_exprs(*args)
+
+ def __iadd__(self, fml):
+ self.add(fml)
+ return self
+
+ def assert_and_track(self, a, p):
+ """Assert constraint `a` and track it in the unsat core using the Boolean constant `p`.
+
+ If `p` is a string, it will be automatically converted into a Boolean constant.
+
+ >>> x = Int('x')
+ >>> p3 = Bool('p3')
+ >>> s = Optimize()
+ >>> s.assert_and_track(x > 0, 'p1')
+ >>> s.assert_and_track(x != 1, 'p2')
+ >>> s.assert_and_track(x < 0, p3)
+ >>> print(s.check())
+ unsat
+ >>> c = s.unsat_core()
+ >>> len(c)
+ 2
+ >>> Bool('p1') in c
+ True
+ >>> Bool('p2') in c
+ False
+ >>> p3 in c
+ True
+ """
+ if isinstance(p, str):
+ p = Bool(p, self.ctx)
+ _z3_assert(isinstance(a, BoolRef), "Boolean expression expected")
+ _z3_assert(isinstance(p, BoolRef) and is_const(p), "Boolean expression expected")
+ Z3_optimize_assert_and_track(self.ctx.ref(), self.optimize, a.as_ast(), p.as_ast())
+
+ def add_soft(self, arg, weight = "1", id = None):
+ """Add soft constraint with optional weight and optional identifier.
+ If no weight is supplied, then the penalty for violating the soft constraint
+ is 1.
+ Soft constraints are grouped by identifiers. Soft constraints that are
+ added without identifiers are grouped by default.
+ """
+ if _is_int(weight):
+ weight = "%d" % weight
+ elif isinstance(weight, float):
+ weight = "%f" % weight
+ if not isinstance(weight, str):
+ raise Z3Exception("weight should be a string or an integer")
+ if id is None:
+ id = ""
+ id = to_symbol(id, self.ctx)
+ v = Z3_optimize_assert_soft(self.ctx.ref(), self.optimize, arg.as_ast(), weight, id)
+ return OptimizeObjective(self, v, False)
+
+ def maximize(self, arg):
+ """Add objective function to maximize."""
+ return OptimizeObjective(self, Z3_optimize_maximize(self.ctx.ref(), self.optimize, arg.as_ast()), True)
+
+ def minimize(self, arg):
+ """Add objective function to minimize."""
+ return OptimizeObjective(self, Z3_optimize_minimize(self.ctx.ref(), self.optimize, arg.as_ast()), False)
+
+ def push(self):
+ """create a backtracking point for added rules, facts and assertions"""
+ Z3_optimize_push(self.ctx.ref(), self.optimize)
+
+ def pop(self):
+ """restore to previously created backtracking point"""
+ Z3_optimize_pop(self.ctx.ref(), self.optimize)
+
+ def check(self, *assumptions):
+ """Check satisfiability while optimizing objective functions."""
+ assumptions = _get_args(assumptions)
+ num = len(assumptions)
+ _assumptions = (Ast * num)()
+ for i in range(num):
+ _assumptions[i] = assumptions[i].as_ast()
+ return CheckSatResult(Z3_optimize_check(self.ctx.ref(), self.optimize, num, _assumptions))
+
+ def reason_unknown(self):
+ """Return a string that describes why the last `check()` returned `unknown`."""
+ return Z3_optimize_get_reason_unknown(self.ctx.ref(), self.optimize)
+
+ def model(self):
+ """Return a model for the last check()."""
+ try:
+ return ModelRef(Z3_optimize_get_model(self.ctx.ref(), self.optimize), self.ctx)
+ except Z3Exception:
+ raise Z3Exception("model is not available")
+
+ def unsat_core(self):
+ return AstVector(Z3_optimize_get_unsat_core(self.ctx.ref(), self.optimize), self.ctx)
+
+ def lower(self, obj):
+ if not isinstance(obj, OptimizeObjective):
+ raise Z3Exception("Expecting objective handle returned by maximize/minimize")
+ return obj.lower()
+
+ def upper(self, obj):
+ if not isinstance(obj, OptimizeObjective):
+ raise Z3Exception("Expecting objective handle returned by maximize/minimize")
+ return obj.upper()
+
+ def lower_values(self, obj):
+ if not isinstance(obj, OptimizeObjective):
+ raise Z3Exception("Expecting objective handle returned by maximize/minimize")
+ return obj.lower_values()
+
+ def upper_values(self, obj):
+ if not isinstance(obj, OptimizeObjective):
+ raise Z3Exception("Expecting objective handle returned by maximize/minimize")
+ return obj.upper_values()
+
+ def from_file(self, filename):
+ """Parse assertions and objectives from a file"""
+ Z3_optimize_from_file(self.ctx.ref(), self.optimize, filename)
+
+ def from_string(self, s):
+ """Parse assertions and objectives from a string"""
+ Z3_optimize_from_string(self.ctx.ref(), self.optimize, s)
+
+ def assertions(self):
+ """Return an AST vector containing all added constraints."""
+ return AstVector(Z3_optimize_get_assertions(self.ctx.ref(), self.optimize), self.ctx)
+
+ def objectives(self):
+ """returns set of objective functions"""
+ return AstVector(Z3_optimize_get_objectives(self.ctx.ref(), self.optimize), self.ctx)
+
+ def __repr__(self):
+ """Return a formatted string with all added rules and constraints."""
+ return self.sexpr()
+
+ def sexpr(self):
+ """Return a formatted string (in Lisp-like format) with all added constraints. We say the string is in s-expression format.
+ """
+ return Z3_optimize_to_string(self.ctx.ref(), self.optimize)
+
+ def statistics(self):
+ """Return statistics for the last check`.
+ """
+ return Statistics(Z3_optimize_get_statistics(self.ctx.ref(), self.optimize), self.ctx)
+
+
+
+
+#########################################
+#
+# ApplyResult
+#
+#########################################
+class ApplyResult(Z3PPObject):
+ """An ApplyResult object contains the subgoals produced by a tactic when applied to a goal. It also contains model and proof converters."""
+
+ def __init__(self, result, ctx):
+ self.result = result
+ self.ctx = ctx
+ Z3_apply_result_inc_ref(self.ctx.ref(), self.result)
+
+ def __deepcopy__(self, memo={}):
+ return ApplyResult(self.result, self.ctx)
+
+ def __del__(self):
+ if self.ctx.ref() is not None:
+ Z3_apply_result_dec_ref(self.ctx.ref(), self.result)
+
+ def __len__(self):
+ """Return the number of subgoals in `self`.
+
+ >>> a, b = Ints('a b')
+ >>> g = Goal()
+ >>> g.add(Or(a == 0, a == 1), Or(b == 0, b == 1), a > b)
+ >>> t = Tactic('split-clause')
+ >>> r = t(g)
+ >>> len(r)
+ 2
+ >>> t = Then(Tactic('split-clause'), Tactic('split-clause'))
+ >>> len(t(g))
+ 4
+ >>> t = Then(Tactic('split-clause'), Tactic('split-clause'), Tactic('propagate-values'))
+ >>> len(t(g))
+ 1
+ """
+ return int(Z3_apply_result_get_num_subgoals(self.ctx.ref(), self.result))
+
+ def __getitem__(self, idx):
+ """Return one of the subgoals stored in ApplyResult object `self`.
+
+ >>> a, b = Ints('a b')
+ >>> g = Goal()
+ >>> g.add(Or(a == 0, a == 1), Or(b == 0, b == 1), a > b)
+ >>> t = Tactic('split-clause')
+ >>> r = t(g)
+ >>> r[0]
+ [a == 0, Or(b == 0, b == 1), a > b]
+ >>> r[1]
+ [a == 1, Or(b == 0, b == 1), a > b]
+ """
+ if idx >= len(self):
+ raise IndexError
+ return Goal(goal=Z3_apply_result_get_subgoal(self.ctx.ref(), self.result, idx), ctx=self.ctx)
+
+ def __repr__(self):
+ return obj_to_string(self)
+
+ def sexpr(self):
+ """Return a textual representation of the s-expression representing the set of subgoals in `self`."""
+ return Z3_apply_result_to_string(self.ctx.ref(), self.result)
+
+
+ def as_expr(self):
+ """Return a Z3 expression consisting of all subgoals.
+
+ >>> x = Int('x')
+ >>> g = Goal()
+ >>> g.add(x > 1)
+ >>> g.add(Or(x == 2, x == 3))
+ >>> r = Tactic('simplify')(g)
+ >>> r
+ [[Not(x <= 1), Or(x == 2, x == 3)]]
+ >>> r.as_expr()
+ And(Not(x <= 1), Or(x == 2, x == 3))
+ >>> r = Tactic('split-clause')(g)
+ >>> r
+ [[x > 1, x == 2], [x > 1, x == 3]]
+ >>> r.as_expr()
+ Or(And(x > 1, x == 2), And(x > 1, x == 3))
+ """
+ sz = len(self)
+ if sz == 0:
+ return BoolVal(False, self.ctx)
+ elif sz == 1:
+ return self[0].as_expr()
+ else:
+ return Or([ self[i].as_expr() for i in range(len(self)) ])
+
+#########################################
+#
+# Tactics
+#
+#########################################
+class Tactic:
+ """Tactics transform, solver and/or simplify sets of constraints (Goal). A Tactic can be converted into a Solver using the method solver().
+
+ Several combinators are available for creating new tactics using the built-in ones: Then(), OrElse(), FailIf(), Repeat(), When(), Cond().
+ """
+ def __init__(self, tactic, ctx=None):
+ self.ctx = _get_ctx(ctx)
+ self.tactic = None
+ if isinstance(tactic, TacticObj):
+ self.tactic = tactic
+ else:
+ if z3_debug():
+ _z3_assert(isinstance(tactic, str), "tactic name expected")
+ try:
+ self.tactic = Z3_mk_tactic(self.ctx.ref(), str(tactic))
+ except Z3Exception:
+ raise Z3Exception("unknown tactic '%s'" % tactic)
+ Z3_tactic_inc_ref(self.ctx.ref(), self.tactic)
+
+ def __deepcopy__(self, memo={}):
+ return Tactic(self.tactic, self.ctx)
+
+ def __del__(self):
+ if self.tactic is not None and self.ctx.ref() is not None:
+ Z3_tactic_dec_ref(self.ctx.ref(), self.tactic)
+
+ def solver(self, logFile=None):
+ """Create a solver using the tactic `self`.
+
+ The solver supports the methods `push()` and `pop()`, but it
+ will always solve each `check()` from scratch.
+
+ >>> t = Then('simplify', 'nlsat')
+ >>> s = t.solver()
+ >>> x = Real('x')
+ >>> s.add(x**2 == 2, x > 0)
+ >>> s.check()
+ sat
+ >>> s.model()
+ [x = 1.4142135623?]
+ """
+ return Solver(Z3_mk_solver_from_tactic(self.ctx.ref(), self.tactic), self.ctx, logFile)
+
+ def apply(self, goal, *arguments, **keywords):
+ """Apply tactic `self` to the given goal or Z3 Boolean expression using the given options.
+
+ >>> x, y = Ints('x y')
+ >>> t = Tactic('solve-eqs')
+ >>> t.apply(And(x == 0, y >= x + 1))
+ [[y >= 1]]
+ """
+ if z3_debug():
+ _z3_assert(isinstance(goal, Goal) or isinstance(goal, BoolRef), "Z3 Goal or Boolean expressions expected")
+ goal = _to_goal(goal)
+ if len(arguments) > 0 or len(keywords) > 0:
+ p = args2params(arguments, keywords, self.ctx)
+ return ApplyResult(Z3_tactic_apply_ex(self.ctx.ref(), self.tactic, goal.goal, p.params), self.ctx)
+ else:
+ return ApplyResult(Z3_tactic_apply(self.ctx.ref(), self.tactic, goal.goal), self.ctx)
+
+ def __call__(self, goal, *arguments, **keywords):
+ """Apply tactic `self` to the given goal or Z3 Boolean expression using the given options.
+
+ >>> x, y = Ints('x y')
+ >>> t = Tactic('solve-eqs')
+ >>> t(And(x == 0, y >= x + 1))
+ [[y >= 1]]
+ """
+ return self.apply(goal, *arguments, **keywords)
+
+ def help(self):
+ """Display a string containing a description of the available options for the `self` tactic."""
+ print(Z3_tactic_get_help(self.ctx.ref(), self.tactic))
+
+ def param_descrs(self):
+ """Return the parameter description set."""
+ return ParamDescrsRef(Z3_tactic_get_param_descrs(self.ctx.ref(), self.tactic), self.ctx)
+
+def _to_goal(a):
+ if isinstance(a, BoolRef):
+ goal = Goal(ctx = a.ctx)
+ goal.add(a)
+ return goal
+ else:
+ return a
+
+def _to_tactic(t, ctx=None):
+ if isinstance(t, Tactic):
+ return t
+ else:
+ return Tactic(t, ctx)
+
+def _and_then(t1, t2, ctx=None):
+ t1 = _to_tactic(t1, ctx)
+ t2 = _to_tactic(t2, ctx)
+ if z3_debug():
+ _z3_assert(t1.ctx == t2.ctx, "Context mismatch")
+ return Tactic(Z3_tactic_and_then(t1.ctx.ref(), t1.tactic, t2.tactic), t1.ctx)
+
+def _or_else(t1, t2, ctx=None):
+ t1 = _to_tactic(t1, ctx)
+ t2 = _to_tactic(t2, ctx)
+ if z3_debug():
+ _z3_assert(t1.ctx == t2.ctx, "Context mismatch")
+ return Tactic(Z3_tactic_or_else(t1.ctx.ref(), t1.tactic, t2.tactic), t1.ctx)
+
+def AndThen(*ts, **ks):
+ """Return a tactic that applies the tactics in `*ts` in sequence.
+
+ >>> x, y = Ints('x y')
+ >>> t = AndThen(Tactic('simplify'), Tactic('solve-eqs'))
+ >>> t(And(x == 0, y > x + 1))
+ [[Not(y <= 1)]]
+ >>> t(And(x == 0, y > x + 1)).as_expr()
+ Not(y <= 1)
+ """
+ if z3_debug():
+ _z3_assert(len(ts) >= 2, "At least two arguments expected")
+ ctx = ks.get('ctx', None)
+ num = len(ts)
+ r = ts[0]
+ for i in range(num - 1):
+ r = _and_then(r, ts[i+1], ctx)
+ return r
+
+def Then(*ts, **ks):
+ """Return a tactic that applies the tactics in `*ts` in sequence. Shorthand for AndThen(*ts, **ks).
+
+ >>> x, y = Ints('x y')
+ >>> t = Then(Tactic('simplify'), Tactic('solve-eqs'))
+ >>> t(And(x == 0, y > x + 1))
+ [[Not(y <= 1)]]
+ >>> t(And(x == 0, y > x + 1)).as_expr()
+ Not(y <= 1)
+ """
+ return AndThen(*ts, **ks)
+
+def OrElse(*ts, **ks):
+ """Return a tactic that applies the tactics in `*ts` until one of them succeeds (it doesn't fail).
+
+ >>> x = Int('x')
+ >>> t = OrElse(Tactic('split-clause'), Tactic('skip'))
+ >>> # Tactic split-clause fails if there is no clause in the given goal.
+ >>> t(x == 0)
+ [[x == 0]]
+ >>> t(Or(x == 0, x == 1))
+ [[x == 0], [x == 1]]
+ """
+ if z3_debug():
+ _z3_assert(len(ts) >= 2, "At least two arguments expected")
+ ctx = ks.get('ctx', None)
+ num = len(ts)
+ r = ts[0]
+ for i in range(num - 1):
+ r = _or_else(r, ts[i+1], ctx)
+ return r
+
+def ParOr(*ts, **ks):
+ """Return a tactic that applies the tactics in `*ts` in parallel until one of them succeeds (it doesn't fail).
+
+ >>> x = Int('x')
+ >>> t = ParOr(Tactic('simplify'), Tactic('fail'))
+ >>> t(x + 1 == 2)
+ [[x == 1]]
+ """
+ if z3_debug():
+ _z3_assert(len(ts) >= 2, "At least two arguments expected")
+ ctx = _get_ctx(ks.get('ctx', None))
+ ts = [ _to_tactic(t, ctx) for t in ts ]
+ sz = len(ts)
+ _args = (TacticObj * sz)()
+ for i in range(sz):
+ _args[i] = ts[i].tactic
+ return Tactic(Z3_tactic_par_or(ctx.ref(), sz, _args), ctx)
+
+def ParThen(t1, t2, ctx=None):
+ """Return a tactic that applies t1 and then t2 to every subgoal produced by t1. The subgoals are processed in parallel.
+
+ >>> x, y = Ints('x y')
+ >>> t = ParThen(Tactic('split-clause'), Tactic('propagate-values'))
+ >>> t(And(Or(x == 1, x == 2), y == x + 1))
+ [[x == 1, y == 2], [x == 2, y == 3]]
+ """
+ t1 = _to_tactic(t1, ctx)
+ t2 = _to_tactic(t2, ctx)
+ if z3_debug():
+ _z3_assert(t1.ctx == t2.ctx, "Context mismatch")
+ return Tactic(Z3_tactic_par_and_then(t1.ctx.ref(), t1.tactic, t2.tactic), t1.ctx)
+
+def ParAndThen(t1, t2, ctx=None):
+ """Alias for ParThen(t1, t2, ctx)."""
+ return ParThen(t1, t2, ctx)
+
+def With(t, *args, **keys):
+ """Return a tactic that applies tactic `t` using the given configuration options.
+
+ >>> x, y = Ints('x y')
+ >>> t = With(Tactic('simplify'), som=True)
+ >>> t((x + 1)*(y + 2) == 0)
+ [[2*x + y + x*y == -2]]
+ """
+ ctx = keys.pop('ctx', None)
+ t = _to_tactic(t, ctx)
+ p = args2params(args, keys, t.ctx)
+ return Tactic(Z3_tactic_using_params(t.ctx.ref(), t.tactic, p.params), t.ctx)
+
+def WithParams(t, p):
+ """Return a tactic that applies tactic `t` using the given configuration options.
+
+ >>> x, y = Ints('x y')
+ >>> p = ParamsRef()
+ >>> p.set("som", True)
+ >>> t = WithParams(Tactic('simplify'), p)
+ >>> t((x + 1)*(y + 2) == 0)
+ [[2*x + y + x*y == -2]]
+ """
+ t = _to_tactic(t, None)
+ return Tactic(Z3_tactic_using_params(t.ctx.ref(), t.tactic, p.params), t.ctx)
+
+def Repeat(t, max=4294967295, ctx=None):
+ """Return a tactic that keeps applying `t` until the goal is not modified anymore or the maximum number of iterations `max` is reached.
+
+ >>> x, y = Ints('x y')
+ >>> c = And(Or(x == 0, x == 1), Or(y == 0, y == 1), x > y)
+ >>> t = Repeat(OrElse(Tactic('split-clause'), Tactic('skip')))
+ >>> r = t(c)
+ >>> for subgoal in r: print(subgoal)
+ [x == 0, y == 0, x > y]
+ [x == 0, y == 1, x > y]
+ [x == 1, y == 0, x > y]
+ [x == 1, y == 1, x > y]
+ >>> t = Then(t, Tactic('propagate-values'))
+ >>> t(c)
+ [[x == 1, y == 0]]
+ """
+ t = _to_tactic(t, ctx)
+ return Tactic(Z3_tactic_repeat(t.ctx.ref(), t.tactic, max), t.ctx)
+
+def TryFor(t, ms, ctx=None):
+ """Return a tactic that applies `t` to a given goal for `ms` milliseconds.
+
+ If `t` does not terminate in `ms` milliseconds, then it fails.
+ """
+ t = _to_tactic(t, ctx)
+ return Tactic(Z3_tactic_try_for(t.ctx.ref(), t.tactic, ms), t.ctx)
+
+def tactics(ctx=None):
+ """Return a list of all available tactics in Z3.
+
+ >>> l = tactics()
+ >>> l.count('simplify') == 1
+ True
+ """
+ ctx = _get_ctx(ctx)
+ return [ Z3_get_tactic_name(ctx.ref(), i) for i in range(Z3_get_num_tactics(ctx.ref())) ]
+
+def tactic_description(name, ctx=None):
+ """Return a short description for the tactic named `name`.
+
+ >>> d = tactic_description('simplify')
+ """
+ ctx = _get_ctx(ctx)
+ return Z3_tactic_get_descr(ctx.ref(), name)
+
+def describe_tactics():
+ """Display a (tabular) description of all available tactics in Z3."""
+ if in_html_mode():
+ even = True
+ print('')
+ for t in tactics():
+ if even:
+ print('')
+ even = False
+ else:
+ print('
')
+ even = True
+ print('%s | %s |
' % (t, insert_line_breaks(tactic_description(t), 40)))
+ print('
')
+ else:
+ for t in tactics():
+ print('%s : %s' % (t, tactic_description(t)))
+
+class Probe:
+ """Probes are used to inspect a goal (aka problem) and collect information that may be used to decide which solver and/or preprocessing step will be used."""
+ def __init__(self, probe, ctx=None):
+ self.ctx = _get_ctx(ctx)
+ self.probe = None
+ if isinstance(probe, ProbeObj):
+ self.probe = probe
+ elif isinstance(probe, float):
+ self.probe = Z3_probe_const(self.ctx.ref(), probe)
+ elif _is_int(probe):
+ self.probe = Z3_probe_const(self.ctx.ref(), float(probe))
+ elif isinstance(probe, bool):
+ if probe:
+ self.probe = Z3_probe_const(self.ctx.ref(), 1.0)
+ else:
+ self.probe = Z3_probe_const(self.ctx.ref(), 0.0)
+ else:
+ if z3_debug():
+ _z3_assert(isinstance(probe, str), "probe name expected")
+ try:
+ self.probe = Z3_mk_probe(self.ctx.ref(), probe)
+ except Z3Exception:
+ raise Z3Exception("unknown probe '%s'" % probe)
+ Z3_probe_inc_ref(self.ctx.ref(), self.probe)
+
+ def __deepcopy__(self, memo={}):
+ return Probe(self.probe, self.ctx)
+
+ def __del__(self):
+ if self.probe is not None and self.ctx.ref() is not None:
+ Z3_probe_dec_ref(self.ctx.ref(), self.probe)
+
+ def __lt__(self, other):
+ """Return a probe that evaluates to "true" when the value returned by `self` is less than the value returned by `other`.
+
+ >>> p = Probe('size') < 10
+ >>> x = Int('x')
+ >>> g = Goal()
+ >>> g.add(x > 0)
+ >>> g.add(x < 10)
+ >>> p(g)
+ 1.0
+ """
+ return Probe(Z3_probe_lt(self.ctx.ref(), self.probe, _to_probe(other, self.ctx).probe), self.ctx)
+
+ def __gt__(self, other):
+ """Return a probe that evaluates to "true" when the value returned by `self` is greater than the value returned by `other`.
+
+ >>> p = Probe('size') > 10
+ >>> x = Int('x')
+ >>> g = Goal()
+ >>> g.add(x > 0)
+ >>> g.add(x < 10)
+ >>> p(g)
+ 0.0
+ """
+ return Probe(Z3_probe_gt(self.ctx.ref(), self.probe, _to_probe(other, self.ctx).probe), self.ctx)
+
+ def __le__(self, other):
+ """Return a probe that evaluates to "true" when the value returned by `self` is less than or equal to the value returned by `other`.
+
+ >>> p = Probe('size') <= 2
+ >>> x = Int('x')
+ >>> g = Goal()
+ >>> g.add(x > 0)
+ >>> g.add(x < 10)
+ >>> p(g)
+ 1.0
+ """
+ return Probe(Z3_probe_le(self.ctx.ref(), self.probe, _to_probe(other, self.ctx).probe), self.ctx)
+
+ def __ge__(self, other):
+ """Return a probe that evaluates to "true" when the value returned by `self` is greater than or equal to the value returned by `other`.
+
+ >>> p = Probe('size') >= 2
+ >>> x = Int('x')
+ >>> g = Goal()
+ >>> g.add(x > 0)
+ >>> g.add(x < 10)
+ >>> p(g)
+ 1.0
+ """
+ return Probe(Z3_probe_ge(self.ctx.ref(), self.probe, _to_probe(other, self.ctx).probe), self.ctx)
+
+ def __eq__(self, other):
+ """Return a probe that evaluates to "true" when the value returned by `self` is equal to the value returned by `other`.
+
+ >>> p = Probe('size') == 2
+ >>> x = Int('x')
+ >>> g = Goal()
+ >>> g.add(x > 0)
+ >>> g.add(x < 10)
+ >>> p(g)
+ 1.0
+ """
+ return Probe(Z3_probe_eq(self.ctx.ref(), self.probe, _to_probe(other, self.ctx).probe), self.ctx)
+
+ def __ne__(self, other):
+ """Return a probe that evaluates to "true" when the value returned by `self` is not equal to the value returned by `other`.
+
+ >>> p = Probe('size') != 2
+ >>> x = Int('x')
+ >>> g = Goal()
+ >>> g.add(x > 0)
+ >>> g.add(x < 10)
+ >>> p(g)
+ 0.0
+ """
+ p = self.__eq__(other)
+ return Probe(Z3_probe_not(self.ctx.ref(), p.probe), self.ctx)
+
+ def __call__(self, goal):
+ """Evaluate the probe `self` in the given goal.
+
+ >>> p = Probe('size')
+ >>> x = Int('x')
+ >>> g = Goal()
+ >>> g.add(x > 0)
+ >>> g.add(x < 10)
+ >>> p(g)
+ 2.0
+ >>> g.add(x < 20)
+ >>> p(g)
+ 3.0
+ >>> p = Probe('num-consts')
+ >>> p(g)
+ 1.0
+ >>> p = Probe('is-propositional')
+ >>> p(g)
+ 0.0
+ >>> p = Probe('is-qflia')
+ >>> p(g)
+ 1.0
+ """
+ if z3_debug():
+ _z3_assert(isinstance(goal, Goal) or isinstance(goal, BoolRef), "Z3 Goal or Boolean expression expected")
+ goal = _to_goal(goal)
+ return Z3_probe_apply(self.ctx.ref(), self.probe, goal.goal)
+
+def is_probe(p):
+ """Return `True` if `p` is a Z3 probe.
+
+ >>> is_probe(Int('x'))
+ False
+ >>> is_probe(Probe('memory'))
+ True
+ """
+ return isinstance(p, Probe)
+
+def _to_probe(p, ctx=None):
+ if is_probe(p):
+ return p
+ else:
+ return Probe(p, ctx)
+
+def probes(ctx=None):
+ """Return a list of all available probes in Z3.
+
+ >>> l = probes()
+ >>> l.count('memory') == 1
+ True
+ """
+ ctx = _get_ctx(ctx)
+ return [ Z3_get_probe_name(ctx.ref(), i) for i in range(Z3_get_num_probes(ctx.ref())) ]
+
+def probe_description(name, ctx=None):
+ """Return a short description for the probe named `name`.
+
+ >>> d = probe_description('memory')
+ """
+ ctx = _get_ctx(ctx)
+ return Z3_probe_get_descr(ctx.ref(), name)
+
+def describe_probes():
+ """Display a (tabular) description of all available probes in Z3."""
+ if in_html_mode():
+ even = True
+ print('')
+ for p in probes():
+ if even:
+ print('')
+ even = False
+ else:
+ print('
')
+ even = True
+ print('%s | %s |
' % (p, insert_line_breaks(probe_description(p), 40)))
+ print('
')
+ else:
+ for p in probes():
+ print('%s : %s' % (p, probe_description(p)))
+
+def _probe_nary(f, args, ctx):
+ if z3_debug():
+ _z3_assert(len(args) > 0, "At least one argument expected")
+ num = len(args)
+ r = _to_probe(args[0], ctx)
+ for i in range(num - 1):
+ r = Probe(f(ctx.ref(), r.probe, _to_probe(args[i+1], ctx).probe), ctx)
+ return r
+
+def _probe_and(args, ctx):
+ return _probe_nary(Z3_probe_and, args, ctx)
+
+def _probe_or(args, ctx):
+ return _probe_nary(Z3_probe_or, args, ctx)
+
+def FailIf(p, ctx=None):
+ """Return a tactic that fails if the probe `p` evaluates to true. Otherwise, it returns the input goal unmodified.
+
+ In the following example, the tactic applies 'simplify' if and only if there are more than 2 constraints in the goal.
+
+ >>> t = OrElse(FailIf(Probe('size') > 2), Tactic('simplify'))
+ >>> x, y = Ints('x y')
+ >>> g = Goal()
+ >>> g.add(x > 0)
+ >>> g.add(y > 0)
+ >>> t(g)
+ [[x > 0, y > 0]]
+ >>> g.add(x == y + 1)
+ >>> t(g)
+ [[Not(x <= 0), Not(y <= 0), x == 1 + y]]
+ """
+ p = _to_probe(p, ctx)
+ return Tactic(Z3_tactic_fail_if(p.ctx.ref(), p.probe), p.ctx)
+
+def When(p, t, ctx=None):
+ """Return a tactic that applies tactic `t` only if probe `p` evaluates to true. Otherwise, it returns the input goal unmodified.
+
+ >>> t = When(Probe('size') > 2, Tactic('simplify'))
+ >>> x, y = Ints('x y')
+ >>> g = Goal()
+ >>> g.add(x > 0)
+ >>> g.add(y > 0)
+ >>> t(g)
+ [[x > 0, y > 0]]
+ >>> g.add(x == y + 1)
+ >>> t(g)
+ [[Not(x <= 0), Not(y <= 0), x == 1 + y]]
+ """
+ p = _to_probe(p, ctx)
+ t = _to_tactic(t, ctx)
+ return Tactic(Z3_tactic_when(t.ctx.ref(), p.probe, t.tactic), t.ctx)
+
+def Cond(p, t1, t2, ctx=None):
+ """Return a tactic that applies tactic `t1` to a goal if probe `p` evaluates to true, and `t2` otherwise.
+
+ >>> t = Cond(Probe('is-qfnra'), Tactic('qfnra'), Tactic('smt'))
+ """
+ p = _to_probe(p, ctx)
+ t1 = _to_tactic(t1, ctx)
+ t2 = _to_tactic(t2, ctx)
+ return Tactic(Z3_tactic_cond(t1.ctx.ref(), p.probe, t1.tactic, t2.tactic), t1.ctx)
+
+#########################################
+#
+# Utils
+#
+#########################################
+
+def simplify(a, *arguments, **keywords):
+ """Simplify the expression `a` using the given options.
+
+ This function has many options. Use `help_simplify` to obtain the complete list.
+
+ >>> x = Int('x')
+ >>> y = Int('y')
+ >>> simplify(x + 1 + y + x + 1)
+ 2 + 2*x + y
+ >>> simplify((x + 1)*(y + 1), som=True)
+ 1 + x + y + x*y
+ >>> simplify(Distinct(x, y, 1), blast_distinct=True)
+ And(Not(x == y), Not(x == 1), Not(y == 1))
+ >>> simplify(And(x == 0, y == 1), elim_and=True)
+ Not(Or(Not(x == 0), Not(y == 1)))
+ """
+ if z3_debug():
+ _z3_assert(is_expr(a), "Z3 expression expected")
+ if len(arguments) > 0 or len(keywords) > 0:
+ p = args2params(arguments, keywords, a.ctx)
+ return _to_expr_ref(Z3_simplify_ex(a.ctx_ref(), a.as_ast(), p.params), a.ctx)
+ else:
+ return _to_expr_ref(Z3_simplify(a.ctx_ref(), a.as_ast()), a.ctx)
+
+def help_simplify():
+ """Return a string describing all options available for Z3 `simplify` procedure."""
+ print(Z3_simplify_get_help(main_ctx().ref()))
+
+def simplify_param_descrs():
+ """Return the set of parameter descriptions for Z3 `simplify` procedure."""
+ return ParamDescrsRef(Z3_simplify_get_param_descrs(main_ctx().ref()), main_ctx())
+
+def substitute(t, *m):
+ """Apply substitution m on t, m is a list of pairs of the form (from, to). Every occurrence in t of from is replaced with to.
+
+ >>> x = Int('x')
+ >>> y = Int('y')
+ >>> substitute(x + 1, (x, y + 1))
+ y + 1 + 1
+ >>> f = Function('f', IntSort(), IntSort())
+ >>> substitute(f(x) + f(y), (f(x), IntVal(1)), (f(y), IntVal(1)))
+ 1 + 1
+ """
+ if isinstance(m, tuple):
+ m1 = _get_args(m)
+ if isinstance(m1, list) and all(isinstance(p, tuple) for p in m1):
+ m = m1
+ if z3_debug():
+ _z3_assert(is_expr(t), "Z3 expression expected")
+ _z3_assert(all([isinstance(p, tuple) and is_expr(p[0]) and is_expr(p[1]) and p[0].sort().eq(p[1].sort()) for p in m]), "Z3 invalid substitution, expression pairs expected.")
+ num = len(m)
+ _from = (Ast * num)()
+ _to = (Ast * num)()
+ for i in range(num):
+ _from[i] = m[i][0].as_ast()
+ _to[i] = m[i][1].as_ast()
+ return _to_expr_ref(Z3_substitute(t.ctx.ref(), t.as_ast(), num, _from, _to), t.ctx)
+
+def substitute_vars(t, *m):
+ """Substitute the free variables in t with the expression in m.
+
+ >>> v0 = Var(0, IntSort())
+ >>> v1 = Var(1, IntSort())
+ >>> x = Int('x')
+ >>> f = Function('f', IntSort(), IntSort(), IntSort())
+ >>> # replace v0 with x+1 and v1 with x
+ >>> substitute_vars(f(v0, v1), x + 1, x)
+ f(x + 1, x)
+ """
+ if z3_debug():
+ _z3_assert(is_expr(t), "Z3 expression expected")
+ _z3_assert(all([is_expr(n) for n in m]), "Z3 invalid substitution, list of expressions expected.")
+ num = len(m)
+ _to = (Ast * num)()
+ for i in range(num):
+ _to[i] = m[i].as_ast()
+ return _to_expr_ref(Z3_substitute_vars(t.ctx.ref(), t.as_ast(), num, _to), t.ctx)
+
+def Sum(*args):
+ """Create the sum of the Z3 expressions.
+
+ >>> a, b, c = Ints('a b c')
+ >>> Sum(a, b, c)
+ a + b + c
+ >>> Sum([a, b, c])
+ a + b + c
+ >>> A = IntVector('a', 5)
+ >>> Sum(A)
+ a__0 + a__1 + a__2 + a__3 + a__4
+ """
+ args = _get_args(args)
+ if len(args) == 0:
+ return 0
+ ctx = _ctx_from_ast_arg_list(args)
+ if ctx is None:
+ return _reduce(lambda a, b: a + b, args, 0)
+ args = _coerce_expr_list(args, ctx)
+ if is_bv(args[0]):
+ return _reduce(lambda a, b: a + b, args, 0)
+ else:
+ _args, sz = _to_ast_array(args)
+ return ArithRef(Z3_mk_add(ctx.ref(), sz, _args), ctx)
+
+
+def Product(*args):
+ """Create the product of the Z3 expressions.
+
+ >>> a, b, c = Ints('a b c')
+ >>> Product(a, b, c)
+ a*b*c
+ >>> Product([a, b, c])
+ a*b*c
+ >>> A = IntVector('a', 5)
+ >>> Product(A)
+ a__0*a__1*a__2*a__3*a__4
+ """
+ args = _get_args(args)
+ if len(args) == 0:
+ return 1
+ ctx = _ctx_from_ast_arg_list(args)
+ if ctx is None:
+ return _reduce(lambda a, b: a * b, args, 1)
+ args = _coerce_expr_list(args, ctx)
+ if is_bv(args[0]):
+ return _reduce(lambda a, b: a * b, args, 1)
+ else:
+ _args, sz = _to_ast_array(args)
+ return ArithRef(Z3_mk_mul(ctx.ref(), sz, _args), ctx)
+
+def AtMost(*args):
+ """Create an at-most Pseudo-Boolean k constraint.
+
+ >>> a, b, c = Bools('a b c')
+ >>> f = AtMost(a, b, c, 2)
+ """
+ args = _get_args(args)
+ if z3_debug():
+ _z3_assert(len(args) > 1, "Non empty list of arguments expected")
+ ctx = _ctx_from_ast_arg_list(args)
+ if z3_debug():
+ _z3_assert(ctx is not None, "At least one of the arguments must be a Z3 expression")
+ args1 = _coerce_expr_list(args[:-1], ctx)
+ k = args[-1]
+ _args, sz = _to_ast_array(args1)
+ return BoolRef(Z3_mk_atmost(ctx.ref(), sz, _args, k), ctx)
+
+def AtLeast(*args):
+ """Create an at-most Pseudo-Boolean k constraint.
+
+ >>> a, b, c = Bools('a b c')
+ >>> f = AtLeast(a, b, c, 2)
+ """
+ args = _get_args(args)
+ if z3_debug():
+ _z3_assert(len(args) > 1, "Non empty list of arguments expected")
+ ctx = _ctx_from_ast_arg_list(args)
+ if z3_debug():
+ _z3_assert(ctx is not None, "At least one of the arguments must be a Z3 expression")
+ args1 = _coerce_expr_list(args[:-1], ctx)
+ k = args[-1]
+ _args, sz = _to_ast_array(args1)
+ return BoolRef(Z3_mk_atleast(ctx.ref(), sz, _args, k), ctx)
+
+def _reorder_pb_arg(arg):
+ a, b = arg
+ if not _is_int(b) and _is_int(a):
+ return b, a
+ return arg
+
+def _pb_args_coeffs(args, default_ctx = None):
+ args = _get_args_ast_list(args)
+ if len(args) == 0:
+ return _get_ctx(default_ctx), 0, (Ast * 0)(), (ctypes.c_int * 0)()
+ args = [_reorder_pb_arg(arg) for arg in args]
+ args, coeffs = zip(*args)
+ if z3_debug():
+ _z3_assert(len(args) > 0, "Non empty list of arguments expected")
+ ctx = _ctx_from_ast_arg_list(args)
+ if z3_debug():
+ _z3_assert(ctx is not None, "At least one of the arguments must be a Z3 expression")
+ args = _coerce_expr_list(args, ctx)
+ _args, sz = _to_ast_array(args)
+ _coeffs = (ctypes.c_int * len(coeffs))()
+ for i in range(len(coeffs)):
+ _z3_check_cint_overflow(coeffs[i], "coefficient")
+ _coeffs[i] = coeffs[i]
+ return ctx, sz, _args, _coeffs
+
+def PbLe(args, k):
+ """Create a Pseudo-Boolean inequality k constraint.
+
+ >>> a, b, c = Bools('a b c')
+ >>> f = PbLe(((a,1),(b,3),(c,2)), 3)
+ """
+ _z3_check_cint_overflow(k, "k")
+ ctx, sz, _args, _coeffs = _pb_args_coeffs(args)
+ return BoolRef(Z3_mk_pble(ctx.ref(), sz, _args, _coeffs, k), ctx)
+
+def PbGe(args, k):
+ """Create a Pseudo-Boolean inequality k constraint.
+
+ >>> a, b, c = Bools('a b c')
+ >>> f = PbGe(((a,1),(b,3),(c,2)), 3)
+ """
+ _z3_check_cint_overflow(k, "k")
+ ctx, sz, _args, _coeffs = _pb_args_coeffs(args)
+ return BoolRef(Z3_mk_pbge(ctx.ref(), sz, _args, _coeffs, k), ctx)
+
+def PbEq(args, k, ctx = None):
+ """Create a Pseudo-Boolean inequality k constraint.
+
+ >>> a, b, c = Bools('a b c')
+ >>> f = PbEq(((a,1),(b,3),(c,2)), 3)
+ """
+ _z3_check_cint_overflow(k, "k")
+ ctx, sz, _args, _coeffs = _pb_args_coeffs(args)
+ return BoolRef(Z3_mk_pbeq(ctx.ref(), sz, _args, _coeffs, k), ctx)
+
+
+def solve(*args, **keywords):
+ """Solve the constraints `*args`.
+
+ This is a simple function for creating demonstrations. It creates a solver,
+ configure it using the options in `keywords`, adds the constraints
+ in `args`, and invokes check.
+
+ >>> a = Int('a')
+ >>> solve(a > 0, a < 2)
+ [a = 1]
+ """
+ s = Solver()
+ s.set(**keywords)
+ s.add(*args)
+ if keywords.get('show', False):
+ print(s)
+ r = s.check()
+ if r == unsat:
+ print("no solution")
+ elif r == unknown:
+ print("failed to solve")
+ try:
+ print(s.model())
+ except Z3Exception:
+ return
+ else:
+ print(s.model())
+
+def solve_using(s, *args, **keywords):
+ """Solve the constraints `*args` using solver `s`.
+
+ This is a simple function for creating demonstrations. It is similar to `solve`,
+ but it uses the given solver `s`.
+ It configures solver `s` using the options in `keywords`, adds the constraints
+ in `args`, and invokes check.
+ """
+ if z3_debug():
+ _z3_assert(isinstance(s, Solver), "Solver object expected")
+ s.set(**keywords)
+ s.add(*args)
+ if keywords.get('show', False):
+ print("Problem:")
+ print(s)
+ r = s.check()
+ if r == unsat:
+ print("no solution")
+ elif r == unknown:
+ print("failed to solve")
+ try:
+ print(s.model())
+ except Z3Exception:
+ return
+ else:
+ if keywords.get('show', False):
+ print("Solution:")
+ print(s.model())
+
+def prove(claim, **keywords):
+ """Try to prove the given claim.
+
+ This is a simple function for creating demonstrations. It tries to prove
+ `claim` by showing the negation is unsatisfiable.
+
+ >>> p, q = Bools('p q')
+ >>> prove(Not(And(p, q)) == Or(Not(p), Not(q)))
+ proved
+ """
+ if z3_debug():
+ _z3_assert(is_bool(claim), "Z3 Boolean expression expected")
+ s = Solver()
+ s.set(**keywords)
+ s.add(Not(claim))
+ if keywords.get('show', False):
+ print(s)
+ r = s.check()
+ if r == unsat:
+ print("proved")
+ elif r == unknown:
+ print("failed to prove")
+ print(s.model())
+ else:
+ print("counterexample")
+ print(s.model())
+
+def _solve_html(*args, **keywords):
+ """Version of function `solve` used in RiSE4Fun."""
+ s = Solver()
+ s.set(**keywords)
+ s.add(*args)
+ if keywords.get('show', False):
+ print("Problem:")
+ print(s)
+ r = s.check()
+ if r == unsat:
+ print("no solution")
+ elif r == unknown:
+ print("failed to solve")
+ try:
+ print(s.model())
+ except Z3Exception:
+ return
+ else:
+ if keywords.get('show', False):
+ print("Solution:")
+ print(s.model())
+
+def _solve_using_html(s, *args, **keywords):
+ """Version of function `solve_using` used in RiSE4Fun."""
+ if z3_debug():
+ _z3_assert(isinstance(s, Solver), "Solver object expected")
+ s.set(**keywords)
+ s.add(*args)
+ if keywords.get('show', False):
+ print("Problem:")
+ print(s)
+ r = s.check()
+ if r == unsat:
+ print("no solution")
+ elif r == unknown:
+ print("failed to solve")
+ try:
+ print(s.model())
+ except Z3Exception:
+ return
+ else:
+ if keywords.get('show', False):
+ print("Solution:")
+ print(s.model())
+
+def _prove_html(claim, **keywords):
+ """Version of function `prove` used in RiSE4Fun."""
+ if z3_debug():
+ _z3_assert(is_bool(claim), "Z3 Boolean expression expected")
+ s = Solver()
+ s.set(**keywords)
+ s.add(Not(claim))
+ if keywords.get('show', False):
+ print(s)
+ r = s.check()
+ if r == unsat:
+ print("proved")
+ elif r == unknown:
+ print("failed to prove")
+ print(s.model())
+ else:
+ print("counterexample")
+ print(s.model())
+
+def _dict2sarray(sorts, ctx):
+ sz = len(sorts)
+ _names = (Symbol * sz)()
+ _sorts = (Sort * sz) ()
+ i = 0
+ for k in sorts:
+ v = sorts[k]
+ if z3_debug():
+ _z3_assert(isinstance(k, str), "String expected")
+ _z3_assert(is_sort(v), "Z3 sort expected")
+ _names[i] = to_symbol(k, ctx)
+ _sorts[i] = v.ast
+ i = i + 1
+ return sz, _names, _sorts
+
+def _dict2darray(decls, ctx):
+ sz = len(decls)
+ _names = (Symbol * sz)()
+ _decls = (FuncDecl * sz) ()
+ i = 0
+ for k in decls:
+ v = decls[k]
+ if z3_debug():
+ _z3_assert(isinstance(k, str), "String expected")
+ _z3_assert(is_func_decl(v) or is_const(v), "Z3 declaration or constant expected")
+ _names[i] = to_symbol(k, ctx)
+ if is_const(v):
+ _decls[i] = v.decl().ast
+ else:
+ _decls[i] = v.ast
+ i = i + 1
+ return sz, _names, _decls
+
+
+def parse_smt2_string(s, sorts={}, decls={}, ctx=None):
+ """Parse a string in SMT 2.0 format using the given sorts and decls.
+
+ The arguments sorts and decls are Python dictionaries used to initialize
+ the symbol table used for the SMT 2.0 parser.
+
+ >>> parse_smt2_string('(declare-const x Int) (assert (> x 0)) (assert (< x 10))')
+ [x > 0, x < 10]
+ >>> x, y = Ints('x y')
+ >>> f = Function('f', IntSort(), IntSort())
+ >>> parse_smt2_string('(assert (> (+ foo (g bar)) 0))', decls={ 'foo' : x, 'bar' : y, 'g' : f})
+ [x + f(y) > 0]
+ >>> parse_smt2_string('(declare-const a U) (assert (> a 0))', sorts={ 'U' : IntSort() })
+ [a > 0]
+ """
+ ctx = _get_ctx(ctx)
+ ssz, snames, ssorts = _dict2sarray(sorts, ctx)
+ dsz, dnames, ddecls = _dict2darray(decls, ctx)
+ return AstVector(Z3_parse_smtlib2_string(ctx.ref(), s, ssz, snames, ssorts, dsz, dnames, ddecls), ctx)
+
+def parse_smt2_file(f, sorts={}, decls={}, ctx=None):
+ """Parse a file in SMT 2.0 format using the given sorts and decls.
+
+ This function is similar to parse_smt2_string().
+ """
+ ctx = _get_ctx(ctx)
+ ssz, snames, ssorts = _dict2sarray(sorts, ctx)
+ dsz, dnames, ddecls = _dict2darray(decls, ctx)
+ return AstVector(Z3_parse_smtlib2_file(ctx.ref(), f, ssz, snames, ssorts, dsz, dnames, ddecls), ctx)
+
+
+#########################################
+#
+# Floating-Point Arithmetic
+#
+#########################################
+
+
+# Global default rounding mode
+_dflt_rounding_mode = Z3_OP_FPA_RM_TOWARD_ZERO
+_dflt_fpsort_ebits = 11
+_dflt_fpsort_sbits = 53
+
+def get_default_rounding_mode(ctx=None):
+ """Retrieves the global default rounding mode."""
+ global _dflt_rounding_mode
+ if _dflt_rounding_mode == Z3_OP_FPA_RM_TOWARD_ZERO:
+ return RTZ(ctx)
+ elif _dflt_rounding_mode == Z3_OP_FPA_RM_TOWARD_NEGATIVE:
+ return RTN(ctx)
+ elif _dflt_rounding_mode == Z3_OP_FPA_RM_TOWARD_POSITIVE:
+ return RTP(ctx)
+ elif _dflt_rounding_mode == Z3_OP_FPA_RM_NEAREST_TIES_TO_EVEN:
+ return RNE(ctx)
+ elif _dflt_rounding_mode == Z3_OP_FPA_RM_NEAREST_TIES_TO_AWAY:
+ return RNA(ctx)
+
+def set_default_rounding_mode(rm, ctx=None):
+ global _dflt_rounding_mode
+ if is_fprm_value(rm):
+ _dflt_rounding_mode = rm.decl().kind()
+ else:
+ _z3_assert(_dflt_rounding_mode == Z3_OP_FPA_RM_TOWARD_ZERO or
+ _dflt_rounding_mode == Z3_OP_FPA_RM_TOWARD_NEGATIVE or
+ _dflt_rounding_mode == Z3_OP_FPA_RM_TOWARD_POSITIVE or
+ _dflt_rounding_mode == Z3_OP_FPA_RM_NEAREST_TIES_TO_EVEN or
+ _dflt_rounding_mode == Z3_OP_FPA_RM_NEAREST_TIES_TO_AWAY,
+ "illegal rounding mode")
+ _dflt_rounding_mode = rm
+
+def get_default_fp_sort(ctx=None):
+ return FPSort(_dflt_fpsort_ebits, _dflt_fpsort_sbits, ctx)
+
+def set_default_fp_sort(ebits, sbits, ctx=None):
+ global _dflt_fpsort_ebits
+ global _dflt_fpsort_sbits
+ _dflt_fpsort_ebits = ebits
+ _dflt_fpsort_sbits = sbits
+
+def _dflt_rm(ctx=None):
+ return get_default_rounding_mode(ctx)
+
+def _dflt_fps(ctx=None):
+ return get_default_fp_sort(ctx)
+
+def _coerce_fp_expr_list(alist, ctx):
+ first_fp_sort = None
+ for a in alist:
+ if is_fp(a):
+ if first_fp_sort is None:
+ first_fp_sort = a.sort()
+ elif first_fp_sort == a.sort():
+ pass # OK, same as before
+ else:
+ # we saw at least 2 different float sorts; something will
+ # throw a sort mismatch later, for now assume None.
+ first_fp_sort = None
+ break
+
+ r = []
+ for i in range(len(alist)):
+ a = alist[i]
+ if (isinstance(a, str) and a.contains('2**(') and a.endswith(')')) or _is_int(a) or isinstance(a, float) or isinstance(a, bool):
+ r.append(FPVal(a, None, first_fp_sort, ctx))
+ else:
+ r.append(a)
+ return _coerce_expr_list(r, ctx)
+
+
+### FP Sorts
+
+class FPSortRef(SortRef):
+ """Floating-point sort."""
+
+ def ebits(self):
+ """Retrieves the number of bits reserved for the exponent in the FloatingPoint sort `self`.
+ >>> b = FPSort(8, 24)
+ >>> b.ebits()
+ 8
+ """
+ return int(Z3_fpa_get_ebits(self.ctx_ref(), self.ast))
+
+ def sbits(self):
+ """Retrieves the number of bits reserved for the significand in the FloatingPoint sort `self`.
+ >>> b = FPSort(8, 24)
+ >>> b.sbits()
+ 24
+ """
+ return int(Z3_fpa_get_sbits(self.ctx_ref(), self.ast))
+
+ def cast(self, val):
+ """Try to cast `val` as a floating-point expression.
+ >>> b = FPSort(8, 24)
+ >>> b.cast(1.0)
+ 1
+ >>> b.cast(1.0).sexpr()
+ '(fp #b0 #x7f #b00000000000000000000000)'
+ """
+ if is_expr(val):
+ if z3_debug():
+ _z3_assert(self.ctx == val.ctx, "Context mismatch")
+ return val
+ else:
+ return FPVal(val, None, self, self.ctx)
+
+
+def Float16(ctx=None):
+ """Floating-point 16-bit (half) sort."""
+ ctx = _get_ctx(ctx)
+ return FPSortRef(Z3_mk_fpa_sort_16(ctx.ref()), ctx)
+
+def FloatHalf(ctx=None):
+ """Floating-point 16-bit (half) sort."""
+ ctx = _get_ctx(ctx)
+ return FPSortRef(Z3_mk_fpa_sort_half(ctx.ref()), ctx)
+
+def Float32(ctx=None):
+ """Floating-point 32-bit (single) sort."""
+ ctx = _get_ctx(ctx)
+ return FPSortRef(Z3_mk_fpa_sort_32(ctx.ref()), ctx)
+
+def FloatSingle(ctx=None):
+ """Floating-point 32-bit (single) sort."""
+ ctx = _get_ctx(ctx)
+ return FPSortRef(Z3_mk_fpa_sort_single(ctx.ref()), ctx)
+
+def Float64(ctx=None):
+ """Floating-point 64-bit (double) sort."""
+ ctx = _get_ctx(ctx)
+ return FPSortRef(Z3_mk_fpa_sort_64(ctx.ref()), ctx)
+
+def FloatDouble(ctx=None):
+ """Floating-point 64-bit (double) sort."""
+ ctx = _get_ctx(ctx)
+ return FPSortRef(Z3_mk_fpa_sort_double(ctx.ref()), ctx)
+
+def Float128(ctx=None):
+ """Floating-point 128-bit (quadruple) sort."""
+ ctx = _get_ctx(ctx)
+ return FPSortRef(Z3_mk_fpa_sort_128(ctx.ref()), ctx)
+
+def FloatQuadruple(ctx=None):
+ """Floating-point 128-bit (quadruple) sort."""
+ ctx = _get_ctx(ctx)
+ return FPSortRef(Z3_mk_fpa_sort_quadruple(ctx.ref()), ctx)
+
+class FPRMSortRef(SortRef):
+ """"Floating-point rounding mode sort."""
+
+
+def is_fp_sort(s):
+ """Return True if `s` is a Z3 floating-point sort.
+
+ >>> is_fp_sort(FPSort(8, 24))
+ True
+ >>> is_fp_sort(IntSort())
+ False
+ """
+ return isinstance(s, FPSortRef)
+
+def is_fprm_sort(s):
+ """Return True if `s` is a Z3 floating-point rounding mode sort.
+
+ >>> is_fprm_sort(FPSort(8, 24))
+ False
+ >>> is_fprm_sort(RNE().sort())
+ True
+ """
+ return isinstance(s, FPRMSortRef)
+
+### FP Expressions
+
+class FPRef(ExprRef):
+ """Floating-point expressions."""
+
+ def sort(self):
+ """Return the sort of the floating-point expression `self`.
+
+ >>> x = FP('1.0', FPSort(8, 24))
+ >>> x.sort()
+ FPSort(8, 24)
+ >>> x.sort() == FPSort(8, 24)
+ True
+ """
+ return FPSortRef(Z3_get_sort(self.ctx_ref(), self.as_ast()), self.ctx)
+
+ def ebits(self):
+ """Retrieves the number of bits reserved for the exponent in the FloatingPoint expression `self`.
+ >>> b = FPSort(8, 24)
+ >>> b.ebits()
+ 8
+ """
+ return self.sort().ebits();
+
+ def sbits(self):
+ """Retrieves the number of bits reserved for the exponent in the FloatingPoint expression `self`.
+ >>> b = FPSort(8, 24)
+ >>> b.sbits()
+ 24
+ """
+ return self.sort().sbits();
+
+ def as_string(self):
+ """Return a Z3 floating point expression as a Python string."""
+ return Z3_ast_to_string(self.ctx_ref(), self.as_ast())
+
+ def __le__(self, other):
+ return fpLEQ(self, other, self.ctx)
+
+ def __lt__(self, other):
+ return fpLT(self, other, self.ctx)
+
+ def __ge__(self, other):
+ return fpGEQ(self, other, self.ctx)
+
+ def __gt__(self, other):
+ return fpGT(self, other, self.ctx)
+
+ def __add__(self, other):
+ """Create the Z3 expression `self + other`.
+
+ >>> x = FP('x', FPSort(8, 24))
+ >>> y = FP('y', FPSort(8, 24))
+ >>> x + y
+ x + y
+ >>> (x + y).sort()
+ FPSort(8, 24)
+ """
+ [a, b] = _coerce_fp_expr_list([self, other], self.ctx)
+ return fpAdd(_dflt_rm(), a, b, self.ctx)
+
+ def __radd__(self, other):
+ """Create the Z3 expression `other + self`.
+
+ >>> x = FP('x', FPSort(8, 24))
+ >>> 10 + x
+ 1.25*(2**3) + x
+ """
+ [a, b] = _coerce_fp_expr_list([other, self], self.ctx)
+ return fpAdd(_dflt_rm(), a, b, self.ctx)
+
+ def __sub__(self, other):
+ """Create the Z3 expression `self - other`.
+
+ >>> x = FP('x', FPSort(8, 24))
+ >>> y = FP('y', FPSort(8, 24))
+ >>> x - y
+ x - y
+ >>> (x - y).sort()
+ FPSort(8, 24)
+ """
+ [a, b] = _coerce_fp_expr_list([self, other], self.ctx)
+ return fpSub(_dflt_rm(), a, b, self.ctx)
+
+ def __rsub__(self, other):
+ """Create the Z3 expression `other - self`.
+
+ >>> x = FP('x', FPSort(8, 24))
+ >>> 10 - x
+ 1.25*(2**3) - x
+ """
+ [a, b] = _coerce_fp_expr_list([other, self], self.ctx)
+ return fpSub(_dflt_rm(), a, b, self.ctx)
+
+ def __mul__(self, other):
+ """Create the Z3 expression `self * other`.
+
+ >>> x = FP('x', FPSort(8, 24))
+ >>> y = FP('y', FPSort(8, 24))
+ >>> x * y
+ x * y
+ >>> (x * y).sort()
+ FPSort(8, 24)
+ >>> 10 * y
+ 1.25*(2**3) * y
+ """
+ [a, b] = _coerce_fp_expr_list([self, other], self.ctx)
+ return fpMul(_dflt_rm(), a, b, self.ctx)
+
+ def __rmul__(self, other):
+ """Create the Z3 expression `other * self`.
+
+ >>> x = FP('x', FPSort(8, 24))
+ >>> y = FP('y', FPSort(8, 24))
+ >>> x * y
+ x * y
+ >>> x * 10
+ x * 1.25*(2**3)
+ """
+ [a, b] = _coerce_fp_expr_list([other, self], self.ctx)
+ return fpMul(_dflt_rm(), a, b, self.ctx)
+
+ def __pos__(self):
+ """Create the Z3 expression `+self`."""
+ return self
+
+ def __neg__(self):
+ """Create the Z3 expression `-self`.
+
+ >>> x = FP('x', Float32())
+ >>> -x
+ -x
+ """
+ return fpNeg(self)
+
+ def __div__(self, other):
+ """Create the Z3 expression `self / other`.
+
+ >>> x = FP('x', FPSort(8, 24))
+ >>> y = FP('y', FPSort(8, 24))
+ >>> x / y
+ x / y
+ >>> (x / y).sort()
+ FPSort(8, 24)
+ >>> 10 / y
+ 1.25*(2**3) / y
+ """
+ [a, b] = _coerce_fp_expr_list([self, other], self.ctx)
+ return fpDiv(_dflt_rm(), a, b, self.ctx)
+
+ def __rdiv__(self, other):
+ """Create the Z3 expression `other / self`.
+
+ >>> x = FP('x', FPSort(8, 24))
+ >>> y = FP('y', FPSort(8, 24))
+ >>> x / y
+ x / y
+ >>> x / 10
+ x / 1.25*(2**3)
+ """
+ [a, b] = _coerce_fp_expr_list([other, self], self.ctx)
+ return fpDiv(_dflt_rm(), a, b, self.ctx)
+
+ def __truediv__(self, other):
+ """Create the Z3 expression division `self / other`."""
+ return self.__div__(other)
+
+ def __rtruediv__(self, other):
+ """Create the Z3 expression division `other / self`."""
+ return self.__rdiv__(other)
+
+ def __mod__(self, other):
+ """Create the Z3 expression mod `self % other`."""
+ return fpRem(self, other)
+
+ def __rmod__(self, other):
+ """Create the Z3 expression mod `other % self`."""
+ return fpRem(other, self)
+
+class FPRMRef(ExprRef):
+ """Floating-point rounding mode expressions"""
+
+ def as_string(self):
+ """Return a Z3 floating point expression as a Python string."""
+ return Z3_ast_to_string(self.ctx_ref(), self.as_ast())
+
+
+def RoundNearestTiesToEven(ctx=None):
+ ctx = _get_ctx(ctx)
+ return FPRMRef(Z3_mk_fpa_round_nearest_ties_to_even(ctx.ref()), ctx)
+
+def RNE (ctx=None):
+ ctx = _get_ctx(ctx)
+ return FPRMRef(Z3_mk_fpa_round_nearest_ties_to_even(ctx.ref()), ctx)
+
+def RoundNearestTiesToAway(ctx=None):
+ ctx = _get_ctx(ctx)
+ return FPRMRef(Z3_mk_fpa_round_nearest_ties_to_away(ctx.ref()), ctx)
+
+def RNA (ctx=None):
+ ctx = _get_ctx(ctx)
+ return FPRMRef(Z3_mk_fpa_round_nearest_ties_to_away(ctx.ref()), ctx)
+
+def RoundTowardPositive(ctx=None):
+ ctx = _get_ctx(ctx)
+ return FPRMRef(Z3_mk_fpa_round_toward_positive(ctx.ref()), ctx)
+
+def RTP(ctx=None):
+ ctx = _get_ctx(ctx)
+ return FPRMRef(Z3_mk_fpa_round_toward_positive(ctx.ref()), ctx)
+
+def RoundTowardNegative(ctx=None):
+ ctx = _get_ctx(ctx)
+ return FPRMRef(Z3_mk_fpa_round_toward_negative(ctx.ref()), ctx)
+
+def RTN(ctx=None):
+ ctx = _get_ctx(ctx)
+ return FPRMRef(Z3_mk_fpa_round_toward_negative(ctx.ref()), ctx)
+
+def RoundTowardZero(ctx=None):
+ ctx = _get_ctx(ctx)
+ return FPRMRef(Z3_mk_fpa_round_toward_zero(ctx.ref()), ctx)
+
+def RTZ(ctx=None):
+ ctx = _get_ctx(ctx)
+ return FPRMRef(Z3_mk_fpa_round_toward_zero(ctx.ref()), ctx)
+
+def is_fprm(a):
+ """Return `True` if `a` is a Z3 floating-point rounding mode expression.
+
+ >>> rm = RNE()
+ >>> is_fprm(rm)
+ True
+ >>> rm = 1.0
+ >>> is_fprm(rm)
+ False
+ """
+ return isinstance(a, FPRMRef)
+
+def is_fprm_value(a):
+ """Return `True` if `a` is a Z3 floating-point rounding mode numeral value."""
+ return is_fprm(a) and _is_numeral(a.ctx, a.ast)
+
+### FP Numerals
+
+class FPNumRef(FPRef):
+ """The sign of the numeral.
+
+ >>> x = FPVal(+1.0, FPSort(8, 24))
+ >>> x.sign()
+ False
+ >>> x = FPVal(-1.0, FPSort(8, 24))
+ >>> x.sign()
+ True
+ """
+ def sign(self):
+ l = (ctypes.c_int)()
+ if Z3_fpa_get_numeral_sign(self.ctx.ref(), self.as_ast(), byref(l)) == False:
+ raise Z3Exception("error retrieving the sign of a numeral.")
+ return l.value != 0
+
+ """The sign of a floating-point numeral as a bit-vector expression.
+
+ Remark: NaN's are invalid arguments.
+ """
+ def sign_as_bv(self):
+ return BitVecNumRef(Z3_fpa_get_numeral_sign_bv(self.ctx.ref(), self.as_ast()), self.ctx)
+
+ """The significand of the numeral.
+
+ >>> x = FPVal(2.5, FPSort(8, 24))
+ >>> x.significand()
+ 1.25
+ """
+ def significand(self):
+ return Z3_fpa_get_numeral_significand_string(self.ctx.ref(), self.as_ast())
+
+ """The significand of the numeral as a long.
+
+ >>> x = FPVal(2.5, FPSort(8, 24))
+ >>> x.significand_as_long()
+ 1.25
+ """
+ def significand_as_long(self):
+ ptr = (ctypes.c_ulonglong * 1)()
+ if not Z3_fpa_get_numeral_significand_uint64(self.ctx.ref(), self.as_ast(), ptr):
+ raise Z3Exception("error retrieving the significand of a numeral.")
+ return ptr[0]
+
+ """The significand of the numeral as a bit-vector expression.
+
+ Remark: NaN are invalid arguments.
+ """
+ def significand_as_bv(self):
+ return BitVecNumRef(Z3_fpa_get_numeral_significand_bv(self.ctx.ref(), self.as_ast()), self.ctx)
+
+ """The exponent of the numeral.
+
+ >>> x = FPVal(2.5, FPSort(8, 24))
+ >>> x.exponent()
+ 1
+ """
+ def exponent(self, biased=True):
+ return Z3_fpa_get_numeral_exponent_string(self.ctx.ref(), self.as_ast(), biased)
+
+ """The exponent of the numeral as a long.
+
+ >>> x = FPVal(2.5, FPSort(8, 24))
+ >>> x.exponent_as_long()
+ 1
+ """
+ def exponent_as_long(self, biased=True):
+ ptr = (ctypes.c_longlong * 1)()
+ if not Z3_fpa_get_numeral_exponent_int64(self.ctx.ref(), self.as_ast(), ptr, biased):
+ raise Z3Exception("error retrieving the exponent of a numeral.")
+ return ptr[0]
+
+ """The exponent of the numeral as a bit-vector expression.
+
+ Remark: NaNs are invalid arguments.
+ """
+ def exponent_as_bv(self, biased=True):
+ return BitVecNumRef(Z3_fpa_get_numeral_exponent_bv(self.ctx.ref(), self.as_ast(), biased), self.ctx)
+
+ """Indicates whether the numeral is a NaN."""
+ def isNaN(self):
+ return Z3_fpa_is_numeral_nan(self.ctx.ref(), self.as_ast())
+
+ """Indicates whether the numeral is +oo or -oo."""
+ def isInf(self):
+ return Z3_fpa_is_numeral_inf(self.ctx.ref(), self.as_ast())
+
+ """Indicates whether the numeral is +zero or -zero."""
+ def isZero(self):
+ return Z3_fpa_is_numeral_zero(self.ctx.ref(), self.as_ast())
+
+ """Indicates whether the numeral is normal."""
+ def isNormal(self):
+ return Z3_fpa_is_numeral_normal(self.ctx.ref(), self.as_ast())
+
+ """Indicates whether the numeral is subnormal."""
+ def isSubnormal(self):
+ return Z3_fpa_is_numeral_subnormal(self.ctx.ref(), self.as_ast())
+
+ """Indicates whether the numeral is positive."""
+ def isPositive(self):
+ return Z3_fpa_is_numeral_positive(self.ctx.ref(), self.as_ast())
+
+ """Indicates whether the numeral is negative."""
+ def isNegative(self):
+ return Z3_fpa_is_numeral_negative(self.ctx.ref(), self.as_ast())
+
+ """
+ The string representation of the numeral.
+
+ >>> x = FPVal(20, FPSort(8, 24))
+ >>> x.as_string()
+ 1.25*(2**4)
+ """
+ def as_string(self):
+ s = Z3_get_numeral_string(self.ctx.ref(), self.as_ast())
+ return ("FPVal(%s, %s)" % (s, self.sort()))
+
+def is_fp(a):
+ """Return `True` if `a` is a Z3 floating-point expression.
+
+ >>> b = FP('b', FPSort(8, 24))
+ >>> is_fp(b)
+ True
+ >>> is_fp(b + 1.0)
+ True
+ >>> is_fp(Int('x'))
+ False
+ """
+ return isinstance(a, FPRef)
+
+def is_fp_value(a):
+ """Return `True` if `a` is a Z3 floating-point numeral value.
+
+ >>> b = FP('b', FPSort(8, 24))
+ >>> is_fp_value(b)
+ False
+ >>> b = FPVal(1.0, FPSort(8, 24))
+ >>> b
+ 1
+ >>> is_fp_value(b)
+ True
+ """
+ return is_fp(a) and _is_numeral(a.ctx, a.ast)
+
+def FPSort(ebits, sbits, ctx=None):
+ """Return a Z3 floating-point sort of the given sizes. If `ctx=None`, then the global context is used.
+
+ >>> Single = FPSort(8, 24)
+ >>> Double = FPSort(11, 53)
+ >>> Single
+ FPSort(8, 24)
+ >>> x = Const('x', Single)
+ >>> eq(x, FP('x', FPSort(8, 24)))
+ True
+ """
+ ctx = _get_ctx(ctx)
+ return FPSortRef(Z3_mk_fpa_sort(ctx.ref(), ebits, sbits), ctx)
+
+def _to_float_str(val, exp=0):
+ if isinstance(val, float):
+ if math.isnan(val):
+ res = "NaN"
+ elif val == 0.0:
+ sone = math.copysign(1.0, val)
+ if sone < 0.0:
+ return "-0.0"
+ else:
+ return "+0.0"
+ elif val == float("+inf"):
+ res = "+oo"
+ elif val == float("-inf"):
+ res = "-oo"
+ else:
+ v = val.as_integer_ratio()
+ num = v[0]
+ den = v[1]
+ rvs = str(num) + '/' + str(den)
+ res = rvs + 'p' + _to_int_str(exp)
+ elif isinstance(val, bool):
+ if val:
+ res = "1.0"
+ else:
+ res = "0.0"
+ elif _is_int(val):
+ res = str(val)
+ elif isinstance(val, str):
+ inx = val.find('*(2**')
+ if inx == -1:
+ res = val
+ elif val[-1] == ')':
+ res = val[0:inx]
+ exp = str(int(val[inx+5:-1]) + int(exp))
+ else:
+ _z3_assert(False, "String does not have floating-point numeral form.")
+ elif z3_debug():
+ _z3_assert(False, "Python value cannot be used to create floating-point numerals.")
+ if exp == 0:
+ return res
+ else:
+ return res + 'p' + exp
+
+
+def fpNaN(s):
+ """Create a Z3 floating-point NaN term.
+
+ >>> s = FPSort(8, 24)
+ >>> set_fpa_pretty(True)
+ >>> fpNaN(s)
+ NaN
+ >>> pb = get_fpa_pretty()
+ >>> set_fpa_pretty(False)
+ >>> fpNaN(s)
+ fpNaN(FPSort(8, 24))
+ >>> set_fpa_pretty(pb)
+ """
+ _z3_assert(isinstance(s, FPSortRef), "sort mismatch")
+ return FPNumRef(Z3_mk_fpa_nan(s.ctx_ref(), s.ast), s.ctx)
+
+def fpPlusInfinity(s):
+ """Create a Z3 floating-point +oo term.
+
+ >>> s = FPSort(8, 24)
+ >>> pb = get_fpa_pretty()
+ >>> set_fpa_pretty(True)
+ >>> fpPlusInfinity(s)
+ +oo
+ >>> set_fpa_pretty(False)
+ >>> fpPlusInfinity(s)
+ fpPlusInfinity(FPSort(8, 24))
+ >>> set_fpa_pretty(pb)
+ """
+ _z3_assert(isinstance(s, FPSortRef), "sort mismatch")
+ return FPNumRef(Z3_mk_fpa_inf(s.ctx_ref(), s.ast, False), s.ctx)
+
+def fpMinusInfinity(s):
+ """Create a Z3 floating-point -oo term."""
+ _z3_assert(isinstance(s, FPSortRef), "sort mismatch")
+ return FPNumRef(Z3_mk_fpa_inf(s.ctx_ref(), s.ast, True), s.ctx)
+
+def fpInfinity(s, negative):
+ """Create a Z3 floating-point +oo or -oo term."""
+ _z3_assert(isinstance(s, FPSortRef), "sort mismatch")
+ _z3_assert(isinstance(negative, bool), "expected Boolean flag")
+ return FPNumRef(Z3_mk_fpa_inf(s.ctx_ref(), s.ast, negative), s.ctx)
+
+def fpPlusZero(s):
+ """Create a Z3 floating-point +0.0 term."""
+ _z3_assert(isinstance(s, FPSortRef), "sort mismatch")
+ return FPNumRef(Z3_mk_fpa_zero(s.ctx_ref(), s.ast, False), s.ctx)
+
+def fpMinusZero(s):
+ """Create a Z3 floating-point -0.0 term."""
+ _z3_assert(isinstance(s, FPSortRef), "sort mismatch")
+ return FPNumRef(Z3_mk_fpa_zero(s.ctx_ref(), s.ast, True), s.ctx)
+
+def fpZero(s, negative):
+ """Create a Z3 floating-point +0.0 or -0.0 term."""
+ _z3_assert(isinstance(s, FPSortRef), "sort mismatch")
+ _z3_assert(isinstance(negative, bool), "expected Boolean flag")
+ return FPNumRef(Z3_mk_fpa_zero(s.ctx_ref(), s.ast, negative), s.ctx)
+
+def FPVal(sig, exp=None, fps=None, ctx=None):
+ """Return a floating-point value of value `val` and sort `fps`. If `ctx=None`, then the global context is used.
+
+ >>> v = FPVal(20.0, FPSort(8, 24))
+ >>> v
+ 1.25*(2**4)
+ >>> print("0x%.8x" % v.exponent_as_long(False))
+ 0x00000004
+ >>> v = FPVal(2.25, FPSort(8, 24))
+ >>> v
+ 1.125*(2**1)
+ >>> v = FPVal(-2.25, FPSort(8, 24))
+ >>> v
+ -1.125*(2**1)
+ >>> FPVal(-0.0, FPSort(8, 24))
+ -0.0
+ >>> FPVal(0.0, FPSort(8, 24))
+ +0.0
+ >>> FPVal(+0.0, FPSort(8, 24))
+ +0.0
+ """
+ ctx = _get_ctx(ctx)
+ if is_fp_sort(exp):
+ fps = exp
+ exp = None
+ elif fps is None:
+ fps = _dflt_fps(ctx)
+ _z3_assert(is_fp_sort(fps), "sort mismatch")
+ if exp is None:
+ exp = 0
+ val = _to_float_str(sig)
+ if val == "NaN" or val == "nan":
+ return fpNaN(fps)
+ elif val == "-0.0":
+ return fpMinusZero(fps)
+ elif val == "0.0" or val == "+0.0":
+ return fpPlusZero(fps)
+ elif val == "+oo" or val == "+inf" or val == "+Inf":
+ return fpPlusInfinity(fps)
+ elif val == "-oo" or val == "-inf" or val == "-Inf":
+ return fpMinusInfinity(fps)
+ else:
+ return FPNumRef(Z3_mk_numeral(ctx.ref(), val, fps.ast), ctx)
+
+def FP(name, fpsort, ctx=None):
+ """Return a floating-point constant named `name`.
+ `fpsort` is the floating-point sort.
+ If `ctx=None`, then the global context is used.
+
+ >>> x = FP('x', FPSort(8, 24))
+ >>> is_fp(x)
+ True
+ >>> x.ebits()
+ 8
+ >>> x.sort()
+ FPSort(8, 24)
+ >>> word = FPSort(8, 24)
+ >>> x2 = FP('x', word)
+ >>> eq(x, x2)
+ True
+ """
+ if isinstance(fpsort, FPSortRef) and ctx is None:
+ ctx = fpsort.ctx
+ else:
+ ctx = _get_ctx(ctx)
+ return FPRef(Z3_mk_const(ctx.ref(), to_symbol(name, ctx), fpsort.ast), ctx)
+
+def FPs(names, fpsort, ctx=None):
+ """Return an array of floating-point constants.
+
+ >>> x, y, z = FPs('x y z', FPSort(8, 24))
+ >>> x.sort()
+ FPSort(8, 24)
+ >>> x.sbits()
+ 24
+ >>> x.ebits()
+ 8
+ >>> fpMul(RNE(), fpAdd(RNE(), x, y), z)
+ fpMul(RNE(), fpAdd(RNE(), x, y), z)
+ """
+ ctx = _get_ctx(ctx)
+ if isinstance(names, str):
+ names = names.split(" ")
+ return [FP(name, fpsort, ctx) for name in names]
+
+def fpAbs(a, ctx=None):
+ """Create a Z3 floating-point absolute value expression.
+
+ >>> s = FPSort(8, 24)
+ >>> rm = RNE()
+ >>> x = FPVal(1.0, s)
+ >>> fpAbs(x)
+ fpAbs(1)
+ >>> y = FPVal(-20.0, s)
+ >>> y
+ -1.25*(2**4)
+ >>> fpAbs(y)
+ fpAbs(-1.25*(2**4))
+ >>> fpAbs(-1.25*(2**4))
+ fpAbs(-1.25*(2**4))
+ >>> fpAbs(x).sort()
+ FPSort(8, 24)
+ """
+ ctx = _get_ctx(ctx)
+ [a] = _coerce_fp_expr_list([a], ctx)
+ return FPRef(Z3_mk_fpa_abs(ctx.ref(), a.as_ast()), ctx)
+
+def fpNeg(a, ctx=None):
+ """Create a Z3 floating-point addition expression.
+
+ >>> s = FPSort(8, 24)
+ >>> rm = RNE()
+ >>> x = FP('x', s)
+ >>> fpNeg(x)
+ -x
+ >>> fpNeg(x).sort()
+ FPSort(8, 24)
+ """
+ ctx = _get_ctx(ctx)
+ [a] = _coerce_fp_expr_list([a], ctx)
+ return FPRef(Z3_mk_fpa_neg(ctx.ref(), a.as_ast()), ctx)
+
+def _mk_fp_unary(f, rm, a, ctx):
+ ctx = _get_ctx(ctx)
+ [a] = _coerce_fp_expr_list([a], ctx)
+ if z3_debug():
+ _z3_assert(is_fprm(rm), "First argument must be a Z3 floating-point rounding mode expression")
+ _z3_assert(is_fp(a), "Second argument must be a Z3 floating-point expression")
+ return FPRef(f(ctx.ref(), rm.as_ast(), a.as_ast()), ctx)
+
+def _mk_fp_unary_pred(f, a, ctx):
+ ctx = _get_ctx(ctx)
+ [a] = _coerce_fp_expr_list([a], ctx)
+ if z3_debug():
+ _z3_assert(is_fp(a), "First argument must be a Z3 floating-point expression")
+ return BoolRef(f(ctx.ref(), a.as_ast()), ctx)
+
+def _mk_fp_bin(f, rm, a, b, ctx):
+ ctx = _get_ctx(ctx)
+ [a, b] = _coerce_fp_expr_list([a, b], ctx)
+ if z3_debug():
+ _z3_assert(is_fprm(rm), "First argument must be a Z3 floating-point rounding mode expression")
+ _z3_assert(is_fp(a) or is_fp(b), "Second or third argument must be a Z3 floating-point expression")
+ return FPRef(f(ctx.ref(), rm.as_ast(), a.as_ast(), b.as_ast()), ctx)
+
+def _mk_fp_bin_norm(f, a, b, ctx):
+ ctx = _get_ctx(ctx)
+ [a, b] = _coerce_fp_expr_list([a, b], ctx)
+ if z3_debug():
+ _z3_assert(is_fp(a) or is_fp(b), "First or second argument must be a Z3 floating-point expression")
+ return FPRef(f(ctx.ref(), a.as_ast(), b.as_ast()), ctx)
+
+def _mk_fp_bin_pred(f, a, b, ctx):
+ ctx = _get_ctx(ctx)
+ [a, b] = _coerce_fp_expr_list([a, b], ctx)
+ if z3_debug():
+ _z3_assert(is_fp(a) or is_fp(b), "First or second argument must be a Z3 floating-point expression")
+ return BoolRef(f(ctx.ref(), a.as_ast(), b.as_ast()), ctx)
+
+def _mk_fp_tern(f, rm, a, b, c, ctx):
+ ctx = _get_ctx(ctx)
+ [a, b, c] = _coerce_fp_expr_list([a, b, c], ctx)
+ if z3_debug():
+ _z3_assert(is_fprm(rm), "First argument must be a Z3 floating-point rounding mode expression")
+ _z3_assert(is_fp(a) or is_fp(b) or is_fp(c), "Second, third or fourth argument must be a Z3 floating-point expression")
+ return FPRef(f(ctx.ref(), rm.as_ast(), a.as_ast(), b.as_ast(), c.as_ast()), ctx)
+
+def fpAdd(rm, a, b, ctx=None):
+ """Create a Z3 floating-point addition expression.
+
+ >>> s = FPSort(8, 24)
+ >>> rm = RNE()
+ >>> x = FP('x', s)
+ >>> y = FP('y', s)
+ >>> fpAdd(rm, x, y)
+ fpAdd(RNE(), x, y)
+ >>> fpAdd(RTZ(), x, y) # default rounding mode is RTZ
+ x + y
+ >>> fpAdd(rm, x, y).sort()
+ FPSort(8, 24)
+ """
+ return _mk_fp_bin(Z3_mk_fpa_add, rm, a, b, ctx)
+
+def fpSub(rm, a, b, ctx=None):
+ """Create a Z3 floating-point subtraction expression.
+
+ >>> s = FPSort(8, 24)
+ >>> rm = RNE()
+ >>> x = FP('x', s)
+ >>> y = FP('y', s)
+ >>> fpSub(rm, x, y)
+ fpSub(RNE(), x, y)
+ >>> fpSub(rm, x, y).sort()
+ FPSort(8, 24)
+ """
+ return _mk_fp_bin(Z3_mk_fpa_sub, rm, a, b, ctx)
+
+def fpMul(rm, a, b, ctx=None):
+ """Create a Z3 floating-point multiplication expression.
+
+ >>> s = FPSort(8, 24)
+ >>> rm = RNE()
+ >>> x = FP('x', s)
+ >>> y = FP('y', s)
+ >>> fpMul(rm, x, y)
+ fpMul(RNE(), x, y)
+ >>> fpMul(rm, x, y).sort()
+ FPSort(8, 24)
+ """
+ return _mk_fp_bin(Z3_mk_fpa_mul, rm, a, b, ctx)
+
+def fpDiv(rm, a, b, ctx=None):
+ """Create a Z3 floating-point division expression.
+
+ >>> s = FPSort(8, 24)
+ >>> rm = RNE()
+ >>> x = FP('x', s)
+ >>> y = FP('y', s)
+ >>> fpDiv(rm, x, y)
+ fpDiv(RNE(), x, y)
+ >>> fpDiv(rm, x, y).sort()
+ FPSort(8, 24)
+ """
+ return _mk_fp_bin(Z3_mk_fpa_div, rm, a, b, ctx)
+
+def fpRem(a, b, ctx=None):
+ """Create a Z3 floating-point remainder expression.
+
+ >>> s = FPSort(8, 24)
+ >>> x = FP('x', s)
+ >>> y = FP('y', s)
+ >>> fpRem(x, y)
+ fpRem(x, y)
+ >>> fpRem(x, y).sort()
+ FPSort(8, 24)
+ """
+ return _mk_fp_bin_norm(Z3_mk_fpa_rem, a, b, ctx)
+
+def fpMin(a, b, ctx=None):
+ """Create a Z3 floating-point minimum expression.
+
+ >>> s = FPSort(8, 24)
+ >>> rm = RNE()
+ >>> x = FP('x', s)
+ >>> y = FP('y', s)
+ >>> fpMin(x, y)
+ fpMin(x, y)
+ >>> fpMin(x, y).sort()
+ FPSort(8, 24)
+ """
+ return _mk_fp_bin_norm(Z3_mk_fpa_min, a, b, ctx)
+
+def fpMax(a, b, ctx=None):
+ """Create a Z3 floating-point maximum expression.
+
+ >>> s = FPSort(8, 24)
+ >>> rm = RNE()
+ >>> x = FP('x', s)
+ >>> y = FP('y', s)
+ >>> fpMax(x, y)
+ fpMax(x, y)
+ >>> fpMax(x, y).sort()
+ FPSort(8, 24)
+ """
+ return _mk_fp_bin_norm(Z3_mk_fpa_max, a, b, ctx)
+
+def fpFMA(rm, a, b, c, ctx=None):
+ """Create a Z3 floating-point fused multiply-add expression.
+ """
+ return _mk_fp_tern(Z3_mk_fpa_fma, rm, a, b, c, ctx)
+
+def fpSqrt(rm, a, ctx=None):
+ """Create a Z3 floating-point square root expression.
+ """
+ return _mk_fp_unary(Z3_mk_fpa_sqrt, rm, a, ctx)
+
+def fpRoundToIntegral(rm, a, ctx=None):
+ """Create a Z3 floating-point roundToIntegral expression.
+ """
+ return _mk_fp_unary(Z3_mk_fpa_round_to_integral, rm, a, ctx)
+
+def fpIsNaN(a, ctx=None):
+ """Create a Z3 floating-point isNaN expression.
+
+ >>> s = FPSort(8, 24)
+ >>> x = FP('x', s)
+ >>> y = FP('y', s)
+ >>> fpIsNaN(x)
+ fpIsNaN(x)
+ """
+ return _mk_fp_unary_pred(Z3_mk_fpa_is_nan, a, ctx)
+
+def fpIsInf(a, ctx=None):
+ """Create a Z3 floating-point isInfinite expression.
+
+ >>> s = FPSort(8, 24)
+ >>> x = FP('x', s)
+ >>> fpIsInf(x)
+ fpIsInf(x)
+ """
+ return _mk_fp_unary_pred(Z3_mk_fpa_is_infinite, a, ctx)
+
+def fpIsZero(a, ctx=None):
+ """Create a Z3 floating-point isZero expression.
+ """
+ return _mk_fp_unary_pred(Z3_mk_fpa_is_zero, a, ctx)
+
+def fpIsNormal(a, ctx=None):
+ """Create a Z3 floating-point isNormal expression.
+ """
+ return _mk_fp_unary_pred(Z3_mk_fpa_is_normal, a, ctx)
+
+def fpIsSubnormal(a, ctx=None):
+ """Create a Z3 floating-point isSubnormal expression.
+ """
+ return _mk_fp_unary_pred(Z3_mk_fpa_is_subnormal, a, ctx)
+
+def fpIsNegative(a, ctx=None):
+ """Create a Z3 floating-point isNegative expression.
+ """
+ return _mk_fp_unary_pred(Z3_mk_fpa_is_negative, a, ctx)
+
+def fpIsPositive(a, ctx=None):
+ """Create a Z3 floating-point isPositive expression.
+ """
+ return _mk_fp_unary_pred(Z3_mk_fpa_is_positive, a, ctx)
+
+def _check_fp_args(a, b):
+ if z3_debug():
+ _z3_assert(is_fp(a) or is_fp(b), "First or second argument must be a Z3 floating-point expression")
+
+def fpLT(a, b, ctx=None):
+ """Create the Z3 floating-point expression `other < self`.
+
+ >>> x, y = FPs('x y', FPSort(8, 24))
+ >>> fpLT(x, y)
+ x < y
+ >>> (x < y).sexpr()
+ '(fp.lt x y)'
+ """
+ return _mk_fp_bin_pred(Z3_mk_fpa_lt, a, b, ctx)
+
+def fpLEQ(a, b, ctx=None):
+ """Create the Z3 floating-point expression `other <= self`.
+
+ >>> x, y = FPs('x y', FPSort(8, 24))
+ >>> fpLEQ(x, y)
+ x <= y
+ >>> (x <= y).sexpr()
+ '(fp.leq x y)'
+ """
+ return _mk_fp_bin_pred(Z3_mk_fpa_leq, a, b, ctx)
+
+def fpGT(a, b, ctx=None):
+ """Create the Z3 floating-point expression `other > self`.
+
+ >>> x, y = FPs('x y', FPSort(8, 24))
+ >>> fpGT(x, y)
+ x > y
+ >>> (x > y).sexpr()
+ '(fp.gt x y)'
+ """
+ return _mk_fp_bin_pred(Z3_mk_fpa_gt, a, b, ctx)
+
+def fpGEQ(a, b, ctx=None):
+ """Create the Z3 floating-point expression `other >= self`.
+
+ >>> x, y = FPs('x y', FPSort(8, 24))
+ >>> fpGEQ(x, y)
+ x >= y
+ >>> (x >= y).sexpr()
+ '(fp.geq x y)'
+ """
+ return _mk_fp_bin_pred(Z3_mk_fpa_geq, a, b, ctx)
+
+def fpEQ(a, b, ctx=None):
+ """Create the Z3 floating-point expression `fpEQ(other, self)`.
+
+ >>> x, y = FPs('x y', FPSort(8, 24))
+ >>> fpEQ(x, y)
+ fpEQ(x, y)
+ >>> fpEQ(x, y).sexpr()
+ '(fp.eq x y)'
+ """
+ return _mk_fp_bin_pred(Z3_mk_fpa_eq, a, b, ctx)
+
+def fpNEQ(a, b, ctx=None):
+ """Create the Z3 floating-point expression `Not(fpEQ(other, self))`.
+
+ >>> x, y = FPs('x y', FPSort(8, 24))
+ >>> fpNEQ(x, y)
+ Not(fpEQ(x, y))
+ >>> (x != y).sexpr()
+ '(distinct x y)'
+ """
+ return Not(fpEQ(a, b, ctx))
+
+def fpFP(sgn, exp, sig, ctx=None):
+ """Create the Z3 floating-point value `fpFP(sgn, sig, exp)` from the three bit-vectors sgn, sig, and exp.
+
+ >>> s = FPSort(8, 24)
+ >>> x = fpFP(BitVecVal(1, 1), BitVecVal(2**7-1, 8), BitVecVal(2**22, 23))
+ >>> print(x)
+ fpFP(1, 127, 4194304)
+ >>> xv = FPVal(-1.5, s)
+ >>> print(xv)
+ -1.5
+ >>> slvr = Solver()
+ >>> slvr.add(fpEQ(x, xv))
+ >>> slvr.check()
+ sat
+ >>> xv = FPVal(+1.5, s)
+ >>> print(xv)
+ 1.5
+ >>> slvr = Solver()
+ >>> slvr.add(fpEQ(x, xv))
+ >>> slvr.check()
+ unsat
+ """
+ _z3_assert(is_bv(sgn) and is_bv(exp) and is_bv(sig), "sort mismatch")
+ _z3_assert(sgn.sort().size() == 1, "sort mismatch")
+ ctx = _get_ctx(ctx)
+ _z3_assert(ctx == sgn.ctx == exp.ctx == sig.ctx, "context mismatch")
+ return FPRef(Z3_mk_fpa_fp(ctx.ref(), sgn.ast, exp.ast, sig.ast), ctx)
+
+def fpToFP(a1, a2=None, a3=None, ctx=None):
+ """Create a Z3 floating-point conversion expression from other term sorts
+ to floating-point.
+
+ From a bit-vector term in IEEE 754-2008 format:
+ >>> x = FPVal(1.0, Float32())
+ >>> x_bv = fpToIEEEBV(x)
+ >>> simplify(fpToFP(x_bv, Float32()))
+ 1
+
+ From a floating-point term with different precision:
+ >>> x = FPVal(1.0, Float32())
+ >>> x_db = fpToFP(RNE(), x, Float64())
+ >>> x_db.sort()
+ FPSort(11, 53)
+
+ From a real term:
+ >>> x_r = RealVal(1.5)
+ >>> simplify(fpToFP(RNE(), x_r, Float32()))
+ 1.5
+
+ From a signed bit-vector term:
+ >>> x_signed = BitVecVal(-5, BitVecSort(32))
+ >>> simplify(fpToFP(RNE(), x_signed, Float32()))
+ -1.25*(2**2)
+ """
+ ctx = _get_ctx(ctx)
+ if is_bv(a1) and is_fp_sort(a2):
+ return FPRef(Z3_mk_fpa_to_fp_bv(ctx.ref(), a1.ast, a2.ast), ctx)
+ elif is_fprm(a1) and is_fp(a2) and is_fp_sort(a3):
+ return FPRef(Z3_mk_fpa_to_fp_float(ctx.ref(), a1.ast, a2.ast, a3.ast), ctx)
+ elif is_fprm(a1) and is_real(a2) and is_fp_sort(a3):
+ return FPRef(Z3_mk_fpa_to_fp_real(ctx.ref(), a1.ast, a2.ast, a3.ast), ctx)
+ elif is_fprm(a1) and is_bv(a2) and is_fp_sort(a3):
+ return FPRef(Z3_mk_fpa_to_fp_signed(ctx.ref(), a1.ast, a2.ast, a3.ast), ctx)
+ else:
+ raise Z3Exception("Unsupported combination of arguments for conversion to floating-point term.")
+
+def fpBVToFP(v, sort, ctx=None):
+ """Create a Z3 floating-point conversion expression that represents the
+ conversion from a bit-vector term to a floating-point term.
+
+ >>> x_bv = BitVecVal(0x3F800000, 32)
+ >>> x_fp = fpBVToFP(x_bv, Float32())
+ >>> x_fp
+ fpToFP(1065353216)
+ >>> simplify(x_fp)
+ 1
+ """
+ _z3_assert(is_bv(v), "First argument must be a Z3 bit-vector expression")
+ _z3_assert(is_fp_sort(sort), "Second argument must be a Z3 floating-point sort.")
+ ctx = _get_ctx(ctx)
+ return FPRef(Z3_mk_fpa_to_fp_bv(ctx.ref(), v.ast, sort.ast), ctx)
+
+def fpFPToFP(rm, v, sort, ctx=None):
+ """Create a Z3 floating-point conversion expression that represents the
+ conversion from a floating-point term to a floating-point term of different precision.
+
+ >>> x_sgl = FPVal(1.0, Float32())
+ >>> x_dbl = fpFPToFP(RNE(), x_sgl, Float64())
+ >>> x_dbl
+ fpToFP(RNE(), 1)
+ >>> simplify(x_dbl)
+ 1
+ >>> x_dbl.sort()
+ FPSort(11, 53)
+ """
+ _z3_assert(is_fprm(rm), "First argument must be a Z3 floating-point rounding mode expression.")
+ _z3_assert(is_fp(v), "Second argument must be a Z3 floating-point expression.")
+ _z3_assert(is_fp_sort(sort), "Third argument must be a Z3 floating-point sort.")
+ ctx = _get_ctx(ctx)
+ return FPRef(Z3_mk_fpa_to_fp_float(ctx.ref(), rm.ast, v.ast, sort.ast), ctx)
+
+def fpRealToFP(rm, v, sort, ctx=None):
+ """Create a Z3 floating-point conversion expression that represents the
+ conversion from a real term to a floating-point term.
+
+ >>> x_r = RealVal(1.5)
+ >>> x_fp = fpRealToFP(RNE(), x_r, Float32())
+ >>> x_fp
+ fpToFP(RNE(), 3/2)
+ >>> simplify(x_fp)
+ 1.5
+ """
+ _z3_assert(is_fprm(rm), "First argument must be a Z3 floating-point rounding mode expression.")
+ _z3_assert(is_real(v), "Second argument must be a Z3 expression or real sort.")
+ _z3_assert(is_fp_sort(sort), "Third argument must be a Z3 floating-point sort.")
+ ctx = _get_ctx(ctx)
+ return FPRef(Z3_mk_fpa_to_fp_real(ctx.ref(), rm.ast, v.ast, sort.ast), ctx)
+
+def fpSignedToFP(rm, v, sort, ctx=None):
+ """Create a Z3 floating-point conversion expression that represents the
+ conversion from a signed bit-vector term (encoding an integer) to a floating-point term.
+
+ >>> x_signed = BitVecVal(-5, BitVecSort(32))
+ >>> x_fp = fpSignedToFP(RNE(), x_signed, Float32())
+ >>> x_fp
+ fpToFP(RNE(), 4294967291)
+ >>> simplify(x_fp)
+ -1.25*(2**2)
+ """
+ _z3_assert(is_fprm(rm), "First argument must be a Z3 floating-point rounding mode expression.")
+ _z3_assert(is_bv(v), "Second argument must be a Z3 bit-vector expression")
+ _z3_assert(is_fp_sort(sort), "Third argument must be a Z3 floating-point sort.")
+ ctx = _get_ctx(ctx)
+ return FPRef(Z3_mk_fpa_to_fp_signed(ctx.ref(), rm.ast, v.ast, sort.ast), ctx)
+
+def fpUnsignedToFP(rm, v, sort, ctx=None):
+ """Create a Z3 floating-point conversion expression that represents the
+ conversion from an unsigned bit-vector term (encoding an integer) to a floating-point term.
+
+ >>> x_signed = BitVecVal(-5, BitVecSort(32))
+ >>> x_fp = fpUnsignedToFP(RNE(), x_signed, Float32())
+ >>> x_fp
+ fpToFPUnsigned(RNE(), 4294967291)
+ >>> simplify(x_fp)
+ 1*(2**32)
+ """
+ _z3_assert(is_fprm(rm), "First argument must be a Z3 floating-point rounding mode expression.")
+ _z3_assert(is_bv(v), "Second argument must be a Z3 bit-vector expression")
+ _z3_assert(is_fp_sort(sort), "Third argument must be a Z3 floating-point sort.")
+ ctx = _get_ctx(ctx)
+ return FPRef(Z3_mk_fpa_to_fp_unsigned(ctx.ref(), rm.ast, v.ast, sort.ast), ctx)
+
+def fpToFPUnsigned(rm, x, s, ctx=None):
+ """Create a Z3 floating-point conversion expression, from unsigned bit-vector to floating-point expression."""
+ if z3_debug():
+ _z3_assert(is_fprm(rm), "First argument must be a Z3 floating-point rounding mode expression")
+ _z3_assert(is_bv(x), "Second argument must be a Z3 bit-vector expression")
+ _z3_assert(is_fp_sort(s), "Third argument must be Z3 floating-point sort")
+ ctx = _get_ctx(ctx)
+ return FPRef(Z3_mk_fpa_to_fp_unsigned(ctx.ref(), rm.ast, x.ast, s.ast), ctx)
+
+def fpToSBV(rm, x, s, ctx=None):
+ """Create a Z3 floating-point conversion expression, from floating-point expression to signed bit-vector.
+
+ >>> x = FP('x', FPSort(8, 24))
+ >>> y = fpToSBV(RTZ(), x, BitVecSort(32))
+ >>> print(is_fp(x))
+ True
+ >>> print(is_bv(y))
+ True
+ >>> print(is_fp(y))
+ False
+ >>> print(is_bv(x))
+ False
+ """
+ if z3_debug():
+ _z3_assert(is_fprm(rm), "First argument must be a Z3 floating-point rounding mode expression")
+ _z3_assert(is_fp(x), "Second argument must be a Z3 floating-point expression")
+ _z3_assert(is_bv_sort(s), "Third argument must be Z3 bit-vector sort")
+ ctx = _get_ctx(ctx)
+ return BitVecRef(Z3_mk_fpa_to_sbv(ctx.ref(), rm.ast, x.ast, s.size()), ctx)
+
+def fpToUBV(rm, x, s, ctx=None):
+ """Create a Z3 floating-point conversion expression, from floating-point expression to unsigned bit-vector.
+
+ >>> x = FP('x', FPSort(8, 24))
+ >>> y = fpToUBV(RTZ(), x, BitVecSort(32))
+ >>> print(is_fp(x))
+ True
+ >>> print(is_bv(y))
+ True
+ >>> print(is_fp(y))
+ False
+ >>> print(is_bv(x))
+ False
+ """
+ if z3_debug():
+ _z3_assert(is_fprm(rm), "First argument must be a Z3 floating-point rounding mode expression")
+ _z3_assert(is_fp(x), "Second argument must be a Z3 floating-point expression")
+ _z3_assert(is_bv_sort(s), "Third argument must be Z3 bit-vector sort")
+ ctx = _get_ctx(ctx)
+ return BitVecRef(Z3_mk_fpa_to_ubv(ctx.ref(), rm.ast, x.ast, s.size()), ctx)
+
+def fpToReal(x, ctx=None):
+ """Create a Z3 floating-point conversion expression, from floating-point expression to real.
+
+ >>> x = FP('x', FPSort(8, 24))
+ >>> y = fpToReal(x)
+ >>> print(is_fp(x))
+ True
+ >>> print(is_real(y))
+ True
+ >>> print(is_fp(y))
+ False
+ >>> print(is_real(x))
+ False
+ """
+ if z3_debug():
+ _z3_assert(is_fp(x), "First argument must be a Z3 floating-point expression")
+ ctx = _get_ctx(ctx)
+ return ArithRef(Z3_mk_fpa_to_real(ctx.ref(), x.ast), ctx)
+
+def fpToIEEEBV(x, ctx=None):
+ """\brief Conversion of a floating-point term into a bit-vector term in IEEE 754-2008 format.
+
+ The size of the resulting bit-vector is automatically determined.
+
+ Note that IEEE 754-2008 allows multiple different representations of NaN. This conversion
+ knows only one NaN and it will always produce the same bit-vector representation of
+ that NaN.
+
+ >>> x = FP('x', FPSort(8, 24))
+ >>> y = fpToIEEEBV(x)
+ >>> print(is_fp(x))
+ True
+ >>> print(is_bv(y))
+ True
+ >>> print(is_fp(y))
+ False
+ >>> print(is_bv(x))
+ False
+ """
+ if z3_debug():
+ _z3_assert(is_fp(x), "First argument must be a Z3 floating-point expression")
+ ctx = _get_ctx(ctx)
+ return BitVecRef(Z3_mk_fpa_to_ieee_bv(ctx.ref(), x.ast), ctx)
+
+
+
+#########################################
+#
+# Strings, Sequences and Regular expressions
+#
+#########################################
+
+class SeqSortRef(SortRef):
+ """Sequence sort."""
+
+ def is_string(self):
+ """Determine if sort is a string
+ >>> s = StringSort()
+ >>> s.is_string()
+ True
+ >>> s = SeqSort(IntSort())
+ >>> s.is_string()
+ False
+ """
+ return Z3_is_string_sort(self.ctx_ref(), self.ast)
+
+ def basis(self):
+ return _to_sort_ref(Z3_get_seq_sort_basis(self.ctx_ref(), self.ast), self.ctx)
+
+
+def StringSort(ctx=None):
+ """Create a string sort
+ >>> s = StringSort()
+ >>> print(s)
+ String
+ """
+ ctx = _get_ctx(ctx)
+ return SeqSortRef(Z3_mk_string_sort(ctx.ref()), ctx)
+
+
+def SeqSort(s):
+ """Create a sequence sort over elements provided in the argument
+ >>> s = SeqSort(IntSort())
+ >>> s == Unit(IntVal(1)).sort()
+ True
+ """
+ return SeqSortRef(Z3_mk_seq_sort(s.ctx_ref(), s.ast), s.ctx)
+
+class SeqRef(ExprRef):
+ """Sequence expression."""
+
+ def sort(self):
+ return SeqSortRef(Z3_get_sort(self.ctx_ref(), self.as_ast()), self.ctx)
+
+ def __add__(self, other):
+ return Concat(self, other)
+
+ def __radd__(self, other):
+ return Concat(other, self)
+
+ def __getitem__(self, i):
+ if _is_int(i):
+ i = IntVal(i, self.ctx)
+ return _to_expr_ref(Z3_mk_seq_nth(self.ctx_ref(), self.as_ast(), i.as_ast()), self.ctx)
+
+ def at(self, i):
+ if _is_int(i):
+ i = IntVal(i, self.ctx)
+ return SeqRef(Z3_mk_seq_at(self.ctx_ref(), self.as_ast(), i.as_ast()), self.ctx)
+
+ def is_string(self):
+ return Z3_is_string_sort(self.ctx_ref(), Z3_get_sort(self.ctx_ref(), self.as_ast()))
+
+ def is_string_value(self):
+ return Z3_is_string(self.ctx_ref(), self.as_ast())
+
+
+ def as_string(self):
+ """Return a string representation of sequence expression."""
+ if self.is_string_value():
+ string_length = ctypes.c_uint()
+ chars = Z3_get_lstring(self.ctx_ref(), self.as_ast(), byref(string_length))
+ return string_at(chars, size=string_length.value).decode('latin-1')
+ return Z3_ast_to_string(self.ctx_ref(), self.as_ast())
+
+ def __le__(self, other):
+ return SeqRef(Z3_mk_str_le(self.ctx_ref(), self.as_ast(), other.as_ast()), self.ctx)
+
+ def __lt__(self, other):
+ return SeqRef(Z3_mk_str_lt(self.ctx_ref(), self.as_ast(), other.as_ast()), self.ctx)
+
+ def __ge__(self, other):
+ return SeqRef(Z3_mk_str_le(self.ctx_ref(), other.as_ast(), self.as_ast()), self.ctx)
+
+ def __gt__(self, other):
+ return SeqRef(Z3_mk_str_lt(self.ctx_ref(), other.as_ast(), self.as_ast()), self.ctx)
+
+
+def _coerce_seq(s, ctx=None):
+ if isinstance(s, str):
+ ctx = _get_ctx(ctx)
+ s = StringVal(s, ctx)
+ if not is_expr(s):
+ raise Z3Exception("Non-expression passed as a sequence")
+ if not is_seq(s):
+ raise Z3Exception("Non-sequence passed as a sequence")
+ return s
+
+def _get_ctx2(a, b, ctx=None):
+ if is_expr(a):
+ return a.ctx
+ if is_expr(b):
+ return b.ctx
+ if ctx is None:
+ ctx = main_ctx()
+ return ctx
+
+def is_seq(a):
+ """Return `True` if `a` is a Z3 sequence expression.
+ >>> print (is_seq(Unit(IntVal(0))))
+ True
+ >>> print (is_seq(StringVal("abc")))
+ True
+ """
+ return isinstance(a, SeqRef)
+
+def is_string(a):
+ """Return `True` if `a` is a Z3 string expression.
+ >>> print (is_string(StringVal("ab")))
+ True
+ """
+ return isinstance(a, SeqRef) and a.is_string()
+
+def is_string_value(a):
+ """return 'True' if 'a' is a Z3 string constant expression.
+ >>> print (is_string_value(StringVal("a")))
+ True
+ >>> print (is_string_value(StringVal("a") + StringVal("b")))
+ False
+ """
+ return isinstance(a, SeqRef) and a.is_string_value()
+
+
+def StringVal(s, ctx=None):
+ """create a string expression"""
+ ctx = _get_ctx(ctx)
+ return SeqRef(Z3_mk_lstring(ctx.ref(), len(s), s), ctx)
+
+def String(name, ctx=None):
+ """Return a string constant named `name`. If `ctx=None`, then the global context is used.
+
+ >>> x = String('x')
+ """
+ ctx = _get_ctx(ctx)
+ return SeqRef(Z3_mk_const(ctx.ref(), to_symbol(name, ctx), StringSort(ctx).ast), ctx)
+
+def Strings(names, ctx=None):
+ """Return string constants"""
+ ctx = _get_ctx(ctx)
+ if isinstance(names, str):
+ names = names.split(" ")
+ return [String(name, ctx) for name in names]
+
+def SubString(s, offset, length):
+ """Extract substring or subsequence starting at offset"""
+ return Extract(s, offset, length)
+
+def SubSeq(s, offset, length):
+ """Extract substring or subsequence starting at offset"""
+ return Extract(s, offset, length)
+
+def Strings(names, ctx=None):
+ """Return a tuple of String constants. """
+ ctx = _get_ctx(ctx)
+ if isinstance(names, str):
+ names = names.split(" ")
+ return [String(name, ctx) for name in names]
+
+def Empty(s):
+ """Create the empty sequence of the given sort
+ >>> e = Empty(StringSort())
+ >>> e2 = StringVal("")
+ >>> print(e.eq(e2))
+ True
+ >>> e3 = Empty(SeqSort(IntSort()))
+ >>> print(e3)
+ Empty(Seq(Int))
+ >>> e4 = Empty(ReSort(SeqSort(IntSort())))
+ >>> print(e4)
+ Empty(ReSort(Seq(Int)))
+ """
+ if isinstance(s, SeqSortRef):
+ return SeqRef(Z3_mk_seq_empty(s.ctx_ref(), s.ast), s.ctx)
+ if isinstance(s, ReSortRef):
+ return ReRef(Z3_mk_re_empty(s.ctx_ref(), s.ast), s.ctx)
+ raise Z3Exception("Non-sequence, non-regular expression sort passed to Empty")
+
+def Full(s):
+ """Create the regular expression that accepts the universal language
+ >>> e = Full(ReSort(SeqSort(IntSort())))
+ >>> print(e)
+ Full(ReSort(Seq(Int)))
+ >>> e1 = Full(ReSort(StringSort()))
+ >>> print(e1)
+ Full(ReSort(String))
+ """
+ if isinstance(s, ReSortRef):
+ return ReRef(Z3_mk_re_full(s.ctx_ref(), s.ast), s.ctx)
+ raise Z3Exception("Non-sequence, non-regular expression sort passed to Full")
+
+
+def Unit(a):
+ """Create a singleton sequence"""
+ return SeqRef(Z3_mk_seq_unit(a.ctx_ref(), a.as_ast()), a.ctx)
+
+def PrefixOf(a, b):
+ """Check if 'a' is a prefix of 'b'
+ >>> s1 = PrefixOf("ab", "abc")
+ >>> simplify(s1)
+ True
+ >>> s2 = PrefixOf("bc", "abc")
+ >>> simplify(s2)
+ False
+ """
+ ctx = _get_ctx2(a, b)
+ a = _coerce_seq(a, ctx)
+ b = _coerce_seq(b, ctx)
+ return BoolRef(Z3_mk_seq_prefix(a.ctx_ref(), a.as_ast(), b.as_ast()), a.ctx)
+
+def SuffixOf(a, b):
+ """Check if 'a' is a suffix of 'b'
+ >>> s1 = SuffixOf("ab", "abc")
+ >>> simplify(s1)
+ False
+ >>> s2 = SuffixOf("bc", "abc")
+ >>> simplify(s2)
+ True
+ """
+ ctx = _get_ctx2(a, b)
+ a = _coerce_seq(a, ctx)
+ b = _coerce_seq(b, ctx)
+ return BoolRef(Z3_mk_seq_suffix(a.ctx_ref(), a.as_ast(), b.as_ast()), a.ctx)
+
+def Contains(a, b):
+ """Check if 'a' contains 'b'
+ >>> s1 = Contains("abc", "ab")
+ >>> simplify(s1)
+ True
+ >>> s2 = Contains("abc", "bc")
+ >>> simplify(s2)
+ True
+ >>> x, y, z = Strings('x y z')
+ >>> s3 = Contains(Concat(x,y,z), y)
+ >>> simplify(s3)
+ True
+ """
+ ctx = _get_ctx2(a, b)
+ a = _coerce_seq(a, ctx)
+ b = _coerce_seq(b, ctx)
+ return BoolRef(Z3_mk_seq_contains(a.ctx_ref(), a.as_ast(), b.as_ast()), a.ctx)
+
+
+def Replace(s, src, dst):
+ """Replace the first occurrence of 'src' by 'dst' in 's'
+ >>> r = Replace("aaa", "a", "b")
+ >>> simplify(r)
+ "baa"
+ """
+ ctx = _get_ctx2(dst, s)
+ if ctx is None and is_expr(src):
+ ctx = src.ctx
+ src = _coerce_seq(src, ctx)
+ dst = _coerce_seq(dst, ctx)
+ s = _coerce_seq(s, ctx)
+ return SeqRef(Z3_mk_seq_replace(src.ctx_ref(), s.as_ast(), src.as_ast(), dst.as_ast()), s.ctx)
+
+def IndexOf(s, substr):
+ return IndexOf(s, substr, IntVal(0))
+
+def IndexOf(s, substr, offset):
+ """Retrieve the index of substring within a string starting at a specified offset.
+ >>> simplify(IndexOf("abcabc", "bc", 0))
+ 1
+ >>> simplify(IndexOf("abcabc", "bc", 2))
+ 4
+ """
+ ctx = None
+ if is_expr(offset):
+ ctx = offset.ctx
+ ctx = _get_ctx2(s, substr, ctx)
+ s = _coerce_seq(s, ctx)
+ substr = _coerce_seq(substr, ctx)
+ if _is_int(offset):
+ offset = IntVal(offset, ctx)
+ return ArithRef(Z3_mk_seq_index(s.ctx_ref(), s.as_ast(), substr.as_ast(), offset.as_ast()), s.ctx)
+
+def LastIndexOf(s, substr):
+ """Retrieve the last index of substring within a string"""
+ ctx = None
+ ctx = _get_ctx2(s, substr, ctx)
+ s = _coerce_seq(s, ctx)
+ substr = _coerce_seq(substr, ctx)
+ return ArithRef(Z3_mk_seq_last_index(s.ctx_ref(), s.as_ast(), substr.as_ast()), s.ctx)
+
+
+def Length(s):
+ """Obtain the length of a sequence 's'
+ >>> l = Length(StringVal("abc"))
+ >>> simplify(l)
+ 3
+ """
+ s = _coerce_seq(s)
+ return ArithRef(Z3_mk_seq_length(s.ctx_ref(), s.as_ast()), s.ctx)
+
+def StrToInt(s):
+ """Convert string expression to integer
+ >>> a = StrToInt("1")
+ >>> simplify(1 == a)
+ True
+ >>> b = StrToInt("2")
+ >>> simplify(1 == b)
+ False
+ >>> c = StrToInt(IntToStr(2))
+ >>> simplify(1 == c)
+ False
+ """
+ s = _coerce_seq(s)
+ return ArithRef(Z3_mk_str_to_int(s.ctx_ref(), s.as_ast()), s.ctx)
+
+
+def IntToStr(s):
+ """Convert integer expression to string"""
+ if not is_expr(s):
+ s = _py2expr(s)
+ return SeqRef(Z3_mk_int_to_str(s.ctx_ref(), s.as_ast()), s.ctx)
+
+
+def Re(s, ctx=None):
+ """The regular expression that accepts sequence 's'
+ >>> s1 = Re("ab")
+ >>> s2 = Re(StringVal("ab"))
+ >>> s3 = Re(Unit(BoolVal(True)))
+ """
+ s = _coerce_seq(s, ctx)
+ return ReRef(Z3_mk_seq_to_re(s.ctx_ref(), s.as_ast()), s.ctx)
+
+
+
+
+## Regular expressions
+
+class ReSortRef(SortRef):
+ """Regular expression sort."""
+
+ def basis(self):
+ return _to_sort_ref(Z3_get_re_sort_basis(self.ctx_ref(), self.ast), self.ctx)
+
+def ReSort(s):
+ if is_ast(s):
+ return ReSortRef(Z3_mk_re_sort(s.ctx.ref(), s.ast), s.ctx)
+ if s is None or isinstance(s, Context):
+ ctx = _get_ctx(s)
+ return ReSortRef(Z3_mk_re_sort(ctx.ref(), Z3_mk_string_sort(ctx.ref())), s.ctx)
+ raise Z3Exception("Regular expression sort constructor expects either a string or a context or no argument")
+
+
+class ReRef(ExprRef):
+ """Regular expressions."""
+
+ def __add__(self, other):
+ return Union(self, other)
+
+def is_re(s):
+ return isinstance(s, ReRef)
+
+
+def InRe(s, re):
+ """Create regular expression membership test
+ >>> re = Union(Re("a"),Re("b"))
+ >>> print (simplify(InRe("a", re)))
+ True
+ >>> print (simplify(InRe("b", re)))
+ True
+ >>> print (simplify(InRe("c", re)))
+ False
+ """
+ s = _coerce_seq(s, re.ctx)
+ return BoolRef(Z3_mk_seq_in_re(s.ctx_ref(), s.as_ast(), re.as_ast()), s.ctx)
+
+def Union(*args):
+ """Create union of regular expressions.
+ >>> re = Union(Re("a"), Re("b"), Re("c"))
+ >>> print (simplify(InRe("d", re)))
+ False
+ """
+ args = _get_args(args)
+ sz = len(args)
+ if z3_debug():
+ _z3_assert(sz > 0, "At least one argument expected.")
+ _z3_assert(all([is_re(a) for a in args]), "All arguments must be regular expressions.")
+ if sz == 1:
+ return args[0]
+ ctx = args[0].ctx
+ v = (Ast * sz)()
+ for i in range(sz):
+ v[i] = args[i].as_ast()
+ return ReRef(Z3_mk_re_union(ctx.ref(), sz, v), ctx)
+
+def Intersect(*args):
+ """Create intersection of regular expressions.
+ >>> re = Intersect(Re("a"), Re("b"), Re("c"))
+ """
+ args = _get_args(args)
+ sz = len(args)
+ if z3_debug():
+ _z3_assert(sz > 0, "At least one argument expected.")
+ _z3_assert(all([is_re(a) for a in args]), "All arguments must be regular expressions.")
+ if sz == 1:
+ return args[0]
+ ctx = args[0].ctx
+ v = (Ast * sz)()
+ for i in range(sz):
+ v[i] = args[i].as_ast()
+ return ReRef(Z3_mk_re_intersect(ctx.ref(), sz, v), ctx)
+
+def Plus(re):
+ """Create the regular expression accepting one or more repetitions of argument.
+ >>> re = Plus(Re("a"))
+ >>> print(simplify(InRe("aa", re)))
+ True
+ >>> print(simplify(InRe("ab", re)))
+ False
+ >>> print(simplify(InRe("", re)))
+ False
+ """
+ return ReRef(Z3_mk_re_plus(re.ctx_ref(), re.as_ast()), re.ctx)
+
+def Option(re):
+ """Create the regular expression that optionally accepts the argument.
+ >>> re = Option(Re("a"))
+ >>> print(simplify(InRe("a", re)))
+ True
+ >>> print(simplify(InRe("", re)))
+ True
+ >>> print(simplify(InRe("aa", re)))
+ False
+ """
+ return ReRef(Z3_mk_re_option(re.ctx_ref(), re.as_ast()), re.ctx)
+
+def Complement(re):
+ """Create the complement regular expression."""
+ return ReRef(Z3_mk_re_complement(re.ctx_ref(), re.as_ast()), re.ctx)
+
+def Star(re):
+ """Create the regular expression accepting zero or more repetitions of argument.
+ >>> re = Star(Re("a"))
+ >>> print(simplify(InRe("aa", re)))
+ True
+ >>> print(simplify(InRe("ab", re)))
+ False
+ >>> print(simplify(InRe("", re)))
+ True
+ """
+ return ReRef(Z3_mk_re_star(re.ctx_ref(), re.as_ast()), re.ctx)
+
+def Loop(re, lo, hi=0):
+ """Create the regular expression accepting between a lower and upper bound repetitions
+ >>> re = Loop(Re("a"), 1, 3)
+ >>> print(simplify(InRe("aa", re)))
+ True
+ >>> print(simplify(InRe("aaaa", re)))
+ False
+ >>> print(simplify(InRe("", re)))
+ False
+ """
+ return ReRef(Z3_mk_re_loop(re.ctx_ref(), re.as_ast(), lo, hi), re.ctx)
+
+def Range(lo, hi, ctx = None):
+ """Create the range regular expression over two sequences of length 1
+ >>> range = Range("a","z")
+ >>> print(simplify(InRe("b", range)))
+ True
+ >>> print(simplify(InRe("bb", range)))
+ False
+ """
+ lo = _coerce_seq(lo, ctx)
+ hi = _coerce_seq(hi, ctx)
+ return ReRef(Z3_mk_re_range(lo.ctx_ref(), lo.ast, hi.ast), lo.ctx)
+
+# Special Relations
+
+def PartialOrder(a, index):
+ return FuncDeclRef(Z3_mk_partial_order(a.ctx_ref(), a.ast, index), a.ctx);
+
+def LinearOrder(a, index):
+ return FuncDeclRef(Z3_mk_linear_order(a.ctx_ref(), a.ast, index), a.ctx);
+
+def TreeOrder(a, index):
+ return FuncDeclRef(Z3_mk_tree_order(a.ctx_ref(), a.ast, index), a.ctx);
+
+def PiecewiseLinearOrder(a, index):
+ return FuncDeclRef(Z3_mk_piecewise_linear_order(a.ctx_ref(), a.ast, index), a.ctx);
+
+def TransitiveClosure(f):
+ """Given a binary relation R, such that the two arguments have the same sort
+ create the transitive closure relation R+.
+ The transitive closure R+ is a new relation.
+ """
+ return FuncDeclRef(Z3_mk_transitive_closure(f.ctx_ref(), f.ast), f.ctx)
+
+
+class PropClosures:
+ def __init__(self):
+ self.bases = {}
+ self.lock = None
+
+ def set_threaded():
+ if self.lock is None:
+ import threading
+ self.lock = threading.thread.Lock()
+
+ def get(self, ctx):
+ if self.lock: self.lock.acquire()
+ r = self.bases[ctx]
+ if self.lock: self.lock.release()
+ return r
+
+ def set(self, ctx, r):
+ if self.lock: self.lock.acquire()
+ self.bases[ctx] = r
+ if self.lock: self.lock.release()
+
+ def insert(self, r):
+ if self.lock: self.lock.acquire()
+ id = len(self.bases) + 3
+ self.bases[id] = r
+ if self.lock: self.lock.release()
+ return id
+
+_prop_closures = None
+
+def ensure_prop_closures():
+ global _prop_closures
+ if _prop_closures is None:
+ _prop_closures = PropClosures()
+
+def user_prop_push(ctx):
+ _prop_closures.get(ctx).push();
+
+def user_prop_pop(ctx, num_scopes):
+ _prop_closures.get(ctx).pop(num_scopes)
+
+def user_prop_fresh(id, ctx):
+ prop = _prop_closures.get(id)
+ _prop_closures.set_threaded()
+ new_prop = UsePropagateBase(None, ctx)
+ _prop_closures.set(new_prop.id, new_prop.fresh())
+ return ctypes.c_void_p(new_prop.id)
+
+def user_prop_fixed(ctx, cb, id, value):
+ prop = _prop_closures.get(ctx)
+ prop.cb = cb
+ prop.fixed(id, _to_expr_ref(ctypes.c_void_p(value), prop.ctx()))
+ prop.cb = None
+
+def user_prop_final(ctx, cb):
+ prop = _prop_closures.get(ctx)
+ prop.cb = cb
+ prop.final()
+ prop.cb = None
+
+def user_prop_eq(ctx, cb, x, y):
+ prop = _prop_closures.get(ctx)
+ prop.cb = cb
+ prop.eq(x, y)
+ prop.cb = None
+
+def user_prop_diseq(ctx, cb, x, y):
+ prop = _prop_closures.get(ctx)
+ prop.cb = cb
+ prop.diseq(x, y)
+ prop.cb = None
+
+_user_prop_push = push_eh_type(user_prop_push)
+_user_prop_pop = pop_eh_type(user_prop_pop)
+_user_prop_fresh = fresh_eh_type(user_prop_fresh)
+_user_prop_fixed = fixed_eh_type(user_prop_fixed)
+_user_prop_final = final_eh_type(user_prop_final)
+_user_prop_eq = eq_eh_type(user_prop_eq)
+_user_prop_diseq = eq_eh_type(user_prop_diseq)
+
+class UserPropagateBase:
+
+ #
+ # Either solver is set or ctx is set.
+ # Propagators that are created throuh callbacks
+ # to "fresh" inherit the context of that is supplied
+ # as argument to the callback.
+ # This context should not be deleted. It is owned by the solver.
+ #
+ def __init__(self, s, ctx = None):
+ assert s is None or ctx is None
+ ensure_prop_closures()
+ self.solver = s
+ self._ctx = None
+ self.cb = None
+ self.id = _prop_closures.insert(self)
+ self.fixed = None
+ self.final = None
+ self.eq = None
+ self.diseq = None
+ if ctx:
+ self._ctx = Context()
+ Z3_del_context(self._ctx.ctx)
+ self._ctx.ctx = ctx
+ self._ctx.eh = Z3_set_error_handler(ctx, z3_error_handler)
+ Z3_set_ast_print_mode(ctx, Z3_PRINT_SMTLIB2_COMPLIANT)
+ if s:
+ Z3_solver_propagate_init(self.ctx_ref(),
+ s.solver,
+ ctypes.c_void_p(self.id),
+ _user_prop_push,
+ _user_prop_pop,
+ _user_prop_fresh)
+
+ def __del__(self):
+ if self._ctx:
+ self._ctx.ctx = None
+
+ def ctx(self):
+ if self._ctx:
+ return self._ctx
+ else:
+ return self.solver.ctx
+
+ def ctx_ref(self):
+ return self.ctx().ref()
+
+ def add_fixed(self, fixed):
+ assert not self.fixed
+ assert not self._ctx
+ Z3_solver_propagate_fixed(self.ctx_ref(), self.solver.solver, _user_prop_fixed)
+ self.fixed = fixed
+
+ def add_final(self, final):
+ assert not self.final
+ assert not self._ctx
+ Z3_solver_propagate_final(self.ctx_ref(), self.solver.solver, _user_prop_final)
+ self.final = final
+
+ def add_eq(self, eq):
+ assert not self.eq
+ assert not self._ctx
+ Z3_solver_propagate_eq(self.ctx_ref(), self.solver.solver, _user_prop_eq)
+ self.eq = eq
+
+ def add_diseq(self, diseq):
+ assert not self.diseq
+ assert not self._ctx
+ Z3_solver_propagate_diseq(self.ctx_ref(), self.solver.solver, _user_prop_diseq)
+ self.diseq = diseq
+
+ def push(self):
+ raise Z3Exception("push needs to be overwritten")
+
+ def pop(self, num_scopes):
+ raise Z3Exception("pop needs to be overwritten")
+
+ def fresh(self):
+ raise Z3Exception("fresh needs to be overwritten")
+
+ def add(self, e):
+ assert self.solver
+ assert not self._ctx
+ return Z3_solver_propagate_register(self.ctx_ref(), self.solver.solver, e.ast)
+
+ #
+ # Propagation can only be invoked as during a fixed-callback.
+ #
+ def propagate(self, e, ids, eqs = []):
+ num_fixed = len(ids)
+ _ids = (ctypes.c_uint * num_fixed)()
+ for i in range(num_fixed):
+ _ids[i] = ids[i]
+ num_eqs = len(eqs)
+ _lhs = (ctypes.c_uint * num_eqs)()
+ _rhs = (ctypes.c_uint * num_eqs)()
+ for i in range(num_eqs):
+ _lhs[i] = eqs[i][0]
+ _rhs[i] = eqs[i][1]
+ Z3_solver_propagate_consequence(e.ctx.ref(), ctypes.c_void_p(self.cb), num_fixed, _ids, num_eqs, _lhs, _rhs, e.ast)
+
+ def conflict(self, ids):
+ self.propagate(BoolVal(False, self.ctx()), ids, eqs=[])
diff --git a/z3-4.8.9-x64-ubuntu-16.04/bin/python/z3/z3.pyc b/z3-4.8.9-x64-ubuntu-16.04/bin/python/z3/z3.pyc
new file mode 100644
index 0000000..c48f455
Binary files /dev/null and b/z3-4.8.9-x64-ubuntu-16.04/bin/python/z3/z3.pyc differ
diff --git a/z3-4.8.9-x64-ubuntu-16.04/bin/python/z3/z3consts.py b/z3-4.8.9-x64-ubuntu-16.04/bin/python/z3/z3consts.py
new file mode 100644
index 0000000..e1e7dfd
--- /dev/null
+++ b/z3-4.8.9-x64-ubuntu-16.04/bin/python/z3/z3consts.py
@@ -0,0 +1,335 @@
+# Automatically generated file
+
+# enum Z3_lbool
+Z3_L_FALSE = -1
+Z3_L_UNDEF = 0
+Z3_L_TRUE = 1
+
+# enum Z3_symbol_kind
+Z3_INT_SYMBOL = 0
+Z3_STRING_SYMBOL = 1
+
+# enum Z3_parameter_kind
+Z3_PARAMETER_INT = 0
+Z3_PARAMETER_DOUBLE = 1
+Z3_PARAMETER_RATIONAL = 2
+Z3_PARAMETER_SYMBOL = 3
+Z3_PARAMETER_SORT = 4
+Z3_PARAMETER_AST = 5
+Z3_PARAMETER_FUNC_DECL = 6
+
+# enum Z3_sort_kind
+Z3_UNINTERPRETED_SORT = 0
+Z3_BOOL_SORT = 1
+Z3_INT_SORT = 2
+Z3_REAL_SORT = 3
+Z3_BV_SORT = 4
+Z3_ARRAY_SORT = 5
+Z3_DATATYPE_SORT = 6
+Z3_RELATION_SORT = 7
+Z3_FINITE_DOMAIN_SORT = 8
+Z3_FLOATING_POINT_SORT = 9
+Z3_ROUNDING_MODE_SORT = 10
+Z3_SEQ_SORT = 11
+Z3_RE_SORT = 12
+Z3_UNKNOWN_SORT = 1000
+
+# enum Z3_ast_kind
+Z3_NUMERAL_AST = 0
+Z3_APP_AST = 1
+Z3_VAR_AST = 2
+Z3_QUANTIFIER_AST = 3
+Z3_SORT_AST = 4
+Z3_FUNC_DECL_AST = 5
+Z3_UNKNOWN_AST = 1000
+
+# enum Z3_decl_kind
+Z3_OP_TRUE = 256
+Z3_OP_FALSE = 257
+Z3_OP_EQ = 258
+Z3_OP_DISTINCT = 259
+Z3_OP_ITE = 260
+Z3_OP_AND = 261
+Z3_OP_OR = 262
+Z3_OP_IFF = 263
+Z3_OP_XOR = 264
+Z3_OP_NOT = 265
+Z3_OP_IMPLIES = 266
+Z3_OP_OEQ = 267
+Z3_OP_ANUM = 512
+Z3_OP_AGNUM = 513
+Z3_OP_LE = 514
+Z3_OP_GE = 515
+Z3_OP_LT = 516
+Z3_OP_GT = 517
+Z3_OP_ADD = 518
+Z3_OP_SUB = 519
+Z3_OP_UMINUS = 520
+Z3_OP_MUL = 521
+Z3_OP_DIV = 522
+Z3_OP_IDIV = 523
+Z3_OP_REM = 524
+Z3_OP_MOD = 525
+Z3_OP_TO_REAL = 526
+Z3_OP_TO_INT = 527
+Z3_OP_IS_INT = 528
+Z3_OP_POWER = 529
+Z3_OP_STORE = 768
+Z3_OP_SELECT = 769
+Z3_OP_CONST_ARRAY = 770
+Z3_OP_ARRAY_MAP = 771
+Z3_OP_ARRAY_DEFAULT = 772
+Z3_OP_SET_UNION = 773
+Z3_OP_SET_INTERSECT = 774
+Z3_OP_SET_DIFFERENCE = 775
+Z3_OP_SET_COMPLEMENT = 776
+Z3_OP_SET_SUBSET = 777
+Z3_OP_AS_ARRAY = 778
+Z3_OP_ARRAY_EXT = 779
+Z3_OP_SET_HAS_SIZE = 780
+Z3_OP_SET_CARD = 781
+Z3_OP_BNUM = 1024
+Z3_OP_BIT1 = 1025
+Z3_OP_BIT0 = 1026
+Z3_OP_BNEG = 1027
+Z3_OP_BADD = 1028
+Z3_OP_BSUB = 1029
+Z3_OP_BMUL = 1030
+Z3_OP_BSDIV = 1031
+Z3_OP_BUDIV = 1032
+Z3_OP_BSREM = 1033
+Z3_OP_BUREM = 1034
+Z3_OP_BSMOD = 1035
+Z3_OP_BSDIV0 = 1036
+Z3_OP_BUDIV0 = 1037
+Z3_OP_BSREM0 = 1038
+Z3_OP_BUREM0 = 1039
+Z3_OP_BSMOD0 = 1040
+Z3_OP_ULEQ = 1041
+Z3_OP_SLEQ = 1042
+Z3_OP_UGEQ = 1043
+Z3_OP_SGEQ = 1044
+Z3_OP_ULT = 1045
+Z3_OP_SLT = 1046
+Z3_OP_UGT = 1047
+Z3_OP_SGT = 1048
+Z3_OP_BAND = 1049
+Z3_OP_BOR = 1050
+Z3_OP_BNOT = 1051
+Z3_OP_BXOR = 1052
+Z3_OP_BNAND = 1053
+Z3_OP_BNOR = 1054
+Z3_OP_BXNOR = 1055
+Z3_OP_CONCAT = 1056
+Z3_OP_SIGN_EXT = 1057
+Z3_OP_ZERO_EXT = 1058
+Z3_OP_EXTRACT = 1059
+Z3_OP_REPEAT = 1060
+Z3_OP_BREDOR = 1061
+Z3_OP_BREDAND = 1062
+Z3_OP_BCOMP = 1063
+Z3_OP_BSHL = 1064
+Z3_OP_BLSHR = 1065
+Z3_OP_BASHR = 1066
+Z3_OP_ROTATE_LEFT = 1067
+Z3_OP_ROTATE_RIGHT = 1068
+Z3_OP_EXT_ROTATE_LEFT = 1069
+Z3_OP_EXT_ROTATE_RIGHT = 1070
+Z3_OP_BIT2BOOL = 1071
+Z3_OP_INT2BV = 1072
+Z3_OP_BV2INT = 1073
+Z3_OP_CARRY = 1074
+Z3_OP_XOR3 = 1075
+Z3_OP_BSMUL_NO_OVFL = 1076
+Z3_OP_BUMUL_NO_OVFL = 1077
+Z3_OP_BSMUL_NO_UDFL = 1078
+Z3_OP_BSDIV_I = 1079
+Z3_OP_BUDIV_I = 1080
+Z3_OP_BSREM_I = 1081
+Z3_OP_BUREM_I = 1082
+Z3_OP_BSMOD_I = 1083
+Z3_OP_PR_UNDEF = 1280
+Z3_OP_PR_TRUE = 1281
+Z3_OP_PR_ASSERTED = 1282
+Z3_OP_PR_GOAL = 1283
+Z3_OP_PR_MODUS_PONENS = 1284
+Z3_OP_PR_REFLEXIVITY = 1285
+Z3_OP_PR_SYMMETRY = 1286
+Z3_OP_PR_TRANSITIVITY = 1287
+Z3_OP_PR_TRANSITIVITY_STAR = 1288
+Z3_OP_PR_MONOTONICITY = 1289
+Z3_OP_PR_QUANT_INTRO = 1290
+Z3_OP_PR_BIND = 1291
+Z3_OP_PR_DISTRIBUTIVITY = 1292
+Z3_OP_PR_AND_ELIM = 1293
+Z3_OP_PR_NOT_OR_ELIM = 1294
+Z3_OP_PR_REWRITE = 1295
+Z3_OP_PR_REWRITE_STAR = 1296
+Z3_OP_PR_PULL_QUANT = 1297
+Z3_OP_PR_PUSH_QUANT = 1298
+Z3_OP_PR_ELIM_UNUSED_VARS = 1299
+Z3_OP_PR_DER = 1300
+Z3_OP_PR_QUANT_INST = 1301
+Z3_OP_PR_HYPOTHESIS = 1302
+Z3_OP_PR_LEMMA = 1303
+Z3_OP_PR_UNIT_RESOLUTION = 1304
+Z3_OP_PR_IFF_TRUE = 1305
+Z3_OP_PR_IFF_FALSE = 1306
+Z3_OP_PR_COMMUTATIVITY = 1307
+Z3_OP_PR_DEF_AXIOM = 1308
+Z3_OP_PR_ASSUMPTION_ADD = 1309
+Z3_OP_PR_LEMMA_ADD = 1310
+Z3_OP_PR_REDUNDANT_DEL = 1311
+Z3_OP_PR_CLAUSE_TRAIL = 1312
+Z3_OP_PR_DEF_INTRO = 1313
+Z3_OP_PR_APPLY_DEF = 1314
+Z3_OP_PR_IFF_OEQ = 1315
+Z3_OP_PR_NNF_POS = 1316
+Z3_OP_PR_NNF_NEG = 1317
+Z3_OP_PR_SKOLEMIZE = 1318
+Z3_OP_PR_MODUS_PONENS_OEQ = 1319
+Z3_OP_PR_TH_LEMMA = 1320
+Z3_OP_PR_HYPER_RESOLVE = 1321
+Z3_OP_RA_STORE = 1536
+Z3_OP_RA_EMPTY = 1537
+Z3_OP_RA_IS_EMPTY = 1538
+Z3_OP_RA_JOIN = 1539
+Z3_OP_RA_UNION = 1540
+Z3_OP_RA_WIDEN = 1541
+Z3_OP_RA_PROJECT = 1542
+Z3_OP_RA_FILTER = 1543
+Z3_OP_RA_NEGATION_FILTER = 1544
+Z3_OP_RA_RENAME = 1545
+Z3_OP_RA_COMPLEMENT = 1546
+Z3_OP_RA_SELECT = 1547
+Z3_OP_RA_CLONE = 1548
+Z3_OP_FD_CONSTANT = 1549
+Z3_OP_FD_LT = 1550
+Z3_OP_SEQ_UNIT = 1551
+Z3_OP_SEQ_EMPTY = 1552
+Z3_OP_SEQ_CONCAT = 1553
+Z3_OP_SEQ_PREFIX = 1554
+Z3_OP_SEQ_SUFFIX = 1555
+Z3_OP_SEQ_CONTAINS = 1556
+Z3_OP_SEQ_EXTRACT = 1557
+Z3_OP_SEQ_REPLACE = 1558
+Z3_OP_SEQ_AT = 1559
+Z3_OP_SEQ_NTH = 1560
+Z3_OP_SEQ_LENGTH = 1561
+Z3_OP_SEQ_INDEX = 1562
+Z3_OP_SEQ_LAST_INDEX = 1563
+Z3_OP_SEQ_TO_RE = 1564
+Z3_OP_SEQ_IN_RE = 1565
+Z3_OP_STR_TO_INT = 1566
+Z3_OP_INT_TO_STR = 1567
+Z3_OP_RE_PLUS = 1568
+Z3_OP_RE_STAR = 1569
+Z3_OP_RE_OPTION = 1570
+Z3_OP_RE_CONCAT = 1571
+Z3_OP_RE_UNION = 1572
+Z3_OP_RE_RANGE = 1573
+Z3_OP_RE_LOOP = 1574
+Z3_OP_RE_INTERSECT = 1575
+Z3_OP_RE_EMPTY_SET = 1576
+Z3_OP_RE_FULL_SET = 1577
+Z3_OP_RE_COMPLEMENT = 1578
+Z3_OP_LABEL = 1792
+Z3_OP_LABEL_LIT = 1793
+Z3_OP_DT_CONSTRUCTOR = 2048
+Z3_OP_DT_RECOGNISER = 2049
+Z3_OP_DT_IS = 2050
+Z3_OP_DT_ACCESSOR = 2051
+Z3_OP_DT_UPDATE_FIELD = 2052
+Z3_OP_PB_AT_MOST = 2304
+Z3_OP_PB_AT_LEAST = 2305
+Z3_OP_PB_LE = 2306
+Z3_OP_PB_GE = 2307
+Z3_OP_PB_EQ = 2308
+Z3_OP_SPECIAL_RELATION_LO = 40960
+Z3_OP_SPECIAL_RELATION_PO = 40961
+Z3_OP_SPECIAL_RELATION_PLO = 40962
+Z3_OP_SPECIAL_RELATION_TO = 40963
+Z3_OP_SPECIAL_RELATION_TC = 40964
+Z3_OP_SPECIAL_RELATION_TRC = 40965
+Z3_OP_FPA_RM_NEAREST_TIES_TO_EVEN = 45056
+Z3_OP_FPA_RM_NEAREST_TIES_TO_AWAY = 45057
+Z3_OP_FPA_RM_TOWARD_POSITIVE = 45058
+Z3_OP_FPA_RM_TOWARD_NEGATIVE = 45059
+Z3_OP_FPA_RM_TOWARD_ZERO = 45060
+Z3_OP_FPA_NUM = 45061
+Z3_OP_FPA_PLUS_INF = 45062
+Z3_OP_FPA_MINUS_INF = 45063
+Z3_OP_FPA_NAN = 45064
+Z3_OP_FPA_PLUS_ZERO = 45065
+Z3_OP_FPA_MINUS_ZERO = 45066
+Z3_OP_FPA_ADD = 45067
+Z3_OP_FPA_SUB = 45068
+Z3_OP_FPA_NEG = 45069
+Z3_OP_FPA_MUL = 45070
+Z3_OP_FPA_DIV = 45071
+Z3_OP_FPA_REM = 45072
+Z3_OP_FPA_ABS = 45073
+Z3_OP_FPA_MIN = 45074
+Z3_OP_FPA_MAX = 45075
+Z3_OP_FPA_FMA = 45076
+Z3_OP_FPA_SQRT = 45077
+Z3_OP_FPA_ROUND_TO_INTEGRAL = 45078
+Z3_OP_FPA_EQ = 45079
+Z3_OP_FPA_LT = 45080
+Z3_OP_FPA_GT = 45081
+Z3_OP_FPA_LE = 45082
+Z3_OP_FPA_GE = 45083
+Z3_OP_FPA_IS_NAN = 45084
+Z3_OP_FPA_IS_INF = 45085
+Z3_OP_FPA_IS_ZERO = 45086
+Z3_OP_FPA_IS_NORMAL = 45087
+Z3_OP_FPA_IS_SUBNORMAL = 45088
+Z3_OP_FPA_IS_NEGATIVE = 45089
+Z3_OP_FPA_IS_POSITIVE = 45090
+Z3_OP_FPA_FP = 45091
+Z3_OP_FPA_TO_FP = 45092
+Z3_OP_FPA_TO_FP_UNSIGNED = 45093
+Z3_OP_FPA_TO_UBV = 45094
+Z3_OP_FPA_TO_SBV = 45095
+Z3_OP_FPA_TO_REAL = 45096
+Z3_OP_FPA_TO_IEEE_BV = 45097
+Z3_OP_FPA_BVWRAP = 45098
+Z3_OP_FPA_BV2RM = 45099
+Z3_OP_INTERNAL = 45100
+Z3_OP_UNINTERPRETED = 45101
+
+# enum Z3_param_kind
+Z3_PK_UINT = 0
+Z3_PK_BOOL = 1
+Z3_PK_DOUBLE = 2
+Z3_PK_SYMBOL = 3
+Z3_PK_STRING = 4
+Z3_PK_OTHER = 5
+Z3_PK_INVALID = 6
+
+# enum Z3_ast_print_mode
+Z3_PRINT_SMTLIB_FULL = 0
+Z3_PRINT_LOW_LEVEL = 1
+Z3_PRINT_SMTLIB2_COMPLIANT = 2
+
+# enum Z3_error_code
+Z3_OK = 0
+Z3_SORT_ERROR = 1
+Z3_IOB = 2
+Z3_INVALID_ARG = 3
+Z3_PARSER_ERROR = 4
+Z3_NO_PARSER = 5
+Z3_INVALID_PATTERN = 6
+Z3_MEMOUT_FAIL = 7
+Z3_FILE_ACCESS_ERROR = 8
+Z3_INTERNAL_FATAL = 9
+Z3_INVALID_USAGE = 10
+Z3_DEC_REF_ERROR = 11
+Z3_EXCEPTION = 12
+
+# enum Z3_goal_prec
+Z3_GOAL_PRECISE = 0
+Z3_GOAL_UNDER = 1
+Z3_GOAL_OVER = 2
+Z3_GOAL_UNDER_OVER = 3
+
diff --git a/z3-4.8.9-x64-ubuntu-16.04/bin/python/z3/z3consts.pyc b/z3-4.8.9-x64-ubuntu-16.04/bin/python/z3/z3consts.pyc
new file mode 100644
index 0000000..3150203
Binary files /dev/null and b/z3-4.8.9-x64-ubuntu-16.04/bin/python/z3/z3consts.pyc differ
diff --git a/z3-4.8.9-x64-ubuntu-16.04/bin/python/z3/z3core.py b/z3-4.8.9-x64-ubuntu-16.04/bin/python/z3/z3core.py
new file mode 100644
index 0000000..a4662e9
--- /dev/null
+++ b/z3-4.8.9-x64-ubuntu-16.04/bin/python/z3/z3core.py
@@ -0,0 +1,5027 @@
+
+# Automatically generated file
+import sys, os
+import ctypes
+import pkg_resources
+from .z3types import *
+from .z3consts import *
+
+_ext = 'dll' if sys.platform in ('win32', 'cygwin') else 'dylib' if sys.platform == 'darwin' else 'so'
+_lib = None
+_default_dirs = ['.',
+ os.path.dirname(os.path.abspath(__file__)),
+ pkg_resources.resource_filename('z3', 'lib'),
+ os.path.join(sys.prefix, 'lib'),
+ None]
+_all_dirs = []
+# search the default dirs first
+_all_dirs.extend(_default_dirs)
+
+if sys.version < '3':
+ import __builtin__
+ if hasattr(__builtin__, "Z3_LIB_DIRS"):
+ _all_dirs = __builtin__.Z3_LIB_DIRS
+else:
+ import builtins
+ if hasattr(builtins, "Z3_LIB_DIRS"):
+ _all_dirs = builtins.Z3_LIB_DIRS
+
+for v in ('Z3_LIBRARY_PATH', 'PATH', 'PYTHONPATH'):
+ if v in os.environ:
+ lp = os.environ[v];
+ lds = lp.split(';') if sys.platform in ('win32') else lp.split(':')
+ _all_dirs.extend(lds)
+
+_failures = []
+for d in _all_dirs:
+ try:
+ d = os.path.realpath(d)
+ if os.path.isdir(d):
+ d = os.path.join(d, 'libz3.%s' % _ext)
+ if os.path.isfile(d):
+ _lib = ctypes.CDLL(d)
+ break
+ except Exception as e:
+ _failures += [e]
+ pass
+
+if _lib is None:
+ # If all else failed, ask the system to find it.
+ try:
+ _lib = ctypes.CDLL('libz3.%s' % _ext)
+ except Exception as e:
+ _failures += [e]
+ pass
+
+if _lib is None:
+ print("Could not find libz3.%s; consider adding the directory containing it to" % _ext)
+ print(" - your system's PATH environment variable,")
+ print(" - the Z3_LIBRARY_PATH environment variable, or ")
+ print(" - to the custom Z3_LIBRARY_DIRS Python-builtin before importing the z3 module, e.g. via")
+ if sys.version < '3':
+ print(" import __builtin__")
+ print(" __builtin__.Z3_LIB_DIRS = [ '/path/to/libz3.%s' ] " % _ext)
+ else:
+ print(" import builtins")
+ print(" builtins.Z3_LIB_DIRS = [ '/path/to/libz3.%s' ] " % _ext)
+ raise Z3Exception("libz3.%s not found." % _ext)
+
+def _str_to_bytes(s):
+ if isinstance(s, str):
+ try:
+ return s.encode('latin-1')
+ except:
+ # kick the bucket down the road. :-J
+ return s
+ else:
+ return s
+
+if sys.version < '3':
+ def _to_pystr(s):
+ return s
+else:
+ def _to_pystr(s):
+ if s != None:
+ enc = sys.stdout.encoding
+ if enc != None: return s.decode(enc)
+ else: return s.decode('latin-1')
+ else:
+ return ""
+
+_error_handler_type = ctypes.CFUNCTYPE(None, ctypes.c_void_p, ctypes.c_uint)
+
+_lib.Z3_set_error_handler.restype = None
+_lib.Z3_set_error_handler.argtypes = [ContextObj, _error_handler_type]
+
+push_eh_type = ctypes.CFUNCTYPE(None, ctypes.c_void_p)
+pop_eh_type = ctypes.CFUNCTYPE(None, ctypes.c_void_p, ctypes.c_uint)
+fresh_eh_type = ctypes.CFUNCTYPE(ctypes.c_void_p, ctypes.c_void_p, ctypes.c_void_p)
+
+fixed_eh_type = ctypes.CFUNCTYPE(None, ctypes.c_void_p, ctypes.c_void_p, ctypes.c_uint, ctypes.c_void_p)
+final_eh_type = ctypes.CFUNCTYPE(None, ctypes.c_void_p, ctypes.c_void_p)
+eq_eh_type = ctypes.CFUNCTYPE(None, ctypes.c_void_p, ctypes.c_void_p, ctypes.c_uint, ctypes.c_uint)
+
+_lib.Z3_solver_propagate_init.restype = None
+_lib.Z3_solver_propagate_init.argtypes = [ContextObj, SolverObj, ctypes.c_void_p, push_eh_type, pop_eh_type, fresh_eh_type]
+
+_lib.Z3_solver_propagate_final.restype = None
+_lib.Z3_solver_propagate_final.argtypes = [ContextObj, SolverObj, final_eh_type]
+
+_lib.Z3_solver_propagate_fixed.restype = None
+_lib.Z3_solver_propagate_fixed.argtypes = [ContextObj, SolverObj, fixed_eh_type]
+
+_lib.Z3_solver_propagate_eq.restype = None
+_lib.Z3_solver_propagate_eq.argtypes = [ContextObj, SolverObj, eq_eh_type]
+
+_lib.Z3_solver_propagate_diseq.restype = None
+_lib.Z3_solver_propagate_diseq.argtypes = [ContextObj, SolverObj, eq_eh_type]
+
+
+_lib.Z3_global_param_set.argtypes = [ctypes.c_char_p, ctypes.c_char_p]
+_lib.Z3_global_param_reset_all.argtypes = []
+_lib.Z3_global_param_get.restype = ctypes.c_bool
+_lib.Z3_global_param_get.argtypes = [ctypes.c_char_p, ctypes.POINTER(ctypes.c_char_p)]
+_lib.Z3_mk_config.restype = Config
+_lib.Z3_mk_config.argtypes = []
+_lib.Z3_del_config.argtypes = [Config]
+_lib.Z3_set_param_value.argtypes = [Config, ctypes.c_char_p, ctypes.c_char_p]
+_lib.Z3_mk_context.restype = ContextObj
+_lib.Z3_mk_context.argtypes = [Config]
+_lib.Z3_mk_context_rc.restype = ContextObj
+_lib.Z3_mk_context_rc.argtypes = [Config]
+_lib.Z3_del_context.argtypes = [ContextObj]
+_lib.Z3_inc_ref.argtypes = [ContextObj, Ast]
+_lib.Z3_dec_ref.argtypes = [ContextObj, Ast]
+_lib.Z3_update_param_value.argtypes = [ContextObj, ctypes.c_char_p, ctypes.c_char_p]
+_lib.Z3_interrupt.argtypes = [ContextObj]
+_lib.Z3_mk_params.restype = Params
+_lib.Z3_mk_params.argtypes = [ContextObj]
+_lib.Z3_params_inc_ref.argtypes = [ContextObj, Params]
+_lib.Z3_params_dec_ref.argtypes = [ContextObj, Params]
+_lib.Z3_params_set_bool.argtypes = [ContextObj, Params, Symbol, ctypes.c_bool]
+_lib.Z3_params_set_uint.argtypes = [ContextObj, Params, Symbol, ctypes.c_uint]
+_lib.Z3_params_set_double.argtypes = [ContextObj, Params, Symbol, ctypes.c_double]
+_lib.Z3_params_set_symbol.argtypes = [ContextObj, Params, Symbol, Symbol]
+_lib.Z3_params_to_string.restype = ctypes.c_char_p
+_lib.Z3_params_to_string.argtypes = [ContextObj, Params]
+_lib.Z3_params_validate.argtypes = [ContextObj, Params, ParamDescrs]
+_lib.Z3_param_descrs_inc_ref.argtypes = [ContextObj, ParamDescrs]
+_lib.Z3_param_descrs_dec_ref.argtypes = [ContextObj, ParamDescrs]
+_lib.Z3_param_descrs_get_kind.restype = ctypes.c_uint
+_lib.Z3_param_descrs_get_kind.argtypes = [ContextObj, ParamDescrs, Symbol]
+_lib.Z3_param_descrs_size.restype = ctypes.c_uint
+_lib.Z3_param_descrs_size.argtypes = [ContextObj, ParamDescrs]
+_lib.Z3_param_descrs_get_name.restype = Symbol
+_lib.Z3_param_descrs_get_name.argtypes = [ContextObj, ParamDescrs, ctypes.c_uint]
+_lib.Z3_param_descrs_get_documentation.restype = ctypes.c_char_p
+_lib.Z3_param_descrs_get_documentation.argtypes = [ContextObj, ParamDescrs, Symbol]
+_lib.Z3_param_descrs_to_string.restype = ctypes.c_char_p
+_lib.Z3_param_descrs_to_string.argtypes = [ContextObj, ParamDescrs]
+_lib.Z3_mk_int_symbol.restype = Symbol
+_lib.Z3_mk_int_symbol.argtypes = [ContextObj, ctypes.c_int]
+_lib.Z3_mk_string_symbol.restype = Symbol
+_lib.Z3_mk_string_symbol.argtypes = [ContextObj, ctypes.c_char_p]
+_lib.Z3_mk_uninterpreted_sort.restype = Sort
+_lib.Z3_mk_uninterpreted_sort.argtypes = [ContextObj, Symbol]
+_lib.Z3_mk_bool_sort.restype = Sort
+_lib.Z3_mk_bool_sort.argtypes = [ContextObj]
+_lib.Z3_mk_int_sort.restype = Sort
+_lib.Z3_mk_int_sort.argtypes = [ContextObj]
+_lib.Z3_mk_real_sort.restype = Sort
+_lib.Z3_mk_real_sort.argtypes = [ContextObj]
+_lib.Z3_mk_bv_sort.restype = Sort
+_lib.Z3_mk_bv_sort.argtypes = [ContextObj, ctypes.c_uint]
+_lib.Z3_mk_finite_domain_sort.restype = Sort
+_lib.Z3_mk_finite_domain_sort.argtypes = [ContextObj, Symbol, ctypes.c_ulonglong]
+_lib.Z3_mk_array_sort.restype = Sort
+_lib.Z3_mk_array_sort.argtypes = [ContextObj, Sort, Sort]
+_lib.Z3_mk_array_sort_n.restype = Sort
+_lib.Z3_mk_array_sort_n.argtypes = [ContextObj, ctypes.c_uint, ctypes.POINTER(Sort), Sort]
+_lib.Z3_mk_tuple_sort.restype = Sort
+_lib.Z3_mk_tuple_sort.argtypes = [ContextObj, Symbol, ctypes.c_uint, ctypes.POINTER(Symbol), ctypes.POINTER(Sort), ctypes.POINTER(FuncDecl), ctypes.POINTER(FuncDecl)]
+_lib.Z3_mk_enumeration_sort.restype = Sort
+_lib.Z3_mk_enumeration_sort.argtypes = [ContextObj, Symbol, ctypes.c_uint, ctypes.POINTER(Symbol), ctypes.POINTER(FuncDecl), ctypes.POINTER(FuncDecl)]
+_lib.Z3_mk_list_sort.restype = Sort
+_lib.Z3_mk_list_sort.argtypes = [ContextObj, Symbol, Sort, ctypes.POINTER(FuncDecl), ctypes.POINTER(FuncDecl), ctypes.POINTER(FuncDecl), ctypes.POINTER(FuncDecl), ctypes.POINTER(FuncDecl), ctypes.POINTER(FuncDecl)]
+_lib.Z3_mk_constructor.restype = Constructor
+_lib.Z3_mk_constructor.argtypes = [ContextObj, Symbol, Symbol, ctypes.c_uint, ctypes.POINTER(Symbol), ctypes.POINTER(Sort), ctypes.POINTER(ctypes.c_uint)]
+_lib.Z3_del_constructor.argtypes = [ContextObj, Constructor]
+_lib.Z3_mk_datatype.restype = Sort
+_lib.Z3_mk_datatype.argtypes = [ContextObj, Symbol, ctypes.c_uint, ctypes.POINTER(Constructor)]
+_lib.Z3_mk_constructor_list.restype = ConstructorList
+_lib.Z3_mk_constructor_list.argtypes = [ContextObj, ctypes.c_uint, ctypes.POINTER(Constructor)]
+_lib.Z3_del_constructor_list.argtypes = [ContextObj, ConstructorList]
+_lib.Z3_mk_datatypes.argtypes = [ContextObj, ctypes.c_uint, ctypes.POINTER(Symbol), ctypes.POINTER(Sort), ctypes.POINTER(ConstructorList)]
+_lib.Z3_query_constructor.argtypes = [ContextObj, Constructor, ctypes.c_uint, ctypes.POINTER(FuncDecl), ctypes.POINTER(FuncDecl), ctypes.POINTER(FuncDecl)]
+_lib.Z3_mk_func_decl.restype = FuncDecl
+_lib.Z3_mk_func_decl.argtypes = [ContextObj, Symbol, ctypes.c_uint, ctypes.POINTER(Sort), Sort]
+_lib.Z3_mk_app.restype = Ast
+_lib.Z3_mk_app.argtypes = [ContextObj, FuncDecl, ctypes.c_uint, ctypes.POINTER(Ast)]
+_lib.Z3_mk_const.restype = Ast
+_lib.Z3_mk_const.argtypes = [ContextObj, Symbol, Sort]
+_lib.Z3_mk_fresh_func_decl.restype = FuncDecl
+_lib.Z3_mk_fresh_func_decl.argtypes = [ContextObj, ctypes.c_char_p, ctypes.c_uint, ctypes.POINTER(Sort), Sort]
+_lib.Z3_mk_fresh_const.restype = Ast
+_lib.Z3_mk_fresh_const.argtypes = [ContextObj, ctypes.c_char_p, Sort]
+_lib.Z3_mk_rec_func_decl.restype = FuncDecl
+_lib.Z3_mk_rec_func_decl.argtypes = [ContextObj, Symbol, ctypes.c_uint, ctypes.POINTER(Sort), Sort]
+_lib.Z3_add_rec_def.argtypes = [ContextObj, FuncDecl, ctypes.c_uint, ctypes.POINTER(Ast), Ast]
+_lib.Z3_mk_true.restype = Ast
+_lib.Z3_mk_true.argtypes = [ContextObj]
+_lib.Z3_mk_false.restype = Ast
+_lib.Z3_mk_false.argtypes = [ContextObj]
+_lib.Z3_mk_eq.restype = Ast
+_lib.Z3_mk_eq.argtypes = [ContextObj, Ast, Ast]
+_lib.Z3_mk_distinct.restype = Ast
+_lib.Z3_mk_distinct.argtypes = [ContextObj, ctypes.c_uint, ctypes.POINTER(Ast)]
+_lib.Z3_mk_not.restype = Ast
+_lib.Z3_mk_not.argtypes = [ContextObj, Ast]
+_lib.Z3_mk_ite.restype = Ast
+_lib.Z3_mk_ite.argtypes = [ContextObj, Ast, Ast, Ast]
+_lib.Z3_mk_iff.restype = Ast
+_lib.Z3_mk_iff.argtypes = [ContextObj, Ast, Ast]
+_lib.Z3_mk_implies.restype = Ast
+_lib.Z3_mk_implies.argtypes = [ContextObj, Ast, Ast]
+_lib.Z3_mk_xor.restype = Ast
+_lib.Z3_mk_xor.argtypes = [ContextObj, Ast, Ast]
+_lib.Z3_mk_and.restype = Ast
+_lib.Z3_mk_and.argtypes = [ContextObj, ctypes.c_uint, ctypes.POINTER(Ast)]
+_lib.Z3_mk_or.restype = Ast
+_lib.Z3_mk_or.argtypes = [ContextObj, ctypes.c_uint, ctypes.POINTER(Ast)]
+_lib.Z3_mk_add.restype = Ast
+_lib.Z3_mk_add.argtypes = [ContextObj, ctypes.c_uint, ctypes.POINTER(Ast)]
+_lib.Z3_mk_mul.restype = Ast
+_lib.Z3_mk_mul.argtypes = [ContextObj, ctypes.c_uint, ctypes.POINTER(Ast)]
+_lib.Z3_mk_sub.restype = Ast
+_lib.Z3_mk_sub.argtypes = [ContextObj, ctypes.c_uint, ctypes.POINTER(Ast)]
+_lib.Z3_mk_unary_minus.restype = Ast
+_lib.Z3_mk_unary_minus.argtypes = [ContextObj, Ast]
+_lib.Z3_mk_div.restype = Ast
+_lib.Z3_mk_div.argtypes = [ContextObj, Ast, Ast]
+_lib.Z3_mk_mod.restype = Ast
+_lib.Z3_mk_mod.argtypes = [ContextObj, Ast, Ast]
+_lib.Z3_mk_rem.restype = Ast
+_lib.Z3_mk_rem.argtypes = [ContextObj, Ast, Ast]
+_lib.Z3_mk_power.restype = Ast
+_lib.Z3_mk_power.argtypes = [ContextObj, Ast, Ast]
+_lib.Z3_mk_lt.restype = Ast
+_lib.Z3_mk_lt.argtypes = [ContextObj, Ast, Ast]
+_lib.Z3_mk_le.restype = Ast
+_lib.Z3_mk_le.argtypes = [ContextObj, Ast, Ast]
+_lib.Z3_mk_gt.restype = Ast
+_lib.Z3_mk_gt.argtypes = [ContextObj, Ast, Ast]
+_lib.Z3_mk_ge.restype = Ast
+_lib.Z3_mk_ge.argtypes = [ContextObj, Ast, Ast]
+_lib.Z3_mk_divides.restype = Ast
+_lib.Z3_mk_divides.argtypes = [ContextObj, Ast, Ast]
+_lib.Z3_mk_int2real.restype = Ast
+_lib.Z3_mk_int2real.argtypes = [ContextObj, Ast]
+_lib.Z3_mk_real2int.restype = Ast
+_lib.Z3_mk_real2int.argtypes = [ContextObj, Ast]
+_lib.Z3_mk_is_int.restype = Ast
+_lib.Z3_mk_is_int.argtypes = [ContextObj, Ast]
+_lib.Z3_mk_bvnot.restype = Ast
+_lib.Z3_mk_bvnot.argtypes = [ContextObj, Ast]
+_lib.Z3_mk_bvredand.restype = Ast
+_lib.Z3_mk_bvredand.argtypes = [ContextObj, Ast]
+_lib.Z3_mk_bvredor.restype = Ast
+_lib.Z3_mk_bvredor.argtypes = [ContextObj, Ast]
+_lib.Z3_mk_bvand.restype = Ast
+_lib.Z3_mk_bvand.argtypes = [ContextObj, Ast, Ast]
+_lib.Z3_mk_bvor.restype = Ast
+_lib.Z3_mk_bvor.argtypes = [ContextObj, Ast, Ast]
+_lib.Z3_mk_bvxor.restype = Ast
+_lib.Z3_mk_bvxor.argtypes = [ContextObj, Ast, Ast]
+_lib.Z3_mk_bvnand.restype = Ast
+_lib.Z3_mk_bvnand.argtypes = [ContextObj, Ast, Ast]
+_lib.Z3_mk_bvnor.restype = Ast
+_lib.Z3_mk_bvnor.argtypes = [ContextObj, Ast, Ast]
+_lib.Z3_mk_bvxnor.restype = Ast
+_lib.Z3_mk_bvxnor.argtypes = [ContextObj, Ast, Ast]
+_lib.Z3_mk_bvneg.restype = Ast
+_lib.Z3_mk_bvneg.argtypes = [ContextObj, Ast]
+_lib.Z3_mk_bvadd.restype = Ast
+_lib.Z3_mk_bvadd.argtypes = [ContextObj, Ast, Ast]
+_lib.Z3_mk_bvsub.restype = Ast
+_lib.Z3_mk_bvsub.argtypes = [ContextObj, Ast, Ast]
+_lib.Z3_mk_bvmul.restype = Ast
+_lib.Z3_mk_bvmul.argtypes = [ContextObj, Ast, Ast]
+_lib.Z3_mk_bvudiv.restype = Ast
+_lib.Z3_mk_bvudiv.argtypes = [ContextObj, Ast, Ast]
+_lib.Z3_mk_bvsdiv.restype = Ast
+_lib.Z3_mk_bvsdiv.argtypes = [ContextObj, Ast, Ast]
+_lib.Z3_mk_bvurem.restype = Ast
+_lib.Z3_mk_bvurem.argtypes = [ContextObj, Ast, Ast]
+_lib.Z3_mk_bvsrem.restype = Ast
+_lib.Z3_mk_bvsrem.argtypes = [ContextObj, Ast, Ast]
+_lib.Z3_mk_bvsmod.restype = Ast
+_lib.Z3_mk_bvsmod.argtypes = [ContextObj, Ast, Ast]
+_lib.Z3_mk_bvult.restype = Ast
+_lib.Z3_mk_bvult.argtypes = [ContextObj, Ast, Ast]
+_lib.Z3_mk_bvslt.restype = Ast
+_lib.Z3_mk_bvslt.argtypes = [ContextObj, Ast, Ast]
+_lib.Z3_mk_bvule.restype = Ast
+_lib.Z3_mk_bvule.argtypes = [ContextObj, Ast, Ast]
+_lib.Z3_mk_bvsle.restype = Ast
+_lib.Z3_mk_bvsle.argtypes = [ContextObj, Ast, Ast]
+_lib.Z3_mk_bvuge.restype = Ast
+_lib.Z3_mk_bvuge.argtypes = [ContextObj, Ast, Ast]
+_lib.Z3_mk_bvsge.restype = Ast
+_lib.Z3_mk_bvsge.argtypes = [ContextObj, Ast, Ast]
+_lib.Z3_mk_bvugt.restype = Ast
+_lib.Z3_mk_bvugt.argtypes = [ContextObj, Ast, Ast]
+_lib.Z3_mk_bvsgt.restype = Ast
+_lib.Z3_mk_bvsgt.argtypes = [ContextObj, Ast, Ast]
+_lib.Z3_mk_concat.restype = Ast
+_lib.Z3_mk_concat.argtypes = [ContextObj, Ast, Ast]
+_lib.Z3_mk_extract.restype = Ast
+_lib.Z3_mk_extract.argtypes = [ContextObj, ctypes.c_uint, ctypes.c_uint, Ast]
+_lib.Z3_mk_sign_ext.restype = Ast
+_lib.Z3_mk_sign_ext.argtypes = [ContextObj, ctypes.c_uint, Ast]
+_lib.Z3_mk_zero_ext.restype = Ast
+_lib.Z3_mk_zero_ext.argtypes = [ContextObj, ctypes.c_uint, Ast]
+_lib.Z3_mk_repeat.restype = Ast
+_lib.Z3_mk_repeat.argtypes = [ContextObj, ctypes.c_uint, Ast]
+_lib.Z3_mk_bvshl.restype = Ast
+_lib.Z3_mk_bvshl.argtypes = [ContextObj, Ast, Ast]
+_lib.Z3_mk_bvlshr.restype = Ast
+_lib.Z3_mk_bvlshr.argtypes = [ContextObj, Ast, Ast]
+_lib.Z3_mk_bvashr.restype = Ast
+_lib.Z3_mk_bvashr.argtypes = [ContextObj, Ast, Ast]
+_lib.Z3_mk_rotate_left.restype = Ast
+_lib.Z3_mk_rotate_left.argtypes = [ContextObj, ctypes.c_uint, Ast]
+_lib.Z3_mk_rotate_right.restype = Ast
+_lib.Z3_mk_rotate_right.argtypes = [ContextObj, ctypes.c_uint, Ast]
+_lib.Z3_mk_ext_rotate_left.restype = Ast
+_lib.Z3_mk_ext_rotate_left.argtypes = [ContextObj, Ast, Ast]
+_lib.Z3_mk_ext_rotate_right.restype = Ast
+_lib.Z3_mk_ext_rotate_right.argtypes = [ContextObj, Ast, Ast]
+_lib.Z3_mk_int2bv.restype = Ast
+_lib.Z3_mk_int2bv.argtypes = [ContextObj, ctypes.c_uint, Ast]
+_lib.Z3_mk_bv2int.restype = Ast
+_lib.Z3_mk_bv2int.argtypes = [ContextObj, Ast, ctypes.c_bool]
+_lib.Z3_mk_bvadd_no_overflow.restype = Ast
+_lib.Z3_mk_bvadd_no_overflow.argtypes = [ContextObj, Ast, Ast, ctypes.c_bool]
+_lib.Z3_mk_bvadd_no_underflow.restype = Ast
+_lib.Z3_mk_bvadd_no_underflow.argtypes = [ContextObj, Ast, Ast]
+_lib.Z3_mk_bvsub_no_overflow.restype = Ast
+_lib.Z3_mk_bvsub_no_overflow.argtypes = [ContextObj, Ast, Ast]
+_lib.Z3_mk_bvsub_no_underflow.restype = Ast
+_lib.Z3_mk_bvsub_no_underflow.argtypes = [ContextObj, Ast, Ast, ctypes.c_bool]
+_lib.Z3_mk_bvsdiv_no_overflow.restype = Ast
+_lib.Z3_mk_bvsdiv_no_overflow.argtypes = [ContextObj, Ast, Ast]
+_lib.Z3_mk_bvneg_no_overflow.restype = Ast
+_lib.Z3_mk_bvneg_no_overflow.argtypes = [ContextObj, Ast]
+_lib.Z3_mk_bvmul_no_overflow.restype = Ast
+_lib.Z3_mk_bvmul_no_overflow.argtypes = [ContextObj, Ast, Ast, ctypes.c_bool]
+_lib.Z3_mk_bvmul_no_underflow.restype = Ast
+_lib.Z3_mk_bvmul_no_underflow.argtypes = [ContextObj, Ast, Ast]
+_lib.Z3_mk_select.restype = Ast
+_lib.Z3_mk_select.argtypes = [ContextObj, Ast, Ast]
+_lib.Z3_mk_select_n.restype = Ast
+_lib.Z3_mk_select_n.argtypes = [ContextObj, Ast, ctypes.c_uint, ctypes.POINTER(Ast)]
+_lib.Z3_mk_store.restype = Ast
+_lib.Z3_mk_store.argtypes = [ContextObj, Ast, Ast, Ast]
+_lib.Z3_mk_store_n.restype = Ast
+_lib.Z3_mk_store_n.argtypes = [ContextObj, Ast, ctypes.c_uint, ctypes.POINTER(Ast), Ast]
+_lib.Z3_mk_const_array.restype = Ast
+_lib.Z3_mk_const_array.argtypes = [ContextObj, Sort, Ast]
+_lib.Z3_mk_map.restype = Ast
+_lib.Z3_mk_map.argtypes = [ContextObj, FuncDecl, ctypes.c_uint, ctypes.POINTER(Ast)]
+_lib.Z3_mk_array_default.restype = Ast
+_lib.Z3_mk_array_default.argtypes = [ContextObj, Ast]
+_lib.Z3_mk_as_array.restype = Ast
+_lib.Z3_mk_as_array.argtypes = [ContextObj, FuncDecl]
+_lib.Z3_mk_set_has_size.restype = Ast
+_lib.Z3_mk_set_has_size.argtypes = [ContextObj, Ast, Ast]
+_lib.Z3_mk_set_sort.restype = Sort
+_lib.Z3_mk_set_sort.argtypes = [ContextObj, Sort]
+_lib.Z3_mk_empty_set.restype = Ast
+_lib.Z3_mk_empty_set.argtypes = [ContextObj, Sort]
+_lib.Z3_mk_full_set.restype = Ast
+_lib.Z3_mk_full_set.argtypes = [ContextObj, Sort]
+_lib.Z3_mk_set_add.restype = Ast
+_lib.Z3_mk_set_add.argtypes = [ContextObj, Ast, Ast]
+_lib.Z3_mk_set_del.restype = Ast
+_lib.Z3_mk_set_del.argtypes = [ContextObj, Ast, Ast]
+_lib.Z3_mk_set_union.restype = Ast
+_lib.Z3_mk_set_union.argtypes = [ContextObj, ctypes.c_uint, ctypes.POINTER(Ast)]
+_lib.Z3_mk_set_intersect.restype = Ast
+_lib.Z3_mk_set_intersect.argtypes = [ContextObj, ctypes.c_uint, ctypes.POINTER(Ast)]
+_lib.Z3_mk_set_difference.restype = Ast
+_lib.Z3_mk_set_difference.argtypes = [ContextObj, Ast, Ast]
+_lib.Z3_mk_set_complement.restype = Ast
+_lib.Z3_mk_set_complement.argtypes = [ContextObj, Ast]
+_lib.Z3_mk_set_member.restype = Ast
+_lib.Z3_mk_set_member.argtypes = [ContextObj, Ast, Ast]
+_lib.Z3_mk_set_subset.restype = Ast
+_lib.Z3_mk_set_subset.argtypes = [ContextObj, Ast, Ast]
+_lib.Z3_mk_array_ext.restype = Ast
+_lib.Z3_mk_array_ext.argtypes = [ContextObj, Ast, Ast]
+_lib.Z3_mk_numeral.restype = Ast
+_lib.Z3_mk_numeral.argtypes = [ContextObj, ctypes.c_char_p, Sort]
+_lib.Z3_mk_real.restype = Ast
+_lib.Z3_mk_real.argtypes = [ContextObj, ctypes.c_int, ctypes.c_int]
+_lib.Z3_mk_int.restype = Ast
+_lib.Z3_mk_int.argtypes = [ContextObj, ctypes.c_int, Sort]
+_lib.Z3_mk_unsigned_int.restype = Ast
+_lib.Z3_mk_unsigned_int.argtypes = [ContextObj, ctypes.c_uint, Sort]
+_lib.Z3_mk_int64.restype = Ast
+_lib.Z3_mk_int64.argtypes = [ContextObj, ctypes.c_longlong, Sort]
+_lib.Z3_mk_unsigned_int64.restype = Ast
+_lib.Z3_mk_unsigned_int64.argtypes = [ContextObj, ctypes.c_ulonglong, Sort]
+_lib.Z3_mk_bv_numeral.restype = Ast
+_lib.Z3_mk_bv_numeral.argtypes = [ContextObj, ctypes.c_uint, ctypes.POINTER(ctypes.c_bool)]
+_lib.Z3_mk_seq_sort.restype = Sort
+_lib.Z3_mk_seq_sort.argtypes = [ContextObj, Sort]
+_lib.Z3_is_seq_sort.restype = ctypes.c_bool
+_lib.Z3_is_seq_sort.argtypes = [ContextObj, Sort]
+_lib.Z3_get_seq_sort_basis.restype = Sort
+_lib.Z3_get_seq_sort_basis.argtypes = [ContextObj, Sort]
+_lib.Z3_mk_re_sort.restype = Sort
+_lib.Z3_mk_re_sort.argtypes = [ContextObj, Sort]
+_lib.Z3_is_re_sort.restype = ctypes.c_bool
+_lib.Z3_is_re_sort.argtypes = [ContextObj, Sort]
+_lib.Z3_get_re_sort_basis.restype = Sort
+_lib.Z3_get_re_sort_basis.argtypes = [ContextObj, Sort]
+_lib.Z3_mk_string_sort.restype = Sort
+_lib.Z3_mk_string_sort.argtypes = [ContextObj]
+_lib.Z3_is_string_sort.restype = ctypes.c_bool
+_lib.Z3_is_string_sort.argtypes = [ContextObj, Sort]
+_lib.Z3_mk_string.restype = Ast
+_lib.Z3_mk_string.argtypes = [ContextObj, ctypes.c_char_p]
+_lib.Z3_mk_lstring.restype = Ast
+_lib.Z3_mk_lstring.argtypes = [ContextObj, ctypes.c_uint, ctypes.c_char_p]
+_lib.Z3_is_string.restype = ctypes.c_bool
+_lib.Z3_is_string.argtypes = [ContextObj, Ast]
+_lib.Z3_get_string.restype = ctypes.c_char_p
+_lib.Z3_get_string.argtypes = [ContextObj, Ast]
+_lib.Z3_get_lstring.restype = ctypes.POINTER(ctypes.c_char)
+_lib.Z3_get_lstring.argtypes = [ContextObj, Ast, ctypes.POINTER(ctypes.c_uint)]
+_lib.Z3_mk_seq_empty.restype = Ast
+_lib.Z3_mk_seq_empty.argtypes = [ContextObj, Sort]
+_lib.Z3_mk_seq_unit.restype = Ast
+_lib.Z3_mk_seq_unit.argtypes = [ContextObj, Ast]
+_lib.Z3_mk_seq_concat.restype = Ast
+_lib.Z3_mk_seq_concat.argtypes = [ContextObj, ctypes.c_uint, ctypes.POINTER(Ast)]
+_lib.Z3_mk_seq_prefix.restype = Ast
+_lib.Z3_mk_seq_prefix.argtypes = [ContextObj, Ast, Ast]
+_lib.Z3_mk_seq_suffix.restype = Ast
+_lib.Z3_mk_seq_suffix.argtypes = [ContextObj, Ast, Ast]
+_lib.Z3_mk_seq_contains.restype = Ast
+_lib.Z3_mk_seq_contains.argtypes = [ContextObj, Ast, Ast]
+_lib.Z3_mk_str_lt.restype = Ast
+_lib.Z3_mk_str_lt.argtypes = [ContextObj, Ast, Ast]
+_lib.Z3_mk_str_le.restype = Ast
+_lib.Z3_mk_str_le.argtypes = [ContextObj, Ast, Ast]
+_lib.Z3_mk_seq_extract.restype = Ast
+_lib.Z3_mk_seq_extract.argtypes = [ContextObj, Ast, Ast, Ast]
+_lib.Z3_mk_seq_replace.restype = Ast
+_lib.Z3_mk_seq_replace.argtypes = [ContextObj, Ast, Ast, Ast]
+_lib.Z3_mk_seq_at.restype = Ast
+_lib.Z3_mk_seq_at.argtypes = [ContextObj, Ast, Ast]
+_lib.Z3_mk_seq_nth.restype = Ast
+_lib.Z3_mk_seq_nth.argtypes = [ContextObj, Ast, Ast]
+_lib.Z3_mk_seq_length.restype = Ast
+_lib.Z3_mk_seq_length.argtypes = [ContextObj, Ast]
+_lib.Z3_mk_seq_index.restype = Ast
+_lib.Z3_mk_seq_index.argtypes = [ContextObj, Ast, Ast, Ast]
+_lib.Z3_mk_seq_last_index.restype = Ast
+_lib.Z3_mk_seq_last_index.argtypes = [ContextObj, Ast, Ast]
+_lib.Z3_mk_str_to_int.restype = Ast
+_lib.Z3_mk_str_to_int.argtypes = [ContextObj, Ast]
+_lib.Z3_mk_int_to_str.restype = Ast
+_lib.Z3_mk_int_to_str.argtypes = [ContextObj, Ast]
+_lib.Z3_mk_seq_to_re.restype = Ast
+_lib.Z3_mk_seq_to_re.argtypes = [ContextObj, Ast]
+_lib.Z3_mk_seq_in_re.restype = Ast
+_lib.Z3_mk_seq_in_re.argtypes = [ContextObj, Ast, Ast]
+_lib.Z3_mk_re_plus.restype = Ast
+_lib.Z3_mk_re_plus.argtypes = [ContextObj, Ast]
+_lib.Z3_mk_re_star.restype = Ast
+_lib.Z3_mk_re_star.argtypes = [ContextObj, Ast]
+_lib.Z3_mk_re_option.restype = Ast
+_lib.Z3_mk_re_option.argtypes = [ContextObj, Ast]
+_lib.Z3_mk_re_union.restype = Ast
+_lib.Z3_mk_re_union.argtypes = [ContextObj, ctypes.c_uint, ctypes.POINTER(Ast)]
+_lib.Z3_mk_re_concat.restype = Ast
+_lib.Z3_mk_re_concat.argtypes = [ContextObj, ctypes.c_uint, ctypes.POINTER(Ast)]
+_lib.Z3_mk_re_range.restype = Ast
+_lib.Z3_mk_re_range.argtypes = [ContextObj, Ast, Ast]
+_lib.Z3_mk_re_loop.restype = Ast
+_lib.Z3_mk_re_loop.argtypes = [ContextObj, Ast, ctypes.c_uint, ctypes.c_uint]
+_lib.Z3_mk_re_intersect.restype = Ast
+_lib.Z3_mk_re_intersect.argtypes = [ContextObj, ctypes.c_uint, ctypes.POINTER(Ast)]
+_lib.Z3_mk_re_complement.restype = Ast
+_lib.Z3_mk_re_complement.argtypes = [ContextObj, Ast]
+_lib.Z3_mk_re_empty.restype = Ast
+_lib.Z3_mk_re_empty.argtypes = [ContextObj, Sort]
+_lib.Z3_mk_re_full.restype = Ast
+_lib.Z3_mk_re_full.argtypes = [ContextObj, Sort]
+_lib.Z3_mk_linear_order.restype = FuncDecl
+_lib.Z3_mk_linear_order.argtypes = [ContextObj, Sort, ctypes.c_uint]
+_lib.Z3_mk_partial_order.restype = FuncDecl
+_lib.Z3_mk_partial_order.argtypes = [ContextObj, Sort, ctypes.c_uint]
+_lib.Z3_mk_piecewise_linear_order.restype = FuncDecl
+_lib.Z3_mk_piecewise_linear_order.argtypes = [ContextObj, Sort, ctypes.c_uint]
+_lib.Z3_mk_tree_order.restype = FuncDecl
+_lib.Z3_mk_tree_order.argtypes = [ContextObj, Sort, ctypes.c_uint]
+_lib.Z3_mk_transitive_closure.restype = FuncDecl
+_lib.Z3_mk_transitive_closure.argtypes = [ContextObj, FuncDecl]
+_lib.Z3_mk_pattern.restype = Pattern
+_lib.Z3_mk_pattern.argtypes = [ContextObj, ctypes.c_uint, ctypes.POINTER(Ast)]
+_lib.Z3_mk_bound.restype = Ast
+_lib.Z3_mk_bound.argtypes = [ContextObj, ctypes.c_uint, Sort]
+_lib.Z3_mk_forall.restype = Ast
+_lib.Z3_mk_forall.argtypes = [ContextObj, ctypes.c_uint, ctypes.c_uint, ctypes.POINTER(Pattern), ctypes.c_uint, ctypes.POINTER(Sort), ctypes.POINTER(Symbol), Ast]
+_lib.Z3_mk_exists.restype = Ast
+_lib.Z3_mk_exists.argtypes = [ContextObj, ctypes.c_uint, ctypes.c_uint, ctypes.POINTER(Pattern), ctypes.c_uint, ctypes.POINTER(Sort), ctypes.POINTER(Symbol), Ast]
+_lib.Z3_mk_quantifier.restype = Ast
+_lib.Z3_mk_quantifier.argtypes = [ContextObj, ctypes.c_bool, ctypes.c_uint, ctypes.c_uint, ctypes.POINTER(Pattern), ctypes.c_uint, ctypes.POINTER(Sort), ctypes.POINTER(Symbol), Ast]
+_lib.Z3_mk_quantifier_ex.restype = Ast
+_lib.Z3_mk_quantifier_ex.argtypes = [ContextObj, ctypes.c_bool, ctypes.c_uint, Symbol, Symbol, ctypes.c_uint, ctypes.POINTER(Pattern), ctypes.c_uint, ctypes.POINTER(Ast), ctypes.c_uint, ctypes.POINTER(Sort), ctypes.POINTER(Symbol), Ast]
+_lib.Z3_mk_forall_const.restype = Ast
+_lib.Z3_mk_forall_const.argtypes = [ContextObj, ctypes.c_uint, ctypes.c_uint, ctypes.POINTER(Ast), ctypes.c_uint, ctypes.POINTER(Pattern), Ast]
+_lib.Z3_mk_exists_const.restype = Ast
+_lib.Z3_mk_exists_const.argtypes = [ContextObj, ctypes.c_uint, ctypes.c_uint, ctypes.POINTER(Ast), ctypes.c_uint, ctypes.POINTER(Pattern), Ast]
+_lib.Z3_mk_quantifier_const.restype = Ast
+_lib.Z3_mk_quantifier_const.argtypes = [ContextObj, ctypes.c_bool, ctypes.c_uint, ctypes.c_uint, ctypes.POINTER(Ast), ctypes.c_uint, ctypes.POINTER(Pattern), Ast]
+_lib.Z3_mk_quantifier_const_ex.restype = Ast
+_lib.Z3_mk_quantifier_const_ex.argtypes = [ContextObj, ctypes.c_bool, ctypes.c_uint, Symbol, Symbol, ctypes.c_uint, ctypes.POINTER(Ast), ctypes.c_uint, ctypes.POINTER(Pattern), ctypes.c_uint, ctypes.POINTER(Ast), Ast]
+_lib.Z3_mk_lambda.restype = Ast
+_lib.Z3_mk_lambda.argtypes = [ContextObj, ctypes.c_uint, ctypes.POINTER(Sort), ctypes.POINTER(Symbol), Ast]
+_lib.Z3_mk_lambda_const.restype = Ast
+_lib.Z3_mk_lambda_const.argtypes = [ContextObj, ctypes.c_uint, ctypes.POINTER(Ast), Ast]
+_lib.Z3_get_symbol_kind.restype = ctypes.c_uint
+_lib.Z3_get_symbol_kind.argtypes = [ContextObj, Symbol]
+_lib.Z3_get_symbol_int.restype = ctypes.c_int
+_lib.Z3_get_symbol_int.argtypes = [ContextObj, Symbol]
+_lib.Z3_get_symbol_string.restype = ctypes.c_char_p
+_lib.Z3_get_symbol_string.argtypes = [ContextObj, Symbol]
+_lib.Z3_get_sort_name.restype = Symbol
+_lib.Z3_get_sort_name.argtypes = [ContextObj, Sort]
+_lib.Z3_get_sort_id.restype = ctypes.c_uint
+_lib.Z3_get_sort_id.argtypes = [ContextObj, Sort]
+_lib.Z3_sort_to_ast.restype = Ast
+_lib.Z3_sort_to_ast.argtypes = [ContextObj, Sort]
+_lib.Z3_is_eq_sort.restype = ctypes.c_bool
+_lib.Z3_is_eq_sort.argtypes = [ContextObj, Sort, Sort]
+_lib.Z3_get_sort_kind.restype = ctypes.c_uint
+_lib.Z3_get_sort_kind.argtypes = [ContextObj, Sort]
+_lib.Z3_get_bv_sort_size.restype = ctypes.c_uint
+_lib.Z3_get_bv_sort_size.argtypes = [ContextObj, Sort]
+_lib.Z3_get_finite_domain_sort_size.restype = ctypes.c_bool
+_lib.Z3_get_finite_domain_sort_size.argtypes = [ContextObj, Sort, ctypes.POINTER(ctypes.c_ulonglong)]
+_lib.Z3_get_array_sort_domain.restype = Sort
+_lib.Z3_get_array_sort_domain.argtypes = [ContextObj, Sort]
+_lib.Z3_get_array_sort_range.restype = Sort
+_lib.Z3_get_array_sort_range.argtypes = [ContextObj, Sort]
+_lib.Z3_get_tuple_sort_mk_decl.restype = FuncDecl
+_lib.Z3_get_tuple_sort_mk_decl.argtypes = [ContextObj, Sort]
+_lib.Z3_get_tuple_sort_num_fields.restype = ctypes.c_uint
+_lib.Z3_get_tuple_sort_num_fields.argtypes = [ContextObj, Sort]
+_lib.Z3_get_tuple_sort_field_decl.restype = FuncDecl
+_lib.Z3_get_tuple_sort_field_decl.argtypes = [ContextObj, Sort, ctypes.c_uint]
+_lib.Z3_get_datatype_sort_num_constructors.restype = ctypes.c_uint
+_lib.Z3_get_datatype_sort_num_constructors.argtypes = [ContextObj, Sort]
+_lib.Z3_get_datatype_sort_constructor.restype = FuncDecl
+_lib.Z3_get_datatype_sort_constructor.argtypes = [ContextObj, Sort, ctypes.c_uint]
+_lib.Z3_get_datatype_sort_recognizer.restype = FuncDecl
+_lib.Z3_get_datatype_sort_recognizer.argtypes = [ContextObj, Sort, ctypes.c_uint]
+_lib.Z3_get_datatype_sort_constructor_accessor.restype = FuncDecl
+_lib.Z3_get_datatype_sort_constructor_accessor.argtypes = [ContextObj, Sort, ctypes.c_uint, ctypes.c_uint]
+_lib.Z3_datatype_update_field.restype = Ast
+_lib.Z3_datatype_update_field.argtypes = [ContextObj, FuncDecl, Ast, Ast]
+_lib.Z3_get_relation_arity.restype = ctypes.c_uint
+_lib.Z3_get_relation_arity.argtypes = [ContextObj, Sort]
+_lib.Z3_get_relation_column.restype = Sort
+_lib.Z3_get_relation_column.argtypes = [ContextObj, Sort, ctypes.c_uint]
+_lib.Z3_mk_atmost.restype = Ast
+_lib.Z3_mk_atmost.argtypes = [ContextObj, ctypes.c_uint, ctypes.POINTER(Ast), ctypes.c_uint]
+_lib.Z3_mk_atleast.restype = Ast
+_lib.Z3_mk_atleast.argtypes = [ContextObj, ctypes.c_uint, ctypes.POINTER(Ast), ctypes.c_uint]
+_lib.Z3_mk_pble.restype = Ast
+_lib.Z3_mk_pble.argtypes = [ContextObj, ctypes.c_uint, ctypes.POINTER(Ast), ctypes.POINTER(ctypes.c_int), ctypes.c_int]
+_lib.Z3_mk_pbge.restype = Ast
+_lib.Z3_mk_pbge.argtypes = [ContextObj, ctypes.c_uint, ctypes.POINTER(Ast), ctypes.POINTER(ctypes.c_int), ctypes.c_int]
+_lib.Z3_mk_pbeq.restype = Ast
+_lib.Z3_mk_pbeq.argtypes = [ContextObj, ctypes.c_uint, ctypes.POINTER(Ast), ctypes.POINTER(ctypes.c_int), ctypes.c_int]
+_lib.Z3_func_decl_to_ast.restype = Ast
+_lib.Z3_func_decl_to_ast.argtypes = [ContextObj, FuncDecl]
+_lib.Z3_is_eq_func_decl.restype = ctypes.c_bool
+_lib.Z3_is_eq_func_decl.argtypes = [ContextObj, FuncDecl, FuncDecl]
+_lib.Z3_get_func_decl_id.restype = ctypes.c_uint
+_lib.Z3_get_func_decl_id.argtypes = [ContextObj, FuncDecl]
+_lib.Z3_get_decl_name.restype = Symbol
+_lib.Z3_get_decl_name.argtypes = [ContextObj, FuncDecl]
+_lib.Z3_get_decl_kind.restype = ctypes.c_uint
+_lib.Z3_get_decl_kind.argtypes = [ContextObj, FuncDecl]
+_lib.Z3_get_domain_size.restype = ctypes.c_uint
+_lib.Z3_get_domain_size.argtypes = [ContextObj, FuncDecl]
+_lib.Z3_get_arity.restype = ctypes.c_uint
+_lib.Z3_get_arity.argtypes = [ContextObj, FuncDecl]
+_lib.Z3_get_domain.restype = Sort
+_lib.Z3_get_domain.argtypes = [ContextObj, FuncDecl, ctypes.c_uint]
+_lib.Z3_get_range.restype = Sort
+_lib.Z3_get_range.argtypes = [ContextObj, FuncDecl]
+_lib.Z3_get_decl_num_parameters.restype = ctypes.c_uint
+_lib.Z3_get_decl_num_parameters.argtypes = [ContextObj, FuncDecl]
+_lib.Z3_get_decl_parameter_kind.restype = ctypes.c_uint
+_lib.Z3_get_decl_parameter_kind.argtypes = [ContextObj, FuncDecl, ctypes.c_uint]
+_lib.Z3_get_decl_int_parameter.restype = ctypes.c_int
+_lib.Z3_get_decl_int_parameter.argtypes = [ContextObj, FuncDecl, ctypes.c_uint]
+_lib.Z3_get_decl_double_parameter.restype = ctypes.c_double
+_lib.Z3_get_decl_double_parameter.argtypes = [ContextObj, FuncDecl, ctypes.c_uint]
+_lib.Z3_get_decl_symbol_parameter.restype = Symbol
+_lib.Z3_get_decl_symbol_parameter.argtypes = [ContextObj, FuncDecl, ctypes.c_uint]
+_lib.Z3_get_decl_sort_parameter.restype = Sort
+_lib.Z3_get_decl_sort_parameter.argtypes = [ContextObj, FuncDecl, ctypes.c_uint]
+_lib.Z3_get_decl_ast_parameter.restype = Ast
+_lib.Z3_get_decl_ast_parameter.argtypes = [ContextObj, FuncDecl, ctypes.c_uint]
+_lib.Z3_get_decl_func_decl_parameter.restype = FuncDecl
+_lib.Z3_get_decl_func_decl_parameter.argtypes = [ContextObj, FuncDecl, ctypes.c_uint]
+_lib.Z3_get_decl_rational_parameter.restype = ctypes.c_char_p
+_lib.Z3_get_decl_rational_parameter.argtypes = [ContextObj, FuncDecl, ctypes.c_uint]
+_lib.Z3_app_to_ast.restype = Ast
+_lib.Z3_app_to_ast.argtypes = [ContextObj, Ast]
+_lib.Z3_get_app_decl.restype = FuncDecl
+_lib.Z3_get_app_decl.argtypes = [ContextObj, Ast]
+_lib.Z3_get_app_num_args.restype = ctypes.c_uint
+_lib.Z3_get_app_num_args.argtypes = [ContextObj, Ast]
+_lib.Z3_get_app_arg.restype = Ast
+_lib.Z3_get_app_arg.argtypes = [ContextObj, Ast, ctypes.c_uint]
+_lib.Z3_is_eq_ast.restype = ctypes.c_bool
+_lib.Z3_is_eq_ast.argtypes = [ContextObj, Ast, Ast]
+_lib.Z3_get_ast_id.restype = ctypes.c_uint
+_lib.Z3_get_ast_id.argtypes = [ContextObj, Ast]
+_lib.Z3_get_ast_hash.restype = ctypes.c_uint
+_lib.Z3_get_ast_hash.argtypes = [ContextObj, Ast]
+_lib.Z3_get_sort.restype = Sort
+_lib.Z3_get_sort.argtypes = [ContextObj, Ast]
+_lib.Z3_is_well_sorted.restype = ctypes.c_bool
+_lib.Z3_is_well_sorted.argtypes = [ContextObj, Ast]
+_lib.Z3_get_bool_value.restype = ctypes.c_int
+_lib.Z3_get_bool_value.argtypes = [ContextObj, Ast]
+_lib.Z3_get_ast_kind.restype = ctypes.c_uint
+_lib.Z3_get_ast_kind.argtypes = [ContextObj, Ast]
+_lib.Z3_is_app.restype = ctypes.c_bool
+_lib.Z3_is_app.argtypes = [ContextObj, Ast]
+_lib.Z3_is_numeral_ast.restype = ctypes.c_bool
+_lib.Z3_is_numeral_ast.argtypes = [ContextObj, Ast]
+_lib.Z3_is_algebraic_number.restype = ctypes.c_bool
+_lib.Z3_is_algebraic_number.argtypes = [ContextObj, Ast]
+_lib.Z3_to_app.restype = Ast
+_lib.Z3_to_app.argtypes = [ContextObj, Ast]
+_lib.Z3_to_func_decl.restype = FuncDecl
+_lib.Z3_to_func_decl.argtypes = [ContextObj, Ast]
+_lib.Z3_get_numeral_string.restype = ctypes.c_char_p
+_lib.Z3_get_numeral_string.argtypes = [ContextObj, Ast]
+_lib.Z3_get_numeral_binary_string.restype = ctypes.c_char_p
+_lib.Z3_get_numeral_binary_string.argtypes = [ContextObj, Ast]
+_lib.Z3_get_numeral_decimal_string.restype = ctypes.c_char_p
+_lib.Z3_get_numeral_decimal_string.argtypes = [ContextObj, Ast, ctypes.c_uint]
+_lib.Z3_get_numeral_double.restype = ctypes.c_double
+_lib.Z3_get_numeral_double.argtypes = [ContextObj, Ast]
+_lib.Z3_get_numerator.restype = Ast
+_lib.Z3_get_numerator.argtypes = [ContextObj, Ast]
+_lib.Z3_get_denominator.restype = Ast
+_lib.Z3_get_denominator.argtypes = [ContextObj, Ast]
+_lib.Z3_get_numeral_small.restype = ctypes.c_bool
+_lib.Z3_get_numeral_small.argtypes = [ContextObj, Ast, ctypes.POINTER(ctypes.c_longlong), ctypes.POINTER(ctypes.c_longlong)]
+_lib.Z3_get_numeral_int.restype = ctypes.c_bool
+_lib.Z3_get_numeral_int.argtypes = [ContextObj, Ast, ctypes.POINTER(ctypes.c_int)]
+_lib.Z3_get_numeral_uint.restype = ctypes.c_bool
+_lib.Z3_get_numeral_uint.argtypes = [ContextObj, Ast, ctypes.POINTER(ctypes.c_uint)]
+_lib.Z3_get_numeral_uint64.restype = ctypes.c_bool
+_lib.Z3_get_numeral_uint64.argtypes = [ContextObj, Ast, ctypes.POINTER(ctypes.c_ulonglong)]
+_lib.Z3_get_numeral_int64.restype = ctypes.c_bool
+_lib.Z3_get_numeral_int64.argtypes = [ContextObj, Ast, ctypes.POINTER(ctypes.c_longlong)]
+_lib.Z3_get_numeral_rational_int64.restype = ctypes.c_bool
+_lib.Z3_get_numeral_rational_int64.argtypes = [ContextObj, Ast, ctypes.POINTER(ctypes.c_longlong), ctypes.POINTER(ctypes.c_longlong)]
+_lib.Z3_get_algebraic_number_lower.restype = Ast
+_lib.Z3_get_algebraic_number_lower.argtypes = [ContextObj, Ast, ctypes.c_uint]
+_lib.Z3_get_algebraic_number_upper.restype = Ast
+_lib.Z3_get_algebraic_number_upper.argtypes = [ContextObj, Ast, ctypes.c_uint]
+_lib.Z3_pattern_to_ast.restype = Ast
+_lib.Z3_pattern_to_ast.argtypes = [ContextObj, Pattern]
+_lib.Z3_get_pattern_num_terms.restype = ctypes.c_uint
+_lib.Z3_get_pattern_num_terms.argtypes = [ContextObj, Pattern]
+_lib.Z3_get_pattern.restype = Ast
+_lib.Z3_get_pattern.argtypes = [ContextObj, Pattern, ctypes.c_uint]
+_lib.Z3_get_index_value.restype = ctypes.c_uint
+_lib.Z3_get_index_value.argtypes = [ContextObj, Ast]
+_lib.Z3_is_quantifier_forall.restype = ctypes.c_bool
+_lib.Z3_is_quantifier_forall.argtypes = [ContextObj, Ast]
+_lib.Z3_is_quantifier_exists.restype = ctypes.c_bool
+_lib.Z3_is_quantifier_exists.argtypes = [ContextObj, Ast]
+_lib.Z3_is_lambda.restype = ctypes.c_bool
+_lib.Z3_is_lambda.argtypes = [ContextObj, Ast]
+_lib.Z3_get_quantifier_weight.restype = ctypes.c_uint
+_lib.Z3_get_quantifier_weight.argtypes = [ContextObj, Ast]
+_lib.Z3_get_quantifier_num_patterns.restype = ctypes.c_uint
+_lib.Z3_get_quantifier_num_patterns.argtypes = [ContextObj, Ast]
+_lib.Z3_get_quantifier_pattern_ast.restype = Pattern
+_lib.Z3_get_quantifier_pattern_ast.argtypes = [ContextObj, Ast, ctypes.c_uint]
+_lib.Z3_get_quantifier_num_no_patterns.restype = ctypes.c_uint
+_lib.Z3_get_quantifier_num_no_patterns.argtypes = [ContextObj, Ast]
+_lib.Z3_get_quantifier_no_pattern_ast.restype = Ast
+_lib.Z3_get_quantifier_no_pattern_ast.argtypes = [ContextObj, Ast, ctypes.c_uint]
+_lib.Z3_get_quantifier_num_bound.restype = ctypes.c_uint
+_lib.Z3_get_quantifier_num_bound.argtypes = [ContextObj, Ast]
+_lib.Z3_get_quantifier_bound_name.restype = Symbol
+_lib.Z3_get_quantifier_bound_name.argtypes = [ContextObj, Ast, ctypes.c_uint]
+_lib.Z3_get_quantifier_bound_sort.restype = Sort
+_lib.Z3_get_quantifier_bound_sort.argtypes = [ContextObj, Ast, ctypes.c_uint]
+_lib.Z3_get_quantifier_body.restype = Ast
+_lib.Z3_get_quantifier_body.argtypes = [ContextObj, Ast]
+_lib.Z3_simplify.restype = Ast
+_lib.Z3_simplify.argtypes = [ContextObj, Ast]
+_lib.Z3_simplify_ex.restype = Ast
+_lib.Z3_simplify_ex.argtypes = [ContextObj, Ast, Params]
+_lib.Z3_simplify_get_help.restype = ctypes.c_char_p
+_lib.Z3_simplify_get_help.argtypes = [ContextObj]
+_lib.Z3_simplify_get_param_descrs.restype = ParamDescrs
+_lib.Z3_simplify_get_param_descrs.argtypes = [ContextObj]
+_lib.Z3_update_term.restype = Ast
+_lib.Z3_update_term.argtypes = [ContextObj, Ast, ctypes.c_uint, ctypes.POINTER(Ast)]
+_lib.Z3_substitute.restype = Ast
+_lib.Z3_substitute.argtypes = [ContextObj, Ast, ctypes.c_uint, ctypes.POINTER(Ast), ctypes.POINTER(Ast)]
+_lib.Z3_substitute_vars.restype = Ast
+_lib.Z3_substitute_vars.argtypes = [ContextObj, Ast, ctypes.c_uint, ctypes.POINTER(Ast)]
+_lib.Z3_translate.restype = Ast
+_lib.Z3_translate.argtypes = [ContextObj, Ast, ContextObj]
+_lib.Z3_mk_model.restype = Model
+_lib.Z3_mk_model.argtypes = [ContextObj]
+_lib.Z3_model_inc_ref.argtypes = [ContextObj, Model]
+_lib.Z3_model_dec_ref.argtypes = [ContextObj, Model]
+_lib.Z3_model_eval.restype = ctypes.c_bool
+_lib.Z3_model_eval.argtypes = [ContextObj, Model, Ast, ctypes.c_bool, ctypes.POINTER(Ast)]
+_lib.Z3_model_get_const_interp.restype = Ast
+_lib.Z3_model_get_const_interp.argtypes = [ContextObj, Model, FuncDecl]
+_lib.Z3_model_has_interp.restype = ctypes.c_bool
+_lib.Z3_model_has_interp.argtypes = [ContextObj, Model, FuncDecl]
+_lib.Z3_model_get_func_interp.restype = FuncInterpObj
+_lib.Z3_model_get_func_interp.argtypes = [ContextObj, Model, FuncDecl]
+_lib.Z3_model_get_num_consts.restype = ctypes.c_uint
+_lib.Z3_model_get_num_consts.argtypes = [ContextObj, Model]
+_lib.Z3_model_get_const_decl.restype = FuncDecl
+_lib.Z3_model_get_const_decl.argtypes = [ContextObj, Model, ctypes.c_uint]
+_lib.Z3_model_get_num_funcs.restype = ctypes.c_uint
+_lib.Z3_model_get_num_funcs.argtypes = [ContextObj, Model]
+_lib.Z3_model_get_func_decl.restype = FuncDecl
+_lib.Z3_model_get_func_decl.argtypes = [ContextObj, Model, ctypes.c_uint]
+_lib.Z3_model_get_num_sorts.restype = ctypes.c_uint
+_lib.Z3_model_get_num_sorts.argtypes = [ContextObj, Model]
+_lib.Z3_model_get_sort.restype = Sort
+_lib.Z3_model_get_sort.argtypes = [ContextObj, Model, ctypes.c_uint]
+_lib.Z3_model_get_sort_universe.restype = AstVectorObj
+_lib.Z3_model_get_sort_universe.argtypes = [ContextObj, Model, Sort]
+_lib.Z3_model_translate.restype = Model
+_lib.Z3_model_translate.argtypes = [ContextObj, Model, ContextObj]
+_lib.Z3_is_as_array.restype = ctypes.c_bool
+_lib.Z3_is_as_array.argtypes = [ContextObj, Ast]
+_lib.Z3_get_as_array_func_decl.restype = FuncDecl
+_lib.Z3_get_as_array_func_decl.argtypes = [ContextObj, Ast]
+_lib.Z3_add_func_interp.restype = FuncInterpObj
+_lib.Z3_add_func_interp.argtypes = [ContextObj, Model, FuncDecl, Ast]
+_lib.Z3_add_const_interp.argtypes = [ContextObj, Model, FuncDecl, Ast]
+_lib.Z3_func_interp_inc_ref.argtypes = [ContextObj, FuncInterpObj]
+_lib.Z3_func_interp_dec_ref.argtypes = [ContextObj, FuncInterpObj]
+_lib.Z3_func_interp_get_num_entries.restype = ctypes.c_uint
+_lib.Z3_func_interp_get_num_entries.argtypes = [ContextObj, FuncInterpObj]
+_lib.Z3_func_interp_get_entry.restype = FuncEntryObj
+_lib.Z3_func_interp_get_entry.argtypes = [ContextObj, FuncInterpObj, ctypes.c_uint]
+_lib.Z3_func_interp_get_else.restype = Ast
+_lib.Z3_func_interp_get_else.argtypes = [ContextObj, FuncInterpObj]
+_lib.Z3_func_interp_set_else.argtypes = [ContextObj, FuncInterpObj, Ast]
+_lib.Z3_func_interp_get_arity.restype = ctypes.c_uint
+_lib.Z3_func_interp_get_arity.argtypes = [ContextObj, FuncInterpObj]
+_lib.Z3_func_interp_add_entry.argtypes = [ContextObj, FuncInterpObj, AstVectorObj, Ast]
+_lib.Z3_func_entry_inc_ref.argtypes = [ContextObj, FuncEntryObj]
+_lib.Z3_func_entry_dec_ref.argtypes = [ContextObj, FuncEntryObj]
+_lib.Z3_func_entry_get_value.restype = Ast
+_lib.Z3_func_entry_get_value.argtypes = [ContextObj, FuncEntryObj]
+_lib.Z3_func_entry_get_num_args.restype = ctypes.c_uint
+_lib.Z3_func_entry_get_num_args.argtypes = [ContextObj, FuncEntryObj]
+_lib.Z3_func_entry_get_arg.restype = Ast
+_lib.Z3_func_entry_get_arg.argtypes = [ContextObj, FuncEntryObj, ctypes.c_uint]
+_lib.Z3_open_log.restype = ctypes.c_int
+_lib.Z3_open_log.argtypes = [ctypes.c_char_p]
+_lib.Z3_append_log.argtypes = [ctypes.c_char_p]
+_lib.Z3_close_log.argtypes = []
+_lib.Z3_toggle_warning_messages.argtypes = [ctypes.c_bool]
+_lib.Z3_set_ast_print_mode.argtypes = [ContextObj, ctypes.c_uint]
+_lib.Z3_ast_to_string.restype = ctypes.c_char_p
+_lib.Z3_ast_to_string.argtypes = [ContextObj, Ast]
+_lib.Z3_pattern_to_string.restype = ctypes.c_char_p
+_lib.Z3_pattern_to_string.argtypes = [ContextObj, Pattern]
+_lib.Z3_sort_to_string.restype = ctypes.c_char_p
+_lib.Z3_sort_to_string.argtypes = [ContextObj, Sort]
+_lib.Z3_func_decl_to_string.restype = ctypes.c_char_p
+_lib.Z3_func_decl_to_string.argtypes = [ContextObj, FuncDecl]
+_lib.Z3_model_to_string.restype = ctypes.c_char_p
+_lib.Z3_model_to_string.argtypes = [ContextObj, Model]
+_lib.Z3_benchmark_to_smtlib_string.restype = ctypes.c_char_p
+_lib.Z3_benchmark_to_smtlib_string.argtypes = [ContextObj, ctypes.c_char_p, ctypes.c_char_p, ctypes.c_char_p, ctypes.c_char_p, ctypes.c_uint, ctypes.POINTER(Ast), Ast]
+_lib.Z3_parse_smtlib2_string.restype = AstVectorObj
+_lib.Z3_parse_smtlib2_string.argtypes = [ContextObj, ctypes.c_char_p, ctypes.c_uint, ctypes.POINTER(Symbol), ctypes.POINTER(Sort), ctypes.c_uint, ctypes.POINTER(Symbol), ctypes.POINTER(FuncDecl)]
+_lib.Z3_parse_smtlib2_file.restype = AstVectorObj
+_lib.Z3_parse_smtlib2_file.argtypes = [ContextObj, ctypes.c_char_p, ctypes.c_uint, ctypes.POINTER(Symbol), ctypes.POINTER(Sort), ctypes.c_uint, ctypes.POINTER(Symbol), ctypes.POINTER(FuncDecl)]
+_lib.Z3_eval_smtlib2_string.restype = ctypes.c_char_p
+_lib.Z3_eval_smtlib2_string.argtypes = [ContextObj, ctypes.c_char_p]
+_lib.Z3_get_error_code.restype = ctypes.c_uint
+_lib.Z3_get_error_code.argtypes = [ContextObj]
+_lib.Z3_set_error.argtypes = [ContextObj, ctypes.c_uint]
+_lib.Z3_get_error_msg.restype = ctypes.c_char_p
+_lib.Z3_get_error_msg.argtypes = [ContextObj, ctypes.c_uint]
+_lib.Z3_get_version.argtypes = [ctypes.POINTER(ctypes.c_uint), ctypes.POINTER(ctypes.c_uint), ctypes.POINTER(ctypes.c_uint), ctypes.POINTER(ctypes.c_uint)]
+_lib.Z3_get_full_version.restype = ctypes.c_char_p
+_lib.Z3_get_full_version.argtypes = []
+_lib.Z3_enable_trace.argtypes = [ctypes.c_char_p]
+_lib.Z3_disable_trace.argtypes = [ctypes.c_char_p]
+_lib.Z3_reset_memory.argtypes = []
+_lib.Z3_finalize_memory.argtypes = []
+_lib.Z3_mk_goal.restype = GoalObj
+_lib.Z3_mk_goal.argtypes = [ContextObj, ctypes.c_bool, ctypes.c_bool, ctypes.c_bool]
+_lib.Z3_goal_inc_ref.argtypes = [ContextObj, GoalObj]
+_lib.Z3_goal_dec_ref.argtypes = [ContextObj, GoalObj]
+_lib.Z3_goal_precision.restype = ctypes.c_uint
+_lib.Z3_goal_precision.argtypes = [ContextObj, GoalObj]
+_lib.Z3_goal_assert.argtypes = [ContextObj, GoalObj, Ast]
+_lib.Z3_goal_inconsistent.restype = ctypes.c_bool
+_lib.Z3_goal_inconsistent.argtypes = [ContextObj, GoalObj]
+_lib.Z3_goal_depth.restype = ctypes.c_uint
+_lib.Z3_goal_depth.argtypes = [ContextObj, GoalObj]
+_lib.Z3_goal_reset.argtypes = [ContextObj, GoalObj]
+_lib.Z3_goal_size.restype = ctypes.c_uint
+_lib.Z3_goal_size.argtypes = [ContextObj, GoalObj]
+_lib.Z3_goal_formula.restype = Ast
+_lib.Z3_goal_formula.argtypes = [ContextObj, GoalObj, ctypes.c_uint]
+_lib.Z3_goal_num_exprs.restype = ctypes.c_uint
+_lib.Z3_goal_num_exprs.argtypes = [ContextObj, GoalObj]
+_lib.Z3_goal_is_decided_sat.restype = ctypes.c_bool
+_lib.Z3_goal_is_decided_sat.argtypes = [ContextObj, GoalObj]
+_lib.Z3_goal_is_decided_unsat.restype = ctypes.c_bool
+_lib.Z3_goal_is_decided_unsat.argtypes = [ContextObj, GoalObj]
+_lib.Z3_goal_translate.restype = GoalObj
+_lib.Z3_goal_translate.argtypes = [ContextObj, GoalObj, ContextObj]
+_lib.Z3_goal_convert_model.restype = Model
+_lib.Z3_goal_convert_model.argtypes = [ContextObj, GoalObj, Model]
+_lib.Z3_goal_to_string.restype = ctypes.c_char_p
+_lib.Z3_goal_to_string.argtypes = [ContextObj, GoalObj]
+_lib.Z3_goal_to_dimacs_string.restype = ctypes.c_char_p
+_lib.Z3_goal_to_dimacs_string.argtypes = [ContextObj, GoalObj, ctypes.c_bool]
+_lib.Z3_mk_tactic.restype = TacticObj
+_lib.Z3_mk_tactic.argtypes = [ContextObj, ctypes.c_char_p]
+_lib.Z3_tactic_inc_ref.argtypes = [ContextObj, TacticObj]
+_lib.Z3_tactic_dec_ref.argtypes = [ContextObj, TacticObj]
+_lib.Z3_mk_probe.restype = ProbeObj
+_lib.Z3_mk_probe.argtypes = [ContextObj, ctypes.c_char_p]
+_lib.Z3_probe_inc_ref.argtypes = [ContextObj, ProbeObj]
+_lib.Z3_probe_dec_ref.argtypes = [ContextObj, ProbeObj]
+_lib.Z3_tactic_and_then.restype = TacticObj
+_lib.Z3_tactic_and_then.argtypes = [ContextObj, TacticObj, TacticObj]
+_lib.Z3_tactic_or_else.restype = TacticObj
+_lib.Z3_tactic_or_else.argtypes = [ContextObj, TacticObj, TacticObj]
+_lib.Z3_tactic_par_or.restype = TacticObj
+_lib.Z3_tactic_par_or.argtypes = [ContextObj, ctypes.c_uint, ctypes.POINTER(TacticObj)]
+_lib.Z3_tactic_par_and_then.restype = TacticObj
+_lib.Z3_tactic_par_and_then.argtypes = [ContextObj, TacticObj, TacticObj]
+_lib.Z3_tactic_try_for.restype = TacticObj
+_lib.Z3_tactic_try_for.argtypes = [ContextObj, TacticObj, ctypes.c_uint]
+_lib.Z3_tactic_when.restype = TacticObj
+_lib.Z3_tactic_when.argtypes = [ContextObj, ProbeObj, TacticObj]
+_lib.Z3_tactic_cond.restype = TacticObj
+_lib.Z3_tactic_cond.argtypes = [ContextObj, ProbeObj, TacticObj, TacticObj]
+_lib.Z3_tactic_repeat.restype = TacticObj
+_lib.Z3_tactic_repeat.argtypes = [ContextObj, TacticObj, ctypes.c_uint]
+_lib.Z3_tactic_skip.restype = TacticObj
+_lib.Z3_tactic_skip.argtypes = [ContextObj]
+_lib.Z3_tactic_fail.restype = TacticObj
+_lib.Z3_tactic_fail.argtypes = [ContextObj]
+_lib.Z3_tactic_fail_if.restype = TacticObj
+_lib.Z3_tactic_fail_if.argtypes = [ContextObj, ProbeObj]
+_lib.Z3_tactic_fail_if_not_decided.restype = TacticObj
+_lib.Z3_tactic_fail_if_not_decided.argtypes = [ContextObj]
+_lib.Z3_tactic_using_params.restype = TacticObj
+_lib.Z3_tactic_using_params.argtypes = [ContextObj, TacticObj, Params]
+_lib.Z3_probe_const.restype = ProbeObj
+_lib.Z3_probe_const.argtypes = [ContextObj, ctypes.c_double]
+_lib.Z3_probe_lt.restype = ProbeObj
+_lib.Z3_probe_lt.argtypes = [ContextObj, ProbeObj, ProbeObj]
+_lib.Z3_probe_gt.restype = ProbeObj
+_lib.Z3_probe_gt.argtypes = [ContextObj, ProbeObj, ProbeObj]
+_lib.Z3_probe_le.restype = ProbeObj
+_lib.Z3_probe_le.argtypes = [ContextObj, ProbeObj, ProbeObj]
+_lib.Z3_probe_ge.restype = ProbeObj
+_lib.Z3_probe_ge.argtypes = [ContextObj, ProbeObj, ProbeObj]
+_lib.Z3_probe_eq.restype = ProbeObj
+_lib.Z3_probe_eq.argtypes = [ContextObj, ProbeObj, ProbeObj]
+_lib.Z3_probe_and.restype = ProbeObj
+_lib.Z3_probe_and.argtypes = [ContextObj, ProbeObj, ProbeObj]
+_lib.Z3_probe_or.restype = ProbeObj
+_lib.Z3_probe_or.argtypes = [ContextObj, ProbeObj, ProbeObj]
+_lib.Z3_probe_not.restype = ProbeObj
+_lib.Z3_probe_not.argtypes = [ContextObj, ProbeObj]
+_lib.Z3_get_num_tactics.restype = ctypes.c_uint
+_lib.Z3_get_num_tactics.argtypes = [ContextObj]
+_lib.Z3_get_tactic_name.restype = ctypes.c_char_p
+_lib.Z3_get_tactic_name.argtypes = [ContextObj, ctypes.c_uint]
+_lib.Z3_get_num_probes.restype = ctypes.c_uint
+_lib.Z3_get_num_probes.argtypes = [ContextObj]
+_lib.Z3_get_probe_name.restype = ctypes.c_char_p
+_lib.Z3_get_probe_name.argtypes = [ContextObj, ctypes.c_uint]
+_lib.Z3_tactic_get_help.restype = ctypes.c_char_p
+_lib.Z3_tactic_get_help.argtypes = [ContextObj, TacticObj]
+_lib.Z3_tactic_get_param_descrs.restype = ParamDescrs
+_lib.Z3_tactic_get_param_descrs.argtypes = [ContextObj, TacticObj]
+_lib.Z3_tactic_get_descr.restype = ctypes.c_char_p
+_lib.Z3_tactic_get_descr.argtypes = [ContextObj, ctypes.c_char_p]
+_lib.Z3_probe_get_descr.restype = ctypes.c_char_p
+_lib.Z3_probe_get_descr.argtypes = [ContextObj, ctypes.c_char_p]
+_lib.Z3_probe_apply.restype = ctypes.c_double
+_lib.Z3_probe_apply.argtypes = [ContextObj, ProbeObj, GoalObj]
+_lib.Z3_tactic_apply.restype = ApplyResultObj
+_lib.Z3_tactic_apply.argtypes = [ContextObj, TacticObj, GoalObj]
+_lib.Z3_tactic_apply_ex.restype = ApplyResultObj
+_lib.Z3_tactic_apply_ex.argtypes = [ContextObj, TacticObj, GoalObj, Params]
+_lib.Z3_apply_result_inc_ref.argtypes = [ContextObj, ApplyResultObj]
+_lib.Z3_apply_result_dec_ref.argtypes = [ContextObj, ApplyResultObj]
+_lib.Z3_apply_result_to_string.restype = ctypes.c_char_p
+_lib.Z3_apply_result_to_string.argtypes = [ContextObj, ApplyResultObj]
+_lib.Z3_apply_result_get_num_subgoals.restype = ctypes.c_uint
+_lib.Z3_apply_result_get_num_subgoals.argtypes = [ContextObj, ApplyResultObj]
+_lib.Z3_apply_result_get_subgoal.restype = GoalObj
+_lib.Z3_apply_result_get_subgoal.argtypes = [ContextObj, ApplyResultObj, ctypes.c_uint]
+_lib.Z3_mk_solver.restype = SolverObj
+_lib.Z3_mk_solver.argtypes = [ContextObj]
+_lib.Z3_mk_simple_solver.restype = SolverObj
+_lib.Z3_mk_simple_solver.argtypes = [ContextObj]
+_lib.Z3_mk_solver_for_logic.restype = SolverObj
+_lib.Z3_mk_solver_for_logic.argtypes = [ContextObj, Symbol]
+_lib.Z3_mk_solver_from_tactic.restype = SolverObj
+_lib.Z3_mk_solver_from_tactic.argtypes = [ContextObj, TacticObj]
+_lib.Z3_solver_translate.restype = SolverObj
+_lib.Z3_solver_translate.argtypes = [ContextObj, SolverObj, ContextObj]
+_lib.Z3_solver_import_model_converter.argtypes = [ContextObj, SolverObj, SolverObj]
+_lib.Z3_solver_get_help.restype = ctypes.c_char_p
+_lib.Z3_solver_get_help.argtypes = [ContextObj, SolverObj]
+_lib.Z3_solver_get_param_descrs.restype = ParamDescrs
+_lib.Z3_solver_get_param_descrs.argtypes = [ContextObj, SolverObj]
+_lib.Z3_solver_set_params.argtypes = [ContextObj, SolverObj, Params]
+_lib.Z3_solver_inc_ref.argtypes = [ContextObj, SolverObj]
+_lib.Z3_solver_dec_ref.argtypes = [ContextObj, SolverObj]
+_lib.Z3_solver_interrupt.argtypes = [ContextObj, SolverObj]
+_lib.Z3_solver_push.argtypes = [ContextObj, SolverObj]
+_lib.Z3_solver_pop.argtypes = [ContextObj, SolverObj, ctypes.c_uint]
+_lib.Z3_solver_reset.argtypes = [ContextObj, SolverObj]
+_lib.Z3_solver_get_num_scopes.restype = ctypes.c_uint
+_lib.Z3_solver_get_num_scopes.argtypes = [ContextObj, SolverObj]
+_lib.Z3_solver_assert.argtypes = [ContextObj, SolverObj, Ast]
+_lib.Z3_solver_assert_and_track.argtypes = [ContextObj, SolverObj, Ast, Ast]
+_lib.Z3_solver_from_file.argtypes = [ContextObj, SolverObj, ctypes.c_char_p]
+_lib.Z3_solver_from_string.argtypes = [ContextObj, SolverObj, ctypes.c_char_p]
+_lib.Z3_solver_get_assertions.restype = AstVectorObj
+_lib.Z3_solver_get_assertions.argtypes = [ContextObj, SolverObj]
+_lib.Z3_solver_get_units.restype = AstVectorObj
+_lib.Z3_solver_get_units.argtypes = [ContextObj, SolverObj]
+_lib.Z3_solver_get_trail.restype = AstVectorObj
+_lib.Z3_solver_get_trail.argtypes = [ContextObj, SolverObj]
+_lib.Z3_solver_get_non_units.restype = AstVectorObj
+_lib.Z3_solver_get_non_units.argtypes = [ContextObj, SolverObj]
+_lib.Z3_solver_get_levels.argtypes = [ContextObj, SolverObj, AstVectorObj, ctypes.c_uint, ctypes.POINTER(ctypes.c_uint)]
+_lib.Z3_solver_get_implied_value.restype = Ast
+_lib.Z3_solver_get_implied_value.argtypes = [ContextObj, SolverObj, Ast]
+_lib.Z3_solver_get_implied_lower.restype = Ast
+_lib.Z3_solver_get_implied_lower.argtypes = [ContextObj, SolverObj, Ast]
+_lib.Z3_solver_get_implied_upper.restype = Ast
+_lib.Z3_solver_get_implied_upper.argtypes = [ContextObj, SolverObj, Ast]
+_lib.Z3_solver_propagate_register.restype = ctypes.c_uint
+_lib.Z3_solver_propagate_register.argtypes = [ContextObj, SolverObj, Ast]
+_lib.Z3_solver_propagate_consequence.argtypes = [ContextObj, SolverCallbackObj, ctypes.c_uint, ctypes.POINTER(ctypes.c_uint), ctypes.c_uint, ctypes.POINTER(ctypes.c_uint), ctypes.POINTER(ctypes.c_uint), Ast]
+_lib.Z3_solver_check.restype = ctypes.c_int
+_lib.Z3_solver_check.argtypes = [ContextObj, SolverObj]
+_lib.Z3_solver_check_assumptions.restype = ctypes.c_int
+_lib.Z3_solver_check_assumptions.argtypes = [ContextObj, SolverObj, ctypes.c_uint, ctypes.POINTER(Ast)]
+_lib.Z3_get_implied_equalities.restype = ctypes.c_int
+_lib.Z3_get_implied_equalities.argtypes = [ContextObj, SolverObj, ctypes.c_uint, ctypes.POINTER(Ast), ctypes.POINTER(ctypes.c_uint)]
+_lib.Z3_solver_get_consequences.restype = ctypes.c_int
+_lib.Z3_solver_get_consequences.argtypes = [ContextObj, SolverObj, AstVectorObj, AstVectorObj, AstVectorObj]
+_lib.Z3_solver_cube.restype = AstVectorObj
+_lib.Z3_solver_cube.argtypes = [ContextObj, SolverObj, AstVectorObj, ctypes.c_uint]
+_lib.Z3_solver_get_model.restype = Model
+_lib.Z3_solver_get_model.argtypes = [ContextObj, SolverObj]
+_lib.Z3_solver_get_proof.restype = Ast
+_lib.Z3_solver_get_proof.argtypes = [ContextObj, SolverObj]
+_lib.Z3_solver_get_unsat_core.restype = AstVectorObj
+_lib.Z3_solver_get_unsat_core.argtypes = [ContextObj, SolverObj]
+_lib.Z3_solver_get_reason_unknown.restype = ctypes.c_char_p
+_lib.Z3_solver_get_reason_unknown.argtypes = [ContextObj, SolverObj]
+_lib.Z3_solver_get_statistics.restype = StatsObj
+_lib.Z3_solver_get_statistics.argtypes = [ContextObj, SolverObj]
+_lib.Z3_solver_to_string.restype = ctypes.c_char_p
+_lib.Z3_solver_to_string.argtypes = [ContextObj, SolverObj]
+_lib.Z3_solver_to_dimacs_string.restype = ctypes.c_char_p
+_lib.Z3_solver_to_dimacs_string.argtypes = [ContextObj, SolverObj, ctypes.c_bool]
+_lib.Z3_stats_to_string.restype = ctypes.c_char_p
+_lib.Z3_stats_to_string.argtypes = [ContextObj, StatsObj]
+_lib.Z3_stats_inc_ref.argtypes = [ContextObj, StatsObj]
+_lib.Z3_stats_dec_ref.argtypes = [ContextObj, StatsObj]
+_lib.Z3_stats_size.restype = ctypes.c_uint
+_lib.Z3_stats_size.argtypes = [ContextObj, StatsObj]
+_lib.Z3_stats_get_key.restype = ctypes.c_char_p
+_lib.Z3_stats_get_key.argtypes = [ContextObj, StatsObj, ctypes.c_uint]
+_lib.Z3_stats_is_uint.restype = ctypes.c_bool
+_lib.Z3_stats_is_uint.argtypes = [ContextObj, StatsObj, ctypes.c_uint]
+_lib.Z3_stats_is_double.restype = ctypes.c_bool
+_lib.Z3_stats_is_double.argtypes = [ContextObj, StatsObj, ctypes.c_uint]
+_lib.Z3_stats_get_uint_value.restype = ctypes.c_uint
+_lib.Z3_stats_get_uint_value.argtypes = [ContextObj, StatsObj, ctypes.c_uint]
+_lib.Z3_stats_get_double_value.restype = ctypes.c_double
+_lib.Z3_stats_get_double_value.argtypes = [ContextObj, StatsObj, ctypes.c_uint]
+_lib.Z3_get_estimated_alloc_size.restype = ctypes.c_ulonglong
+_lib.Z3_get_estimated_alloc_size.argtypes = []
+_lib.Z3_mk_ast_vector.restype = AstVectorObj
+_lib.Z3_mk_ast_vector.argtypes = [ContextObj]
+_lib.Z3_ast_vector_inc_ref.argtypes = [ContextObj, AstVectorObj]
+_lib.Z3_ast_vector_dec_ref.argtypes = [ContextObj, AstVectorObj]
+_lib.Z3_ast_vector_size.restype = ctypes.c_uint
+_lib.Z3_ast_vector_size.argtypes = [ContextObj, AstVectorObj]
+_lib.Z3_ast_vector_get.restype = Ast
+_lib.Z3_ast_vector_get.argtypes = [ContextObj, AstVectorObj, ctypes.c_uint]
+_lib.Z3_ast_vector_set.argtypes = [ContextObj, AstVectorObj, ctypes.c_uint, Ast]
+_lib.Z3_ast_vector_resize.argtypes = [ContextObj, AstVectorObj, ctypes.c_uint]
+_lib.Z3_ast_vector_push.argtypes = [ContextObj, AstVectorObj, Ast]
+_lib.Z3_ast_vector_translate.restype = AstVectorObj
+_lib.Z3_ast_vector_translate.argtypes = [ContextObj, AstVectorObj, ContextObj]
+_lib.Z3_ast_vector_to_string.restype = ctypes.c_char_p
+_lib.Z3_ast_vector_to_string.argtypes = [ContextObj, AstVectorObj]
+_lib.Z3_mk_ast_map.restype = AstMapObj
+_lib.Z3_mk_ast_map.argtypes = [ContextObj]
+_lib.Z3_ast_map_inc_ref.argtypes = [ContextObj, AstMapObj]
+_lib.Z3_ast_map_dec_ref.argtypes = [ContextObj, AstMapObj]
+_lib.Z3_ast_map_contains.restype = ctypes.c_bool
+_lib.Z3_ast_map_contains.argtypes = [ContextObj, AstMapObj, Ast]
+_lib.Z3_ast_map_find.restype = Ast
+_lib.Z3_ast_map_find.argtypes = [ContextObj, AstMapObj, Ast]
+_lib.Z3_ast_map_insert.argtypes = [ContextObj, AstMapObj, Ast, Ast]
+_lib.Z3_ast_map_erase.argtypes = [ContextObj, AstMapObj, Ast]
+_lib.Z3_ast_map_reset.argtypes = [ContextObj, AstMapObj]
+_lib.Z3_ast_map_size.restype = ctypes.c_uint
+_lib.Z3_ast_map_size.argtypes = [ContextObj, AstMapObj]
+_lib.Z3_ast_map_keys.restype = AstVectorObj
+_lib.Z3_ast_map_keys.argtypes = [ContextObj, AstMapObj]
+_lib.Z3_ast_map_to_string.restype = ctypes.c_char_p
+_lib.Z3_ast_map_to_string.argtypes = [ContextObj, AstMapObj]
+_lib.Z3_algebraic_is_value.restype = ctypes.c_bool
+_lib.Z3_algebraic_is_value.argtypes = [ContextObj, Ast]
+_lib.Z3_algebraic_is_pos.restype = ctypes.c_bool
+_lib.Z3_algebraic_is_pos.argtypes = [ContextObj, Ast]
+_lib.Z3_algebraic_is_neg.restype = ctypes.c_bool
+_lib.Z3_algebraic_is_neg.argtypes = [ContextObj, Ast]
+_lib.Z3_algebraic_is_zero.restype = ctypes.c_bool
+_lib.Z3_algebraic_is_zero.argtypes = [ContextObj, Ast]
+_lib.Z3_algebraic_sign.restype = ctypes.c_int
+_lib.Z3_algebraic_sign.argtypes = [ContextObj, Ast]
+_lib.Z3_algebraic_add.restype = Ast
+_lib.Z3_algebraic_add.argtypes = [ContextObj, Ast, Ast]
+_lib.Z3_algebraic_sub.restype = Ast
+_lib.Z3_algebraic_sub.argtypes = [ContextObj, Ast, Ast]
+_lib.Z3_algebraic_mul.restype = Ast
+_lib.Z3_algebraic_mul.argtypes = [ContextObj, Ast, Ast]
+_lib.Z3_algebraic_div.restype = Ast
+_lib.Z3_algebraic_div.argtypes = [ContextObj, Ast, Ast]
+_lib.Z3_algebraic_root.restype = Ast
+_lib.Z3_algebraic_root.argtypes = [ContextObj, Ast, ctypes.c_uint]
+_lib.Z3_algebraic_power.restype = Ast
+_lib.Z3_algebraic_power.argtypes = [ContextObj, Ast, ctypes.c_uint]
+_lib.Z3_algebraic_lt.restype = ctypes.c_bool
+_lib.Z3_algebraic_lt.argtypes = [ContextObj, Ast, Ast]
+_lib.Z3_algebraic_gt.restype = ctypes.c_bool
+_lib.Z3_algebraic_gt.argtypes = [ContextObj, Ast, Ast]
+_lib.Z3_algebraic_le.restype = ctypes.c_bool
+_lib.Z3_algebraic_le.argtypes = [ContextObj, Ast, Ast]
+_lib.Z3_algebraic_ge.restype = ctypes.c_bool
+_lib.Z3_algebraic_ge.argtypes = [ContextObj, Ast, Ast]
+_lib.Z3_algebraic_eq.restype = ctypes.c_bool
+_lib.Z3_algebraic_eq.argtypes = [ContextObj, Ast, Ast]
+_lib.Z3_algebraic_neq.restype = ctypes.c_bool
+_lib.Z3_algebraic_neq.argtypes = [ContextObj, Ast, Ast]
+_lib.Z3_algebraic_roots.restype = AstVectorObj
+_lib.Z3_algebraic_roots.argtypes = [ContextObj, Ast, ctypes.c_uint, ctypes.POINTER(Ast)]
+_lib.Z3_algebraic_eval.restype = ctypes.c_int
+_lib.Z3_algebraic_eval.argtypes = [ContextObj, Ast, ctypes.c_uint, ctypes.POINTER(Ast)]
+_lib.Z3_algebraic_get_poly.restype = AstVectorObj
+_lib.Z3_algebraic_get_poly.argtypes = [ContextObj, Ast]
+_lib.Z3_algebraic_get_i.restype = ctypes.c_uint
+_lib.Z3_algebraic_get_i.argtypes = [ContextObj, Ast]
+_lib.Z3_polynomial_subresultants.restype = AstVectorObj
+_lib.Z3_polynomial_subresultants.argtypes = [ContextObj, Ast, Ast, Ast]
+_lib.Z3_rcf_del.argtypes = [ContextObj, RCFNumObj]
+_lib.Z3_rcf_mk_rational.restype = RCFNumObj
+_lib.Z3_rcf_mk_rational.argtypes = [ContextObj, ctypes.c_char_p]
+_lib.Z3_rcf_mk_small_int.restype = RCFNumObj
+_lib.Z3_rcf_mk_small_int.argtypes = [ContextObj, ctypes.c_int]
+_lib.Z3_rcf_mk_pi.restype = RCFNumObj
+_lib.Z3_rcf_mk_pi.argtypes = [ContextObj]
+_lib.Z3_rcf_mk_e.restype = RCFNumObj
+_lib.Z3_rcf_mk_e.argtypes = [ContextObj]
+_lib.Z3_rcf_mk_infinitesimal.restype = RCFNumObj
+_lib.Z3_rcf_mk_infinitesimal.argtypes = [ContextObj]
+_lib.Z3_rcf_mk_roots.restype = ctypes.c_uint
+_lib.Z3_rcf_mk_roots.argtypes = [ContextObj, ctypes.c_uint, ctypes.POINTER(RCFNumObj), ctypes.POINTER(RCFNumObj)]
+_lib.Z3_rcf_add.restype = RCFNumObj
+_lib.Z3_rcf_add.argtypes = [ContextObj, RCFNumObj, RCFNumObj]
+_lib.Z3_rcf_sub.restype = RCFNumObj
+_lib.Z3_rcf_sub.argtypes = [ContextObj, RCFNumObj, RCFNumObj]
+_lib.Z3_rcf_mul.restype = RCFNumObj
+_lib.Z3_rcf_mul.argtypes = [ContextObj, RCFNumObj, RCFNumObj]
+_lib.Z3_rcf_div.restype = RCFNumObj
+_lib.Z3_rcf_div.argtypes = [ContextObj, RCFNumObj, RCFNumObj]
+_lib.Z3_rcf_neg.restype = RCFNumObj
+_lib.Z3_rcf_neg.argtypes = [ContextObj, RCFNumObj]
+_lib.Z3_rcf_inv.restype = RCFNumObj
+_lib.Z3_rcf_inv.argtypes = [ContextObj, RCFNumObj]
+_lib.Z3_rcf_power.restype = RCFNumObj
+_lib.Z3_rcf_power.argtypes = [ContextObj, RCFNumObj, ctypes.c_uint]
+_lib.Z3_rcf_lt.restype = ctypes.c_bool
+_lib.Z3_rcf_lt.argtypes = [ContextObj, RCFNumObj, RCFNumObj]
+_lib.Z3_rcf_gt.restype = ctypes.c_bool
+_lib.Z3_rcf_gt.argtypes = [ContextObj, RCFNumObj, RCFNumObj]
+_lib.Z3_rcf_le.restype = ctypes.c_bool
+_lib.Z3_rcf_le.argtypes = [ContextObj, RCFNumObj, RCFNumObj]
+_lib.Z3_rcf_ge.restype = ctypes.c_bool
+_lib.Z3_rcf_ge.argtypes = [ContextObj, RCFNumObj, RCFNumObj]
+_lib.Z3_rcf_eq.restype = ctypes.c_bool
+_lib.Z3_rcf_eq.argtypes = [ContextObj, RCFNumObj, RCFNumObj]
+_lib.Z3_rcf_neq.restype = ctypes.c_bool
+_lib.Z3_rcf_neq.argtypes = [ContextObj, RCFNumObj, RCFNumObj]
+_lib.Z3_rcf_num_to_string.restype = ctypes.c_char_p
+_lib.Z3_rcf_num_to_string.argtypes = [ContextObj, RCFNumObj, ctypes.c_bool, ctypes.c_bool]
+_lib.Z3_rcf_num_to_decimal_string.restype = ctypes.c_char_p
+_lib.Z3_rcf_num_to_decimal_string.argtypes = [ContextObj, RCFNumObj, ctypes.c_uint]
+_lib.Z3_rcf_get_numerator_denominator.argtypes = [ContextObj, RCFNumObj, ctypes.POINTER(RCFNumObj), ctypes.POINTER(RCFNumObj)]
+_lib.Z3_mk_fixedpoint.restype = FixedpointObj
+_lib.Z3_mk_fixedpoint.argtypes = [ContextObj]
+_lib.Z3_fixedpoint_inc_ref.argtypes = [ContextObj, FixedpointObj]
+_lib.Z3_fixedpoint_dec_ref.argtypes = [ContextObj, FixedpointObj]
+_lib.Z3_fixedpoint_add_rule.argtypes = [ContextObj, FixedpointObj, Ast, Symbol]
+_lib.Z3_fixedpoint_add_fact.argtypes = [ContextObj, FixedpointObj, FuncDecl, ctypes.c_uint, ctypes.POINTER(ctypes.c_uint)]
+_lib.Z3_fixedpoint_assert.argtypes = [ContextObj, FixedpointObj, Ast]
+_lib.Z3_fixedpoint_query.restype = ctypes.c_int
+_lib.Z3_fixedpoint_query.argtypes = [ContextObj, FixedpointObj, Ast]
+_lib.Z3_fixedpoint_query_relations.restype = ctypes.c_int
+_lib.Z3_fixedpoint_query_relations.argtypes = [ContextObj, FixedpointObj, ctypes.c_uint, ctypes.POINTER(FuncDecl)]
+_lib.Z3_fixedpoint_get_answer.restype = Ast
+_lib.Z3_fixedpoint_get_answer.argtypes = [ContextObj, FixedpointObj]
+_lib.Z3_fixedpoint_get_reason_unknown.restype = ctypes.c_char_p
+_lib.Z3_fixedpoint_get_reason_unknown.argtypes = [ContextObj, FixedpointObj]
+_lib.Z3_fixedpoint_update_rule.argtypes = [ContextObj, FixedpointObj, Ast, Symbol]
+_lib.Z3_fixedpoint_get_num_levels.restype = ctypes.c_uint
+_lib.Z3_fixedpoint_get_num_levels.argtypes = [ContextObj, FixedpointObj, FuncDecl]
+_lib.Z3_fixedpoint_get_cover_delta.restype = Ast
+_lib.Z3_fixedpoint_get_cover_delta.argtypes = [ContextObj, FixedpointObj, ctypes.c_int, FuncDecl]
+_lib.Z3_fixedpoint_add_cover.argtypes = [ContextObj, FixedpointObj, ctypes.c_int, FuncDecl, Ast]
+_lib.Z3_fixedpoint_get_statistics.restype = StatsObj
+_lib.Z3_fixedpoint_get_statistics.argtypes = [ContextObj, FixedpointObj]
+_lib.Z3_fixedpoint_register_relation.argtypes = [ContextObj, FixedpointObj, FuncDecl]
+_lib.Z3_fixedpoint_set_predicate_representation.argtypes = [ContextObj, FixedpointObj, FuncDecl, ctypes.c_uint, ctypes.POINTER(Symbol)]
+_lib.Z3_fixedpoint_get_rules.restype = AstVectorObj
+_lib.Z3_fixedpoint_get_rules.argtypes = [ContextObj, FixedpointObj]
+_lib.Z3_fixedpoint_get_assertions.restype = AstVectorObj
+_lib.Z3_fixedpoint_get_assertions.argtypes = [ContextObj, FixedpointObj]
+_lib.Z3_fixedpoint_set_params.argtypes = [ContextObj, FixedpointObj, Params]
+_lib.Z3_fixedpoint_get_help.restype = ctypes.c_char_p
+_lib.Z3_fixedpoint_get_help.argtypes = [ContextObj, FixedpointObj]
+_lib.Z3_fixedpoint_get_param_descrs.restype = ParamDescrs
+_lib.Z3_fixedpoint_get_param_descrs.argtypes = [ContextObj, FixedpointObj]
+_lib.Z3_fixedpoint_to_string.restype = ctypes.c_char_p
+_lib.Z3_fixedpoint_to_string.argtypes = [ContextObj, FixedpointObj, ctypes.c_uint, ctypes.POINTER(Ast)]
+_lib.Z3_fixedpoint_from_string.restype = AstVectorObj
+_lib.Z3_fixedpoint_from_string.argtypes = [ContextObj, FixedpointObj, ctypes.c_char_p]
+_lib.Z3_fixedpoint_from_file.restype = AstVectorObj
+_lib.Z3_fixedpoint_from_file.argtypes = [ContextObj, FixedpointObj, ctypes.c_char_p]
+_lib.Z3_mk_optimize.restype = OptimizeObj
+_lib.Z3_mk_optimize.argtypes = [ContextObj]
+_lib.Z3_optimize_inc_ref.argtypes = [ContextObj, OptimizeObj]
+_lib.Z3_optimize_dec_ref.argtypes = [ContextObj, OptimizeObj]
+_lib.Z3_optimize_assert.argtypes = [ContextObj, OptimizeObj, Ast]
+_lib.Z3_optimize_assert_and_track.argtypes = [ContextObj, OptimizeObj, Ast, Ast]
+_lib.Z3_optimize_assert_soft.restype = ctypes.c_uint
+_lib.Z3_optimize_assert_soft.argtypes = [ContextObj, OptimizeObj, Ast, ctypes.c_char_p, Symbol]
+_lib.Z3_optimize_maximize.restype = ctypes.c_uint
+_lib.Z3_optimize_maximize.argtypes = [ContextObj, OptimizeObj, Ast]
+_lib.Z3_optimize_minimize.restype = ctypes.c_uint
+_lib.Z3_optimize_minimize.argtypes = [ContextObj, OptimizeObj, Ast]
+_lib.Z3_optimize_push.argtypes = [ContextObj, OptimizeObj]
+_lib.Z3_optimize_pop.argtypes = [ContextObj, OptimizeObj]
+_lib.Z3_optimize_check.restype = ctypes.c_int
+_lib.Z3_optimize_check.argtypes = [ContextObj, OptimizeObj, ctypes.c_uint, ctypes.POINTER(Ast)]
+_lib.Z3_optimize_get_reason_unknown.restype = ctypes.c_char_p
+_lib.Z3_optimize_get_reason_unknown.argtypes = [ContextObj, OptimizeObj]
+_lib.Z3_optimize_get_model.restype = Model
+_lib.Z3_optimize_get_model.argtypes = [ContextObj, OptimizeObj]
+_lib.Z3_optimize_get_unsat_core.restype = AstVectorObj
+_lib.Z3_optimize_get_unsat_core.argtypes = [ContextObj, OptimizeObj]
+_lib.Z3_optimize_set_params.argtypes = [ContextObj, OptimizeObj, Params]
+_lib.Z3_optimize_get_param_descrs.restype = ParamDescrs
+_lib.Z3_optimize_get_param_descrs.argtypes = [ContextObj, OptimizeObj]
+_lib.Z3_optimize_get_lower.restype = Ast
+_lib.Z3_optimize_get_lower.argtypes = [ContextObj, OptimizeObj, ctypes.c_uint]
+_lib.Z3_optimize_get_upper.restype = Ast
+_lib.Z3_optimize_get_upper.argtypes = [ContextObj, OptimizeObj, ctypes.c_uint]
+_lib.Z3_optimize_get_lower_as_vector.restype = AstVectorObj
+_lib.Z3_optimize_get_lower_as_vector.argtypes = [ContextObj, OptimizeObj, ctypes.c_uint]
+_lib.Z3_optimize_get_upper_as_vector.restype = AstVectorObj
+_lib.Z3_optimize_get_upper_as_vector.argtypes = [ContextObj, OptimizeObj, ctypes.c_uint]
+_lib.Z3_optimize_to_string.restype = ctypes.c_char_p
+_lib.Z3_optimize_to_string.argtypes = [ContextObj, OptimizeObj]
+_lib.Z3_optimize_from_string.argtypes = [ContextObj, OptimizeObj, ctypes.c_char_p]
+_lib.Z3_optimize_from_file.argtypes = [ContextObj, OptimizeObj, ctypes.c_char_p]
+_lib.Z3_optimize_get_help.restype = ctypes.c_char_p
+_lib.Z3_optimize_get_help.argtypes = [ContextObj, OptimizeObj]
+_lib.Z3_optimize_get_statistics.restype = StatsObj
+_lib.Z3_optimize_get_statistics.argtypes = [ContextObj, OptimizeObj]
+_lib.Z3_optimize_get_assertions.restype = AstVectorObj
+_lib.Z3_optimize_get_assertions.argtypes = [ContextObj, OptimizeObj]
+_lib.Z3_optimize_get_objectives.restype = AstVectorObj
+_lib.Z3_optimize_get_objectives.argtypes = [ContextObj, OptimizeObj]
+_lib.Z3_mk_fpa_rounding_mode_sort.restype = Sort
+_lib.Z3_mk_fpa_rounding_mode_sort.argtypes = [ContextObj]
+_lib.Z3_mk_fpa_round_nearest_ties_to_even.restype = Ast
+_lib.Z3_mk_fpa_round_nearest_ties_to_even.argtypes = [ContextObj]
+_lib.Z3_mk_fpa_rne.restype = Ast
+_lib.Z3_mk_fpa_rne.argtypes = [ContextObj]
+_lib.Z3_mk_fpa_round_nearest_ties_to_away.restype = Ast
+_lib.Z3_mk_fpa_round_nearest_ties_to_away.argtypes = [ContextObj]
+_lib.Z3_mk_fpa_rna.restype = Ast
+_lib.Z3_mk_fpa_rna.argtypes = [ContextObj]
+_lib.Z3_mk_fpa_round_toward_positive.restype = Ast
+_lib.Z3_mk_fpa_round_toward_positive.argtypes = [ContextObj]
+_lib.Z3_mk_fpa_rtp.restype = Ast
+_lib.Z3_mk_fpa_rtp.argtypes = [ContextObj]
+_lib.Z3_mk_fpa_round_toward_negative.restype = Ast
+_lib.Z3_mk_fpa_round_toward_negative.argtypes = [ContextObj]
+_lib.Z3_mk_fpa_rtn.restype = Ast
+_lib.Z3_mk_fpa_rtn.argtypes = [ContextObj]
+_lib.Z3_mk_fpa_round_toward_zero.restype = Ast
+_lib.Z3_mk_fpa_round_toward_zero.argtypes = [ContextObj]
+_lib.Z3_mk_fpa_rtz.restype = Ast
+_lib.Z3_mk_fpa_rtz.argtypes = [ContextObj]
+_lib.Z3_mk_fpa_sort.restype = Sort
+_lib.Z3_mk_fpa_sort.argtypes = [ContextObj, ctypes.c_uint, ctypes.c_uint]
+_lib.Z3_mk_fpa_sort_half.restype = Sort
+_lib.Z3_mk_fpa_sort_half.argtypes = [ContextObj]
+_lib.Z3_mk_fpa_sort_16.restype = Sort
+_lib.Z3_mk_fpa_sort_16.argtypes = [ContextObj]
+_lib.Z3_mk_fpa_sort_single.restype = Sort
+_lib.Z3_mk_fpa_sort_single.argtypes = [ContextObj]
+_lib.Z3_mk_fpa_sort_32.restype = Sort
+_lib.Z3_mk_fpa_sort_32.argtypes = [ContextObj]
+_lib.Z3_mk_fpa_sort_double.restype = Sort
+_lib.Z3_mk_fpa_sort_double.argtypes = [ContextObj]
+_lib.Z3_mk_fpa_sort_64.restype = Sort
+_lib.Z3_mk_fpa_sort_64.argtypes = [ContextObj]
+_lib.Z3_mk_fpa_sort_quadruple.restype = Sort
+_lib.Z3_mk_fpa_sort_quadruple.argtypes = [ContextObj]
+_lib.Z3_mk_fpa_sort_128.restype = Sort
+_lib.Z3_mk_fpa_sort_128.argtypes = [ContextObj]
+_lib.Z3_mk_fpa_nan.restype = Ast
+_lib.Z3_mk_fpa_nan.argtypes = [ContextObj, Sort]
+_lib.Z3_mk_fpa_inf.restype = Ast
+_lib.Z3_mk_fpa_inf.argtypes = [ContextObj, Sort, ctypes.c_bool]
+_lib.Z3_mk_fpa_zero.restype = Ast
+_lib.Z3_mk_fpa_zero.argtypes = [ContextObj, Sort, ctypes.c_bool]
+_lib.Z3_mk_fpa_fp.restype = Ast
+_lib.Z3_mk_fpa_fp.argtypes = [ContextObj, Ast, Ast, Ast]
+_lib.Z3_mk_fpa_numeral_float.restype = Ast
+_lib.Z3_mk_fpa_numeral_float.argtypes = [ContextObj, ctypes.c_float, Sort]
+_lib.Z3_mk_fpa_numeral_double.restype = Ast
+_lib.Z3_mk_fpa_numeral_double.argtypes = [ContextObj, ctypes.c_double, Sort]
+_lib.Z3_mk_fpa_numeral_int.restype = Ast
+_lib.Z3_mk_fpa_numeral_int.argtypes = [ContextObj, ctypes.c_int, Sort]
+_lib.Z3_mk_fpa_numeral_int_uint.restype = Ast
+_lib.Z3_mk_fpa_numeral_int_uint.argtypes = [ContextObj, ctypes.c_bool, ctypes.c_int, ctypes.c_uint, Sort]
+_lib.Z3_mk_fpa_numeral_int64_uint64.restype = Ast
+_lib.Z3_mk_fpa_numeral_int64_uint64.argtypes = [ContextObj, ctypes.c_bool, ctypes.c_longlong, ctypes.c_ulonglong, Sort]
+_lib.Z3_mk_fpa_abs.restype = Ast
+_lib.Z3_mk_fpa_abs.argtypes = [ContextObj, Ast]
+_lib.Z3_mk_fpa_neg.restype = Ast
+_lib.Z3_mk_fpa_neg.argtypes = [ContextObj, Ast]
+_lib.Z3_mk_fpa_add.restype = Ast
+_lib.Z3_mk_fpa_add.argtypes = [ContextObj, Ast, Ast, Ast]
+_lib.Z3_mk_fpa_sub.restype = Ast
+_lib.Z3_mk_fpa_sub.argtypes = [ContextObj, Ast, Ast, Ast]
+_lib.Z3_mk_fpa_mul.restype = Ast
+_lib.Z3_mk_fpa_mul.argtypes = [ContextObj, Ast, Ast, Ast]
+_lib.Z3_mk_fpa_div.restype = Ast
+_lib.Z3_mk_fpa_div.argtypes = [ContextObj, Ast, Ast, Ast]
+_lib.Z3_mk_fpa_fma.restype = Ast
+_lib.Z3_mk_fpa_fma.argtypes = [ContextObj, Ast, Ast, Ast, Ast]
+_lib.Z3_mk_fpa_sqrt.restype = Ast
+_lib.Z3_mk_fpa_sqrt.argtypes = [ContextObj, Ast, Ast]
+_lib.Z3_mk_fpa_rem.restype = Ast
+_lib.Z3_mk_fpa_rem.argtypes = [ContextObj, Ast, Ast]
+_lib.Z3_mk_fpa_round_to_integral.restype = Ast
+_lib.Z3_mk_fpa_round_to_integral.argtypes = [ContextObj, Ast, Ast]
+_lib.Z3_mk_fpa_min.restype = Ast
+_lib.Z3_mk_fpa_min.argtypes = [ContextObj, Ast, Ast]
+_lib.Z3_mk_fpa_max.restype = Ast
+_lib.Z3_mk_fpa_max.argtypes = [ContextObj, Ast, Ast]
+_lib.Z3_mk_fpa_leq.restype = Ast
+_lib.Z3_mk_fpa_leq.argtypes = [ContextObj, Ast, Ast]
+_lib.Z3_mk_fpa_lt.restype = Ast
+_lib.Z3_mk_fpa_lt.argtypes = [ContextObj, Ast, Ast]
+_lib.Z3_mk_fpa_geq.restype = Ast
+_lib.Z3_mk_fpa_geq.argtypes = [ContextObj, Ast, Ast]
+_lib.Z3_mk_fpa_gt.restype = Ast
+_lib.Z3_mk_fpa_gt.argtypes = [ContextObj, Ast, Ast]
+_lib.Z3_mk_fpa_eq.restype = Ast
+_lib.Z3_mk_fpa_eq.argtypes = [ContextObj, Ast, Ast]
+_lib.Z3_mk_fpa_is_normal.restype = Ast
+_lib.Z3_mk_fpa_is_normal.argtypes = [ContextObj, Ast]
+_lib.Z3_mk_fpa_is_subnormal.restype = Ast
+_lib.Z3_mk_fpa_is_subnormal.argtypes = [ContextObj, Ast]
+_lib.Z3_mk_fpa_is_zero.restype = Ast
+_lib.Z3_mk_fpa_is_zero.argtypes = [ContextObj, Ast]
+_lib.Z3_mk_fpa_is_infinite.restype = Ast
+_lib.Z3_mk_fpa_is_infinite.argtypes = [ContextObj, Ast]
+_lib.Z3_mk_fpa_is_nan.restype = Ast
+_lib.Z3_mk_fpa_is_nan.argtypes = [ContextObj, Ast]
+_lib.Z3_mk_fpa_is_negative.restype = Ast
+_lib.Z3_mk_fpa_is_negative.argtypes = [ContextObj, Ast]
+_lib.Z3_mk_fpa_is_positive.restype = Ast
+_lib.Z3_mk_fpa_is_positive.argtypes = [ContextObj, Ast]
+_lib.Z3_mk_fpa_to_fp_bv.restype = Ast
+_lib.Z3_mk_fpa_to_fp_bv.argtypes = [ContextObj, Ast, Sort]
+_lib.Z3_mk_fpa_to_fp_float.restype = Ast
+_lib.Z3_mk_fpa_to_fp_float.argtypes = [ContextObj, Ast, Ast, Sort]
+_lib.Z3_mk_fpa_to_fp_real.restype = Ast
+_lib.Z3_mk_fpa_to_fp_real.argtypes = [ContextObj, Ast, Ast, Sort]
+_lib.Z3_mk_fpa_to_fp_signed.restype = Ast
+_lib.Z3_mk_fpa_to_fp_signed.argtypes = [ContextObj, Ast, Ast, Sort]
+_lib.Z3_mk_fpa_to_fp_unsigned.restype = Ast
+_lib.Z3_mk_fpa_to_fp_unsigned.argtypes = [ContextObj, Ast, Ast, Sort]
+_lib.Z3_mk_fpa_to_ubv.restype = Ast
+_lib.Z3_mk_fpa_to_ubv.argtypes = [ContextObj, Ast, Ast, ctypes.c_uint]
+_lib.Z3_mk_fpa_to_sbv.restype = Ast
+_lib.Z3_mk_fpa_to_sbv.argtypes = [ContextObj, Ast, Ast, ctypes.c_uint]
+_lib.Z3_mk_fpa_to_real.restype = Ast
+_lib.Z3_mk_fpa_to_real.argtypes = [ContextObj, Ast]
+_lib.Z3_fpa_get_ebits.restype = ctypes.c_uint
+_lib.Z3_fpa_get_ebits.argtypes = [ContextObj, Sort]
+_lib.Z3_fpa_get_sbits.restype = ctypes.c_uint
+_lib.Z3_fpa_get_sbits.argtypes = [ContextObj, Sort]
+_lib.Z3_fpa_is_numeral_nan.restype = ctypes.c_bool
+_lib.Z3_fpa_is_numeral_nan.argtypes = [ContextObj, Ast]
+_lib.Z3_fpa_is_numeral_inf.restype = ctypes.c_bool
+_lib.Z3_fpa_is_numeral_inf.argtypes = [ContextObj, Ast]
+_lib.Z3_fpa_is_numeral_zero.restype = ctypes.c_bool
+_lib.Z3_fpa_is_numeral_zero.argtypes = [ContextObj, Ast]
+_lib.Z3_fpa_is_numeral_normal.restype = ctypes.c_bool
+_lib.Z3_fpa_is_numeral_normal.argtypes = [ContextObj, Ast]
+_lib.Z3_fpa_is_numeral_subnormal.restype = ctypes.c_bool
+_lib.Z3_fpa_is_numeral_subnormal.argtypes = [ContextObj, Ast]
+_lib.Z3_fpa_is_numeral_positive.restype = ctypes.c_bool
+_lib.Z3_fpa_is_numeral_positive.argtypes = [ContextObj, Ast]
+_lib.Z3_fpa_is_numeral_negative.restype = ctypes.c_bool
+_lib.Z3_fpa_is_numeral_negative.argtypes = [ContextObj, Ast]
+_lib.Z3_fpa_get_numeral_sign_bv.restype = Ast
+_lib.Z3_fpa_get_numeral_sign_bv.argtypes = [ContextObj, Ast]
+_lib.Z3_fpa_get_numeral_significand_bv.restype = Ast
+_lib.Z3_fpa_get_numeral_significand_bv.argtypes = [ContextObj, Ast]
+_lib.Z3_fpa_get_numeral_sign.restype = ctypes.c_bool
+_lib.Z3_fpa_get_numeral_sign.argtypes = [ContextObj, Ast, ctypes.POINTER(ctypes.c_int)]
+_lib.Z3_fpa_get_numeral_significand_string.restype = ctypes.c_char_p
+_lib.Z3_fpa_get_numeral_significand_string.argtypes = [ContextObj, Ast]
+_lib.Z3_fpa_get_numeral_significand_uint64.restype = ctypes.c_bool
+_lib.Z3_fpa_get_numeral_significand_uint64.argtypes = [ContextObj, Ast, ctypes.POINTER(ctypes.c_ulonglong)]
+_lib.Z3_fpa_get_numeral_exponent_string.restype = ctypes.c_char_p
+_lib.Z3_fpa_get_numeral_exponent_string.argtypes = [ContextObj, Ast, ctypes.c_bool]
+_lib.Z3_fpa_get_numeral_exponent_int64.restype = ctypes.c_bool
+_lib.Z3_fpa_get_numeral_exponent_int64.argtypes = [ContextObj, Ast, ctypes.POINTER(ctypes.c_longlong), ctypes.c_bool]
+_lib.Z3_fpa_get_numeral_exponent_bv.restype = Ast
+_lib.Z3_fpa_get_numeral_exponent_bv.argtypes = [ContextObj, Ast, ctypes.c_bool]
+_lib.Z3_mk_fpa_to_ieee_bv.restype = Ast
+_lib.Z3_mk_fpa_to_ieee_bv.argtypes = [ContextObj, Ast]
+_lib.Z3_mk_fpa_to_fp_int_real.restype = Ast
+_lib.Z3_mk_fpa_to_fp_int_real.argtypes = [ContextObj, Ast, Ast, Ast, Sort]
+_lib.Z3_fixedpoint_query_from_lvl.restype = ctypes.c_int
+_lib.Z3_fixedpoint_query_from_lvl.argtypes = [ContextObj, FixedpointObj, Ast, ctypes.c_uint]
+_lib.Z3_fixedpoint_get_ground_sat_answer.restype = Ast
+_lib.Z3_fixedpoint_get_ground_sat_answer.argtypes = [ContextObj, FixedpointObj]
+_lib.Z3_fixedpoint_get_rules_along_trace.restype = AstVectorObj
+_lib.Z3_fixedpoint_get_rules_along_trace.argtypes = [ContextObj, FixedpointObj]
+_lib.Z3_fixedpoint_get_rule_names_along_trace.restype = Symbol
+_lib.Z3_fixedpoint_get_rule_names_along_trace.argtypes = [ContextObj, FixedpointObj]
+_lib.Z3_fixedpoint_add_invariant.argtypes = [ContextObj, FixedpointObj, FuncDecl, Ast]
+_lib.Z3_fixedpoint_get_reachable.restype = Ast
+_lib.Z3_fixedpoint_get_reachable.argtypes = [ContextObj, FixedpointObj, FuncDecl]
+_lib.Z3_qe_model_project.restype = Ast
+_lib.Z3_qe_model_project.argtypes = [ContextObj, Model, ctypes.c_uint, ctypes.POINTER(Ast), Ast]
+_lib.Z3_qe_model_project_skolem.restype = Ast
+_lib.Z3_qe_model_project_skolem.argtypes = [ContextObj, Model, ctypes.c_uint, ctypes.POINTER(Ast), Ast, AstMapObj]
+_lib.Z3_model_extrapolate.restype = Ast
+_lib.Z3_model_extrapolate.argtypes = [ContextObj, Model, Ast]
+_lib.Z3_qe_lite.restype = Ast
+_lib.Z3_qe_lite.argtypes = [ContextObj, AstVectorObj, Ast]
+
+class Elementaries:
+ def __init__(self, f):
+ self.f = f
+ self.get_error_code = _lib.Z3_get_error_code
+ self.get_error_message = _lib.Z3_get_error_msg
+ self.OK = Z3_OK
+ self.Exception = Z3Exception
+
+ def Check(self, ctx):
+ err = self.get_error_code(ctx)
+ if err != self.OK:
+ raise self.Exception(self.get_error_message(ctx, err))
+
+def Z3_set_error_handler(ctx, hndlr, _elems=Elementaries(_lib.Z3_set_error_handler)):
+ ceh = _error_handler_type(hndlr)
+ _elems.f(ctx, ceh)
+ _elems.Check(ctx)
+ return ceh
+
+def Z3_solver_propagate_init(ctx, s, user_ctx, push_eh, pop_eh, fresh_eh, _elems = Elementaries(_lib.Z3_solver_propagate_init)):
+ _elems.f(ctx, s, user_ctx, push_eh, pop_eh, fresh_eh)
+ _elems.Check(ctx)
+
+def Z3_solver_propagate_final(ctx, s, final_eh, _elems = Elementaries(_lib.Z3_solver_propagate_final)):
+ _elems.f(ctx, s, final_eh)
+ _elems.Check(ctx)
+
+def Z3_solver_propagate_fixed(ctx, s, fixed_eh, _elems = Elementaries(_lib.Z3_solver_propagate_fixed)):
+ _elems.f(ctx, s, fixed_eh)
+ _elems.Check(ctx)
+
+def Z3_solver_propagate_eq(ctx, s, eq_eh, _elems = Elementaries(_lib.Z3_solver_propagate_eq)):
+ _elems.f(ctx, s, eq_eh)
+ _elems.Check(ctx)
+
+def Z3_solver_propagate_diseq(ctx, s, diseq_eh, _elems = Elementaries(_lib.Z3_solver_propagate_diseq)):
+ _elems.f(ctx, s, diseq_eh)
+ _elems.Check(ctx)
+
+
+def Z3_global_param_set(a0, a1, _elems=Elementaries(_lib.Z3_global_param_set)):
+ _elems.f(_str_to_bytes(a0), _str_to_bytes(a1))
+
+def Z3_global_param_reset_all(_elems=Elementaries(_lib.Z3_global_param_reset_all)):
+ _elems.f()
+
+def Z3_global_param_get(a0, a1, _elems=Elementaries(_lib.Z3_global_param_get)):
+ r = _elems.f(_str_to_bytes(a0), _str_to_bytes(a1))
+ return r
+
+def Z3_mk_config(_elems=Elementaries(_lib.Z3_mk_config)):
+ r = _elems.f()
+ return r
+
+def Z3_del_config(a0, _elems=Elementaries(_lib.Z3_del_config)):
+ _elems.f(a0)
+
+def Z3_set_param_value(a0, a1, a2, _elems=Elementaries(_lib.Z3_set_param_value)):
+ _elems.f(a0, _str_to_bytes(a1), _str_to_bytes(a2))
+
+def Z3_mk_context(a0, _elems=Elementaries(_lib.Z3_mk_context)):
+ r = _elems.f(a0)
+ return r
+
+def Z3_mk_context_rc(a0, _elems=Elementaries(_lib.Z3_mk_context_rc)):
+ r = _elems.f(a0)
+ return r
+
+def Z3_del_context(a0, _elems=Elementaries(_lib.Z3_del_context)):
+ _elems.f(a0)
+
+def Z3_inc_ref(a0, a1, _elems=Elementaries(_lib.Z3_inc_ref)):
+ _elems.f(a0, a1)
+ _elems.Check(a0)
+
+def Z3_dec_ref(a0, a1, _elems=Elementaries(_lib.Z3_dec_ref)):
+ _elems.f(a0, a1)
+ _elems.Check(a0)
+
+def Z3_update_param_value(a0, a1, a2, _elems=Elementaries(_lib.Z3_update_param_value)):
+ _elems.f(a0, _str_to_bytes(a1), _str_to_bytes(a2))
+ _elems.Check(a0)
+
+def Z3_interrupt(a0, _elems=Elementaries(_lib.Z3_interrupt)):
+ _elems.f(a0)
+ _elems.Check(a0)
+
+def Z3_mk_params(a0, _elems=Elementaries(_lib.Z3_mk_params)):
+ r = _elems.f(a0)
+ _elems.Check(a0)
+ return r
+
+def Z3_params_inc_ref(a0, a1, _elems=Elementaries(_lib.Z3_params_inc_ref)):
+ _elems.f(a0, a1)
+ _elems.Check(a0)
+
+def Z3_params_dec_ref(a0, a1, _elems=Elementaries(_lib.Z3_params_dec_ref)):
+ _elems.f(a0, a1)
+ _elems.Check(a0)
+
+def Z3_params_set_bool(a0, a1, a2, a3, _elems=Elementaries(_lib.Z3_params_set_bool)):
+ _elems.f(a0, a1, a2, a3)
+ _elems.Check(a0)
+
+def Z3_params_set_uint(a0, a1, a2, a3, _elems=Elementaries(_lib.Z3_params_set_uint)):
+ _elems.f(a0, a1, a2, a3)
+ _elems.Check(a0)
+
+def Z3_params_set_double(a0, a1, a2, a3, _elems=Elementaries(_lib.Z3_params_set_double)):
+ _elems.f(a0, a1, a2, a3)
+ _elems.Check(a0)
+
+def Z3_params_set_symbol(a0, a1, a2, a3, _elems=Elementaries(_lib.Z3_params_set_symbol)):
+ _elems.f(a0, a1, a2, a3)
+ _elems.Check(a0)
+
+def Z3_params_to_string(a0, a1, _elems=Elementaries(_lib.Z3_params_to_string)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return _to_pystr(r)
+
+def Z3_params_to_string_bytes(a0, a1, _elems=Elementaries(_lib.Z3_params_to_string)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_params_validate(a0, a1, a2, _elems=Elementaries(_lib.Z3_params_validate)):
+ _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+
+def Z3_param_descrs_inc_ref(a0, a1, _elems=Elementaries(_lib.Z3_param_descrs_inc_ref)):
+ _elems.f(a0, a1)
+ _elems.Check(a0)
+
+def Z3_param_descrs_dec_ref(a0, a1, _elems=Elementaries(_lib.Z3_param_descrs_dec_ref)):
+ _elems.f(a0, a1)
+ _elems.Check(a0)
+
+def Z3_param_descrs_get_kind(a0, a1, a2, _elems=Elementaries(_lib.Z3_param_descrs_get_kind)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_param_descrs_size(a0, a1, _elems=Elementaries(_lib.Z3_param_descrs_size)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_param_descrs_get_name(a0, a1, a2, _elems=Elementaries(_lib.Z3_param_descrs_get_name)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_param_descrs_get_documentation(a0, a1, a2, _elems=Elementaries(_lib.Z3_param_descrs_get_documentation)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return _to_pystr(r)
+
+def Z3_param_descrs_get_documentation_bytes(a0, a1, a2, _elems=Elementaries(_lib.Z3_param_descrs_get_documentation)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_param_descrs_to_string(a0, a1, _elems=Elementaries(_lib.Z3_param_descrs_to_string)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return _to_pystr(r)
+
+def Z3_param_descrs_to_string_bytes(a0, a1, _elems=Elementaries(_lib.Z3_param_descrs_to_string)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_int_symbol(a0, a1, _elems=Elementaries(_lib.Z3_mk_int_symbol)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_string_symbol(a0, a1, _elems=Elementaries(_lib.Z3_mk_string_symbol)):
+ r = _elems.f(a0, _str_to_bytes(a1))
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_uninterpreted_sort(a0, a1, _elems=Elementaries(_lib.Z3_mk_uninterpreted_sort)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_bool_sort(a0, _elems=Elementaries(_lib.Z3_mk_bool_sort)):
+ r = _elems.f(a0)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_int_sort(a0, _elems=Elementaries(_lib.Z3_mk_int_sort)):
+ r = _elems.f(a0)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_real_sort(a0, _elems=Elementaries(_lib.Z3_mk_real_sort)):
+ r = _elems.f(a0)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_bv_sort(a0, a1, _elems=Elementaries(_lib.Z3_mk_bv_sort)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_finite_domain_sort(a0, a1, a2, _elems=Elementaries(_lib.Z3_mk_finite_domain_sort)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_array_sort(a0, a1, a2, _elems=Elementaries(_lib.Z3_mk_array_sort)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_array_sort_n(a0, a1, a2, a3, _elems=Elementaries(_lib.Z3_mk_array_sort_n)):
+ r = _elems.f(a0, a1, a2, a3)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_tuple_sort(a0, a1, a2, a3, a4, a5, a6, _elems=Elementaries(_lib.Z3_mk_tuple_sort)):
+ r = _elems.f(a0, a1, a2, a3, a4, a5, a6)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_enumeration_sort(a0, a1, a2, a3, a4, a5, _elems=Elementaries(_lib.Z3_mk_enumeration_sort)):
+ r = _elems.f(a0, a1, a2, a3, a4, a5)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_list_sort(a0, a1, a2, a3, a4, a5, a6, a7, a8, _elems=Elementaries(_lib.Z3_mk_list_sort)):
+ r = _elems.f(a0, a1, a2, a3, a4, a5, a6, a7, a8)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_constructor(a0, a1, a2, a3, a4, a5, a6, _elems=Elementaries(_lib.Z3_mk_constructor)):
+ r = _elems.f(a0, a1, a2, a3, a4, a5, a6)
+ _elems.Check(a0)
+ return r
+
+def Z3_del_constructor(a0, a1, _elems=Elementaries(_lib.Z3_del_constructor)):
+ _elems.f(a0, a1)
+ _elems.Check(a0)
+
+def Z3_mk_datatype(a0, a1, a2, a3, _elems=Elementaries(_lib.Z3_mk_datatype)):
+ r = _elems.f(a0, a1, a2, a3)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_constructor_list(a0, a1, a2, _elems=Elementaries(_lib.Z3_mk_constructor_list)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_del_constructor_list(a0, a1, _elems=Elementaries(_lib.Z3_del_constructor_list)):
+ _elems.f(a0, a1)
+ _elems.Check(a0)
+
+def Z3_mk_datatypes(a0, a1, a2, a3, a4, _elems=Elementaries(_lib.Z3_mk_datatypes)):
+ _elems.f(a0, a1, a2, a3, a4)
+ _elems.Check(a0)
+
+def Z3_query_constructor(a0, a1, a2, a3, a4, a5, _elems=Elementaries(_lib.Z3_query_constructor)):
+ _elems.f(a0, a1, a2, a3, a4, a5)
+ _elems.Check(a0)
+
+def Z3_mk_func_decl(a0, a1, a2, a3, a4, _elems=Elementaries(_lib.Z3_mk_func_decl)):
+ r = _elems.f(a0, a1, a2, a3, a4)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_app(a0, a1, a2, a3, _elems=Elementaries(_lib.Z3_mk_app)):
+ r = _elems.f(a0, a1, a2, a3)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_const(a0, a1, a2, _elems=Elementaries(_lib.Z3_mk_const)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_fresh_func_decl(a0, a1, a2, a3, a4, _elems=Elementaries(_lib.Z3_mk_fresh_func_decl)):
+ r = _elems.f(a0, _str_to_bytes(a1), a2, a3, a4)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_fresh_const(a0, a1, a2, _elems=Elementaries(_lib.Z3_mk_fresh_const)):
+ r = _elems.f(a0, _str_to_bytes(a1), a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_rec_func_decl(a0, a1, a2, a3, a4, _elems=Elementaries(_lib.Z3_mk_rec_func_decl)):
+ r = _elems.f(a0, a1, a2, a3, a4)
+ _elems.Check(a0)
+ return r
+
+def Z3_add_rec_def(a0, a1, a2, a3, a4, _elems=Elementaries(_lib.Z3_add_rec_def)):
+ _elems.f(a0, a1, a2, a3, a4)
+ _elems.Check(a0)
+
+def Z3_mk_true(a0, _elems=Elementaries(_lib.Z3_mk_true)):
+ r = _elems.f(a0)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_false(a0, _elems=Elementaries(_lib.Z3_mk_false)):
+ r = _elems.f(a0)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_eq(a0, a1, a2, _elems=Elementaries(_lib.Z3_mk_eq)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_distinct(a0, a1, a2, _elems=Elementaries(_lib.Z3_mk_distinct)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_not(a0, a1, _elems=Elementaries(_lib.Z3_mk_not)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_ite(a0, a1, a2, a3, _elems=Elementaries(_lib.Z3_mk_ite)):
+ r = _elems.f(a0, a1, a2, a3)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_iff(a0, a1, a2, _elems=Elementaries(_lib.Z3_mk_iff)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_implies(a0, a1, a2, _elems=Elementaries(_lib.Z3_mk_implies)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_xor(a0, a1, a2, _elems=Elementaries(_lib.Z3_mk_xor)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_and(a0, a1, a2, _elems=Elementaries(_lib.Z3_mk_and)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_or(a0, a1, a2, _elems=Elementaries(_lib.Z3_mk_or)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_add(a0, a1, a2, _elems=Elementaries(_lib.Z3_mk_add)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_mul(a0, a1, a2, _elems=Elementaries(_lib.Z3_mk_mul)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_sub(a0, a1, a2, _elems=Elementaries(_lib.Z3_mk_sub)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_unary_minus(a0, a1, _elems=Elementaries(_lib.Z3_mk_unary_minus)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_div(a0, a1, a2, _elems=Elementaries(_lib.Z3_mk_div)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_mod(a0, a1, a2, _elems=Elementaries(_lib.Z3_mk_mod)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_rem(a0, a1, a2, _elems=Elementaries(_lib.Z3_mk_rem)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_power(a0, a1, a2, _elems=Elementaries(_lib.Z3_mk_power)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_lt(a0, a1, a2, _elems=Elementaries(_lib.Z3_mk_lt)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_le(a0, a1, a2, _elems=Elementaries(_lib.Z3_mk_le)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_gt(a0, a1, a2, _elems=Elementaries(_lib.Z3_mk_gt)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_ge(a0, a1, a2, _elems=Elementaries(_lib.Z3_mk_ge)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_divides(a0, a1, a2, _elems=Elementaries(_lib.Z3_mk_divides)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_int2real(a0, a1, _elems=Elementaries(_lib.Z3_mk_int2real)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_real2int(a0, a1, _elems=Elementaries(_lib.Z3_mk_real2int)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_is_int(a0, a1, _elems=Elementaries(_lib.Z3_mk_is_int)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_bvnot(a0, a1, _elems=Elementaries(_lib.Z3_mk_bvnot)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_bvredand(a0, a1, _elems=Elementaries(_lib.Z3_mk_bvredand)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_bvredor(a0, a1, _elems=Elementaries(_lib.Z3_mk_bvredor)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_bvand(a0, a1, a2, _elems=Elementaries(_lib.Z3_mk_bvand)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_bvor(a0, a1, a2, _elems=Elementaries(_lib.Z3_mk_bvor)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_bvxor(a0, a1, a2, _elems=Elementaries(_lib.Z3_mk_bvxor)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_bvnand(a0, a1, a2, _elems=Elementaries(_lib.Z3_mk_bvnand)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_bvnor(a0, a1, a2, _elems=Elementaries(_lib.Z3_mk_bvnor)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_bvxnor(a0, a1, a2, _elems=Elementaries(_lib.Z3_mk_bvxnor)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_bvneg(a0, a1, _elems=Elementaries(_lib.Z3_mk_bvneg)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_bvadd(a0, a1, a2, _elems=Elementaries(_lib.Z3_mk_bvadd)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_bvsub(a0, a1, a2, _elems=Elementaries(_lib.Z3_mk_bvsub)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_bvmul(a0, a1, a2, _elems=Elementaries(_lib.Z3_mk_bvmul)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_bvudiv(a0, a1, a2, _elems=Elementaries(_lib.Z3_mk_bvudiv)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_bvsdiv(a0, a1, a2, _elems=Elementaries(_lib.Z3_mk_bvsdiv)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_bvurem(a0, a1, a2, _elems=Elementaries(_lib.Z3_mk_bvurem)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_bvsrem(a0, a1, a2, _elems=Elementaries(_lib.Z3_mk_bvsrem)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_bvsmod(a0, a1, a2, _elems=Elementaries(_lib.Z3_mk_bvsmod)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_bvult(a0, a1, a2, _elems=Elementaries(_lib.Z3_mk_bvult)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_bvslt(a0, a1, a2, _elems=Elementaries(_lib.Z3_mk_bvslt)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_bvule(a0, a1, a2, _elems=Elementaries(_lib.Z3_mk_bvule)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_bvsle(a0, a1, a2, _elems=Elementaries(_lib.Z3_mk_bvsle)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_bvuge(a0, a1, a2, _elems=Elementaries(_lib.Z3_mk_bvuge)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_bvsge(a0, a1, a2, _elems=Elementaries(_lib.Z3_mk_bvsge)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_bvugt(a0, a1, a2, _elems=Elementaries(_lib.Z3_mk_bvugt)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_bvsgt(a0, a1, a2, _elems=Elementaries(_lib.Z3_mk_bvsgt)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_concat(a0, a1, a2, _elems=Elementaries(_lib.Z3_mk_concat)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_extract(a0, a1, a2, a3, _elems=Elementaries(_lib.Z3_mk_extract)):
+ r = _elems.f(a0, a1, a2, a3)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_sign_ext(a0, a1, a2, _elems=Elementaries(_lib.Z3_mk_sign_ext)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_zero_ext(a0, a1, a2, _elems=Elementaries(_lib.Z3_mk_zero_ext)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_repeat(a0, a1, a2, _elems=Elementaries(_lib.Z3_mk_repeat)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_bvshl(a0, a1, a2, _elems=Elementaries(_lib.Z3_mk_bvshl)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_bvlshr(a0, a1, a2, _elems=Elementaries(_lib.Z3_mk_bvlshr)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_bvashr(a0, a1, a2, _elems=Elementaries(_lib.Z3_mk_bvashr)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_rotate_left(a0, a1, a2, _elems=Elementaries(_lib.Z3_mk_rotate_left)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_rotate_right(a0, a1, a2, _elems=Elementaries(_lib.Z3_mk_rotate_right)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_ext_rotate_left(a0, a1, a2, _elems=Elementaries(_lib.Z3_mk_ext_rotate_left)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_ext_rotate_right(a0, a1, a2, _elems=Elementaries(_lib.Z3_mk_ext_rotate_right)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_int2bv(a0, a1, a2, _elems=Elementaries(_lib.Z3_mk_int2bv)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_bv2int(a0, a1, a2, _elems=Elementaries(_lib.Z3_mk_bv2int)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_bvadd_no_overflow(a0, a1, a2, a3, _elems=Elementaries(_lib.Z3_mk_bvadd_no_overflow)):
+ r = _elems.f(a0, a1, a2, a3)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_bvadd_no_underflow(a0, a1, a2, _elems=Elementaries(_lib.Z3_mk_bvadd_no_underflow)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_bvsub_no_overflow(a0, a1, a2, _elems=Elementaries(_lib.Z3_mk_bvsub_no_overflow)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_bvsub_no_underflow(a0, a1, a2, a3, _elems=Elementaries(_lib.Z3_mk_bvsub_no_underflow)):
+ r = _elems.f(a0, a1, a2, a3)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_bvsdiv_no_overflow(a0, a1, a2, _elems=Elementaries(_lib.Z3_mk_bvsdiv_no_overflow)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_bvneg_no_overflow(a0, a1, _elems=Elementaries(_lib.Z3_mk_bvneg_no_overflow)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_bvmul_no_overflow(a0, a1, a2, a3, _elems=Elementaries(_lib.Z3_mk_bvmul_no_overflow)):
+ r = _elems.f(a0, a1, a2, a3)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_bvmul_no_underflow(a0, a1, a2, _elems=Elementaries(_lib.Z3_mk_bvmul_no_underflow)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_select(a0, a1, a2, _elems=Elementaries(_lib.Z3_mk_select)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_select_n(a0, a1, a2, a3, _elems=Elementaries(_lib.Z3_mk_select_n)):
+ r = _elems.f(a0, a1, a2, a3)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_store(a0, a1, a2, a3, _elems=Elementaries(_lib.Z3_mk_store)):
+ r = _elems.f(a0, a1, a2, a3)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_store_n(a0, a1, a2, a3, a4, _elems=Elementaries(_lib.Z3_mk_store_n)):
+ r = _elems.f(a0, a1, a2, a3, a4)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_const_array(a0, a1, a2, _elems=Elementaries(_lib.Z3_mk_const_array)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_map(a0, a1, a2, a3, _elems=Elementaries(_lib.Z3_mk_map)):
+ r = _elems.f(a0, a1, a2, a3)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_array_default(a0, a1, _elems=Elementaries(_lib.Z3_mk_array_default)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_as_array(a0, a1, _elems=Elementaries(_lib.Z3_mk_as_array)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_set_has_size(a0, a1, a2, _elems=Elementaries(_lib.Z3_mk_set_has_size)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_set_sort(a0, a1, _elems=Elementaries(_lib.Z3_mk_set_sort)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_empty_set(a0, a1, _elems=Elementaries(_lib.Z3_mk_empty_set)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_full_set(a0, a1, _elems=Elementaries(_lib.Z3_mk_full_set)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_set_add(a0, a1, a2, _elems=Elementaries(_lib.Z3_mk_set_add)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_set_del(a0, a1, a2, _elems=Elementaries(_lib.Z3_mk_set_del)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_set_union(a0, a1, a2, _elems=Elementaries(_lib.Z3_mk_set_union)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_set_intersect(a0, a1, a2, _elems=Elementaries(_lib.Z3_mk_set_intersect)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_set_difference(a0, a1, a2, _elems=Elementaries(_lib.Z3_mk_set_difference)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_set_complement(a0, a1, _elems=Elementaries(_lib.Z3_mk_set_complement)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_set_member(a0, a1, a2, _elems=Elementaries(_lib.Z3_mk_set_member)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_set_subset(a0, a1, a2, _elems=Elementaries(_lib.Z3_mk_set_subset)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_array_ext(a0, a1, a2, _elems=Elementaries(_lib.Z3_mk_array_ext)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_numeral(a0, a1, a2, _elems=Elementaries(_lib.Z3_mk_numeral)):
+ r = _elems.f(a0, _str_to_bytes(a1), a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_real(a0, a1, a2, _elems=Elementaries(_lib.Z3_mk_real)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_int(a0, a1, a2, _elems=Elementaries(_lib.Z3_mk_int)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_unsigned_int(a0, a1, a2, _elems=Elementaries(_lib.Z3_mk_unsigned_int)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_int64(a0, a1, a2, _elems=Elementaries(_lib.Z3_mk_int64)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_unsigned_int64(a0, a1, a2, _elems=Elementaries(_lib.Z3_mk_unsigned_int64)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_bv_numeral(a0, a1, a2, _elems=Elementaries(_lib.Z3_mk_bv_numeral)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_seq_sort(a0, a1, _elems=Elementaries(_lib.Z3_mk_seq_sort)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_is_seq_sort(a0, a1, _elems=Elementaries(_lib.Z3_is_seq_sort)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_get_seq_sort_basis(a0, a1, _elems=Elementaries(_lib.Z3_get_seq_sort_basis)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_re_sort(a0, a1, _elems=Elementaries(_lib.Z3_mk_re_sort)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_is_re_sort(a0, a1, _elems=Elementaries(_lib.Z3_is_re_sort)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_get_re_sort_basis(a0, a1, _elems=Elementaries(_lib.Z3_get_re_sort_basis)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_string_sort(a0, _elems=Elementaries(_lib.Z3_mk_string_sort)):
+ r = _elems.f(a0)
+ _elems.Check(a0)
+ return r
+
+def Z3_is_string_sort(a0, a1, _elems=Elementaries(_lib.Z3_is_string_sort)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_string(a0, a1, _elems=Elementaries(_lib.Z3_mk_string)):
+ r = _elems.f(a0, _str_to_bytes(a1))
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_lstring(a0, a1, a2, _elems=Elementaries(_lib.Z3_mk_lstring)):
+ r = _elems.f(a0, a1, _str_to_bytes(a2))
+ _elems.Check(a0)
+ return r
+
+def Z3_is_string(a0, a1, _elems=Elementaries(_lib.Z3_is_string)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_get_string(a0, a1, _elems=Elementaries(_lib.Z3_get_string)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return _to_pystr(r)
+
+def Z3_get_string_bytes(a0, a1, _elems=Elementaries(_lib.Z3_get_string)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_get_lstring(a0, a1, a2, _elems=Elementaries(_lib.Z3_get_lstring)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_seq_empty(a0, a1, _elems=Elementaries(_lib.Z3_mk_seq_empty)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_seq_unit(a0, a1, _elems=Elementaries(_lib.Z3_mk_seq_unit)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_seq_concat(a0, a1, a2, _elems=Elementaries(_lib.Z3_mk_seq_concat)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_seq_prefix(a0, a1, a2, _elems=Elementaries(_lib.Z3_mk_seq_prefix)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_seq_suffix(a0, a1, a2, _elems=Elementaries(_lib.Z3_mk_seq_suffix)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_seq_contains(a0, a1, a2, _elems=Elementaries(_lib.Z3_mk_seq_contains)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_str_lt(a0, a1, a2, _elems=Elementaries(_lib.Z3_mk_str_lt)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_str_le(a0, a1, a2, _elems=Elementaries(_lib.Z3_mk_str_le)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_seq_extract(a0, a1, a2, a3, _elems=Elementaries(_lib.Z3_mk_seq_extract)):
+ r = _elems.f(a0, a1, a2, a3)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_seq_replace(a0, a1, a2, a3, _elems=Elementaries(_lib.Z3_mk_seq_replace)):
+ r = _elems.f(a0, a1, a2, a3)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_seq_at(a0, a1, a2, _elems=Elementaries(_lib.Z3_mk_seq_at)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_seq_nth(a0, a1, a2, _elems=Elementaries(_lib.Z3_mk_seq_nth)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_seq_length(a0, a1, _elems=Elementaries(_lib.Z3_mk_seq_length)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_seq_index(a0, a1, a2, a3, _elems=Elementaries(_lib.Z3_mk_seq_index)):
+ r = _elems.f(a0, a1, a2, a3)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_seq_last_index(a0, a1, a2, _elems=Elementaries(_lib.Z3_mk_seq_last_index)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_str_to_int(a0, a1, _elems=Elementaries(_lib.Z3_mk_str_to_int)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_int_to_str(a0, a1, _elems=Elementaries(_lib.Z3_mk_int_to_str)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_seq_to_re(a0, a1, _elems=Elementaries(_lib.Z3_mk_seq_to_re)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_seq_in_re(a0, a1, a2, _elems=Elementaries(_lib.Z3_mk_seq_in_re)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_re_plus(a0, a1, _elems=Elementaries(_lib.Z3_mk_re_plus)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_re_star(a0, a1, _elems=Elementaries(_lib.Z3_mk_re_star)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_re_option(a0, a1, _elems=Elementaries(_lib.Z3_mk_re_option)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_re_union(a0, a1, a2, _elems=Elementaries(_lib.Z3_mk_re_union)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_re_concat(a0, a1, a2, _elems=Elementaries(_lib.Z3_mk_re_concat)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_re_range(a0, a1, a2, _elems=Elementaries(_lib.Z3_mk_re_range)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_re_loop(a0, a1, a2, a3, _elems=Elementaries(_lib.Z3_mk_re_loop)):
+ r = _elems.f(a0, a1, a2, a3)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_re_intersect(a0, a1, a2, _elems=Elementaries(_lib.Z3_mk_re_intersect)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_re_complement(a0, a1, _elems=Elementaries(_lib.Z3_mk_re_complement)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_re_empty(a0, a1, _elems=Elementaries(_lib.Z3_mk_re_empty)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_re_full(a0, a1, _elems=Elementaries(_lib.Z3_mk_re_full)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_linear_order(a0, a1, a2, _elems=Elementaries(_lib.Z3_mk_linear_order)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_partial_order(a0, a1, a2, _elems=Elementaries(_lib.Z3_mk_partial_order)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_piecewise_linear_order(a0, a1, a2, _elems=Elementaries(_lib.Z3_mk_piecewise_linear_order)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_tree_order(a0, a1, a2, _elems=Elementaries(_lib.Z3_mk_tree_order)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_transitive_closure(a0, a1, _elems=Elementaries(_lib.Z3_mk_transitive_closure)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_pattern(a0, a1, a2, _elems=Elementaries(_lib.Z3_mk_pattern)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_bound(a0, a1, a2, _elems=Elementaries(_lib.Z3_mk_bound)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_forall(a0, a1, a2, a3, a4, a5, a6, a7, _elems=Elementaries(_lib.Z3_mk_forall)):
+ r = _elems.f(a0, a1, a2, a3, a4, a5, a6, a7)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_exists(a0, a1, a2, a3, a4, a5, a6, a7, _elems=Elementaries(_lib.Z3_mk_exists)):
+ r = _elems.f(a0, a1, a2, a3, a4, a5, a6, a7)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_quantifier(a0, a1, a2, a3, a4, a5, a6, a7, a8, _elems=Elementaries(_lib.Z3_mk_quantifier)):
+ r = _elems.f(a0, a1, a2, a3, a4, a5, a6, a7, a8)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_quantifier_ex(a0, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, _elems=Elementaries(_lib.Z3_mk_quantifier_ex)):
+ r = _elems.f(a0, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_forall_const(a0, a1, a2, a3, a4, a5, a6, _elems=Elementaries(_lib.Z3_mk_forall_const)):
+ r = _elems.f(a0, a1, a2, a3, a4, a5, a6)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_exists_const(a0, a1, a2, a3, a4, a5, a6, _elems=Elementaries(_lib.Z3_mk_exists_const)):
+ r = _elems.f(a0, a1, a2, a3, a4, a5, a6)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_quantifier_const(a0, a1, a2, a3, a4, a5, a6, a7, _elems=Elementaries(_lib.Z3_mk_quantifier_const)):
+ r = _elems.f(a0, a1, a2, a3, a4, a5, a6, a7)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_quantifier_const_ex(a0, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, _elems=Elementaries(_lib.Z3_mk_quantifier_const_ex)):
+ r = _elems.f(a0, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_lambda(a0, a1, a2, a3, a4, _elems=Elementaries(_lib.Z3_mk_lambda)):
+ r = _elems.f(a0, a1, a2, a3, a4)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_lambda_const(a0, a1, a2, a3, _elems=Elementaries(_lib.Z3_mk_lambda_const)):
+ r = _elems.f(a0, a1, a2, a3)
+ _elems.Check(a0)
+ return r
+
+def Z3_get_symbol_kind(a0, a1, _elems=Elementaries(_lib.Z3_get_symbol_kind)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_get_symbol_int(a0, a1, _elems=Elementaries(_lib.Z3_get_symbol_int)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_get_symbol_string(a0, a1, _elems=Elementaries(_lib.Z3_get_symbol_string)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return _to_pystr(r)
+
+def Z3_get_symbol_string_bytes(a0, a1, _elems=Elementaries(_lib.Z3_get_symbol_string)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_get_sort_name(a0, a1, _elems=Elementaries(_lib.Z3_get_sort_name)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_get_sort_id(a0, a1, _elems=Elementaries(_lib.Z3_get_sort_id)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_sort_to_ast(a0, a1, _elems=Elementaries(_lib.Z3_sort_to_ast)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_is_eq_sort(a0, a1, a2, _elems=Elementaries(_lib.Z3_is_eq_sort)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_get_sort_kind(a0, a1, _elems=Elementaries(_lib.Z3_get_sort_kind)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_get_bv_sort_size(a0, a1, _elems=Elementaries(_lib.Z3_get_bv_sort_size)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_get_finite_domain_sort_size(a0, a1, a2, _elems=Elementaries(_lib.Z3_get_finite_domain_sort_size)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_get_array_sort_domain(a0, a1, _elems=Elementaries(_lib.Z3_get_array_sort_domain)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_get_array_sort_range(a0, a1, _elems=Elementaries(_lib.Z3_get_array_sort_range)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_get_tuple_sort_mk_decl(a0, a1, _elems=Elementaries(_lib.Z3_get_tuple_sort_mk_decl)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_get_tuple_sort_num_fields(a0, a1, _elems=Elementaries(_lib.Z3_get_tuple_sort_num_fields)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_get_tuple_sort_field_decl(a0, a1, a2, _elems=Elementaries(_lib.Z3_get_tuple_sort_field_decl)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_get_datatype_sort_num_constructors(a0, a1, _elems=Elementaries(_lib.Z3_get_datatype_sort_num_constructors)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_get_datatype_sort_constructor(a0, a1, a2, _elems=Elementaries(_lib.Z3_get_datatype_sort_constructor)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_get_datatype_sort_recognizer(a0, a1, a2, _elems=Elementaries(_lib.Z3_get_datatype_sort_recognizer)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_get_datatype_sort_constructor_accessor(a0, a1, a2, a3, _elems=Elementaries(_lib.Z3_get_datatype_sort_constructor_accessor)):
+ r = _elems.f(a0, a1, a2, a3)
+ _elems.Check(a0)
+ return r
+
+def Z3_datatype_update_field(a0, a1, a2, a3, _elems=Elementaries(_lib.Z3_datatype_update_field)):
+ r = _elems.f(a0, a1, a2, a3)
+ _elems.Check(a0)
+ return r
+
+def Z3_get_relation_arity(a0, a1, _elems=Elementaries(_lib.Z3_get_relation_arity)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_get_relation_column(a0, a1, a2, _elems=Elementaries(_lib.Z3_get_relation_column)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_atmost(a0, a1, a2, a3, _elems=Elementaries(_lib.Z3_mk_atmost)):
+ r = _elems.f(a0, a1, a2, a3)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_atleast(a0, a1, a2, a3, _elems=Elementaries(_lib.Z3_mk_atleast)):
+ r = _elems.f(a0, a1, a2, a3)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_pble(a0, a1, a2, a3, a4, _elems=Elementaries(_lib.Z3_mk_pble)):
+ r = _elems.f(a0, a1, a2, a3, a4)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_pbge(a0, a1, a2, a3, a4, _elems=Elementaries(_lib.Z3_mk_pbge)):
+ r = _elems.f(a0, a1, a2, a3, a4)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_pbeq(a0, a1, a2, a3, a4, _elems=Elementaries(_lib.Z3_mk_pbeq)):
+ r = _elems.f(a0, a1, a2, a3, a4)
+ _elems.Check(a0)
+ return r
+
+def Z3_func_decl_to_ast(a0, a1, _elems=Elementaries(_lib.Z3_func_decl_to_ast)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_is_eq_func_decl(a0, a1, a2, _elems=Elementaries(_lib.Z3_is_eq_func_decl)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_get_func_decl_id(a0, a1, _elems=Elementaries(_lib.Z3_get_func_decl_id)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_get_decl_name(a0, a1, _elems=Elementaries(_lib.Z3_get_decl_name)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_get_decl_kind(a0, a1, _elems=Elementaries(_lib.Z3_get_decl_kind)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_get_domain_size(a0, a1, _elems=Elementaries(_lib.Z3_get_domain_size)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_get_arity(a0, a1, _elems=Elementaries(_lib.Z3_get_arity)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_get_domain(a0, a1, a2, _elems=Elementaries(_lib.Z3_get_domain)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_get_range(a0, a1, _elems=Elementaries(_lib.Z3_get_range)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_get_decl_num_parameters(a0, a1, _elems=Elementaries(_lib.Z3_get_decl_num_parameters)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_get_decl_parameter_kind(a0, a1, a2, _elems=Elementaries(_lib.Z3_get_decl_parameter_kind)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_get_decl_int_parameter(a0, a1, a2, _elems=Elementaries(_lib.Z3_get_decl_int_parameter)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_get_decl_double_parameter(a0, a1, a2, _elems=Elementaries(_lib.Z3_get_decl_double_parameter)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_get_decl_symbol_parameter(a0, a1, a2, _elems=Elementaries(_lib.Z3_get_decl_symbol_parameter)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_get_decl_sort_parameter(a0, a1, a2, _elems=Elementaries(_lib.Z3_get_decl_sort_parameter)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_get_decl_ast_parameter(a0, a1, a2, _elems=Elementaries(_lib.Z3_get_decl_ast_parameter)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_get_decl_func_decl_parameter(a0, a1, a2, _elems=Elementaries(_lib.Z3_get_decl_func_decl_parameter)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_get_decl_rational_parameter(a0, a1, a2, _elems=Elementaries(_lib.Z3_get_decl_rational_parameter)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return _to_pystr(r)
+
+def Z3_get_decl_rational_parameter_bytes(a0, a1, a2, _elems=Elementaries(_lib.Z3_get_decl_rational_parameter)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_app_to_ast(a0, a1, _elems=Elementaries(_lib.Z3_app_to_ast)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_get_app_decl(a0, a1, _elems=Elementaries(_lib.Z3_get_app_decl)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_get_app_num_args(a0, a1, _elems=Elementaries(_lib.Z3_get_app_num_args)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_get_app_arg(a0, a1, a2, _elems=Elementaries(_lib.Z3_get_app_arg)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_is_eq_ast(a0, a1, a2, _elems=Elementaries(_lib.Z3_is_eq_ast)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_get_ast_id(a0, a1, _elems=Elementaries(_lib.Z3_get_ast_id)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_get_ast_hash(a0, a1, _elems=Elementaries(_lib.Z3_get_ast_hash)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_get_sort(a0, a1, _elems=Elementaries(_lib.Z3_get_sort)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_is_well_sorted(a0, a1, _elems=Elementaries(_lib.Z3_is_well_sorted)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_get_bool_value(a0, a1, _elems=Elementaries(_lib.Z3_get_bool_value)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_get_ast_kind(a0, a1, _elems=Elementaries(_lib.Z3_get_ast_kind)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_is_app(a0, a1, _elems=Elementaries(_lib.Z3_is_app)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_is_numeral_ast(a0, a1, _elems=Elementaries(_lib.Z3_is_numeral_ast)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_is_algebraic_number(a0, a1, _elems=Elementaries(_lib.Z3_is_algebraic_number)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_to_app(a0, a1, _elems=Elementaries(_lib.Z3_to_app)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_to_func_decl(a0, a1, _elems=Elementaries(_lib.Z3_to_func_decl)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_get_numeral_string(a0, a1, _elems=Elementaries(_lib.Z3_get_numeral_string)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return _to_pystr(r)
+
+def Z3_get_numeral_string_bytes(a0, a1, _elems=Elementaries(_lib.Z3_get_numeral_string)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_get_numeral_binary_string(a0, a1, _elems=Elementaries(_lib.Z3_get_numeral_binary_string)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return _to_pystr(r)
+
+def Z3_get_numeral_binary_string_bytes(a0, a1, _elems=Elementaries(_lib.Z3_get_numeral_binary_string)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_get_numeral_decimal_string(a0, a1, a2, _elems=Elementaries(_lib.Z3_get_numeral_decimal_string)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return _to_pystr(r)
+
+def Z3_get_numeral_decimal_string_bytes(a0, a1, a2, _elems=Elementaries(_lib.Z3_get_numeral_decimal_string)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_get_numeral_double(a0, a1, _elems=Elementaries(_lib.Z3_get_numeral_double)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_get_numerator(a0, a1, _elems=Elementaries(_lib.Z3_get_numerator)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_get_denominator(a0, a1, _elems=Elementaries(_lib.Z3_get_denominator)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_get_numeral_small(a0, a1, a2, a3, _elems=Elementaries(_lib.Z3_get_numeral_small)):
+ r = _elems.f(a0, a1, a2, a3)
+ _elems.Check(a0)
+ return r
+
+def Z3_get_numeral_int(a0, a1, a2, _elems=Elementaries(_lib.Z3_get_numeral_int)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_get_numeral_uint(a0, a1, a2, _elems=Elementaries(_lib.Z3_get_numeral_uint)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_get_numeral_uint64(a0, a1, a2, _elems=Elementaries(_lib.Z3_get_numeral_uint64)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_get_numeral_int64(a0, a1, a2, _elems=Elementaries(_lib.Z3_get_numeral_int64)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_get_numeral_rational_int64(a0, a1, a2, a3, _elems=Elementaries(_lib.Z3_get_numeral_rational_int64)):
+ r = _elems.f(a0, a1, a2, a3)
+ _elems.Check(a0)
+ return r
+
+def Z3_get_algebraic_number_lower(a0, a1, a2, _elems=Elementaries(_lib.Z3_get_algebraic_number_lower)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_get_algebraic_number_upper(a0, a1, a2, _elems=Elementaries(_lib.Z3_get_algebraic_number_upper)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_pattern_to_ast(a0, a1, _elems=Elementaries(_lib.Z3_pattern_to_ast)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_get_pattern_num_terms(a0, a1, _elems=Elementaries(_lib.Z3_get_pattern_num_terms)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_get_pattern(a0, a1, a2, _elems=Elementaries(_lib.Z3_get_pattern)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_get_index_value(a0, a1, _elems=Elementaries(_lib.Z3_get_index_value)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_is_quantifier_forall(a0, a1, _elems=Elementaries(_lib.Z3_is_quantifier_forall)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_is_quantifier_exists(a0, a1, _elems=Elementaries(_lib.Z3_is_quantifier_exists)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_is_lambda(a0, a1, _elems=Elementaries(_lib.Z3_is_lambda)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_get_quantifier_weight(a0, a1, _elems=Elementaries(_lib.Z3_get_quantifier_weight)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_get_quantifier_num_patterns(a0, a1, _elems=Elementaries(_lib.Z3_get_quantifier_num_patterns)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_get_quantifier_pattern_ast(a0, a1, a2, _elems=Elementaries(_lib.Z3_get_quantifier_pattern_ast)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_get_quantifier_num_no_patterns(a0, a1, _elems=Elementaries(_lib.Z3_get_quantifier_num_no_patterns)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_get_quantifier_no_pattern_ast(a0, a1, a2, _elems=Elementaries(_lib.Z3_get_quantifier_no_pattern_ast)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_get_quantifier_num_bound(a0, a1, _elems=Elementaries(_lib.Z3_get_quantifier_num_bound)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_get_quantifier_bound_name(a0, a1, a2, _elems=Elementaries(_lib.Z3_get_quantifier_bound_name)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_get_quantifier_bound_sort(a0, a1, a2, _elems=Elementaries(_lib.Z3_get_quantifier_bound_sort)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_get_quantifier_body(a0, a1, _elems=Elementaries(_lib.Z3_get_quantifier_body)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_simplify(a0, a1, _elems=Elementaries(_lib.Z3_simplify)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_simplify_ex(a0, a1, a2, _elems=Elementaries(_lib.Z3_simplify_ex)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_simplify_get_help(a0, _elems=Elementaries(_lib.Z3_simplify_get_help)):
+ r = _elems.f(a0)
+ _elems.Check(a0)
+ return _to_pystr(r)
+
+def Z3_simplify_get_help_bytes(a0, _elems=Elementaries(_lib.Z3_simplify_get_help)):
+ r = _elems.f(a0)
+ _elems.Check(a0)
+ return r
+
+def Z3_simplify_get_param_descrs(a0, _elems=Elementaries(_lib.Z3_simplify_get_param_descrs)):
+ r = _elems.f(a0)
+ _elems.Check(a0)
+ return r
+
+def Z3_update_term(a0, a1, a2, a3, _elems=Elementaries(_lib.Z3_update_term)):
+ r = _elems.f(a0, a1, a2, a3)
+ _elems.Check(a0)
+ return r
+
+def Z3_substitute(a0, a1, a2, a3, a4, _elems=Elementaries(_lib.Z3_substitute)):
+ r = _elems.f(a0, a1, a2, a3, a4)
+ _elems.Check(a0)
+ return r
+
+def Z3_substitute_vars(a0, a1, a2, a3, _elems=Elementaries(_lib.Z3_substitute_vars)):
+ r = _elems.f(a0, a1, a2, a3)
+ _elems.Check(a0)
+ return r
+
+def Z3_translate(a0, a1, a2, _elems=Elementaries(_lib.Z3_translate)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_model(a0, _elems=Elementaries(_lib.Z3_mk_model)):
+ r = _elems.f(a0)
+ _elems.Check(a0)
+ return r
+
+def Z3_model_inc_ref(a0, a1, _elems=Elementaries(_lib.Z3_model_inc_ref)):
+ _elems.f(a0, a1)
+ _elems.Check(a0)
+
+def Z3_model_dec_ref(a0, a1, _elems=Elementaries(_lib.Z3_model_dec_ref)):
+ _elems.f(a0, a1)
+ _elems.Check(a0)
+
+def Z3_model_eval(a0, a1, a2, a3, a4, _elems=Elementaries(_lib.Z3_model_eval)):
+ r = _elems.f(a0, a1, a2, a3, a4)
+ _elems.Check(a0)
+ return r
+
+def Z3_model_get_const_interp(a0, a1, a2, _elems=Elementaries(_lib.Z3_model_get_const_interp)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_model_has_interp(a0, a1, a2, _elems=Elementaries(_lib.Z3_model_has_interp)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_model_get_func_interp(a0, a1, a2, _elems=Elementaries(_lib.Z3_model_get_func_interp)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_model_get_num_consts(a0, a1, _elems=Elementaries(_lib.Z3_model_get_num_consts)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_model_get_const_decl(a0, a1, a2, _elems=Elementaries(_lib.Z3_model_get_const_decl)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_model_get_num_funcs(a0, a1, _elems=Elementaries(_lib.Z3_model_get_num_funcs)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_model_get_func_decl(a0, a1, a2, _elems=Elementaries(_lib.Z3_model_get_func_decl)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_model_get_num_sorts(a0, a1, _elems=Elementaries(_lib.Z3_model_get_num_sorts)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_model_get_sort(a0, a1, a2, _elems=Elementaries(_lib.Z3_model_get_sort)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_model_get_sort_universe(a0, a1, a2, _elems=Elementaries(_lib.Z3_model_get_sort_universe)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_model_translate(a0, a1, a2, _elems=Elementaries(_lib.Z3_model_translate)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_is_as_array(a0, a1, _elems=Elementaries(_lib.Z3_is_as_array)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_get_as_array_func_decl(a0, a1, _elems=Elementaries(_lib.Z3_get_as_array_func_decl)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_add_func_interp(a0, a1, a2, a3, _elems=Elementaries(_lib.Z3_add_func_interp)):
+ r = _elems.f(a0, a1, a2, a3)
+ _elems.Check(a0)
+ return r
+
+def Z3_add_const_interp(a0, a1, a2, a3, _elems=Elementaries(_lib.Z3_add_const_interp)):
+ _elems.f(a0, a1, a2, a3)
+ _elems.Check(a0)
+
+def Z3_func_interp_inc_ref(a0, a1, _elems=Elementaries(_lib.Z3_func_interp_inc_ref)):
+ _elems.f(a0, a1)
+ _elems.Check(a0)
+
+def Z3_func_interp_dec_ref(a0, a1, _elems=Elementaries(_lib.Z3_func_interp_dec_ref)):
+ _elems.f(a0, a1)
+ _elems.Check(a0)
+
+def Z3_func_interp_get_num_entries(a0, a1, _elems=Elementaries(_lib.Z3_func_interp_get_num_entries)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_func_interp_get_entry(a0, a1, a2, _elems=Elementaries(_lib.Z3_func_interp_get_entry)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_func_interp_get_else(a0, a1, _elems=Elementaries(_lib.Z3_func_interp_get_else)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_func_interp_set_else(a0, a1, a2, _elems=Elementaries(_lib.Z3_func_interp_set_else)):
+ _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+
+def Z3_func_interp_get_arity(a0, a1, _elems=Elementaries(_lib.Z3_func_interp_get_arity)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_func_interp_add_entry(a0, a1, a2, a3, _elems=Elementaries(_lib.Z3_func_interp_add_entry)):
+ _elems.f(a0, a1, a2, a3)
+ _elems.Check(a0)
+
+def Z3_func_entry_inc_ref(a0, a1, _elems=Elementaries(_lib.Z3_func_entry_inc_ref)):
+ _elems.f(a0, a1)
+ _elems.Check(a0)
+
+def Z3_func_entry_dec_ref(a0, a1, _elems=Elementaries(_lib.Z3_func_entry_dec_ref)):
+ _elems.f(a0, a1)
+ _elems.Check(a0)
+
+def Z3_func_entry_get_value(a0, a1, _elems=Elementaries(_lib.Z3_func_entry_get_value)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_func_entry_get_num_args(a0, a1, _elems=Elementaries(_lib.Z3_func_entry_get_num_args)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_func_entry_get_arg(a0, a1, a2, _elems=Elementaries(_lib.Z3_func_entry_get_arg)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_open_log(a0, _elems=Elementaries(_lib.Z3_open_log)):
+ r = _elems.f(_str_to_bytes(a0))
+ return r
+
+def Z3_append_log(a0, _elems=Elementaries(_lib.Z3_append_log)):
+ _elems.f(_str_to_bytes(a0))
+
+def Z3_close_log(_elems=Elementaries(_lib.Z3_close_log)):
+ _elems.f()
+
+def Z3_toggle_warning_messages(a0, _elems=Elementaries(_lib.Z3_toggle_warning_messages)):
+ _elems.f(a0)
+
+def Z3_set_ast_print_mode(a0, a1, _elems=Elementaries(_lib.Z3_set_ast_print_mode)):
+ _elems.f(a0, a1)
+ _elems.Check(a0)
+
+def Z3_ast_to_string(a0, a1, _elems=Elementaries(_lib.Z3_ast_to_string)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return _to_pystr(r)
+
+def Z3_ast_to_string_bytes(a0, a1, _elems=Elementaries(_lib.Z3_ast_to_string)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_pattern_to_string(a0, a1, _elems=Elementaries(_lib.Z3_pattern_to_string)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return _to_pystr(r)
+
+def Z3_pattern_to_string_bytes(a0, a1, _elems=Elementaries(_lib.Z3_pattern_to_string)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_sort_to_string(a0, a1, _elems=Elementaries(_lib.Z3_sort_to_string)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return _to_pystr(r)
+
+def Z3_sort_to_string_bytes(a0, a1, _elems=Elementaries(_lib.Z3_sort_to_string)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_func_decl_to_string(a0, a1, _elems=Elementaries(_lib.Z3_func_decl_to_string)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return _to_pystr(r)
+
+def Z3_func_decl_to_string_bytes(a0, a1, _elems=Elementaries(_lib.Z3_func_decl_to_string)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_model_to_string(a0, a1, _elems=Elementaries(_lib.Z3_model_to_string)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return _to_pystr(r)
+
+def Z3_model_to_string_bytes(a0, a1, _elems=Elementaries(_lib.Z3_model_to_string)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_benchmark_to_smtlib_string(a0, a1, a2, a3, a4, a5, a6, a7, _elems=Elementaries(_lib.Z3_benchmark_to_smtlib_string)):
+ r = _elems.f(a0, _str_to_bytes(a1), _str_to_bytes(a2), _str_to_bytes(a3), _str_to_bytes(a4), a5, a6, a7)
+ _elems.Check(a0)
+ return _to_pystr(r)
+
+def Z3_benchmark_to_smtlib_string_bytes(a0, a1, a2, a3, a4, a5, a6, a7, _elems=Elementaries(_lib.Z3_benchmark_to_smtlib_string)):
+ r = _elems.f(a0, _str_to_bytes(a1), _str_to_bytes(a2), _str_to_bytes(a3), _str_to_bytes(a4), a5, a6, a7)
+ _elems.Check(a0)
+ return r
+
+def Z3_parse_smtlib2_string(a0, a1, a2, a3, a4, a5, a6, a7, _elems=Elementaries(_lib.Z3_parse_smtlib2_string)):
+ r = _elems.f(a0, _str_to_bytes(a1), a2, a3, a4, a5, a6, a7)
+ _elems.Check(a0)
+ return r
+
+def Z3_parse_smtlib2_file(a0, a1, a2, a3, a4, a5, a6, a7, _elems=Elementaries(_lib.Z3_parse_smtlib2_file)):
+ r = _elems.f(a0, _str_to_bytes(a1), a2, a3, a4, a5, a6, a7)
+ _elems.Check(a0)
+ return r
+
+def Z3_eval_smtlib2_string(a0, a1, _elems=Elementaries(_lib.Z3_eval_smtlib2_string)):
+ r = _elems.f(a0, _str_to_bytes(a1))
+ _elems.Check(a0)
+ return _to_pystr(r)
+
+def Z3_eval_smtlib2_string_bytes(a0, a1, _elems=Elementaries(_lib.Z3_eval_smtlib2_string)):
+ r = _elems.f(a0, _str_to_bytes(a1))
+ _elems.Check(a0)
+ return r
+
+def Z3_get_error_code(a0, _elems=Elementaries(_lib.Z3_get_error_code)):
+ r = _elems.f(a0)
+ return r
+
+def Z3_set_error(a0, a1, _elems=Elementaries(_lib.Z3_set_error)):
+ _elems.f(a0, a1)
+ _elems.Check(a0)
+
+def Z3_get_error_msg(a0, a1, _elems=Elementaries(_lib.Z3_get_error_msg)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return _to_pystr(r)
+
+def Z3_get_error_msg_bytes(a0, a1, _elems=Elementaries(_lib.Z3_get_error_msg)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_get_version(a0, a1, a2, a3, _elems=Elementaries(_lib.Z3_get_version)):
+ _elems.f(a0, a1, a2, a3)
+
+def Z3_get_full_version(_elems=Elementaries(_lib.Z3_get_full_version)):
+ r = _elems.f()
+ return _to_pystr(r)
+
+def Z3_get_full_version_bytes(_elems=Elementaries(_lib.Z3_get_full_version)):
+ r = _elems.f()
+ return r
+
+def Z3_enable_trace(a0, _elems=Elementaries(_lib.Z3_enable_trace)):
+ _elems.f(_str_to_bytes(a0))
+
+def Z3_disable_trace(a0, _elems=Elementaries(_lib.Z3_disable_trace)):
+ _elems.f(_str_to_bytes(a0))
+
+def Z3_reset_memory(_elems=Elementaries(_lib.Z3_reset_memory)):
+ _elems.f()
+
+def Z3_finalize_memory(_elems=Elementaries(_lib.Z3_finalize_memory)):
+ _elems.f()
+
+def Z3_mk_goal(a0, a1, a2, a3, _elems=Elementaries(_lib.Z3_mk_goal)):
+ r = _elems.f(a0, a1, a2, a3)
+ _elems.Check(a0)
+ return r
+
+def Z3_goal_inc_ref(a0, a1, _elems=Elementaries(_lib.Z3_goal_inc_ref)):
+ _elems.f(a0, a1)
+ _elems.Check(a0)
+
+def Z3_goal_dec_ref(a0, a1, _elems=Elementaries(_lib.Z3_goal_dec_ref)):
+ _elems.f(a0, a1)
+ _elems.Check(a0)
+
+def Z3_goal_precision(a0, a1, _elems=Elementaries(_lib.Z3_goal_precision)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_goal_assert(a0, a1, a2, _elems=Elementaries(_lib.Z3_goal_assert)):
+ _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+
+def Z3_goal_inconsistent(a0, a1, _elems=Elementaries(_lib.Z3_goal_inconsistent)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_goal_depth(a0, a1, _elems=Elementaries(_lib.Z3_goal_depth)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_goal_reset(a0, a1, _elems=Elementaries(_lib.Z3_goal_reset)):
+ _elems.f(a0, a1)
+ _elems.Check(a0)
+
+def Z3_goal_size(a0, a1, _elems=Elementaries(_lib.Z3_goal_size)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_goal_formula(a0, a1, a2, _elems=Elementaries(_lib.Z3_goal_formula)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_goal_num_exprs(a0, a1, _elems=Elementaries(_lib.Z3_goal_num_exprs)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_goal_is_decided_sat(a0, a1, _elems=Elementaries(_lib.Z3_goal_is_decided_sat)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_goal_is_decided_unsat(a0, a1, _elems=Elementaries(_lib.Z3_goal_is_decided_unsat)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_goal_translate(a0, a1, a2, _elems=Elementaries(_lib.Z3_goal_translate)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_goal_convert_model(a0, a1, a2, _elems=Elementaries(_lib.Z3_goal_convert_model)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_goal_to_string(a0, a1, _elems=Elementaries(_lib.Z3_goal_to_string)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return _to_pystr(r)
+
+def Z3_goal_to_string_bytes(a0, a1, _elems=Elementaries(_lib.Z3_goal_to_string)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_goal_to_dimacs_string(a0, a1, a2, _elems=Elementaries(_lib.Z3_goal_to_dimacs_string)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return _to_pystr(r)
+
+def Z3_goal_to_dimacs_string_bytes(a0, a1, a2, _elems=Elementaries(_lib.Z3_goal_to_dimacs_string)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_tactic(a0, a1, _elems=Elementaries(_lib.Z3_mk_tactic)):
+ r = _elems.f(a0, _str_to_bytes(a1))
+ _elems.Check(a0)
+ return r
+
+def Z3_tactic_inc_ref(a0, a1, _elems=Elementaries(_lib.Z3_tactic_inc_ref)):
+ _elems.f(a0, a1)
+ _elems.Check(a0)
+
+def Z3_tactic_dec_ref(a0, a1, _elems=Elementaries(_lib.Z3_tactic_dec_ref)):
+ _elems.f(a0, a1)
+ _elems.Check(a0)
+
+def Z3_mk_probe(a0, a1, _elems=Elementaries(_lib.Z3_mk_probe)):
+ r = _elems.f(a0, _str_to_bytes(a1))
+ _elems.Check(a0)
+ return r
+
+def Z3_probe_inc_ref(a0, a1, _elems=Elementaries(_lib.Z3_probe_inc_ref)):
+ _elems.f(a0, a1)
+ _elems.Check(a0)
+
+def Z3_probe_dec_ref(a0, a1, _elems=Elementaries(_lib.Z3_probe_dec_ref)):
+ _elems.f(a0, a1)
+ _elems.Check(a0)
+
+def Z3_tactic_and_then(a0, a1, a2, _elems=Elementaries(_lib.Z3_tactic_and_then)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_tactic_or_else(a0, a1, a2, _elems=Elementaries(_lib.Z3_tactic_or_else)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_tactic_par_or(a0, a1, a2, _elems=Elementaries(_lib.Z3_tactic_par_or)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_tactic_par_and_then(a0, a1, a2, _elems=Elementaries(_lib.Z3_tactic_par_and_then)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_tactic_try_for(a0, a1, a2, _elems=Elementaries(_lib.Z3_tactic_try_for)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_tactic_when(a0, a1, a2, _elems=Elementaries(_lib.Z3_tactic_when)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_tactic_cond(a0, a1, a2, a3, _elems=Elementaries(_lib.Z3_tactic_cond)):
+ r = _elems.f(a0, a1, a2, a3)
+ _elems.Check(a0)
+ return r
+
+def Z3_tactic_repeat(a0, a1, a2, _elems=Elementaries(_lib.Z3_tactic_repeat)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_tactic_skip(a0, _elems=Elementaries(_lib.Z3_tactic_skip)):
+ r = _elems.f(a0)
+ _elems.Check(a0)
+ return r
+
+def Z3_tactic_fail(a0, _elems=Elementaries(_lib.Z3_tactic_fail)):
+ r = _elems.f(a0)
+ _elems.Check(a0)
+ return r
+
+def Z3_tactic_fail_if(a0, a1, _elems=Elementaries(_lib.Z3_tactic_fail_if)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_tactic_fail_if_not_decided(a0, _elems=Elementaries(_lib.Z3_tactic_fail_if_not_decided)):
+ r = _elems.f(a0)
+ _elems.Check(a0)
+ return r
+
+def Z3_tactic_using_params(a0, a1, a2, _elems=Elementaries(_lib.Z3_tactic_using_params)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_probe_const(a0, a1, _elems=Elementaries(_lib.Z3_probe_const)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_probe_lt(a0, a1, a2, _elems=Elementaries(_lib.Z3_probe_lt)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_probe_gt(a0, a1, a2, _elems=Elementaries(_lib.Z3_probe_gt)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_probe_le(a0, a1, a2, _elems=Elementaries(_lib.Z3_probe_le)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_probe_ge(a0, a1, a2, _elems=Elementaries(_lib.Z3_probe_ge)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_probe_eq(a0, a1, a2, _elems=Elementaries(_lib.Z3_probe_eq)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_probe_and(a0, a1, a2, _elems=Elementaries(_lib.Z3_probe_and)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_probe_or(a0, a1, a2, _elems=Elementaries(_lib.Z3_probe_or)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_probe_not(a0, a1, _elems=Elementaries(_lib.Z3_probe_not)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_get_num_tactics(a0, _elems=Elementaries(_lib.Z3_get_num_tactics)):
+ r = _elems.f(a0)
+ _elems.Check(a0)
+ return r
+
+def Z3_get_tactic_name(a0, a1, _elems=Elementaries(_lib.Z3_get_tactic_name)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return _to_pystr(r)
+
+def Z3_get_tactic_name_bytes(a0, a1, _elems=Elementaries(_lib.Z3_get_tactic_name)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_get_num_probes(a0, _elems=Elementaries(_lib.Z3_get_num_probes)):
+ r = _elems.f(a0)
+ _elems.Check(a0)
+ return r
+
+def Z3_get_probe_name(a0, a1, _elems=Elementaries(_lib.Z3_get_probe_name)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return _to_pystr(r)
+
+def Z3_get_probe_name_bytes(a0, a1, _elems=Elementaries(_lib.Z3_get_probe_name)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_tactic_get_help(a0, a1, _elems=Elementaries(_lib.Z3_tactic_get_help)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return _to_pystr(r)
+
+def Z3_tactic_get_help_bytes(a0, a1, _elems=Elementaries(_lib.Z3_tactic_get_help)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_tactic_get_param_descrs(a0, a1, _elems=Elementaries(_lib.Z3_tactic_get_param_descrs)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_tactic_get_descr(a0, a1, _elems=Elementaries(_lib.Z3_tactic_get_descr)):
+ r = _elems.f(a0, _str_to_bytes(a1))
+ _elems.Check(a0)
+ return _to_pystr(r)
+
+def Z3_tactic_get_descr_bytes(a0, a1, _elems=Elementaries(_lib.Z3_tactic_get_descr)):
+ r = _elems.f(a0, _str_to_bytes(a1))
+ _elems.Check(a0)
+ return r
+
+def Z3_probe_get_descr(a0, a1, _elems=Elementaries(_lib.Z3_probe_get_descr)):
+ r = _elems.f(a0, _str_to_bytes(a1))
+ _elems.Check(a0)
+ return _to_pystr(r)
+
+def Z3_probe_get_descr_bytes(a0, a1, _elems=Elementaries(_lib.Z3_probe_get_descr)):
+ r = _elems.f(a0, _str_to_bytes(a1))
+ _elems.Check(a0)
+ return r
+
+def Z3_probe_apply(a0, a1, a2, _elems=Elementaries(_lib.Z3_probe_apply)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_tactic_apply(a0, a1, a2, _elems=Elementaries(_lib.Z3_tactic_apply)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_tactic_apply_ex(a0, a1, a2, a3, _elems=Elementaries(_lib.Z3_tactic_apply_ex)):
+ r = _elems.f(a0, a1, a2, a3)
+ _elems.Check(a0)
+ return r
+
+def Z3_apply_result_inc_ref(a0, a1, _elems=Elementaries(_lib.Z3_apply_result_inc_ref)):
+ _elems.f(a0, a1)
+ _elems.Check(a0)
+
+def Z3_apply_result_dec_ref(a0, a1, _elems=Elementaries(_lib.Z3_apply_result_dec_ref)):
+ _elems.f(a0, a1)
+ _elems.Check(a0)
+
+def Z3_apply_result_to_string(a0, a1, _elems=Elementaries(_lib.Z3_apply_result_to_string)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return _to_pystr(r)
+
+def Z3_apply_result_to_string_bytes(a0, a1, _elems=Elementaries(_lib.Z3_apply_result_to_string)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_apply_result_get_num_subgoals(a0, a1, _elems=Elementaries(_lib.Z3_apply_result_get_num_subgoals)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_apply_result_get_subgoal(a0, a1, a2, _elems=Elementaries(_lib.Z3_apply_result_get_subgoal)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_solver(a0, _elems=Elementaries(_lib.Z3_mk_solver)):
+ r = _elems.f(a0)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_simple_solver(a0, _elems=Elementaries(_lib.Z3_mk_simple_solver)):
+ r = _elems.f(a0)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_solver_for_logic(a0, a1, _elems=Elementaries(_lib.Z3_mk_solver_for_logic)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_solver_from_tactic(a0, a1, _elems=Elementaries(_lib.Z3_mk_solver_from_tactic)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_solver_translate(a0, a1, a2, _elems=Elementaries(_lib.Z3_solver_translate)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_solver_import_model_converter(a0, a1, a2, _elems=Elementaries(_lib.Z3_solver_import_model_converter)):
+ _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+
+def Z3_solver_get_help(a0, a1, _elems=Elementaries(_lib.Z3_solver_get_help)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return _to_pystr(r)
+
+def Z3_solver_get_help_bytes(a0, a1, _elems=Elementaries(_lib.Z3_solver_get_help)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_solver_get_param_descrs(a0, a1, _elems=Elementaries(_lib.Z3_solver_get_param_descrs)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_solver_set_params(a0, a1, a2, _elems=Elementaries(_lib.Z3_solver_set_params)):
+ _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+
+def Z3_solver_inc_ref(a0, a1, _elems=Elementaries(_lib.Z3_solver_inc_ref)):
+ _elems.f(a0, a1)
+ _elems.Check(a0)
+
+def Z3_solver_dec_ref(a0, a1, _elems=Elementaries(_lib.Z3_solver_dec_ref)):
+ _elems.f(a0, a1)
+ _elems.Check(a0)
+
+def Z3_solver_interrupt(a0, a1, _elems=Elementaries(_lib.Z3_solver_interrupt)):
+ _elems.f(a0, a1)
+ _elems.Check(a0)
+
+def Z3_solver_push(a0, a1, _elems=Elementaries(_lib.Z3_solver_push)):
+ _elems.f(a0, a1)
+ _elems.Check(a0)
+
+def Z3_solver_pop(a0, a1, a2, _elems=Elementaries(_lib.Z3_solver_pop)):
+ _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+
+def Z3_solver_reset(a0, a1, _elems=Elementaries(_lib.Z3_solver_reset)):
+ _elems.f(a0, a1)
+ _elems.Check(a0)
+
+def Z3_solver_get_num_scopes(a0, a1, _elems=Elementaries(_lib.Z3_solver_get_num_scopes)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_solver_assert(a0, a1, a2, _elems=Elementaries(_lib.Z3_solver_assert)):
+ _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+
+def Z3_solver_assert_and_track(a0, a1, a2, a3, _elems=Elementaries(_lib.Z3_solver_assert_and_track)):
+ _elems.f(a0, a1, a2, a3)
+ _elems.Check(a0)
+
+def Z3_solver_from_file(a0, a1, a2, _elems=Elementaries(_lib.Z3_solver_from_file)):
+ _elems.f(a0, a1, _str_to_bytes(a2))
+ _elems.Check(a0)
+
+def Z3_solver_from_string(a0, a1, a2, _elems=Elementaries(_lib.Z3_solver_from_string)):
+ _elems.f(a0, a1, _str_to_bytes(a2))
+ _elems.Check(a0)
+
+def Z3_solver_get_assertions(a0, a1, _elems=Elementaries(_lib.Z3_solver_get_assertions)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_solver_get_units(a0, a1, _elems=Elementaries(_lib.Z3_solver_get_units)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_solver_get_trail(a0, a1, _elems=Elementaries(_lib.Z3_solver_get_trail)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_solver_get_non_units(a0, a1, _elems=Elementaries(_lib.Z3_solver_get_non_units)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_solver_get_levels(a0, a1, a2, a3, a4, _elems=Elementaries(_lib.Z3_solver_get_levels)):
+ _elems.f(a0, a1, a2, a3, a4)
+ _elems.Check(a0)
+
+def Z3_solver_get_implied_value(a0, a1, a2, _elems=Elementaries(_lib.Z3_solver_get_implied_value)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_solver_get_implied_lower(a0, a1, a2, _elems=Elementaries(_lib.Z3_solver_get_implied_lower)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_solver_get_implied_upper(a0, a1, a2, _elems=Elementaries(_lib.Z3_solver_get_implied_upper)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_solver_propagate_register(a0, a1, a2, _elems=Elementaries(_lib.Z3_solver_propagate_register)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_solver_propagate_consequence(a0, a1, a2, a3, a4, a5, a6, a7, _elems=Elementaries(_lib.Z3_solver_propagate_consequence)):
+ _elems.f(a0, a1, a2, a3, a4, a5, a6, a7)
+ _elems.Check(a0)
+
+def Z3_solver_check(a0, a1, _elems=Elementaries(_lib.Z3_solver_check)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_solver_check_assumptions(a0, a1, a2, a3, _elems=Elementaries(_lib.Z3_solver_check_assumptions)):
+ r = _elems.f(a0, a1, a2, a3)
+ _elems.Check(a0)
+ return r
+
+def Z3_get_implied_equalities(a0, a1, a2, a3, a4, _elems=Elementaries(_lib.Z3_get_implied_equalities)):
+ r = _elems.f(a0, a1, a2, a3, a4)
+ _elems.Check(a0)
+ return r
+
+def Z3_solver_get_consequences(a0, a1, a2, a3, a4, _elems=Elementaries(_lib.Z3_solver_get_consequences)):
+ r = _elems.f(a0, a1, a2, a3, a4)
+ _elems.Check(a0)
+ return r
+
+def Z3_solver_cube(a0, a1, a2, a3, _elems=Elementaries(_lib.Z3_solver_cube)):
+ r = _elems.f(a0, a1, a2, a3)
+ _elems.Check(a0)
+ return r
+
+def Z3_solver_get_model(a0, a1, _elems=Elementaries(_lib.Z3_solver_get_model)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_solver_get_proof(a0, a1, _elems=Elementaries(_lib.Z3_solver_get_proof)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_solver_get_unsat_core(a0, a1, _elems=Elementaries(_lib.Z3_solver_get_unsat_core)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_solver_get_reason_unknown(a0, a1, _elems=Elementaries(_lib.Z3_solver_get_reason_unknown)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return _to_pystr(r)
+
+def Z3_solver_get_reason_unknown_bytes(a0, a1, _elems=Elementaries(_lib.Z3_solver_get_reason_unknown)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_solver_get_statistics(a0, a1, _elems=Elementaries(_lib.Z3_solver_get_statistics)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_solver_to_string(a0, a1, _elems=Elementaries(_lib.Z3_solver_to_string)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return _to_pystr(r)
+
+def Z3_solver_to_string_bytes(a0, a1, _elems=Elementaries(_lib.Z3_solver_to_string)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_solver_to_dimacs_string(a0, a1, a2, _elems=Elementaries(_lib.Z3_solver_to_dimacs_string)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return _to_pystr(r)
+
+def Z3_solver_to_dimacs_string_bytes(a0, a1, a2, _elems=Elementaries(_lib.Z3_solver_to_dimacs_string)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_stats_to_string(a0, a1, _elems=Elementaries(_lib.Z3_stats_to_string)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return _to_pystr(r)
+
+def Z3_stats_to_string_bytes(a0, a1, _elems=Elementaries(_lib.Z3_stats_to_string)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_stats_inc_ref(a0, a1, _elems=Elementaries(_lib.Z3_stats_inc_ref)):
+ _elems.f(a0, a1)
+ _elems.Check(a0)
+
+def Z3_stats_dec_ref(a0, a1, _elems=Elementaries(_lib.Z3_stats_dec_ref)):
+ _elems.f(a0, a1)
+ _elems.Check(a0)
+
+def Z3_stats_size(a0, a1, _elems=Elementaries(_lib.Z3_stats_size)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_stats_get_key(a0, a1, a2, _elems=Elementaries(_lib.Z3_stats_get_key)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return _to_pystr(r)
+
+def Z3_stats_get_key_bytes(a0, a1, a2, _elems=Elementaries(_lib.Z3_stats_get_key)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_stats_is_uint(a0, a1, a2, _elems=Elementaries(_lib.Z3_stats_is_uint)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_stats_is_double(a0, a1, a2, _elems=Elementaries(_lib.Z3_stats_is_double)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_stats_get_uint_value(a0, a1, a2, _elems=Elementaries(_lib.Z3_stats_get_uint_value)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_stats_get_double_value(a0, a1, a2, _elems=Elementaries(_lib.Z3_stats_get_double_value)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_get_estimated_alloc_size(_elems=Elementaries(_lib.Z3_get_estimated_alloc_size)):
+ r = _elems.f()
+ return r
+
+def Z3_mk_ast_vector(a0, _elems=Elementaries(_lib.Z3_mk_ast_vector)):
+ r = _elems.f(a0)
+ _elems.Check(a0)
+ return r
+
+def Z3_ast_vector_inc_ref(a0, a1, _elems=Elementaries(_lib.Z3_ast_vector_inc_ref)):
+ _elems.f(a0, a1)
+ _elems.Check(a0)
+
+def Z3_ast_vector_dec_ref(a0, a1, _elems=Elementaries(_lib.Z3_ast_vector_dec_ref)):
+ _elems.f(a0, a1)
+ _elems.Check(a0)
+
+def Z3_ast_vector_size(a0, a1, _elems=Elementaries(_lib.Z3_ast_vector_size)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_ast_vector_get(a0, a1, a2, _elems=Elementaries(_lib.Z3_ast_vector_get)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_ast_vector_set(a0, a1, a2, a3, _elems=Elementaries(_lib.Z3_ast_vector_set)):
+ _elems.f(a0, a1, a2, a3)
+ _elems.Check(a0)
+
+def Z3_ast_vector_resize(a0, a1, a2, _elems=Elementaries(_lib.Z3_ast_vector_resize)):
+ _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+
+def Z3_ast_vector_push(a0, a1, a2, _elems=Elementaries(_lib.Z3_ast_vector_push)):
+ _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+
+def Z3_ast_vector_translate(a0, a1, a2, _elems=Elementaries(_lib.Z3_ast_vector_translate)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_ast_vector_to_string(a0, a1, _elems=Elementaries(_lib.Z3_ast_vector_to_string)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return _to_pystr(r)
+
+def Z3_ast_vector_to_string_bytes(a0, a1, _elems=Elementaries(_lib.Z3_ast_vector_to_string)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_ast_map(a0, _elems=Elementaries(_lib.Z3_mk_ast_map)):
+ r = _elems.f(a0)
+ _elems.Check(a0)
+ return r
+
+def Z3_ast_map_inc_ref(a0, a1, _elems=Elementaries(_lib.Z3_ast_map_inc_ref)):
+ _elems.f(a0, a1)
+ _elems.Check(a0)
+
+def Z3_ast_map_dec_ref(a0, a1, _elems=Elementaries(_lib.Z3_ast_map_dec_ref)):
+ _elems.f(a0, a1)
+ _elems.Check(a0)
+
+def Z3_ast_map_contains(a0, a1, a2, _elems=Elementaries(_lib.Z3_ast_map_contains)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_ast_map_find(a0, a1, a2, _elems=Elementaries(_lib.Z3_ast_map_find)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_ast_map_insert(a0, a1, a2, a3, _elems=Elementaries(_lib.Z3_ast_map_insert)):
+ _elems.f(a0, a1, a2, a3)
+ _elems.Check(a0)
+
+def Z3_ast_map_erase(a0, a1, a2, _elems=Elementaries(_lib.Z3_ast_map_erase)):
+ _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+
+def Z3_ast_map_reset(a0, a1, _elems=Elementaries(_lib.Z3_ast_map_reset)):
+ _elems.f(a0, a1)
+ _elems.Check(a0)
+
+def Z3_ast_map_size(a0, a1, _elems=Elementaries(_lib.Z3_ast_map_size)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_ast_map_keys(a0, a1, _elems=Elementaries(_lib.Z3_ast_map_keys)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_ast_map_to_string(a0, a1, _elems=Elementaries(_lib.Z3_ast_map_to_string)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return _to_pystr(r)
+
+def Z3_ast_map_to_string_bytes(a0, a1, _elems=Elementaries(_lib.Z3_ast_map_to_string)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_algebraic_is_value(a0, a1, _elems=Elementaries(_lib.Z3_algebraic_is_value)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_algebraic_is_pos(a0, a1, _elems=Elementaries(_lib.Z3_algebraic_is_pos)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_algebraic_is_neg(a0, a1, _elems=Elementaries(_lib.Z3_algebraic_is_neg)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_algebraic_is_zero(a0, a1, _elems=Elementaries(_lib.Z3_algebraic_is_zero)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_algebraic_sign(a0, a1, _elems=Elementaries(_lib.Z3_algebraic_sign)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_algebraic_add(a0, a1, a2, _elems=Elementaries(_lib.Z3_algebraic_add)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_algebraic_sub(a0, a1, a2, _elems=Elementaries(_lib.Z3_algebraic_sub)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_algebraic_mul(a0, a1, a2, _elems=Elementaries(_lib.Z3_algebraic_mul)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_algebraic_div(a0, a1, a2, _elems=Elementaries(_lib.Z3_algebraic_div)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_algebraic_root(a0, a1, a2, _elems=Elementaries(_lib.Z3_algebraic_root)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_algebraic_power(a0, a1, a2, _elems=Elementaries(_lib.Z3_algebraic_power)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_algebraic_lt(a0, a1, a2, _elems=Elementaries(_lib.Z3_algebraic_lt)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_algebraic_gt(a0, a1, a2, _elems=Elementaries(_lib.Z3_algebraic_gt)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_algebraic_le(a0, a1, a2, _elems=Elementaries(_lib.Z3_algebraic_le)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_algebraic_ge(a0, a1, a2, _elems=Elementaries(_lib.Z3_algebraic_ge)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_algebraic_eq(a0, a1, a2, _elems=Elementaries(_lib.Z3_algebraic_eq)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_algebraic_neq(a0, a1, a2, _elems=Elementaries(_lib.Z3_algebraic_neq)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_algebraic_roots(a0, a1, a2, a3, _elems=Elementaries(_lib.Z3_algebraic_roots)):
+ r = _elems.f(a0, a1, a2, a3)
+ _elems.Check(a0)
+ return r
+
+def Z3_algebraic_eval(a0, a1, a2, a3, _elems=Elementaries(_lib.Z3_algebraic_eval)):
+ r = _elems.f(a0, a1, a2, a3)
+ _elems.Check(a0)
+ return r
+
+def Z3_algebraic_get_poly(a0, a1, _elems=Elementaries(_lib.Z3_algebraic_get_poly)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_algebraic_get_i(a0, a1, _elems=Elementaries(_lib.Z3_algebraic_get_i)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_polynomial_subresultants(a0, a1, a2, a3, _elems=Elementaries(_lib.Z3_polynomial_subresultants)):
+ r = _elems.f(a0, a1, a2, a3)
+ _elems.Check(a0)
+ return r
+
+def Z3_rcf_del(a0, a1, _elems=Elementaries(_lib.Z3_rcf_del)):
+ _elems.f(a0, a1)
+ _elems.Check(a0)
+
+def Z3_rcf_mk_rational(a0, a1, _elems=Elementaries(_lib.Z3_rcf_mk_rational)):
+ r = _elems.f(a0, _str_to_bytes(a1))
+ _elems.Check(a0)
+ return r
+
+def Z3_rcf_mk_small_int(a0, a1, _elems=Elementaries(_lib.Z3_rcf_mk_small_int)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_rcf_mk_pi(a0, _elems=Elementaries(_lib.Z3_rcf_mk_pi)):
+ r = _elems.f(a0)
+ _elems.Check(a0)
+ return r
+
+def Z3_rcf_mk_e(a0, _elems=Elementaries(_lib.Z3_rcf_mk_e)):
+ r = _elems.f(a0)
+ _elems.Check(a0)
+ return r
+
+def Z3_rcf_mk_infinitesimal(a0, _elems=Elementaries(_lib.Z3_rcf_mk_infinitesimal)):
+ r = _elems.f(a0)
+ _elems.Check(a0)
+ return r
+
+def Z3_rcf_mk_roots(a0, a1, a2, a3, _elems=Elementaries(_lib.Z3_rcf_mk_roots)):
+ r = _elems.f(a0, a1, a2, a3)
+ _elems.Check(a0)
+ return r
+
+def Z3_rcf_add(a0, a1, a2, _elems=Elementaries(_lib.Z3_rcf_add)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_rcf_sub(a0, a1, a2, _elems=Elementaries(_lib.Z3_rcf_sub)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_rcf_mul(a0, a1, a2, _elems=Elementaries(_lib.Z3_rcf_mul)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_rcf_div(a0, a1, a2, _elems=Elementaries(_lib.Z3_rcf_div)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_rcf_neg(a0, a1, _elems=Elementaries(_lib.Z3_rcf_neg)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_rcf_inv(a0, a1, _elems=Elementaries(_lib.Z3_rcf_inv)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_rcf_power(a0, a1, a2, _elems=Elementaries(_lib.Z3_rcf_power)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_rcf_lt(a0, a1, a2, _elems=Elementaries(_lib.Z3_rcf_lt)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_rcf_gt(a0, a1, a2, _elems=Elementaries(_lib.Z3_rcf_gt)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_rcf_le(a0, a1, a2, _elems=Elementaries(_lib.Z3_rcf_le)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_rcf_ge(a0, a1, a2, _elems=Elementaries(_lib.Z3_rcf_ge)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_rcf_eq(a0, a1, a2, _elems=Elementaries(_lib.Z3_rcf_eq)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_rcf_neq(a0, a1, a2, _elems=Elementaries(_lib.Z3_rcf_neq)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_rcf_num_to_string(a0, a1, a2, a3, _elems=Elementaries(_lib.Z3_rcf_num_to_string)):
+ r = _elems.f(a0, a1, a2, a3)
+ _elems.Check(a0)
+ return _to_pystr(r)
+
+def Z3_rcf_num_to_string_bytes(a0, a1, a2, a3, _elems=Elementaries(_lib.Z3_rcf_num_to_string)):
+ r = _elems.f(a0, a1, a2, a3)
+ _elems.Check(a0)
+ return r
+
+def Z3_rcf_num_to_decimal_string(a0, a1, a2, _elems=Elementaries(_lib.Z3_rcf_num_to_decimal_string)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return _to_pystr(r)
+
+def Z3_rcf_num_to_decimal_string_bytes(a0, a1, a2, _elems=Elementaries(_lib.Z3_rcf_num_to_decimal_string)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_rcf_get_numerator_denominator(a0, a1, a2, a3, _elems=Elementaries(_lib.Z3_rcf_get_numerator_denominator)):
+ _elems.f(a0, a1, a2, a3)
+ _elems.Check(a0)
+
+def Z3_mk_fixedpoint(a0, _elems=Elementaries(_lib.Z3_mk_fixedpoint)):
+ r = _elems.f(a0)
+ _elems.Check(a0)
+ return r
+
+def Z3_fixedpoint_inc_ref(a0, a1, _elems=Elementaries(_lib.Z3_fixedpoint_inc_ref)):
+ _elems.f(a0, a1)
+ _elems.Check(a0)
+
+def Z3_fixedpoint_dec_ref(a0, a1, _elems=Elementaries(_lib.Z3_fixedpoint_dec_ref)):
+ _elems.f(a0, a1)
+ _elems.Check(a0)
+
+def Z3_fixedpoint_add_rule(a0, a1, a2, a3, _elems=Elementaries(_lib.Z3_fixedpoint_add_rule)):
+ _elems.f(a0, a1, a2, a3)
+ _elems.Check(a0)
+
+def Z3_fixedpoint_add_fact(a0, a1, a2, a3, a4, _elems=Elementaries(_lib.Z3_fixedpoint_add_fact)):
+ _elems.f(a0, a1, a2, a3, a4)
+ _elems.Check(a0)
+
+def Z3_fixedpoint_assert(a0, a1, a2, _elems=Elementaries(_lib.Z3_fixedpoint_assert)):
+ _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+
+def Z3_fixedpoint_query(a0, a1, a2, _elems=Elementaries(_lib.Z3_fixedpoint_query)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_fixedpoint_query_relations(a0, a1, a2, a3, _elems=Elementaries(_lib.Z3_fixedpoint_query_relations)):
+ r = _elems.f(a0, a1, a2, a3)
+ _elems.Check(a0)
+ return r
+
+def Z3_fixedpoint_get_answer(a0, a1, _elems=Elementaries(_lib.Z3_fixedpoint_get_answer)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_fixedpoint_get_reason_unknown(a0, a1, _elems=Elementaries(_lib.Z3_fixedpoint_get_reason_unknown)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return _to_pystr(r)
+
+def Z3_fixedpoint_get_reason_unknown_bytes(a0, a1, _elems=Elementaries(_lib.Z3_fixedpoint_get_reason_unknown)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_fixedpoint_update_rule(a0, a1, a2, a3, _elems=Elementaries(_lib.Z3_fixedpoint_update_rule)):
+ _elems.f(a0, a1, a2, a3)
+ _elems.Check(a0)
+
+def Z3_fixedpoint_get_num_levels(a0, a1, a2, _elems=Elementaries(_lib.Z3_fixedpoint_get_num_levels)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_fixedpoint_get_cover_delta(a0, a1, a2, a3, _elems=Elementaries(_lib.Z3_fixedpoint_get_cover_delta)):
+ r = _elems.f(a0, a1, a2, a3)
+ _elems.Check(a0)
+ return r
+
+def Z3_fixedpoint_add_cover(a0, a1, a2, a3, a4, _elems=Elementaries(_lib.Z3_fixedpoint_add_cover)):
+ _elems.f(a0, a1, a2, a3, a4)
+ _elems.Check(a0)
+
+def Z3_fixedpoint_get_statistics(a0, a1, _elems=Elementaries(_lib.Z3_fixedpoint_get_statistics)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_fixedpoint_register_relation(a0, a1, a2, _elems=Elementaries(_lib.Z3_fixedpoint_register_relation)):
+ _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+
+def Z3_fixedpoint_set_predicate_representation(a0, a1, a2, a3, a4, _elems=Elementaries(_lib.Z3_fixedpoint_set_predicate_representation)):
+ _elems.f(a0, a1, a2, a3, a4)
+ _elems.Check(a0)
+
+def Z3_fixedpoint_get_rules(a0, a1, _elems=Elementaries(_lib.Z3_fixedpoint_get_rules)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_fixedpoint_get_assertions(a0, a1, _elems=Elementaries(_lib.Z3_fixedpoint_get_assertions)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_fixedpoint_set_params(a0, a1, a2, _elems=Elementaries(_lib.Z3_fixedpoint_set_params)):
+ _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+
+def Z3_fixedpoint_get_help(a0, a1, _elems=Elementaries(_lib.Z3_fixedpoint_get_help)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return _to_pystr(r)
+
+def Z3_fixedpoint_get_help_bytes(a0, a1, _elems=Elementaries(_lib.Z3_fixedpoint_get_help)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_fixedpoint_get_param_descrs(a0, a1, _elems=Elementaries(_lib.Z3_fixedpoint_get_param_descrs)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_fixedpoint_to_string(a0, a1, a2, a3, _elems=Elementaries(_lib.Z3_fixedpoint_to_string)):
+ r = _elems.f(a0, a1, a2, a3)
+ _elems.Check(a0)
+ return _to_pystr(r)
+
+def Z3_fixedpoint_to_string_bytes(a0, a1, a2, a3, _elems=Elementaries(_lib.Z3_fixedpoint_to_string)):
+ r = _elems.f(a0, a1, a2, a3)
+ _elems.Check(a0)
+ return r
+
+def Z3_fixedpoint_from_string(a0, a1, a2, _elems=Elementaries(_lib.Z3_fixedpoint_from_string)):
+ r = _elems.f(a0, a1, _str_to_bytes(a2))
+ _elems.Check(a0)
+ return r
+
+def Z3_fixedpoint_from_file(a0, a1, a2, _elems=Elementaries(_lib.Z3_fixedpoint_from_file)):
+ r = _elems.f(a0, a1, _str_to_bytes(a2))
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_optimize(a0, _elems=Elementaries(_lib.Z3_mk_optimize)):
+ r = _elems.f(a0)
+ _elems.Check(a0)
+ return r
+
+def Z3_optimize_inc_ref(a0, a1, _elems=Elementaries(_lib.Z3_optimize_inc_ref)):
+ _elems.f(a0, a1)
+ _elems.Check(a0)
+
+def Z3_optimize_dec_ref(a0, a1, _elems=Elementaries(_lib.Z3_optimize_dec_ref)):
+ _elems.f(a0, a1)
+ _elems.Check(a0)
+
+def Z3_optimize_assert(a0, a1, a2, _elems=Elementaries(_lib.Z3_optimize_assert)):
+ _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+
+def Z3_optimize_assert_and_track(a0, a1, a2, a3, _elems=Elementaries(_lib.Z3_optimize_assert_and_track)):
+ _elems.f(a0, a1, a2, a3)
+ _elems.Check(a0)
+
+def Z3_optimize_assert_soft(a0, a1, a2, a3, a4, _elems=Elementaries(_lib.Z3_optimize_assert_soft)):
+ r = _elems.f(a0, a1, a2, _str_to_bytes(a3), a4)
+ _elems.Check(a0)
+ return r
+
+def Z3_optimize_maximize(a0, a1, a2, _elems=Elementaries(_lib.Z3_optimize_maximize)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_optimize_minimize(a0, a1, a2, _elems=Elementaries(_lib.Z3_optimize_minimize)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_optimize_push(a0, a1, _elems=Elementaries(_lib.Z3_optimize_push)):
+ _elems.f(a0, a1)
+ _elems.Check(a0)
+
+def Z3_optimize_pop(a0, a1, _elems=Elementaries(_lib.Z3_optimize_pop)):
+ _elems.f(a0, a1)
+ _elems.Check(a0)
+
+def Z3_optimize_check(a0, a1, a2, a3, _elems=Elementaries(_lib.Z3_optimize_check)):
+ r = _elems.f(a0, a1, a2, a3)
+ _elems.Check(a0)
+ return r
+
+def Z3_optimize_get_reason_unknown(a0, a1, _elems=Elementaries(_lib.Z3_optimize_get_reason_unknown)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return _to_pystr(r)
+
+def Z3_optimize_get_reason_unknown_bytes(a0, a1, _elems=Elementaries(_lib.Z3_optimize_get_reason_unknown)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_optimize_get_model(a0, a1, _elems=Elementaries(_lib.Z3_optimize_get_model)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_optimize_get_unsat_core(a0, a1, _elems=Elementaries(_lib.Z3_optimize_get_unsat_core)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_optimize_set_params(a0, a1, a2, _elems=Elementaries(_lib.Z3_optimize_set_params)):
+ _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+
+def Z3_optimize_get_param_descrs(a0, a1, _elems=Elementaries(_lib.Z3_optimize_get_param_descrs)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_optimize_get_lower(a0, a1, a2, _elems=Elementaries(_lib.Z3_optimize_get_lower)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_optimize_get_upper(a0, a1, a2, _elems=Elementaries(_lib.Z3_optimize_get_upper)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_optimize_get_lower_as_vector(a0, a1, a2, _elems=Elementaries(_lib.Z3_optimize_get_lower_as_vector)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_optimize_get_upper_as_vector(a0, a1, a2, _elems=Elementaries(_lib.Z3_optimize_get_upper_as_vector)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_optimize_to_string(a0, a1, _elems=Elementaries(_lib.Z3_optimize_to_string)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return _to_pystr(r)
+
+def Z3_optimize_to_string_bytes(a0, a1, _elems=Elementaries(_lib.Z3_optimize_to_string)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_optimize_from_string(a0, a1, a2, _elems=Elementaries(_lib.Z3_optimize_from_string)):
+ _elems.f(a0, a1, _str_to_bytes(a2))
+ _elems.Check(a0)
+
+def Z3_optimize_from_file(a0, a1, a2, _elems=Elementaries(_lib.Z3_optimize_from_file)):
+ _elems.f(a0, a1, _str_to_bytes(a2))
+ _elems.Check(a0)
+
+def Z3_optimize_get_help(a0, a1, _elems=Elementaries(_lib.Z3_optimize_get_help)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return _to_pystr(r)
+
+def Z3_optimize_get_help_bytes(a0, a1, _elems=Elementaries(_lib.Z3_optimize_get_help)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_optimize_get_statistics(a0, a1, _elems=Elementaries(_lib.Z3_optimize_get_statistics)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_optimize_get_assertions(a0, a1, _elems=Elementaries(_lib.Z3_optimize_get_assertions)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_optimize_get_objectives(a0, a1, _elems=Elementaries(_lib.Z3_optimize_get_objectives)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_fpa_rounding_mode_sort(a0, _elems=Elementaries(_lib.Z3_mk_fpa_rounding_mode_sort)):
+ r = _elems.f(a0)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_fpa_round_nearest_ties_to_even(a0, _elems=Elementaries(_lib.Z3_mk_fpa_round_nearest_ties_to_even)):
+ r = _elems.f(a0)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_fpa_rne(a0, _elems=Elementaries(_lib.Z3_mk_fpa_rne)):
+ r = _elems.f(a0)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_fpa_round_nearest_ties_to_away(a0, _elems=Elementaries(_lib.Z3_mk_fpa_round_nearest_ties_to_away)):
+ r = _elems.f(a0)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_fpa_rna(a0, _elems=Elementaries(_lib.Z3_mk_fpa_rna)):
+ r = _elems.f(a0)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_fpa_round_toward_positive(a0, _elems=Elementaries(_lib.Z3_mk_fpa_round_toward_positive)):
+ r = _elems.f(a0)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_fpa_rtp(a0, _elems=Elementaries(_lib.Z3_mk_fpa_rtp)):
+ r = _elems.f(a0)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_fpa_round_toward_negative(a0, _elems=Elementaries(_lib.Z3_mk_fpa_round_toward_negative)):
+ r = _elems.f(a0)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_fpa_rtn(a0, _elems=Elementaries(_lib.Z3_mk_fpa_rtn)):
+ r = _elems.f(a0)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_fpa_round_toward_zero(a0, _elems=Elementaries(_lib.Z3_mk_fpa_round_toward_zero)):
+ r = _elems.f(a0)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_fpa_rtz(a0, _elems=Elementaries(_lib.Z3_mk_fpa_rtz)):
+ r = _elems.f(a0)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_fpa_sort(a0, a1, a2, _elems=Elementaries(_lib.Z3_mk_fpa_sort)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_fpa_sort_half(a0, _elems=Elementaries(_lib.Z3_mk_fpa_sort_half)):
+ r = _elems.f(a0)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_fpa_sort_16(a0, _elems=Elementaries(_lib.Z3_mk_fpa_sort_16)):
+ r = _elems.f(a0)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_fpa_sort_single(a0, _elems=Elementaries(_lib.Z3_mk_fpa_sort_single)):
+ r = _elems.f(a0)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_fpa_sort_32(a0, _elems=Elementaries(_lib.Z3_mk_fpa_sort_32)):
+ r = _elems.f(a0)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_fpa_sort_double(a0, _elems=Elementaries(_lib.Z3_mk_fpa_sort_double)):
+ r = _elems.f(a0)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_fpa_sort_64(a0, _elems=Elementaries(_lib.Z3_mk_fpa_sort_64)):
+ r = _elems.f(a0)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_fpa_sort_quadruple(a0, _elems=Elementaries(_lib.Z3_mk_fpa_sort_quadruple)):
+ r = _elems.f(a0)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_fpa_sort_128(a0, _elems=Elementaries(_lib.Z3_mk_fpa_sort_128)):
+ r = _elems.f(a0)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_fpa_nan(a0, a1, _elems=Elementaries(_lib.Z3_mk_fpa_nan)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_fpa_inf(a0, a1, a2, _elems=Elementaries(_lib.Z3_mk_fpa_inf)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_fpa_zero(a0, a1, a2, _elems=Elementaries(_lib.Z3_mk_fpa_zero)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_fpa_fp(a0, a1, a2, a3, _elems=Elementaries(_lib.Z3_mk_fpa_fp)):
+ r = _elems.f(a0, a1, a2, a3)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_fpa_numeral_float(a0, a1, a2, _elems=Elementaries(_lib.Z3_mk_fpa_numeral_float)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_fpa_numeral_double(a0, a1, a2, _elems=Elementaries(_lib.Z3_mk_fpa_numeral_double)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_fpa_numeral_int(a0, a1, a2, _elems=Elementaries(_lib.Z3_mk_fpa_numeral_int)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_fpa_numeral_int_uint(a0, a1, a2, a3, a4, _elems=Elementaries(_lib.Z3_mk_fpa_numeral_int_uint)):
+ r = _elems.f(a0, a1, a2, a3, a4)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_fpa_numeral_int64_uint64(a0, a1, a2, a3, a4, _elems=Elementaries(_lib.Z3_mk_fpa_numeral_int64_uint64)):
+ r = _elems.f(a0, a1, a2, a3, a4)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_fpa_abs(a0, a1, _elems=Elementaries(_lib.Z3_mk_fpa_abs)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_fpa_neg(a0, a1, _elems=Elementaries(_lib.Z3_mk_fpa_neg)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_fpa_add(a0, a1, a2, a3, _elems=Elementaries(_lib.Z3_mk_fpa_add)):
+ r = _elems.f(a0, a1, a2, a3)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_fpa_sub(a0, a1, a2, a3, _elems=Elementaries(_lib.Z3_mk_fpa_sub)):
+ r = _elems.f(a0, a1, a2, a3)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_fpa_mul(a0, a1, a2, a3, _elems=Elementaries(_lib.Z3_mk_fpa_mul)):
+ r = _elems.f(a0, a1, a2, a3)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_fpa_div(a0, a1, a2, a3, _elems=Elementaries(_lib.Z3_mk_fpa_div)):
+ r = _elems.f(a0, a1, a2, a3)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_fpa_fma(a0, a1, a2, a3, a4, _elems=Elementaries(_lib.Z3_mk_fpa_fma)):
+ r = _elems.f(a0, a1, a2, a3, a4)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_fpa_sqrt(a0, a1, a2, _elems=Elementaries(_lib.Z3_mk_fpa_sqrt)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_fpa_rem(a0, a1, a2, _elems=Elementaries(_lib.Z3_mk_fpa_rem)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_fpa_round_to_integral(a0, a1, a2, _elems=Elementaries(_lib.Z3_mk_fpa_round_to_integral)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_fpa_min(a0, a1, a2, _elems=Elementaries(_lib.Z3_mk_fpa_min)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_fpa_max(a0, a1, a2, _elems=Elementaries(_lib.Z3_mk_fpa_max)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_fpa_leq(a0, a1, a2, _elems=Elementaries(_lib.Z3_mk_fpa_leq)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_fpa_lt(a0, a1, a2, _elems=Elementaries(_lib.Z3_mk_fpa_lt)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_fpa_geq(a0, a1, a2, _elems=Elementaries(_lib.Z3_mk_fpa_geq)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_fpa_gt(a0, a1, a2, _elems=Elementaries(_lib.Z3_mk_fpa_gt)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_fpa_eq(a0, a1, a2, _elems=Elementaries(_lib.Z3_mk_fpa_eq)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_fpa_is_normal(a0, a1, _elems=Elementaries(_lib.Z3_mk_fpa_is_normal)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_fpa_is_subnormal(a0, a1, _elems=Elementaries(_lib.Z3_mk_fpa_is_subnormal)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_fpa_is_zero(a0, a1, _elems=Elementaries(_lib.Z3_mk_fpa_is_zero)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_fpa_is_infinite(a0, a1, _elems=Elementaries(_lib.Z3_mk_fpa_is_infinite)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_fpa_is_nan(a0, a1, _elems=Elementaries(_lib.Z3_mk_fpa_is_nan)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_fpa_is_negative(a0, a1, _elems=Elementaries(_lib.Z3_mk_fpa_is_negative)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_fpa_is_positive(a0, a1, _elems=Elementaries(_lib.Z3_mk_fpa_is_positive)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_fpa_to_fp_bv(a0, a1, a2, _elems=Elementaries(_lib.Z3_mk_fpa_to_fp_bv)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_fpa_to_fp_float(a0, a1, a2, a3, _elems=Elementaries(_lib.Z3_mk_fpa_to_fp_float)):
+ r = _elems.f(a0, a1, a2, a3)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_fpa_to_fp_real(a0, a1, a2, a3, _elems=Elementaries(_lib.Z3_mk_fpa_to_fp_real)):
+ r = _elems.f(a0, a1, a2, a3)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_fpa_to_fp_signed(a0, a1, a2, a3, _elems=Elementaries(_lib.Z3_mk_fpa_to_fp_signed)):
+ r = _elems.f(a0, a1, a2, a3)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_fpa_to_fp_unsigned(a0, a1, a2, a3, _elems=Elementaries(_lib.Z3_mk_fpa_to_fp_unsigned)):
+ r = _elems.f(a0, a1, a2, a3)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_fpa_to_ubv(a0, a1, a2, a3, _elems=Elementaries(_lib.Z3_mk_fpa_to_ubv)):
+ r = _elems.f(a0, a1, a2, a3)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_fpa_to_sbv(a0, a1, a2, a3, _elems=Elementaries(_lib.Z3_mk_fpa_to_sbv)):
+ r = _elems.f(a0, a1, a2, a3)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_fpa_to_real(a0, a1, _elems=Elementaries(_lib.Z3_mk_fpa_to_real)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_fpa_get_ebits(a0, a1, _elems=Elementaries(_lib.Z3_fpa_get_ebits)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_fpa_get_sbits(a0, a1, _elems=Elementaries(_lib.Z3_fpa_get_sbits)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_fpa_is_numeral_nan(a0, a1, _elems=Elementaries(_lib.Z3_fpa_is_numeral_nan)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_fpa_is_numeral_inf(a0, a1, _elems=Elementaries(_lib.Z3_fpa_is_numeral_inf)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_fpa_is_numeral_zero(a0, a1, _elems=Elementaries(_lib.Z3_fpa_is_numeral_zero)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_fpa_is_numeral_normal(a0, a1, _elems=Elementaries(_lib.Z3_fpa_is_numeral_normal)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_fpa_is_numeral_subnormal(a0, a1, _elems=Elementaries(_lib.Z3_fpa_is_numeral_subnormal)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_fpa_is_numeral_positive(a0, a1, _elems=Elementaries(_lib.Z3_fpa_is_numeral_positive)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_fpa_is_numeral_negative(a0, a1, _elems=Elementaries(_lib.Z3_fpa_is_numeral_negative)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_fpa_get_numeral_sign_bv(a0, a1, _elems=Elementaries(_lib.Z3_fpa_get_numeral_sign_bv)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_fpa_get_numeral_significand_bv(a0, a1, _elems=Elementaries(_lib.Z3_fpa_get_numeral_significand_bv)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_fpa_get_numeral_sign(a0, a1, a2, _elems=Elementaries(_lib.Z3_fpa_get_numeral_sign)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_fpa_get_numeral_significand_string(a0, a1, _elems=Elementaries(_lib.Z3_fpa_get_numeral_significand_string)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return _to_pystr(r)
+
+def Z3_fpa_get_numeral_significand_string_bytes(a0, a1, _elems=Elementaries(_lib.Z3_fpa_get_numeral_significand_string)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_fpa_get_numeral_significand_uint64(a0, a1, a2, _elems=Elementaries(_lib.Z3_fpa_get_numeral_significand_uint64)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_fpa_get_numeral_exponent_string(a0, a1, a2, _elems=Elementaries(_lib.Z3_fpa_get_numeral_exponent_string)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return _to_pystr(r)
+
+def Z3_fpa_get_numeral_exponent_string_bytes(a0, a1, a2, _elems=Elementaries(_lib.Z3_fpa_get_numeral_exponent_string)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_fpa_get_numeral_exponent_int64(a0, a1, a2, a3, _elems=Elementaries(_lib.Z3_fpa_get_numeral_exponent_int64)):
+ r = _elems.f(a0, a1, a2, a3)
+ _elems.Check(a0)
+ return r
+
+def Z3_fpa_get_numeral_exponent_bv(a0, a1, a2, _elems=Elementaries(_lib.Z3_fpa_get_numeral_exponent_bv)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_fpa_to_ieee_bv(a0, a1, _elems=Elementaries(_lib.Z3_mk_fpa_to_ieee_bv)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_mk_fpa_to_fp_int_real(a0, a1, a2, a3, a4, _elems=Elementaries(_lib.Z3_mk_fpa_to_fp_int_real)):
+ r = _elems.f(a0, a1, a2, a3, a4)
+ _elems.Check(a0)
+ return r
+
+def Z3_fixedpoint_query_from_lvl(a0, a1, a2, a3, _elems=Elementaries(_lib.Z3_fixedpoint_query_from_lvl)):
+ r = _elems.f(a0, a1, a2, a3)
+ _elems.Check(a0)
+ return r
+
+def Z3_fixedpoint_get_ground_sat_answer(a0, a1, _elems=Elementaries(_lib.Z3_fixedpoint_get_ground_sat_answer)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_fixedpoint_get_rules_along_trace(a0, a1, _elems=Elementaries(_lib.Z3_fixedpoint_get_rules_along_trace)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_fixedpoint_get_rule_names_along_trace(a0, a1, _elems=Elementaries(_lib.Z3_fixedpoint_get_rule_names_along_trace)):
+ r = _elems.f(a0, a1)
+ _elems.Check(a0)
+ return r
+
+def Z3_fixedpoint_add_invariant(a0, a1, a2, a3, _elems=Elementaries(_lib.Z3_fixedpoint_add_invariant)):
+ _elems.f(a0, a1, a2, a3)
+ _elems.Check(a0)
+
+def Z3_fixedpoint_get_reachable(a0, a1, a2, _elems=Elementaries(_lib.Z3_fixedpoint_get_reachable)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_qe_model_project(a0, a1, a2, a3, a4, _elems=Elementaries(_lib.Z3_qe_model_project)):
+ r = _elems.f(a0, a1, a2, a3, a4)
+ _elems.Check(a0)
+ return r
+
+def Z3_qe_model_project_skolem(a0, a1, a2, a3, a4, a5, _elems=Elementaries(_lib.Z3_qe_model_project_skolem)):
+ r = _elems.f(a0, a1, a2, a3, a4, a5)
+ _elems.Check(a0)
+ return r
+
+def Z3_model_extrapolate(a0, a1, a2, _elems=Elementaries(_lib.Z3_model_extrapolate)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+def Z3_qe_lite(a0, a1, a2, _elems=Elementaries(_lib.Z3_qe_lite)):
+ r = _elems.f(a0, a1, a2)
+ _elems.Check(a0)
+ return r
+
+
+# Clean up
+del _lib
+del _default_dirs
+del _all_dirs
+del _ext
diff --git a/z3-4.8.9-x64-ubuntu-16.04/bin/python/z3/z3core.pyc b/z3-4.8.9-x64-ubuntu-16.04/bin/python/z3/z3core.pyc
new file mode 100644
index 0000000..791042d
Binary files /dev/null and b/z3-4.8.9-x64-ubuntu-16.04/bin/python/z3/z3core.pyc differ
diff --git a/z3-4.8.9-x64-ubuntu-16.04/bin/python/z3/z3num.py b/z3-4.8.9-x64-ubuntu-16.04/bin/python/z3/z3num.py
new file mode 100644
index 0000000..b1af58d
--- /dev/null
+++ b/z3-4.8.9-x64-ubuntu-16.04/bin/python/z3/z3num.py
@@ -0,0 +1,577 @@
+############################################
+# Copyright (c) 2012 Microsoft Corporation
+#
+# Z3 Python interface for Z3 numerals
+#
+# Author: Leonardo de Moura (leonardo)
+############################################
+from .z3 import *
+from .z3core import *
+from .z3printer import *
+from fractions import Fraction
+
+from .z3 import _get_ctx
+
+def _to_numeral(num, ctx=None):
+ if isinstance(num, Numeral):
+ return num
+ else:
+ return Numeral(num, ctx)
+
+class Numeral:
+ """
+ A Z3 numeral can be used to perform computations over arbitrary
+ precision integers, rationals and real algebraic numbers.
+ It also automatically converts python numeric values.
+
+ >>> Numeral(2)
+ 2
+ >>> Numeral("3/2") + 1
+ 5/2
+ >>> Numeral(Sqrt(2))
+ 1.4142135623?
+ >>> Numeral(Sqrt(2)) + 2
+ 3.4142135623?
+ >>> Numeral(Sqrt(2)) + Numeral(Sqrt(3))
+ 3.1462643699?
+
+ Z3 numerals can be used to perform computations with
+ values in a Z3 model.
+
+ >>> s = Solver()
+ >>> x = Real('x')
+ >>> s.add(x*x == 2)
+ >>> s.add(x > 0)
+ >>> s.check()
+ sat
+ >>> m = s.model()
+ >>> m[x]
+ 1.4142135623?
+ >>> m[x] + 1
+ 1.4142135623? + 1
+
+ The previous result is a Z3 expression.
+
+ >>> (m[x] + 1).sexpr()
+ '(+ (root-obj (+ (^ x 2) (- 2)) 2) 1.0)'
+
+ >>> Numeral(m[x]) + 1
+ 2.4142135623?
+ >>> Numeral(m[x]).is_pos()
+ True
+ >>> Numeral(m[x])**2
+ 2
+
+ We can also isolate the roots of polynomials.
+
+ >>> x0, x1, x2 = RealVarVector(3)
+ >>> r0 = isolate_roots(x0**5 - x0 - 1)
+ >>> r0
+ [1.1673039782?]
+
+ In the following example, we are isolating the roots
+ of a univariate polynomial (on x1) obtained after substituting
+ x0 -> r0[0]
+
+ >>> r1 = isolate_roots(x1**2 - x0 + 1, [ r0[0] ])
+ >>> r1
+ [-0.4090280898?, 0.4090280898?]
+
+ Similarly, in the next example we isolate the roots of
+ a univariate polynomial (on x2) obtained after substituting
+ x0 -> r0[0] and x1 -> r1[0]
+
+ >>> isolate_roots(x1*x2 + x0, [ r0[0], r1[0] ])
+ [2.8538479564?]
+
+ """
+ def __init__(self, num, ctx=None):
+ if isinstance(num, Ast):
+ self.ast = num
+ self.ctx = _get_ctx(ctx)
+ elif isinstance(num, RatNumRef) or isinstance(num, AlgebraicNumRef):
+ self.ast = num.ast
+ self.ctx = num.ctx
+ elif isinstance(num, ArithRef):
+ r = simplify(num)
+ self.ast = r.ast
+ self.ctx = r.ctx
+ else:
+ v = RealVal(num, ctx)
+ self.ast = v.ast
+ self.ctx = v.ctx
+ Z3_inc_ref(self.ctx_ref(), self.as_ast())
+ assert Z3_algebraic_is_value(self.ctx_ref(), self.ast)
+
+ def __del__(self):
+ Z3_dec_ref(self.ctx_ref(), self.as_ast())
+
+ def is_integer(self):
+ """ Return True if the numeral is integer.
+
+ >>> Numeral(2).is_integer()
+ True
+ >>> (Numeral(Sqrt(2)) * Numeral(Sqrt(2))).is_integer()
+ True
+ >>> Numeral(Sqrt(2)).is_integer()
+ False
+ >>> Numeral("2/3").is_integer()
+ False
+ """
+ return self.is_rational() and self.denominator() == 1
+
+ def is_rational(self):
+ """ Return True if the numeral is rational.
+
+ >>> Numeral(2).is_rational()
+ True
+ >>> Numeral("2/3").is_rational()
+ True
+ >>> Numeral(Sqrt(2)).is_rational()
+ False
+
+ """
+ return Z3_get_ast_kind(self.ctx_ref(), self.as_ast()) == Z3_NUMERAL_AST
+
+ def denominator(self):
+ """ Return the denominator if `self` is rational.
+
+ >>> Numeral("2/3").denominator()
+ 3
+ """
+ assert(self.is_rational())
+ return Numeral(Z3_get_denominator(self.ctx_ref(), self.as_ast()), self.ctx)
+
+ def numerator(self):
+ """ Return the numerator if `self` is rational.
+
+ >>> Numeral("2/3").numerator()
+ 2
+ """
+ assert(self.is_rational())
+ return Numeral(Z3_get_numerator(self.ctx_ref(), self.as_ast()), self.ctx)
+
+
+ def is_irrational(self):
+ """ Return True if the numeral is irrational.
+
+ >>> Numeral(2).is_irrational()
+ False
+ >>> Numeral("2/3").is_irrational()
+ False
+ >>> Numeral(Sqrt(2)).is_irrational()
+ True
+ """
+ return not self.is_rational()
+
+ def as_long(self):
+ """ Return a numeral (that is an integer) as a Python long.
+
+ """
+ assert(self.is_integer())
+ if sys.version_info[0] >= 3:
+ return int(Z3_get_numeral_string(self.ctx_ref(), self.as_ast()))
+ else:
+ return long(Z3_get_numeral_string(self.ctx_ref(), self.as_ast()))
+
+ def as_fraction(self):
+ """ Return a numeral (that is a rational) as a Python Fraction.
+ >>> Numeral("1/5").as_fraction()
+ Fraction(1, 5)
+ """
+ assert(self.is_rational())
+ return Fraction(self.numerator().as_long(), self.denominator().as_long())
+
+ def approx(self, precision=10):
+ """Return a numeral that approximates the numeral `self`.
+ The result `r` is such that |r - self| <= 1/10^precision
+
+ If `self` is rational, then the result is `self`.
+
+ >>> x = Numeral(2).root(2)
+ >>> x.approx(20)
+ 6838717160008073720548335/4835703278458516698824704
+ >>> x.approx(5)
+ 2965821/2097152
+ >>> Numeral(2).approx(10)
+ 2
+ """
+ return self.upper(precision)
+
+ def upper(self, precision=10):
+ """Return a upper bound that approximates the numeral `self`.
+ The result `r` is such that r - self <= 1/10^precision
+
+ If `self` is rational, then the result is `self`.
+
+ >>> x = Numeral(2).root(2)
+ >>> x.upper(20)
+ 6838717160008073720548335/4835703278458516698824704
+ >>> x.upper(5)
+ 2965821/2097152
+ >>> Numeral(2).upper(10)
+ 2
+ """
+ if self.is_rational():
+ return self
+ else:
+ return Numeral(Z3_get_algebraic_number_upper(self.ctx_ref(), self.as_ast(), precision), self.ctx)
+
+ def lower(self, precision=10):
+ """Return a lower bound that approximates the numeral `self`.
+ The result `r` is such that self - r <= 1/10^precision
+
+ If `self` is rational, then the result is `self`.
+
+ >>> x = Numeral(2).root(2)
+ >>> x.lower(20)
+ 1709679290002018430137083/1208925819614629174706176
+ >>> Numeral("2/3").lower(10)
+ 2/3
+ """
+ if self.is_rational():
+ return self
+ else:
+ return Numeral(Z3_get_algebraic_number_lower(self.ctx_ref(), self.as_ast(), precision), self.ctx)
+
+ def sign(self):
+ """ Return the sign of the numeral.
+
+ >>> Numeral(2).sign()
+ 1
+ >>> Numeral(-3).sign()
+ -1
+ >>> Numeral(0).sign()
+ 0
+ """
+ return Z3_algebraic_sign(self.ctx_ref(), self.ast)
+
+ def is_pos(self):
+ """ Return True if the numeral is positive.
+
+ >>> Numeral(2).is_pos()
+ True
+ >>> Numeral(-3).is_pos()
+ False
+ >>> Numeral(0).is_pos()
+ False
+ """
+ return Z3_algebraic_is_pos(self.ctx_ref(), self.ast)
+
+ def is_neg(self):
+ """ Return True if the numeral is negative.
+
+ >>> Numeral(2).is_neg()
+ False
+ >>> Numeral(-3).is_neg()
+ True
+ >>> Numeral(0).is_neg()
+ False
+ """
+ return Z3_algebraic_is_neg(self.ctx_ref(), self.ast)
+
+ def is_zero(self):
+ """ Return True if the numeral is zero.
+
+ >>> Numeral(2).is_zero()
+ False
+ >>> Numeral(-3).is_zero()
+ False
+ >>> Numeral(0).is_zero()
+ True
+ >>> sqrt2 = Numeral(2).root(2)
+ >>> sqrt2.is_zero()
+ False
+ >>> (sqrt2 - sqrt2).is_zero()
+ True
+ """
+ return Z3_algebraic_is_zero(self.ctx_ref(), self.ast)
+
+ def __add__(self, other):
+ """ Return the numeral `self + other`.
+
+ >>> Numeral(2) + 3
+ 5
+ >>> Numeral(2) + Numeral(4)
+ 6
+ >>> Numeral("2/3") + 1
+ 5/3
+ """
+ return Numeral(Z3_algebraic_add(self.ctx_ref(), self.ast, _to_numeral(other, self.ctx).ast), self.ctx)
+
+ def __radd__(self, other):
+ """ Return the numeral `other + self`.
+
+ >>> 3 + Numeral(2)
+ 5
+ """
+ return Numeral(Z3_algebraic_add(self.ctx_ref(), self.ast, _to_numeral(other, self.ctx).ast), self.ctx)
+
+ def __sub__(self, other):
+ """ Return the numeral `self - other`.
+
+ >>> Numeral(2) - 3
+ -1
+ """
+ return Numeral(Z3_algebraic_sub(self.ctx_ref(), self.ast, _to_numeral(other, self.ctx).ast), self.ctx)
+
+ def __rsub__(self, other):
+ """ Return the numeral `other - self`.
+
+ >>> 3 - Numeral(2)
+ 1
+ """
+ return Numeral(Z3_algebraic_sub(self.ctx_ref(), _to_numeral(other, self.ctx).ast, self.ast), self.ctx)
+
+ def __mul__(self, other):
+ """ Return the numeral `self * other`.
+ >>> Numeral(2) * 3
+ 6
+ """
+ return Numeral(Z3_algebraic_mul(self.ctx_ref(), self.ast, _to_numeral(other, self.ctx).ast), self.ctx)
+
+ def __rmul__(self, other):
+ """ Return the numeral `other * mul`.
+ >>> 3 * Numeral(2)
+ 6
+ """
+ return Numeral(Z3_algebraic_mul(self.ctx_ref(), self.ast, _to_numeral(other, self.ctx).ast), self.ctx)
+
+ def __div__(self, other):
+ """ Return the numeral `self / other`.
+ >>> Numeral(2) / 3
+ 2/3
+ >>> Numeral(2).root(2) / 3
+ 0.4714045207?
+ >>> Numeral(Sqrt(2)) / Numeral(Sqrt(3))
+ 0.8164965809?
+ """
+ return Numeral(Z3_algebraic_div(self.ctx_ref(), self.ast, _to_numeral(other, self.ctx).ast), self.ctx)
+
+ def __truediv__(self, other):
+ return self.__div__(other)
+
+ def __rdiv__(self, other):
+ """ Return the numeral `other / self`.
+ >>> 3 / Numeral(2)
+ 3/2
+ >>> 3 / Numeral(2).root(2)
+ 2.1213203435?
+ """
+ return Numeral(Z3_algebraic_div(self.ctx_ref(), _to_numeral(other, self.ctx).ast, self.ast), self.ctx)
+
+ def __rtruediv__(self, other):
+ return self.__rdiv__(other)
+
+ def root(self, k):
+ """ Return the numeral `self^(1/k)`.
+
+ >>> sqrt2 = Numeral(2).root(2)
+ >>> sqrt2
+ 1.4142135623?
+ >>> sqrt2 * sqrt2
+ 2
+ >>> sqrt2 * 2 + 1
+ 3.8284271247?
+ >>> (sqrt2 * 2 + 1).sexpr()
+ '(root-obj (+ (^ x 2) (* (- 2) x) (- 7)) 2)'
+ """
+ return Numeral(Z3_algebraic_root(self.ctx_ref(), self.ast, k), self.ctx)
+
+ def power(self, k):
+ """ Return the numeral `self^k`.
+
+ >>> sqrt3 = Numeral(3).root(2)
+ >>> sqrt3
+ 1.7320508075?
+ >>> sqrt3.power(2)
+ 3
+ """
+ return Numeral(Z3_algebraic_power(self.ctx_ref(), self.ast, k), self.ctx)
+
+ def __pow__(self, k):
+ """ Return the numeral `self^k`.
+
+ >>> sqrt3 = Numeral(3).root(2)
+ >>> sqrt3
+ 1.7320508075?
+ >>> sqrt3**2
+ 3
+ """
+ return self.power(k)
+
+ def __lt__(self, other):
+ """ Return True if `self < other`.
+
+ >>> Numeral(Sqrt(2)) < 2
+ True
+ >>> Numeral(Sqrt(3)) < Numeral(Sqrt(2))
+ False
+ >>> Numeral(Sqrt(2)) < Numeral(Sqrt(2))
+ False
+ """
+ return Z3_algebraic_lt(self.ctx_ref(), self.ast, _to_numeral(other, self.ctx).ast)
+
+ def __rlt__(self, other):
+ """ Return True if `other < self`.
+
+ >>> 2 < Numeral(Sqrt(2))
+ False
+ """
+ return self > other
+
+ def __gt__(self, other):
+ """ Return True if `self > other`.
+
+ >>> Numeral(Sqrt(2)) > 2
+ False
+ >>> Numeral(Sqrt(3)) > Numeral(Sqrt(2))
+ True
+ >>> Numeral(Sqrt(2)) > Numeral(Sqrt(2))
+ False
+ """
+ return Z3_algebraic_gt(self.ctx_ref(), self.ast, _to_numeral(other, self.ctx).ast)
+
+ def __rgt__(self, other):
+ """ Return True if `other > self`.
+
+ >>> 2 > Numeral(Sqrt(2))
+ True
+ """
+ return self < other
+
+
+ def __le__(self, other):
+ """ Return True if `self <= other`.
+
+ >>> Numeral(Sqrt(2)) <= 2
+ True
+ >>> Numeral(Sqrt(3)) <= Numeral(Sqrt(2))
+ False
+ >>> Numeral(Sqrt(2)) <= Numeral(Sqrt(2))
+ True
+ """
+ return Z3_algebraic_le(self.ctx_ref(), self.ast, _to_numeral(other, self.ctx).ast)
+
+ def __rle__(self, other):
+ """ Return True if `other <= self`.
+
+ >>> 2 <= Numeral(Sqrt(2))
+ False
+ """
+ return self >= other
+
+ def __ge__(self, other):
+ """ Return True if `self >= other`.
+
+ >>> Numeral(Sqrt(2)) >= 2
+ False
+ >>> Numeral(Sqrt(3)) >= Numeral(Sqrt(2))
+ True
+ >>> Numeral(Sqrt(2)) >= Numeral(Sqrt(2))
+ True
+ """
+ return Z3_algebraic_ge(self.ctx_ref(), self.ast, _to_numeral(other, self.ctx).ast)
+
+ def __rge__(self, other):
+ """ Return True if `other >= self`.
+
+ >>> 2 >= Numeral(Sqrt(2))
+ True
+ """
+ return self <= other
+
+ def __eq__(self, other):
+ """ Return True if `self == other`.
+
+ >>> Numeral(Sqrt(2)) == 2
+ False
+ >>> Numeral(Sqrt(3)) == Numeral(Sqrt(2))
+ False
+ >>> Numeral(Sqrt(2)) == Numeral(Sqrt(2))
+ True
+ """
+ return Z3_algebraic_eq(self.ctx_ref(), self.ast, _to_numeral(other, self.ctx).ast)
+
+ def __ne__(self, other):
+ """ Return True if `self != other`.
+
+ >>> Numeral(Sqrt(2)) != 2
+ True
+ >>> Numeral(Sqrt(3)) != Numeral(Sqrt(2))
+ True
+ >>> Numeral(Sqrt(2)) != Numeral(Sqrt(2))
+ False
+ """
+ return Z3_algebraic_neq(self.ctx_ref(), self.ast, _to_numeral(other, self.ctx).ast)
+
+ def __str__(self):
+ if Z3_is_numeral_ast(self.ctx_ref(), self.ast):
+ return str(RatNumRef(self.ast, self.ctx))
+ else:
+ return str(AlgebraicNumRef(self.ast, self.ctx))
+
+ def __repr__(self):
+ return self.__str__()
+
+ def sexpr(self):
+ return Z3_ast_to_string(self.ctx_ref(), self.as_ast())
+
+ def as_ast(self):
+ return self.ast
+
+ def ctx_ref(self):
+ return self.ctx.ref()
+
+def eval_sign_at(p, vs):
+ """
+ Evaluate the sign of the polynomial `p` at `vs`. `p` is a Z3
+ Expression containing arithmetic operators: +, -, *, ^k where k is
+ an integer; and free variables x that is_var(x) is True. Moreover,
+ all variables must be real.
+
+ The result is 1 if the polynomial is positive at the given point,
+ -1 if negative, and 0 if zero.
+
+ >>> x0, x1, x2 = RealVarVector(3)
+ >>> eval_sign_at(x0**2 + x1*x2 + 1, (Numeral(0), Numeral(1), Numeral(2)))
+ 1
+ >>> eval_sign_at(x0**2 - 2, [ Numeral(Sqrt(2)) ])
+ 0
+ >>> eval_sign_at((x0 + x1)*(x0 + x2), (Numeral(0), Numeral(Sqrt(2)), Numeral(Sqrt(3))))
+ 1
+ """
+ num = len(vs)
+ _vs = (Ast * num)()
+ for i in range(num):
+ _vs[i] = vs[i].ast
+ return Z3_algebraic_eval(p.ctx_ref(), p.as_ast(), num, _vs)
+
+def isolate_roots(p, vs=[]):
+ """
+ Given a multivariate polynomial p(x_0, ..., x_{n-1}, x_n), returns the
+ roots of the univariate polynomial p(vs[0], ..., vs[len(vs)-1], x_n).
+
+ Remarks:
+ * p is a Z3 expression that contains only arithmetic terms and free variables.
+ * forall i in [0, n) vs is a numeral.
+
+ The result is a list of numerals
+
+ >>> x0 = RealVar(0)
+ >>> isolate_roots(x0**5 - x0 - 1)
+ [1.1673039782?]
+ >>> x1 = RealVar(1)
+ >>> isolate_roots(x0**2 - x1**4 - 1, [ Numeral(Sqrt(3)) ])
+ [-1.1892071150?, 1.1892071150?]
+ >>> x2 = RealVar(2)
+ >>> isolate_roots(x2**2 + x0 - x1, [ Numeral(Sqrt(3)), Numeral(Sqrt(2)) ])
+ []
+ """
+ num = len(vs)
+ _vs = (Ast * num)()
+ for i in range(num):
+ _vs[i] = vs[i].ast
+ _roots = AstVector(Z3_algebraic_roots(p.ctx_ref(), p.as_ast(), num, _vs), p.ctx)
+ return [ Numeral(r) for r in _roots ]
+
diff --git a/z3-4.8.9-x64-ubuntu-16.04/bin/python/z3/z3num.pyc b/z3-4.8.9-x64-ubuntu-16.04/bin/python/z3/z3num.pyc
new file mode 100644
index 0000000..e1f4ae1
Binary files /dev/null and b/z3-4.8.9-x64-ubuntu-16.04/bin/python/z3/z3num.pyc differ
diff --git a/z3-4.8.9-x64-ubuntu-16.04/bin/python/z3/z3poly.py b/z3-4.8.9-x64-ubuntu-16.04/bin/python/z3/z3poly.py
new file mode 100644
index 0000000..1699442
--- /dev/null
+++ b/z3-4.8.9-x64-ubuntu-16.04/bin/python/z3/z3poly.py
@@ -0,0 +1,35 @@
+############################################
+# Copyright (c) 2012 Microsoft Corporation
+#
+# Z3 Python interface for Z3 polynomials
+#
+# Author: Leonardo de Moura (leonardo)
+############################################
+
+from .z3 import *
+
+def subresultants(p, q, x):
+ """
+ Return the non-constant subresultants of 'p' and 'q' with respect to the "variable" 'x'.
+
+ 'p', 'q' and 'x' are Z3 expressions where 'p' and 'q' are arithmetic terms.
+ Note that, any subterm that cannot be viewed as a polynomial is assumed to be a variable.
+ Example: f(a) is a considered to be a variable b in the polynomial
+
+ f(a)*f(a) + 2*f(a) + 1
+
+ >>> x, y = Reals('x y')
+ >>> subresultants(2*x + y, 3*x - 2*y + 2, x)
+ [-7*y + 4]
+ >>> r = subresultants(3*y*x**2 + y**3 + 1, 2*x**3 + y + 3, x)
+ >>> r[0]
+ 4*y**9 + 12*y**6 + 27*y**5 + 162*y**4 + 255*y**3 + 4
+ >>> r[1]
+ -6*y**4 + -6*y
+ """
+ return AstVector(Z3_polynomial_subresultants(p.ctx_ref(), p.as_ast(), q.as_ast(), x.as_ast()), p.ctx)
+
+if __name__ == "__main__":
+ import doctest
+ if doctest.testmod().failed:
+ exit(1)
diff --git a/z3-4.8.9-x64-ubuntu-16.04/bin/python/z3/z3poly.pyc b/z3-4.8.9-x64-ubuntu-16.04/bin/python/z3/z3poly.pyc
new file mode 100644
index 0000000..814b3b2
Binary files /dev/null and b/z3-4.8.9-x64-ubuntu-16.04/bin/python/z3/z3poly.pyc differ
diff --git a/z3-4.8.9-x64-ubuntu-16.04/bin/python/z3/z3printer.py b/z3-4.8.9-x64-ubuntu-16.04/bin/python/z3/z3printer.py
new file mode 100644
index 0000000..6bc247b
--- /dev/null
+++ b/z3-4.8.9-x64-ubuntu-16.04/bin/python/z3/z3printer.py
@@ -0,0 +1,1308 @@
+############################################
+# Copyright (c) 2012 Microsoft Corporation
+#
+# Z3 Python interface
+#
+# Author: Leonardo de Moura (leonardo)
+############################################
+import sys, io, z3
+from .z3consts import *
+from .z3core import *
+from ctypes import *
+
+def _z3_assert(cond, msg):
+ if not cond:
+ raise Z3Exception(msg)
+
+##############################
+#
+# Configuration
+#
+##############################
+
+# Z3 operator names to Z3Py
+_z3_op_to_str = {
+ Z3_OP_TRUE : 'True', Z3_OP_FALSE : 'False', Z3_OP_EQ : '==', Z3_OP_DISTINCT : 'Distinct',
+ Z3_OP_ITE : 'If', Z3_OP_AND : 'And', Z3_OP_OR : 'Or', Z3_OP_IFF : '==', Z3_OP_XOR : 'Xor',
+ Z3_OP_NOT : 'Not', Z3_OP_IMPLIES : 'Implies', Z3_OP_IDIV : '/', Z3_OP_MOD : '%',
+ Z3_OP_TO_REAL : 'ToReal', Z3_OP_TO_INT : 'ToInt', Z3_OP_POWER : '**', Z3_OP_IS_INT : 'IsInt',
+ Z3_OP_BADD : '+', Z3_OP_BSUB : '-', Z3_OP_BMUL : '*', Z3_OP_BOR : '|', Z3_OP_BAND : '&',
+ Z3_OP_BNOT : '~', Z3_OP_BXOR : '^', Z3_OP_BNEG : '-', Z3_OP_BUDIV : 'UDiv', Z3_OP_BSDIV : '/', Z3_OP_BSMOD : '%',
+ Z3_OP_BSREM : 'SRem', Z3_OP_BUREM : 'URem', Z3_OP_EXT_ROTATE_LEFT : 'RotateLeft', Z3_OP_EXT_ROTATE_RIGHT : 'RotateRight',
+ Z3_OP_SLEQ : '<=', Z3_OP_SLT : '<', Z3_OP_SGEQ : '>=', Z3_OP_SGT : '>',
+ Z3_OP_ULEQ : 'ULE', Z3_OP_ULT : 'ULT', Z3_OP_UGEQ : 'UGE', Z3_OP_UGT : 'UGT',
+ Z3_OP_SIGN_EXT : 'SignExt', Z3_OP_ZERO_EXT : 'ZeroExt', Z3_OP_REPEAT : 'RepeatBitVec',
+ Z3_OP_BASHR : '>>', Z3_OP_BSHL : '<<', Z3_OP_BLSHR : 'LShR',
+ Z3_OP_CONCAT : 'Concat', Z3_OP_EXTRACT : 'Extract', Z3_OP_BV2INT : 'BV2Int',
+ Z3_OP_ARRAY_MAP : 'Map', Z3_OP_SELECT : 'Select', Z3_OP_STORE : 'Store',
+ Z3_OP_CONST_ARRAY : 'K', Z3_OP_ARRAY_EXT : 'Ext',
+ Z3_OP_PB_AT_MOST : 'AtMost', Z3_OP_PB_LE : 'PbLe', Z3_OP_PB_GE : 'PbGe', Z3_OP_PB_EQ : 'PbEq',
+ Z3_OP_SEQ_CONCAT : 'Concat', Z3_OP_SEQ_PREFIX : 'PrefixOf', Z3_OP_SEQ_SUFFIX : 'SuffixOf',
+ Z3_OP_SEQ_UNIT : 'Unit', Z3_OP_SEQ_CONTAINS : 'Contains' , Z3_OP_SEQ_REPLACE : 'Replace',
+ Z3_OP_SEQ_AT : 'At', Z3_OP_SEQ_NTH : 'Nth', Z3_OP_SEQ_INDEX : 'IndexOf',
+ Z3_OP_SEQ_LAST_INDEX : 'LastIndexOf', Z3_OP_SEQ_LENGTH : 'Length', Z3_OP_STR_TO_INT : 'StrToInt', Z3_OP_INT_TO_STR : 'IntToStr',
+ Z3_OP_SEQ_IN_RE : 'InRe', Z3_OP_SEQ_TO_RE : 'Re',
+ Z3_OP_RE_PLUS : 'Plus', Z3_OP_RE_STAR : 'Star', Z3_OP_RE_OPTION : 'Option', Z3_OP_RE_UNION : 'Union', Z3_OP_RE_RANGE : 'Range',
+ Z3_OP_RE_INTERSECT : 'Intersect', Z3_OP_RE_COMPLEMENT : 'Complement',
+ Z3_OP_FPA_IS_NAN : 'fpIsNaN', Z3_OP_FPA_IS_INF : 'fpIsInf', Z3_OP_FPA_IS_ZERO : 'fpIsZero',
+ Z3_OP_FPA_IS_NORMAL : 'fpIsNormal', Z3_OP_FPA_IS_SUBNORMAL : 'fpIsSubnormal',
+ Z3_OP_FPA_IS_NEGATIVE : 'fpIsNegative', Z3_OP_FPA_IS_POSITIVE : 'fpIsPositive',
+ }
+
+# List of infix operators
+_z3_infix = [
+ Z3_OP_EQ, Z3_OP_IFF, Z3_OP_ADD, Z3_OP_SUB, Z3_OP_MUL, Z3_OP_DIV, Z3_OP_IDIV, Z3_OP_MOD, Z3_OP_POWER,
+ Z3_OP_LE, Z3_OP_LT, Z3_OP_GE, Z3_OP_GT, Z3_OP_BADD, Z3_OP_BSUB, Z3_OP_BMUL, Z3_OP_BSDIV, Z3_OP_BSMOD, Z3_OP_BOR, Z3_OP_BAND,
+ Z3_OP_BXOR, Z3_OP_BSDIV, Z3_OP_SLEQ, Z3_OP_SLT, Z3_OP_SGEQ, Z3_OP_SGT, Z3_OP_BASHR, Z3_OP_BSHL
+ ]
+
+_z3_unary = [ Z3_OP_UMINUS, Z3_OP_BNOT, Z3_OP_BNEG ]
+
+# Precedence
+_z3_precedence = {
+ Z3_OP_POWER : 0,
+ Z3_OP_UMINUS : 1, Z3_OP_BNEG : 1, Z3_OP_BNOT : 1,
+ Z3_OP_MUL : 2, Z3_OP_DIV : 2, Z3_OP_IDIV : 2, Z3_OP_MOD : 2, Z3_OP_BMUL : 2, Z3_OP_BSDIV : 2, Z3_OP_BSMOD : 2,
+ Z3_OP_ADD : 3, Z3_OP_SUB : 3, Z3_OP_BADD : 3, Z3_OP_BSUB : 3,
+ Z3_OP_BASHR : 4, Z3_OP_BSHL : 4,
+ Z3_OP_BAND : 5,
+ Z3_OP_BXOR : 6,
+ Z3_OP_BOR : 7,
+ Z3_OP_LE : 8, Z3_OP_LT : 8, Z3_OP_GE : 8, Z3_OP_GT : 8, Z3_OP_EQ : 8, Z3_OP_SLEQ : 8, Z3_OP_SLT : 8, Z3_OP_SGEQ : 8, Z3_OP_SGT : 8,
+ Z3_OP_IFF : 8,
+
+ Z3_OP_FPA_NEG : 1,
+ Z3_OP_FPA_MUL : 2, Z3_OP_FPA_DIV : 2, Z3_OP_FPA_REM : 2, Z3_OP_FPA_FMA : 2,
+ Z3_OP_FPA_ADD: 3, Z3_OP_FPA_SUB : 3,
+ Z3_OP_FPA_LE : 8, Z3_OP_FPA_LT : 8, Z3_OP_FPA_GE : 8, Z3_OP_FPA_GT : 8, Z3_OP_FPA_EQ : 8
+ }
+
+# FPA operators
+_z3_op_to_fpa_normal_str = {
+ Z3_OP_FPA_RM_NEAREST_TIES_TO_EVEN : 'RoundNearestTiesToEven()', Z3_OP_FPA_RM_NEAREST_TIES_TO_AWAY : 'RoundNearestTiesToAway()',
+ Z3_OP_FPA_RM_TOWARD_POSITIVE : 'RoundTowardPositive()', Z3_OP_FPA_RM_TOWARD_NEGATIVE : 'RoundTowardNegative()',
+ Z3_OP_FPA_RM_TOWARD_ZERO : 'RoundTowardZero()',
+ Z3_OP_FPA_PLUS_INF : 'fpPlusInfinity', Z3_OP_FPA_MINUS_INF : 'fpMinusInfinity',
+ Z3_OP_FPA_NAN : 'fpNaN', Z3_OP_FPA_PLUS_ZERO : 'fpPZero', Z3_OP_FPA_MINUS_ZERO : 'fpNZero',
+ Z3_OP_FPA_ADD : 'fpAdd', Z3_OP_FPA_SUB : 'fpSub', Z3_OP_FPA_NEG : 'fpNeg', Z3_OP_FPA_MUL : 'fpMul',
+ Z3_OP_FPA_DIV : 'fpDiv', Z3_OP_FPA_REM : 'fpRem', Z3_OP_FPA_ABS : 'fpAbs',
+ Z3_OP_FPA_MIN : 'fpMin', Z3_OP_FPA_MAX : 'fpMax',
+ Z3_OP_FPA_FMA : 'fpFMA', Z3_OP_FPA_SQRT : 'fpSqrt', Z3_OP_FPA_ROUND_TO_INTEGRAL : 'fpRoundToIntegral',
+
+ Z3_OP_FPA_EQ : 'fpEQ', Z3_OP_FPA_LT : 'fpLT', Z3_OP_FPA_GT : 'fpGT', Z3_OP_FPA_LE : 'fpLEQ',
+ Z3_OP_FPA_GE : 'fpGEQ',
+
+ Z3_OP_FPA_FP : 'fpFP', Z3_OP_FPA_TO_FP : 'fpToFP', Z3_OP_FPA_TO_FP_UNSIGNED: 'fpToFPUnsigned',
+ Z3_OP_FPA_TO_UBV : 'fpToUBV', Z3_OP_FPA_TO_SBV : 'fpToSBV', Z3_OP_FPA_TO_REAL: 'fpToReal',
+ Z3_OP_FPA_TO_IEEE_BV : 'fpToIEEEBV'
+ }
+
+_z3_op_to_fpa_pretty_str = {
+ Z3_OP_FPA_RM_NEAREST_TIES_TO_EVEN : 'RNE()', Z3_OP_FPA_RM_NEAREST_TIES_TO_AWAY : 'RNA()',
+ Z3_OP_FPA_RM_TOWARD_POSITIVE : 'RTP()', Z3_OP_FPA_RM_TOWARD_NEGATIVE : 'RTN()',
+ Z3_OP_FPA_RM_TOWARD_ZERO : 'RTZ()',
+ Z3_OP_FPA_PLUS_INF : '+oo', Z3_OP_FPA_MINUS_INF : '-oo',
+ Z3_OP_FPA_NAN : 'NaN', Z3_OP_FPA_PLUS_ZERO : '+0.0', Z3_OP_FPA_MINUS_ZERO : '-0.0',
+
+ Z3_OP_FPA_ADD : '+', Z3_OP_FPA_SUB : '-', Z3_OP_FPA_MUL : '*', Z3_OP_FPA_DIV : '/',
+ Z3_OP_FPA_REM : '%', Z3_OP_FPA_NEG : '-',
+
+ Z3_OP_FPA_EQ : 'fpEQ', Z3_OP_FPA_LT : '<', Z3_OP_FPA_GT : '>', Z3_OP_FPA_LE : '<=', Z3_OP_FPA_GE : '>='
+}
+
+_z3_fpa_infix = [
+ Z3_OP_FPA_ADD, Z3_OP_FPA_SUB, Z3_OP_FPA_MUL, Z3_OP_FPA_DIV, Z3_OP_FPA_REM,
+ Z3_OP_FPA_LT, Z3_OP_FPA_GT, Z3_OP_FPA_LE, Z3_OP_FPA_GE
+]
+
+def _is_assoc(k):
+ return k == Z3_OP_BOR or k == Z3_OP_BXOR or k == Z3_OP_BAND or k == Z3_OP_ADD or k == Z3_OP_BADD or k == Z3_OP_MUL or k == Z3_OP_BMUL
+
+def _is_left_assoc(k):
+ return _is_assoc(k) or k == Z3_OP_SUB or k == Z3_OP_BSUB
+
+def _is_html_assoc(k):
+ return k == Z3_OP_AND or k == Z3_OP_OR or k == Z3_OP_IFF or _is_assoc(k)
+
+def _is_html_left_assoc(k):
+ return _is_html_assoc(k) or k == Z3_OP_SUB or k == Z3_OP_BSUB
+
+def _is_add(k):
+ return k == Z3_OP_ADD or k == Z3_OP_BADD
+
+def _is_sub(k):
+ return k == Z3_OP_SUB or k == Z3_OP_BSUB
+
+import sys
+if sys.version < '3':
+ import codecs
+ def u(x):
+ return codecs.unicode_escape_decode(x)[0]
+else:
+ def u(x):
+ return x
+
+_z3_infix_compact = [ Z3_OP_MUL, Z3_OP_BMUL, Z3_OP_POWER, Z3_OP_DIV, Z3_OP_IDIV, Z3_OP_MOD, Z3_OP_BSDIV, Z3_OP_BSMOD ]
+
+_ellipses = '...'
+
+_html_ellipses = '…'
+# Overwrite some of the operators for HTML
+_z3_pre_html_op_to_str = { Z3_OP_EQ : '=', Z3_OP_IFF : '=', Z3_OP_NOT : '¬',
+ Z3_OP_AND : '∧', Z3_OP_OR : '∨', Z3_OP_IMPLIES : '⇒',
+ Z3_OP_LT : '<', Z3_OP_GT : '>', Z3_OP_LE : '≤', Z3_OP_GE : '≥',
+ Z3_OP_MUL : '·',
+ Z3_OP_SLEQ : '≤', Z3_OP_SLT : '<', Z3_OP_SGEQ : '≥', Z3_OP_SGT : '>',
+ Z3_OP_ULEQ : '≤u', Z3_OP_ULT : '<u',
+ Z3_OP_UGEQ : '≥u', Z3_OP_UGT : '>u',
+ Z3_OP_BMUL : '·',
+ Z3_OP_BUDIV : '/u', Z3_OP_BUREM : '%u',
+ Z3_OP_BASHR : '>>', Z3_OP_BSHL : '<<',
+ Z3_OP_BLSHR : '>>u'
+ }
+
+# Extra operators that are infix/unary for HTML
+_z3_html_infix = [ Z3_OP_AND, Z3_OP_OR, Z3_OP_IMPLIES,
+ Z3_OP_ULEQ, Z3_OP_ULT, Z3_OP_UGEQ, Z3_OP_UGT, Z3_OP_BUDIV, Z3_OP_BUREM, Z3_OP_BLSHR
+ ]
+
+_z3_html_unary = [ Z3_OP_NOT ]
+
+# Extra Precedence for HTML
+_z3_pre_html_precedence = { Z3_OP_BUDIV : 2, Z3_OP_BUREM : 2,
+ Z3_OP_BLSHR : 4,
+ Z3_OP_ULEQ : 8, Z3_OP_ULT : 8,
+ Z3_OP_UGEQ : 8, Z3_OP_UGT : 8,
+ Z3_OP_ULEQ : 8, Z3_OP_ULT : 8,
+ Z3_OP_UGEQ : 8, Z3_OP_UGT : 8,
+ Z3_OP_NOT : 1,
+ Z3_OP_AND : 10,
+ Z3_OP_OR : 11,
+ Z3_OP_IMPLIES : 12 }
+
+##############################
+#
+# End of Configuration
+#
+##############################
+
+def _support_pp(a):
+ return isinstance(a, z3.Z3PPObject) or isinstance(a, list) or isinstance(a, tuple)
+
+_infix_map = {}
+_unary_map = {}
+_infix_compact_map = {}
+
+for _k in _z3_infix:
+ _infix_map[_k] = True
+for _k in _z3_unary:
+ _unary_map[_k] = True
+
+for _k in _z3_infix_compact:
+ _infix_compact_map[_k] = True
+
+def _is_infix(k):
+ global _infix_map
+ return _infix_map.get(k, False)
+
+def _is_infix_compact(k):
+ global _infix_compact_map
+ return _infix_compact_map.get(k, False)
+
+def _is_unary(k):
+ global _unary_map
+ return _unary_map.get(k, False)
+
+def _op_name(a):
+ if isinstance(a, z3.FuncDeclRef):
+ f = a
+ else:
+ f = a.decl()
+ k = f.kind()
+ n = _z3_op_to_str.get(k, None)
+ if n == None:
+ return f.name()
+ else:
+ return n
+
+def _get_precedence(k):
+ global _z3_precedence
+ return _z3_precedence.get(k, 100000)
+
+_z3_html_op_to_str = {}
+for _k in _z3_op_to_str:
+ _v = _z3_op_to_str[_k]
+ _z3_html_op_to_str[_k] = _v
+for _k in _z3_pre_html_op_to_str:
+ _v = _z3_pre_html_op_to_str[_k]
+ _z3_html_op_to_str[_k] = _v
+
+_z3_html_precedence = {}
+for _k in _z3_precedence:
+ _v = _z3_precedence[_k]
+ _z3_html_precedence[_k] = _v
+for _k in _z3_pre_html_precedence:
+ _v = _z3_pre_html_precedence[_k]
+ _z3_html_precedence[_k] = _v
+
+_html_infix_map = {}
+_html_unary_map = {}
+for _k in _z3_infix:
+ _html_infix_map[_k] = True
+for _k in _z3_html_infix:
+ _html_infix_map[_k] = True
+for _k in _z3_unary:
+ _html_unary_map[_k] = True
+for _k in _z3_html_unary:
+ _html_unary_map[_k] = True
+
+def _is_html_infix(k):
+ global _html_infix_map
+ return _html_infix_map.get(k, False)
+
+def _is_html_unary(k):
+ global _html_unary_map
+ return _html_unary_map.get(k, False)
+
+def _html_op_name(a):
+ global _z3_html_op_to_str
+ if isinstance(a, z3.FuncDeclRef):
+ f = a
+ else:
+ f = a.decl()
+ k = f.kind()
+ n = _z3_html_op_to_str.get(k, None)
+ if n == None:
+ sym = Z3_get_decl_name(f.ctx_ref(), f.ast)
+ if Z3_get_symbol_kind(f.ctx_ref(), sym) == Z3_INT_SYMBOL:
+ return "ζ%s" % Z3_get_symbol_int(f.ctx_ref(), sym)
+ else:
+ # Sanitize the string
+ return f.name()
+ else:
+ return n
+
+def _get_html_precedence(k):
+ global _z3_html_predence
+ return _z3_html_precedence.get(k, 100000)
+
+class FormatObject:
+ def is_compose(self):
+ return False
+ def is_choice(self):
+ return False
+ def is_indent(self):
+ return False
+ def is_string(self):
+ return False
+ def is_linebreak(self):
+ return False
+ def is_nil(self):
+ return True
+ def children(self):
+ return []
+ def as_tuple(self):
+ return None
+ def space_upto_nl(self):
+ return (0, False)
+ def flat(self):
+ return self
+
+class NAryFormatObject(FormatObject):
+ def __init__(self, fs):
+ assert all([isinstance(a, FormatObject) for a in fs])
+ self.children = fs
+ def children(self):
+ return self.children
+
+class ComposeFormatObject(NAryFormatObject):
+ def is_compose(sef):
+ return True
+ def as_tuple(self):
+ return ('compose', [ a.as_tuple() for a in self.children ])
+ def space_upto_nl(self):
+ r = 0
+ for child in self.children:
+ s, nl = child.space_upto_nl()
+ r = r + s
+ if nl:
+ return (r, True)
+ return (r, False)
+ def flat(self):
+ return compose([a.flat() for a in self.children ])
+
+class ChoiceFormatObject(NAryFormatObject):
+ def is_choice(sef):
+ return True
+ def as_tuple(self):
+ return ('choice', [ a.as_tuple() for a in self.children ])
+ def space_upto_nl(self):
+ return self.children[0].space_upto_nl()
+ def flat(self):
+ return self.children[0].flat()
+
+class IndentFormatObject(FormatObject):
+ def __init__(self, indent, child):
+ assert isinstance(child, FormatObject)
+ self.indent = indent
+ self.child = child
+ def children(self):
+ return [self.child]
+ def as_tuple(self):
+ return ('indent', self.indent, self.child.as_tuple())
+ def space_upto_nl(self):
+ return self.child.space_upto_nl()
+ def flat(self):
+ return indent(self.indent, self.child.flat())
+ def is_indent(self):
+ return True
+
+class LineBreakFormatObject(FormatObject):
+ def __init__(self):
+ self.space = ' '
+ def is_linebreak(self):
+ return True
+ def as_tuple(self):
+ return ''
+ def space_upto_nl(self):
+ return (0, True)
+ def flat(self):
+ return to_format(self.space)
+
+class StringFormatObject(FormatObject):
+ def __init__(self, string):
+ assert isinstance(string, str)
+ self.string = string
+ def is_string(self):
+ return True
+ def as_tuple(self):
+ return self.string
+ def space_upto_nl(self):
+ return (getattr(self, 'size', len(self.string)), False)
+
+def fits(f, space_left):
+ s, nl = f.space_upto_nl()
+ return s <= space_left
+
+def to_format(arg, size=None):
+ if isinstance(arg, FormatObject):
+ return arg
+ else:
+ r = StringFormatObject(str(arg))
+ if size != None:
+ r.size = size
+ return r
+
+def compose(*args):
+ if len(args) == 1 and (isinstance(args[0], list) or isinstance(args[0], tuple)):
+ args = args[0]
+ return ComposeFormatObject(args)
+
+def indent(i, arg):
+ return IndentFormatObject(i, arg)
+
+def group(arg):
+ return ChoiceFormatObject([arg.flat(), arg])
+
+def line_break():
+ return LineBreakFormatObject()
+
+def _len(a):
+ if isinstance(a, StringFormatObject):
+ return getattr(a, 'size', len(a.string))
+ else:
+ return len(a)
+
+def seq(args, sep=',', space=True):
+ nl = line_break()
+ if not space:
+ nl.space = ''
+ r = []
+ r.append(args[0])
+ num = len(args)
+ for i in range(num - 1):
+ r.append(to_format(sep))
+ r.append(nl)
+ r.append(args[i+1])
+ return compose(r)
+
+def seq1(header, args, lp='(', rp=')'):
+ return group(compose(to_format(header),
+ to_format(lp),
+ indent(len(lp) + _len(header),
+ seq(args)),
+ to_format(rp)))
+
+def seq2(header, args, i=4, lp='(', rp=')'):
+ if len(args) == 0:
+ return compose(to_format(header), to_format(lp), to_format(rp))
+ else:
+ return group(compose(indent(len(lp), compose(to_format(lp), to_format(header))),
+ indent(i, compose(seq(args), to_format(rp)))))
+
+def seq3(args, lp='(', rp=')'):
+ if len(args) == 0:
+ return compose(to_format(lp), to_format(rp))
+ else:
+ return group(indent(len(lp), compose(to_format(lp), seq(args), to_format(rp))))
+
+class StopPPException(Exception):
+ def __str__(self):
+ return 'pp-interrupted'
+
+class PP:
+ def __init__(self):
+ self.max_lines = 200
+ self.max_width = 60
+ self.bounded = False
+ self.max_indent = 40
+
+ def pp_string(self, f, indent):
+ if not self.bounded or self.pos <= self.max_width:
+ sz = _len(f)
+ if self.bounded and self.pos + sz > self.max_width:
+ self.out.write(u(_ellipses))
+ else:
+ self.pos = self.pos + sz
+ self.ribbon_pos = self.ribbon_pos + sz
+ self.out.write(u(f.string))
+
+ def pp_compose(self, f, indent):
+ for c in f.children:
+ self.pp(c, indent)
+
+ def pp_choice(self, f, indent):
+ space_left = self.max_width - self.pos
+ if space_left > 0 and fits(f.children[0], space_left):
+ self.pp(f.children[0], indent)
+ else:
+ self.pp(f.children[1], indent)
+
+ def pp_line_break(self, f, indent):
+ self.pos = indent
+ self.ribbon_pos = 0
+ self.line = self.line + 1
+ if self.line < self.max_lines:
+ self.out.write(u('\n'))
+ for i in range(indent):
+ self.out.write(u(' '))
+ else:
+ self.out.write(u('\n...'))
+ raise StopPPException()
+
+ def pp(self, f, indent):
+ if isinstance(f, str):
+ self.pp_string(f, indent)
+ elif f.is_string():
+ self.pp_string(f, indent)
+ elif f.is_indent():
+ self.pp(f.child, min(indent + f.indent, self.max_indent))
+ elif f.is_compose():
+ self.pp_compose(f, indent)
+ elif f.is_choice():
+ self.pp_choice(f, indent)
+ elif f.is_linebreak():
+ self.pp_line_break(f, indent)
+ else:
+ return
+
+ def __call__(self, out, f):
+ try:
+ self.pos = 0
+ self.ribbon_pos = 0
+ self.line = 0
+ self.out = out
+ self.pp(f, 0)
+ except StopPPException:
+ return
+
+class Formatter:
+ def __init__(self):
+ global _ellipses
+ self.max_depth = 20
+ self.max_args = 128
+ self.rational_to_decimal = False
+ self.precision = 10
+ self.ellipses = to_format(_ellipses)
+ self.max_visited = 10000
+ self.fpa_pretty = True
+
+ def pp_ellipses(self):
+ return self.ellipses
+
+ def pp_arrow(self):
+ return ' ->'
+
+ def pp_unknown(self):
+ return ''
+
+ def pp_name(self, a):
+ return to_format(_op_name(a))
+
+ def is_infix(self, a):
+ return _is_infix(a)
+
+ def is_unary(self, a):
+ return _is_unary(a)
+
+ def get_precedence(self, a):
+ return _get_precedence(a)
+
+ def is_infix_compact(self, a):
+ return _is_infix_compact(a)
+
+ def is_infix_unary(self, a):
+ return self.is_infix(a) or self.is_unary(a)
+
+ def add_paren(self, a):
+ return compose(to_format('('), indent(1, a), to_format(')'))
+
+ def pp_sort(self, s):
+ if isinstance(s, z3.ArraySortRef):
+ return seq1('Array', (self.pp_sort(s.domain()), self.pp_sort(s.range())))
+ elif isinstance(s, z3.BitVecSortRef):
+ return seq1('BitVec', (to_format(s.size()), ))
+ elif isinstance(s, z3.FPSortRef):
+ return seq1('FPSort', (to_format(s.ebits()), to_format(s.sbits())))
+ elif isinstance(s, z3.ReSortRef):
+ return seq1('ReSort', (self.pp_sort(s.basis()), ))
+ elif isinstance(s, z3.SeqSortRef):
+ if s.is_string():
+ return to_format("String")
+ return seq1('Seq', (self.pp_sort(s.basis()), ))
+ else:
+ return to_format(s.name())
+
+ def pp_const(self, a):
+ k = a.decl().kind()
+ if k == Z3_OP_RE_EMPTY_SET:
+ return self.pp_set("Empty", a)
+ elif k == Z3_OP_SEQ_EMPTY:
+ return self.pp_set("Empty", a)
+ elif k == Z3_OP_RE_FULL_SET:
+ return self.pp_set("Full", a)
+ return self.pp_name(a)
+
+ def pp_int(self, a):
+ return to_format(a.as_string())
+
+ def pp_rational(self, a):
+ if not self.rational_to_decimal:
+ return to_format(a.as_string())
+ else:
+ return to_format(a.as_decimal(self.precision))
+
+ def pp_algebraic(self, a):
+ return to_format(a.as_decimal(self.precision))
+
+ def pp_string(self, a):
+ return to_format("\"" + a.as_string() + "\"")
+
+ def pp_bv(self, a):
+ return to_format(a.as_string())
+
+ def pp_fd(self, a):
+ return to_format(a.as_string())
+
+ def pp_fprm_value(self, a):
+ _z3_assert(z3.is_fprm_value(a), 'expected FPRMNumRef')
+ if self.fpa_pretty and (a.decl().kind() in _z3_op_to_fpa_pretty_str):
+ return to_format(_z3_op_to_fpa_pretty_str.get(a.decl().kind()))
+ else:
+ return to_format(_z3_op_to_fpa_normal_str.get(a.decl().kind()))
+
+ def pp_fp_value(self, a):
+ _z3_assert(isinstance(a, z3.FPNumRef), 'type mismatch')
+ if not self.fpa_pretty:
+ r = []
+ if (a.isNaN()):
+ r.append(to_format(_z3_op_to_fpa_normal_str[Z3_OP_FPA_NAN]))
+ r.append(to_format('('))
+ r.append(to_format(a.sort()))
+ r.append(to_format(')'))
+ return compose(r)
+ elif (a.isInf()):
+ if (a.isNegative()):
+ r.append(to_format(_z3_op_to_fpa_normal_str[Z3_OP_FPA_MINUS_INF]))
+ else:
+ r.append(to_format(_z3_op_to_fpa_normal_str[Z3_OP_FPA_PLUS_INF]))
+ r.append(to_format('('))
+ r.append(to_format(a.sort()))
+ r.append(to_format(')'))
+ return compose(r)
+
+ elif (a.isZero()):
+ if (a.isNegative()):
+ return to_format('-zero')
+ else:
+ return to_format('+zero')
+ else:
+ _z3_assert(z3.is_fp_value(a), 'expecting FP num ast')
+ r = []
+ sgn = c_int(0)
+ sgnb = Z3_fpa_get_numeral_sign(a.ctx_ref(), a.ast, byref(sgn))
+ exp = Z3_fpa_get_numeral_exponent_string(a.ctx_ref(), a.ast, False)
+ sig = Z3_fpa_get_numeral_significand_string(a.ctx_ref(), a.ast)
+ r.append(to_format('FPVal('))
+ if sgnb and sgn.value != 0:
+ r.append(to_format('-'))
+ r.append(to_format(sig))
+ r.append(to_format('*(2**'))
+ r.append(to_format(exp))
+ r.append(to_format(', '))
+ r.append(to_format(a.sort()))
+ r.append(to_format('))'))
+ return compose(r)
+ else:
+ if (a.isNaN()):
+ return to_format(_z3_op_to_fpa_pretty_str[Z3_OP_FPA_NAN])
+ elif (a.isInf()):
+ if (a.isNegative()):
+ return to_format(_z3_op_to_fpa_pretty_str[Z3_OP_FPA_MINUS_INF])
+ else:
+ return to_format(_z3_op_to_fpa_pretty_str[Z3_OP_FPA_PLUS_INF])
+ elif (a.isZero()):
+ if (a.isNegative()):
+ return to_format(_z3_op_to_fpa_pretty_str[Z3_OP_FPA_MINUS_ZERO])
+ else:
+ return to_format(_z3_op_to_fpa_pretty_str[Z3_OP_FPA_PLUS_ZERO])
+ else:
+ _z3_assert(z3.is_fp_value(a), 'expecting FP num ast')
+ r = []
+ sgn = (ctypes.c_int)(0)
+ sgnb = Z3_fpa_get_numeral_sign(a.ctx_ref(), a.ast, byref(sgn))
+ exp = Z3_fpa_get_numeral_exponent_string(a.ctx_ref(), a.ast, False)
+ sig = Z3_fpa_get_numeral_significand_string(a.ctx_ref(), a.ast)
+ if sgnb and sgn.value != 0:
+ r.append(to_format('-'))
+ r.append(to_format(sig))
+ if (exp != '0'):
+ r.append(to_format('*(2**'))
+ r.append(to_format(exp))
+ r.append(to_format(')'))
+ return compose(r)
+
+
+ def pp_fp(self, a, d, xs):
+ _z3_assert(isinstance(a, z3.FPRef), "type mismatch")
+ k = a.decl().kind()
+ op = '?'
+ if (self.fpa_pretty and k in _z3_op_to_fpa_pretty_str):
+ op = _z3_op_to_fpa_pretty_str[k]
+ elif k in _z3_op_to_fpa_normal_str:
+ op = _z3_op_to_fpa_normal_str[k]
+ elif k in _z3_op_to_str:
+ op = _z3_op_to_str[k]
+
+ n = a.num_args()
+
+ if self.fpa_pretty:
+ if self.is_infix(k) and n >= 3:
+ rm = a.arg(0)
+ if z3.is_fprm_value(rm) and z3.get_default_rounding_mode(a.ctx).eq(rm):
+ arg1 = to_format(self.pp_expr(a.arg(1), d+1, xs))
+ arg2 = to_format(self.pp_expr(a.arg(2), d+1, xs))
+ r = []
+ r.append(arg1)
+ r.append(to_format(' '))
+ r.append(to_format(op))
+ r.append(to_format(' '))
+ r.append(arg2)
+ return compose(r)
+ elif k == Z3_OP_FPA_NEG:
+ return compose([to_format('-') , to_format(self.pp_expr(a.arg(0), d+1, xs))])
+
+ if k in _z3_op_to_fpa_normal_str:
+ op = _z3_op_to_fpa_normal_str[k]
+
+ r = []
+ r.append(to_format(op))
+ if not z3.is_const(a):
+ r.append(to_format('('))
+ first = True
+ for c in a.children():
+ if first:
+ first = False
+ else:
+ r.append(to_format(', '))
+ r.append(self.pp_expr(c, d+1, xs))
+ r.append(to_format(')'))
+ return compose(r)
+ else:
+ return to_format(a.as_string())
+
+ def pp_prefix(self, a, d, xs):
+ r = []
+ sz = 0
+ for child in a.children():
+ r.append(self.pp_expr(child, d+1, xs))
+ sz = sz + 1
+ if sz > self.max_args:
+ r.append(self.pp_ellipses())
+ break
+ return seq1(self.pp_name(a), r)
+
+ def is_assoc(self, k):
+ return _is_assoc(k)
+
+ def is_left_assoc(self, k):
+ return _is_left_assoc(k)
+
+ def infix_args_core(self, a, d, xs, r):
+ sz = len(r)
+ k = a.decl().kind()
+ p = self.get_precedence(k)
+ first = True
+ for child in a.children():
+ child_pp = self.pp_expr(child, d+1, xs)
+ child_k = None
+ if z3.is_app(child):
+ child_k = child.decl().kind()
+ if k == child_k and (self.is_assoc(k) or (first and self.is_left_assoc(k))):
+ self.infix_args_core(child, d, xs, r)
+ sz = len(r)
+ if sz > self.max_args:
+ return
+ elif self.is_infix_unary(child_k):
+ child_p = self.get_precedence(child_k)
+ if p > child_p or (_is_add(k) and _is_sub(child_k)) or (_is_sub(k) and first and _is_add(child_k)):
+ r.append(child_pp)
+ else:
+ r.append(self.add_paren(child_pp))
+ sz = sz + 1
+ elif z3.is_quantifier(child):
+ r.append(self.add_paren(child_pp))
+ else:
+ r.append(child_pp)
+ sz = sz + 1
+ if sz > self.max_args:
+ r.append(self.pp_ellipses())
+ return
+ first = False
+
+ def infix_args(self, a, d, xs):
+ r = []
+ self.infix_args_core(a, d, xs, r)
+ return r
+
+ def pp_infix(self, a, d, xs):
+ k = a.decl().kind()
+ if self.is_infix_compact(k):
+ op = self.pp_name(a)
+ return group(seq(self.infix_args(a, d, xs), op, False))
+ else:
+ op = self.pp_name(a)
+ sz = _len(op)
+ op.string = ' ' + op.string
+ op.size = sz + 1
+ return group(seq(self.infix_args(a, d, xs), op))
+
+ def pp_unary(self, a, d, xs):
+ k = a.decl().kind()
+ p = self.get_precedence(k)
+ child = a.children()[0]
+ child_k = None
+ if z3.is_app(child):
+ child_k = child.decl().kind()
+ child_pp = self.pp_expr(child, d+1, xs)
+ if k != child_k and self.is_infix_unary(child_k):
+ child_p = self.get_precedence(child_k)
+ if p <= child_p:
+ child_pp = self.add_paren(child_pp)
+ if z3.is_quantifier(child):
+ child_pp = self.add_paren(child_pp)
+ name = self.pp_name(a)
+ return compose(to_format(name), indent(_len(name), child_pp))
+
+ def pp_power_arg(self, arg, d, xs):
+ r = self.pp_expr(arg, d+1, xs)
+ k = None
+ if z3.is_app(arg):
+ k = arg.decl().kind()
+ if self.is_infix_unary(k) or (z3.is_rational_value(arg) and arg.denominator_as_long() != 1):
+ return self.add_paren(r)
+ else:
+ return r
+
+ def pp_power(self, a, d, xs):
+ arg1_pp = self.pp_power_arg(a.arg(0), d+1, xs)
+ arg2_pp = self.pp_power_arg(a.arg(1), d+1, xs)
+ return group(seq((arg1_pp, arg2_pp), '**', False))
+
+ def pp_neq(self):
+ return to_format("!=")
+
+ def pp_distinct(self, a, d, xs):
+ if a.num_args() == 2:
+ op = self.pp_neq()
+ sz = _len(op)
+ op.string = ' ' + op.string
+ op.size = sz + 1
+ return group(seq(self.infix_args(a, d, xs), op))
+ else:
+ return self.pp_prefix(a, d, xs)
+
+ def pp_select(self, a, d, xs):
+ if a.num_args() != 2:
+ return self.pp_prefix(a, d, xs)
+ else:
+ arg1_pp = self.pp_expr(a.arg(0), d+1, xs)
+ arg2_pp = self.pp_expr(a.arg(1), d+1, xs)
+ return compose(arg1_pp, indent(2, compose(to_format('['), arg2_pp, to_format(']'))))
+
+ def pp_unary_param(self, a, d, xs):
+ p = Z3_get_decl_int_parameter(a.ctx_ref(), a.decl().ast, 0)
+ arg = self.pp_expr(a.arg(0), d+1, xs)
+ return seq1(self.pp_name(a), [ to_format(p), arg ])
+
+ def pp_extract(self, a, d, xs):
+ h = Z3_get_decl_int_parameter(a.ctx_ref(), a.decl().ast, 0)
+ l = Z3_get_decl_int_parameter(a.ctx_ref(), a.decl().ast, 1)
+ arg = self.pp_expr(a.arg(0), d+1, xs)
+ return seq1(self.pp_name(a), [ to_format(h), to_format(l), arg ])
+
+ def pp_loop(self, a, d, xs):
+ l = Z3_get_decl_int_parameter(a.ctx_ref(), a.decl().ast, 0)
+ arg = self.pp_expr(a.arg(0), d+1, xs)
+ if Z3_get_decl_num_parameters(a.ctx_ref(), a.decl().ast) > 1:
+ h = Z3_get_decl_int_parameter(a.ctx_ref(), a.decl().ast, 1)
+ return seq1("Loop", [ arg, to_format(l), to_format(h) ])
+ return seq1("Loop", [ arg, to_format(l) ])
+
+ def pp_set(self, id, a):
+ return seq1(id, [self.pp_sort(a.sort())])
+
+ def pp_pattern(self, a, d, xs):
+ if a.num_args() == 1:
+ return self.pp_expr(a.arg(0), d, xs)
+ else:
+ return seq1('MultiPattern', [ self.pp_expr(arg, d+1, xs) for arg in a.children() ])
+
+ def pp_is(self, a, d, xs):
+ f = a.params()[0]
+ return self.pp_fdecl(f, a, d, xs)
+
+ def pp_map(self, a, d, xs):
+ f = z3.get_map_func(a)
+ return self.pp_fdecl(f, a, d, xs)
+
+ def pp_fdecl(self, f, a, d, xs):
+ r = []
+ sz = 0
+ r.append(to_format(f.name()))
+ for child in a.children():
+ r.append(self.pp_expr(child, d+1, xs))
+ sz = sz + 1
+ if sz > self.max_args:
+ r.append(self.pp_ellipses())
+ break
+ return seq1(self.pp_name(a), r)
+
+ def pp_K(self, a, d, xs):
+ return seq1(self.pp_name(a), [ self.pp_sort(a.domain()), self.pp_expr(a.arg(0), d+1, xs) ])
+
+ def pp_atmost(self, a, d, f, xs):
+ k = Z3_get_decl_int_parameter(a.ctx_ref(), a.decl().ast, 0)
+ return seq1(self.pp_name(a), [seq3([ self.pp_expr(ch, d+1, xs) for ch in a.children()]), to_format(k)])
+
+ def pp_pbcmp(self, a, d, f, xs):
+ chs = a.children()
+ rchs = range(len(chs))
+ k = Z3_get_decl_int_parameter(a.ctx_ref(), a.decl().ast, 0)
+ ks = [Z3_get_decl_int_parameter(a.ctx_ref(), a.decl().ast, i+1) for i in rchs]
+ ls = [ seq3([self.pp_expr(chs[i], d+1,xs), to_format(ks[i])]) for i in rchs]
+ return seq1(self.pp_name(a), [seq3(ls), to_format(k)])
+
+
+ def pp_app(self, a, d, xs):
+ if z3.is_int_value(a):
+ return self.pp_int(a)
+ elif z3.is_rational_value(a):
+ return self.pp_rational(a)
+ elif z3.is_algebraic_value(a):
+ return self.pp_algebraic(a)
+ elif z3.is_bv_value(a):
+ return self.pp_bv(a)
+ elif z3.is_finite_domain_value(a):
+ return self.pp_fd(a)
+ elif z3.is_fprm_value(a):
+ return self.pp_fprm_value(a)
+ elif z3.is_fp_value(a):
+ return self.pp_fp_value(a)
+ elif z3.is_fp(a):
+ return self.pp_fp(a, d, xs)
+ elif z3.is_string_value(a):
+ return self.pp_string(a)
+ elif z3.is_const(a):
+ return self.pp_const(a)
+ else:
+ f = a.decl()
+ k = f.kind()
+ if k == Z3_OP_POWER:
+ return self.pp_power(a, d, xs)
+ elif k == Z3_OP_DISTINCT:
+ return self.pp_distinct(a, d, xs)
+ elif k == Z3_OP_SELECT:
+ return self.pp_select(a, d, xs)
+ elif k == Z3_OP_SIGN_EXT or k == Z3_OP_ZERO_EXT or k == Z3_OP_REPEAT:
+ return self.pp_unary_param(a, d, xs)
+ elif k == Z3_OP_EXTRACT:
+ return self.pp_extract(a, d, xs)
+ elif k == Z3_OP_RE_LOOP:
+ return self.pp_loop(a, d, xs)
+ elif k == Z3_OP_DT_IS:
+ return self.pp_is(a, d, xs)
+ elif k == Z3_OP_ARRAY_MAP:
+ return self.pp_map(a, d, xs)
+ elif k == Z3_OP_CONST_ARRAY:
+ return self.pp_K(a, d, xs)
+ elif k == Z3_OP_PB_AT_MOST:
+ return self.pp_atmost(a, d, f, xs)
+ elif k == Z3_OP_PB_LE:
+ return self.pp_pbcmp(a, d, f, xs)
+ elif k == Z3_OP_PB_GE:
+ return self.pp_pbcmp(a, d, f, xs)
+ elif k == Z3_OP_PB_EQ:
+ return self.pp_pbcmp(a, d, f, xs)
+ elif z3.is_pattern(a):
+ return self.pp_pattern(a, d, xs)
+ elif self.is_infix(k):
+ return self.pp_infix(a, d, xs)
+ elif self.is_unary(k):
+ return self.pp_unary(a, d, xs)
+ else:
+ return self.pp_prefix(a, d, xs)
+
+ def pp_var(self, a, d, xs):
+ idx = z3.get_var_index(a)
+ sz = len(xs)
+ if idx >= sz:
+ return seq1('Var', (to_format(idx),))
+ else:
+ return to_format(xs[sz - idx - 1])
+
+ def pp_quantifier(self, a, d, xs):
+ ys = [ to_format(a.var_name(i)) for i in range(a.num_vars()) ]
+ new_xs = xs + ys
+ body_pp = self.pp_expr(a.body(), d+1, new_xs)
+ if len(ys) == 1:
+ ys_pp = ys[0]
+ else:
+ ys_pp = seq3(ys, '[', ']')
+ if a.is_forall():
+ header = 'ForAll'
+ elif a.is_exists():
+ header = 'Exists'
+ else:
+ header = 'Lambda'
+ return seq1(header, (ys_pp, body_pp))
+
+ def pp_expr(self, a, d, xs):
+ self.visited = self.visited + 1
+ if d > self.max_depth or self.visited > self.max_visited:
+ return self.pp_ellipses()
+ if z3.is_app(a):
+ return self.pp_app(a, d, xs)
+ elif z3.is_quantifier(a):
+ return self.pp_quantifier(a, d, xs)
+ elif z3.is_var(a):
+ return self.pp_var(a, d, xs)
+ else:
+ return to_format(self.pp_unknown())
+
+ def pp_decl(self, f):
+ k = f.kind()
+ if k == Z3_OP_DT_IS or k == Z3_OP_ARRAY_MAP:
+ g = f.params()[0]
+ r = [ to_format(g.name()) ]
+ return seq1(self.pp_name(f), r)
+ return self.pp_name(f)
+
+ def pp_seq_core(self, f, a, d, xs):
+ self.visited = self.visited + 1
+ if d > self.max_depth or self.visited > self.max_visited:
+ return self.pp_ellipses()
+ r = []
+ sz = 0
+ for elem in a:
+ r.append(f(elem, d+1, xs))
+ sz = sz + 1
+ if sz > self.max_args:
+ r.append(self.pp_ellipses())
+ break
+ return seq3(r, '[', ']')
+
+ def pp_seq(self, a, d, xs):
+ return self.pp_seq_core(self.pp_expr, a, d, xs)
+
+ def pp_seq_seq(self, a, d, xs):
+ return self.pp_seq_core(self.pp_seq, a, d, xs)
+
+ def pp_model(self, m):
+ r = []
+ sz = 0
+ for d in m:
+ i = m[d]
+ if isinstance(i, z3.FuncInterp):
+ i_pp = self.pp_func_interp(i)
+ else:
+ i_pp = self.pp_expr(i, 0, [])
+ name = self.pp_name(d)
+ r.append(compose(name, to_format(' = '), indent(_len(name) + 3, i_pp)))
+ sz = sz + 1
+ if sz > self.max_args:
+ r.append(self.pp_ellipses())
+ break
+ return seq3(r, '[', ']')
+
+ def pp_func_entry(self, e):
+ num = e.num_args()
+ if num > 1:
+ args = []
+ for i in range(num):
+ args.append(self.pp_expr(e.arg_value(i), 0, []))
+ args_pp = group(seq3(args))
+ else:
+ args_pp = self.pp_expr(e.arg_value(0), 0, [])
+ value_pp = self.pp_expr(e.value(), 0, [])
+ return group(seq((args_pp, value_pp), self.pp_arrow()))
+
+ def pp_func_interp(self, f):
+ r = []
+ sz = 0
+ num = f.num_entries()
+ for i in range(num):
+ r.append(self.pp_func_entry(f.entry(i)))
+ sz = sz + 1
+ if sz > self.max_args:
+ r.append(self.pp_ellipses())
+ break
+ if sz <= self.max_args:
+ else_val = f.else_value()
+ if else_val == None:
+ else_pp = to_format('#unspecified')
+ else:
+ else_pp = self.pp_expr(else_val, 0, [])
+ r.append(group(seq((to_format('else'), else_pp), self.pp_arrow())))
+ return seq3(r, '[', ']')
+
+ def pp_list(self, a):
+ r = []
+ sz = 0
+ for elem in a:
+ if _support_pp(elem):
+ r.append(self.main(elem))
+ else:
+ r.append(to_format(str(elem)))
+ sz = sz + 1
+ if sz > self.max_args:
+ r.append(self.pp_ellipses())
+ break
+ if isinstance(a, tuple):
+ return seq3(r)
+ else:
+ return seq3(r, '[', ']')
+
+ def main(self, a):
+ if z3.is_expr(a):
+ return self.pp_expr(a, 0, [])
+ elif z3.is_sort(a):
+ return self.pp_sort(a)
+ elif z3.is_func_decl(a):
+ return self.pp_decl(a)
+ elif isinstance(a, z3.Goal) or isinstance(a, z3.AstVector):
+ return self.pp_seq(a, 0, [])
+ elif isinstance(a, z3.Solver):
+ return self.pp_seq(a.assertions(), 0, [])
+ elif isinstance(a, z3.Fixedpoint):
+ return a.sexpr()
+ elif isinstance(a, z3.Optimize):
+ return a.sexpr()
+ elif isinstance(a, z3.ApplyResult):
+ return self.pp_seq_seq(a, 0, [])
+ elif isinstance(a, z3.ModelRef):
+ return self.pp_model(a)
+ elif isinstance(a, z3.FuncInterp):
+ return self.pp_func_interp(a)
+ elif isinstance(a, list) or isinstance(a, tuple):
+ return self.pp_list(a)
+ else:
+ return to_format(self.pp_unknown())
+
+ def __call__(self, a):
+ self.visited = 0
+ return self.main(a)
+
+class HTMLFormatter(Formatter):
+ def __init__(self):
+ Formatter.__init__(self)
+ global _html_ellipses
+ self.ellipses = to_format(_html_ellipses)
+
+ def pp_arrow(self):
+ return to_format(' →', 1)
+
+ def pp_unknown(self):
+ return 'unknown'
+
+ def pp_name(self, a):
+ r = _html_op_name(a)
+ if r[0] == '&' or r[0] == '/' or r[0] == '%':
+ return to_format(r, 1)
+ else:
+ pos = r.find('__')
+ if pos == -1 or pos == 0:
+ return to_format(r)
+ else:
+ sz = len(r)
+ if pos + 2 == sz:
+ return to_format(r)
+ else:
+ return to_format('%s%s' % (r[0:pos], r[pos+2:sz]), sz - 2)
+
+ def is_assoc(self, k):
+ return _is_html_assoc(k)
+
+ def is_left_assoc(self, k):
+ return _is_html_left_assoc(k)
+
+ def is_infix(self, a):
+ return _is_html_infix(a)
+
+ def is_unary(self, a):
+ return _is_html_unary(a)
+
+ def get_precedence(self, a):
+ return _get_html_precedence(a)
+
+ def pp_neq(self):
+ return to_format("≠")
+
+ def pp_power(self, a, d, xs):
+ arg1_pp = self.pp_power_arg(a.arg(0), d+1, xs)
+ arg2_pp = self.pp_expr(a.arg(1), d+1, xs)
+ return compose(arg1_pp, to_format('', 1), arg2_pp, to_format('', 1))
+
+ def pp_var(self, a, d, xs):
+ idx = z3.get_var_index(a)
+ sz = len(xs)
+ if idx >= sz:
+ # 957 is the greek letter nu
+ return to_format('ν%s' % idx, 1)
+ else:
+ return to_format(xs[sz - idx - 1])
+
+ def pp_quantifier(self, a, d, xs):
+ ys = [ to_format(a.var_name(i)) for i in range(a.num_vars()) ]
+ new_xs = xs + ys
+ body_pp = self.pp_expr(a.body(), d+1, new_xs)
+ ys_pp = group(seq(ys))
+ if a.is_forall():
+ header = '∀'
+ else:
+ header = '∃'
+ return group(compose(to_format(header, 1),
+ indent(1, compose(ys_pp, to_format(' :'), line_break(), body_pp))))
+
+
+_PP = PP()
+_Formatter = Formatter()
+
+def set_pp_option(k, v):
+ if k == 'html_mode':
+ if v:
+ set_html_mode(True)
+ else:
+ set_html_mode(False)
+ return True
+ if k == 'fpa_pretty':
+ if v:
+ set_fpa_pretty(True)
+ else:
+ set_fpa_pretty(False)
+ return True
+ val = getattr(_PP, k, None)
+ if val != None:
+ _z3_assert(type(v) == type(val), "Invalid pretty print option value")
+ setattr(_PP, k, v)
+ return True
+ val = getattr(_Formatter, k, None)
+ if val != None:
+ _z3_assert(type(v) == type(val), "Invalid pretty print option value")
+ setattr(_Formatter, k, v)
+ return True
+ return False
+
+def obj_to_string(a):
+ out = io.StringIO()
+ _PP(out, _Formatter(a))
+ return out.getvalue()
+
+_html_out = None
+
+def set_html_mode(flag=True):
+ global _Formatter
+ if flag:
+ _Formatter = HTMLFormatter()
+ else:
+ _Formatter = Formatter()
+
+def set_fpa_pretty(flag=True):
+ global _Formatter
+ global _z3_op_to_str
+ _Formatter.fpa_pretty = flag
+ if flag:
+ for (_k,_v) in _z3_op_to_fpa_pretty_str.items():
+ _z3_op_to_str[_k] = _v
+ for _k in _z3_fpa_infix:
+ _infix_map[_k] = True
+ else:
+ for (_k,_v) in _z3_op_to_fpa_normal_str.items():
+ _z3_op_to_str[_k] = _v
+ for _k in _z3_fpa_infix:
+ _infix_map[_k] = False
+
+set_fpa_pretty(True)
+
+def get_fpa_pretty():
+ global Formatter
+ return _Formatter.fpa_pretty
+
+def in_html_mode():
+ return isinstance(_Formatter, HTMLFormatter)
+
+def pp(a):
+ if _support_pp(a):
+ print(obj_to_string(a))
+ else:
+ print(a)
+
+def print_matrix(m):
+ _z3_assert(isinstance(m, list) or isinstance(m, tuple), "matrix expected")
+ if not in_html_mode():
+ print(obj_to_string(m))
+ else:
+ print('')
+ for r in m:
+ _z3_assert(isinstance(r, list) or isinstance(r, tuple), "matrix expected")
+ print('')
+ for c in r:
+ print('%s | ' % c)
+ print('
')
+ print('
')
+
+def insert_line_breaks(s, width):
+ """Break s in lines of size width (approx)"""
+ sz = len(s)
+ if sz <= width:
+ return s
+ new_str = io.StringIO()
+ w = 0
+ for i in range(sz):
+ if w > width and s[i] == ' ':
+ new_str.write(u('
'))
+ w = 0
+ else:
+ new_str.write(u(s[i]))
+ w = w + 1
+ return new_str.getvalue()
diff --git a/z3-4.8.9-x64-ubuntu-16.04/bin/python/z3/z3printer.pyc b/z3-4.8.9-x64-ubuntu-16.04/bin/python/z3/z3printer.pyc
new file mode 100644
index 0000000..0f58061
Binary files /dev/null and b/z3-4.8.9-x64-ubuntu-16.04/bin/python/z3/z3printer.pyc differ
diff --git a/z3-4.8.9-x64-ubuntu-16.04/bin/python/z3/z3rcf.py b/z3-4.8.9-x64-ubuntu-16.04/bin/python/z3/z3rcf.py
new file mode 100644
index 0000000..76d22bb
--- /dev/null
+++ b/z3-4.8.9-x64-ubuntu-16.04/bin/python/z3/z3rcf.py
@@ -0,0 +1,163 @@
+############################################
+# Copyright (c) 2013 Microsoft Corporation
+#
+# Z3 Python interface for Z3 Real Closed Fields
+# that may contain
+# - computable transcendentals
+# - infinitesimals
+# - algebraic extensions
+#
+# Author: Leonardo de Moura (leonardo)
+############################################
+from .z3 import *
+from .z3core import *
+from .z3printer import *
+from fractions import Fraction
+
+def _to_rcfnum(num, ctx=None):
+ if isinstance(num, RCFNum):
+ return num
+ else:
+ return RCFNum(num, ctx)
+
+def Pi(ctx=None):
+ ctx = z3.get_ctx(ctx)
+ return RCFNum(Z3_rcf_mk_pi(ctx.ref()), ctx)
+
+def E(ctx=None):
+ ctx = z3.get_ctx(ctx)
+ return RCFNum(Z3_rcf_mk_e(ctx.ref()), ctx)
+
+def MkInfinitesimal(name="eps", ctx=None):
+ # Todo: remove parameter name.
+ # For now, we keep it for backward compatibility.
+ ctx = z3.get_ctx(ctx)
+ return RCFNum(Z3_rcf_mk_infinitesimal(ctx.ref()), ctx)
+
+def MkRoots(p, ctx=None):
+ ctx = z3.get_ctx(ctx)
+ num = len(p)
+ _tmp = []
+ _as = (RCFNumObj * num)()
+ _rs = (RCFNumObj * num)()
+ for i in range(num):
+ _a = _to_rcfnum(p[i], ctx)
+ _tmp.append(_a) # prevent GC
+ _as[i] = _a.num
+ nr = Z3_rcf_mk_roots(ctx.ref(), num, _as, _rs)
+ r = []
+ for i in range(nr):
+ r.append(RCFNum(_rs[i], ctx))
+ return r
+
+class RCFNum:
+ def __init__(self, num, ctx=None):
+ # TODO: add support for converting AST numeral values into RCFNum
+ if isinstance(num, RCFNumObj):
+ self.num = num
+ self.ctx = z3.get_ctx(ctx)
+ else:
+ self.ctx = z3.get_ctx(ctx)
+ self.num = Z3_rcf_mk_rational(self.ctx_ref(), str(num))
+
+ def __del__(self):
+ Z3_rcf_del(self.ctx_ref(), self.num)
+
+ def ctx_ref(self):
+ return self.ctx.ref()
+
+ def __repr__(self):
+ return Z3_rcf_num_to_string(self.ctx_ref(), self.num, False, in_html_mode())
+
+ def compact_str(self):
+ return Z3_rcf_num_to_string(self.ctx_ref(), self.num, True, in_html_mode())
+
+ def __add__(self, other):
+ v = _to_rcfnum(other, self.ctx)
+ return RCFNum(Z3_rcf_add(self.ctx_ref(), self.num, v.num), self.ctx)
+
+ def __radd__(self, other):
+ v = _to_rcfnum(other, self.ctx)
+ return RCFNum(Z3_rcf_add(self.ctx_ref(), v.num, self.num), self.ctx)
+
+ def __mul__(self, other):
+ v = _to_rcfnum(other, self.ctx)
+ return RCFNum(Z3_rcf_mul(self.ctx_ref(), self.num, v.num), self.ctx)
+
+ def __rmul__(self, other):
+ v = _to_rcfnum(other, self.ctx)
+ return RCFNum(Z3_rcf_mul(self.ctx_ref(), v.num, self.num), self.ctx)
+
+ def __sub__(self, other):
+ v = _to_rcfnum(other, self.ctx)
+ return RCFNum(Z3_rcf_sub(self.ctx_ref(), self.num, v.num), self.ctx)
+
+ def __rsub__(self, other):
+ v = _to_rcfnum(other, self.ctx)
+ return RCFNum(Z3_rcf_sub(self.ctx_ref(), v.num, self.num), self.ctx)
+
+ def __div__(self, other):
+ v = _to_rcfnum(other, self.ctx)
+ return RCFNum(Z3_rcf_div(self.ctx_ref(), self.num, v.num), self.ctx)
+
+ def __rdiv__(self, other):
+ v = _to_rcfnum(other, self.ctx)
+ return RCFNum(Z3_rcf_div(self.ctx_ref(), v.num, self.num), self.ctx)
+
+ def __neg__(self):
+ return self.__rsub__(0)
+
+ def power(self, k):
+ return RCFNum(Z3_rcf_power(self.ctx_ref(), self.num, k), self.ctx)
+
+ def __pow__(self, k):
+ return self.power(k)
+
+ def decimal(self, prec=5):
+ return Z3_rcf_num_to_decimal_string(self.ctx_ref(), self.num, prec)
+
+ def __lt__(self, other):
+ v = _to_rcfnum(other, self.ctx)
+ return Z3_rcf_lt(self.ctx_ref(), self.num, v.num)
+
+ def __rlt__(self, other):
+ v = _to_rcfnum(other, self.ctx)
+ return Z3_rcf_lt(self.ctx_ref(), v.num, self.num)
+
+ def __gt__(self, other):
+ v = _to_rcfnum(other, self.ctx)
+ return Z3_rcf_gt(self.ctx_ref(), self.num, v.num)
+
+ def __rgt__(self, other):
+ v = _to_rcfnum(other, self.ctx)
+ return Z3_rcf_gt(self.ctx_ref(), v.num, self.num)
+
+ def __le__(self, other):
+ v = _to_rcfnum(other, self.ctx)
+ return Z3_rcf_le(self.ctx_ref(), self.num, v.num)
+
+ def __rle__(self, other):
+ v = _to_rcfnum(other, self.ctx)
+ return Z3_rcf_le(self.ctx_ref(), v.num, self.num)
+
+ def __ge__(self, other):
+ v = _to_rcfnum(other, self.ctx)
+ return Z3_rcf_ge(self.ctx_ref(), self.num, v.num)
+
+ def __rge__(self, other):
+ v = _to_rcfnum(other, self.ctx)
+ return Z3_rcf_ge(self.ctx_ref(), v.num, self.num)
+
+ def __eq__(self, other):
+ v = _to_rcfnum(other, self.ctx)
+ return Z3_rcf_eq(self.ctx_ref(), self.num, v.num)
+
+ def __ne__(self, other):
+ v = _to_rcfnum(other, self.ctx)
+ return Z3_rcf_neq(self.ctx_ref(), self.num, v.num)
+
+ def split(self):
+ n = (RCFNumObj * 1)()
+ d = (RCFNumObj * 1)()
+ Z3_rcf_get_numerator_denominator(self.ctx_ref(), self.num, n, d)
+ return (RCFNum(n[0], self.ctx), RCFNum(d[0], self.ctx))
diff --git a/z3-4.8.9-x64-ubuntu-16.04/bin/python/z3/z3rcf.pyc b/z3-4.8.9-x64-ubuntu-16.04/bin/python/z3/z3rcf.pyc
new file mode 100644
index 0000000..8099e47
Binary files /dev/null and b/z3-4.8.9-x64-ubuntu-16.04/bin/python/z3/z3rcf.pyc differ
diff --git a/z3-4.8.9-x64-ubuntu-16.04/bin/python/z3/z3types.py b/z3-4.8.9-x64-ubuntu-16.04/bin/python/z3/z3types.py
new file mode 100644
index 0000000..5c93b27
--- /dev/null
+++ b/z3-4.8.9-x64-ubuntu-16.04/bin/python/z3/z3types.py
@@ -0,0 +1,130 @@
+############################################
+# Copyright (c) 2012 Microsoft Corporation
+#
+# Z3 Python interface
+#
+# Author: Leonardo de Moura (leonardo)
+############################################
+
+import ctypes
+
+class Z3Exception(Exception):
+ def __init__(self, value):
+ self.value = value
+ def __str__(self):
+ return str(self.value)
+
+class ContextObj(ctypes.c_void_p):
+ def __init__(self, context): self._as_parameter_ = context
+ def from_param(obj): return obj
+
+class Config(ctypes.c_void_p):
+ def __init__(self, config): self._as_parameter_ = config
+ def from_param(obj): return obj
+
+class Symbol(ctypes.c_void_p):
+ def __init__(self, symbol): self._as_parameter_ = symbol
+ def from_param(obj): return obj
+
+class Sort(ctypes.c_void_p):
+ def __init__(self, sort): self._as_parameter_ = sort
+ def from_param(obj): return obj
+
+class FuncDecl(ctypes.c_void_p):
+ def __init__(self, decl): self._as_parameter_ = decl
+ def from_param(obj): return obj
+
+class Ast(ctypes.c_void_p):
+ def __init__(self, ast): self._as_parameter_ = ast
+ def from_param(obj): return obj
+
+class Pattern(ctypes.c_void_p):
+ def __init__(self, pattern): self._as_parameter_ = pattern
+ def from_param(obj): return obj
+
+class Model(ctypes.c_void_p):
+ def __init__(self, model): self._as_parameter_ = model
+ def from_param(obj): return obj
+
+class Literals(ctypes.c_void_p):
+ def __init__(self, literals): self._as_parameter_ = literals
+ def from_param(obj): return obj
+
+class Constructor(ctypes.c_void_p):
+ def __init__(self, constructor): self._as_parameter_ = constructor
+ def from_param(obj): return obj
+
+class ConstructorList(ctypes.c_void_p):
+ def __init__(self, constructor_list): self._as_parameter_ = constructor_list
+ def from_param(obj): return obj
+
+class GoalObj(ctypes.c_void_p):
+ def __init__(self, goal): self._as_parameter_ = goal
+ def from_param(obj): return obj
+
+class TacticObj(ctypes.c_void_p):
+ def __init__(self, tactic): self._as_parameter_ = tactic
+ def from_param(obj): return obj
+
+class ProbeObj(ctypes.c_void_p):
+ def __init__(self, probe): self._as_parameter_ = probe
+ def from_param(obj): return obj
+
+class ApplyResultObj(ctypes.c_void_p):
+ def __init__(self, obj): self._as_parameter_ = obj
+ def from_param(obj): return obj
+
+class StatsObj(ctypes.c_void_p):
+ def __init__(self, statistics): self._as_parameter_ = statistics
+ def from_param(obj): return obj
+
+class SolverObj(ctypes.c_void_p):
+ def __init__(self, solver): self._as_parameter_ = solver
+ def from_param(obj): return obj
+
+class SolverCallbackObj(ctypes.c_void_p):
+ def __init__(self, solver): self._as_parameter_ = solver
+ def from_param(obj): return obj
+
+class FixedpointObj(ctypes.c_void_p):
+ def __init__(self, fixedpoint): self._as_parameter_ = fixedpoint
+ def from_param(obj): return obj
+
+class OptimizeObj(ctypes.c_void_p):
+ def __init__(self, optimize): self._as_parameter_ = optimize
+ def from_param(obj): return obj
+
+class ModelObj(ctypes.c_void_p):
+ def __init__(self, model): self._as_parameter_ = model
+ def from_param(obj): return obj
+
+class AstVectorObj(ctypes.c_void_p):
+ def __init__(self, vector): self._as_parameter_ = vector
+ def from_param(obj): return obj
+
+class AstMapObj(ctypes.c_void_p):
+ def __init__(self, ast_map): self._as_parameter_ = ast_map
+ def from_param(obj): return obj
+
+class Params(ctypes.c_void_p):
+ def __init__(self, params): self._as_parameter_ = params
+ def from_param(obj): return obj
+
+class ParamDescrs(ctypes.c_void_p):
+ def __init__(self, paramdescrs): self._as_parameter_ = paramdescrs
+ def from_param(obj): return obj
+
+class FuncInterpObj(ctypes.c_void_p):
+ def __init__(self, f): self._as_parameter_ = f
+ def from_param(obj): return obj
+
+class FuncEntryObj(ctypes.c_void_p):
+ def __init__(self, e): self._as_parameter_ = e
+ def from_param(obj): return obj
+
+class RCFNumObj(ctypes.c_void_p):
+ def __init__(self, e): self._as_parameter_ = e
+ def from_param(obj): return obj
+
+
+
diff --git a/z3-4.8.9-x64-ubuntu-16.04/bin/python/z3/z3types.pyc b/z3-4.8.9-x64-ubuntu-16.04/bin/python/z3/z3types.pyc
new file mode 100644
index 0000000..88e3e40
Binary files /dev/null and b/z3-4.8.9-x64-ubuntu-16.04/bin/python/z3/z3types.pyc differ
diff --git a/z3-4.8.9-x64-ubuntu-16.04/bin/python/z3/z3util.py b/z3-4.8.9-x64-ubuntu-16.04/bin/python/z3/z3util.py
new file mode 100644
index 0000000..5734d28
--- /dev/null
+++ b/z3-4.8.9-x64-ubuntu-16.04/bin/python/z3/z3util.py
@@ -0,0 +1,508 @@
+############################################
+# Copyright (c) 2012 Microsoft Corporation
+#
+# Z3 Python interface
+#
+# Authors: Leonardo de Moura (leonardo)
+# ThanhVu (Vu) Nguyen
+############################################
+"""
+Usage:
+import common_z3 as CM_Z3
+"""
+
+from .z3 import *
+
+def vset(seq, idfun=None, as_list=True):
+ # This functions preserves the order of arguments while removing duplicates.
+ # This function is from https://code.google.com/p/common-python-vu/source/browse/vu_common.py
+ # (Thanhu's personal code). It has been copied here to avoid a dependency on vu_common.py.
+ """
+ order preserving
+
+ >>> vset([[11,2],1, [10,['9',1]],2, 1, [11,2],[3,3],[10,99],1,[10,['9',1]]],idfun=repr)
+ [[11, 2], 1, [10, ['9', 1]], 2, [3, 3], [10, 99]]
+ """
+
+ def _uniq_normal(seq):
+ d_ = {}
+ for s in seq:
+ if s not in d_:
+ d_[s] = None
+ yield s
+
+ def _uniq_idfun(seq,idfun):
+ d_ = {}
+ for s in seq:
+ h_ = idfun(s)
+ if h_ not in d_:
+ d_[h_] = None
+ yield s
+
+ if idfun is None:
+ res = _uniq_normal(seq)
+ else:
+ res = _uniq_idfun(seq,idfun)
+
+ return list(res) if as_list else res
+
+
+def get_z3_version(as_str=False):
+ major = ctypes.c_uint(0)
+ minor = ctypes.c_uint(0)
+ build = ctypes.c_uint(0)
+ rev = ctypes.c_uint(0)
+ Z3_get_version(major,minor,build,rev)
+ rs = map(int,(major.value,minor.value,build.value,rev.value))
+ if as_str:
+ return "{}.{}.{}.{}".format(*rs)
+ else:
+ return rs
+
+
+def ehash(v):
+ """
+ Returns a 'stronger' hash value than the default hash() method.
+ The result from hash() is not enough to distinguish between 2
+ z3 expressions in some cases.
+
+ Note: the following doctests will fail with Python 2.x as the
+ default formatting doesn't match that of 3.x.
+ >>> x1 = Bool('x'); x2 = Bool('x'); x3 = Int('x')
+ >>> print(x1.hash(),x2.hash(),x3.hash()) #BAD: all same hash values
+ 783810685 783810685 783810685
+ >>> print(ehash(x1), ehash(x2), ehash(x3))
+ x_783810685_1 x_783810685_1 x_783810685_2
+
+ """
+ if z3_debug():
+ assert is_expr(v)
+
+ return "{}_{}_{}".format(str(v),v.hash(),v.sort_kind())
+
+
+"""
+In Z3, variables are called *uninterpreted* consts and
+variables are *interpreted* consts.
+"""
+
+def is_expr_var(v):
+ """
+ EXAMPLES:
+
+ >>> is_expr_var(Int('7'))
+ True
+ >>> is_expr_var(IntVal('7'))
+ False
+ >>> is_expr_var(Bool('y'))
+ True
+ >>> is_expr_var(Int('x') + 7 == Int('y'))
+ False
+ >>> LOnOff, (On,Off) = EnumSort("LOnOff",['On','Off'])
+ >>> Block,Reset,SafetyInjection=Consts("Block Reset SafetyInjection",LOnOff)
+ >>> is_expr_var(LOnOff)
+ False
+ >>> is_expr_var(On)
+ False
+ >>> is_expr_var(Block)
+ True
+ >>> is_expr_var(SafetyInjection)
+ True
+ """
+
+ return is_const(v) and v.decl().kind()==Z3_OP_UNINTERPRETED
+
+def is_expr_val(v):
+ """
+ EXAMPLES:
+
+ >>> is_expr_val(Int('7'))
+ False
+ >>> is_expr_val(IntVal('7'))
+ True
+ >>> is_expr_val(Bool('y'))
+ False
+ >>> is_expr_val(Int('x') + 7 == Int('y'))
+ False
+ >>> LOnOff, (On,Off) = EnumSort("LOnOff",['On','Off'])
+ >>> Block,Reset,SafetyInjection=Consts("Block Reset SafetyInjection",LOnOff)
+ >>> is_expr_val(LOnOff)
+ False
+ >>> is_expr_val(On)
+ True
+ >>> is_expr_val(Block)
+ False
+ >>> is_expr_val(SafetyInjection)
+ False
+ """
+ return is_const(v) and v.decl().kind()!=Z3_OP_UNINTERPRETED
+
+
+
+
+def get_vars(f,rs=[]):
+ """
+ >>> x,y = Ints('x y')
+ >>> a,b = Bools('a b')
+ >>> get_vars(Implies(And(x+y==0,x*2==10),Or(a,Implies(a,b==False))))
+ [x, y, a, b]
+
+ """
+ if z3_debug():
+ assert is_expr(f)
+
+ if is_const(f):
+ if is_expr_val(f):
+ return rs
+ else: #variable
+ return vset(rs + [f],str)
+
+ else:
+ for f_ in f.children():
+ rs = get_vars(f_,rs)
+
+ return vset(rs,str)
+
+
+
+def mk_var(name,vsort):
+ if vsort.kind() == Z3_INT_SORT:
+ v = Int(name)
+ elif vsort.kind() == Z3_REAL_SORT:
+ v = Real(name)
+ elif vsort.kind() == Z3_BOOL_SORT:
+ v = Bool(name)
+ elif vsort.kind() == Z3_DATATYPE_SORT:
+ v = Const(name,vsort)
+
+ else:
+ assert False, 'Cannot handle this sort (s: %sid: %d)'\
+ %(vsort,vsort.kind())
+
+ return v
+
+
+
+def prove(claim,assume=None,verbose=0):
+ """
+ >>> r,m = prove(BoolVal(True),verbose=0); r,model_str(m,as_str=False)
+ (True, None)
+
+ #infinite counter example when proving contradiction
+ >>> r,m = prove(BoolVal(False)); r,model_str(m,as_str=False)
+ (False, [])
+
+ >>> x,y,z=Bools('x y z')
+ >>> r,m = prove(And(x,Not(x))); r,model_str(m,as_str=True)
+ (False, '[]')
+
+ >>> r,m = prove(True,assume=And(x,Not(x)),verbose=0)
+ Traceback (most recent call last):
+ ...
+ AssertionError: Assumption is always False!
+
+ >>> r,m = prove(Implies(x,x),assume=y,verbose=2); r,model_str(m,as_str=False)
+ assume:
+ y
+ claim:
+ Implies(x, x)
+ to_prove:
+ Implies(y, Implies(x, x))
+ (True, None)
+
+ >>> r,m = prove(And(x,True),assume=y,verbose=0); r,model_str(m,as_str=False)
+ (False, [(x, False), (y, True)])
+
+ >>> r,m = prove(And(x,y),assume=y,verbose=0)
+ >>> print(r)
+ False
+ >>> print(model_str(m,as_str=True))
+ x = False
+ y = True
+
+ >>> a,b = Ints('a b')
+ >>> r,m = prove(a**b == b**a,assume=None,verbose=0)
+ E: cannot solve !
+ >>> r is None and m is None
+ True
+
+ """
+
+ if z3_debug():
+ assert not assume or is_expr(assume)
+
+
+ to_prove = claim
+ if assume:
+ if z3_debug():
+ is_proved,_ = prove(Not(assume))
+
+ def _f():
+ emsg = "Assumption is always False!"
+ if verbose >= 2:
+ emsg = "{}\n{}".format(assume,emsg)
+ return emsg
+
+ assert is_proved==False, _f()
+
+ to_prove = Implies(assume,to_prove)
+
+
+
+ if verbose >= 2:
+ print('assume: ')
+ print(assume)
+ print('claim: ')
+ print(claim)
+ print('to_prove: ')
+ print(to_prove)
+
+ f = Not(to_prove)
+
+ models = get_models(f,k=1)
+ if models is None: #unknown
+ print('E: cannot solve !')
+ return None, None
+ elif models == False: #unsat
+ return True,None
+ else: #sat
+ if z3_debug():
+ assert isinstance(models,list)
+
+ if models:
+ return False, models[0] #the first counterexample
+ else:
+ return False, [] #infinite counterexample,models
+
+
+def get_models(f,k):
+ """
+ Returns the first k models satisfiying f.
+ If f is not satisfiable, returns False.
+ If f cannot be solved, returns None
+ If f is satisfiable, returns the first k models
+ Note that if f is a tautology, e.g.\ True, then the result is []
+
+ Based on http://stackoverflow.com/questions/11867611/z3py-checking-all-solutions-for-equation
+
+ EXAMPLES:
+ >>> x, y = Ints('x y')
+ >>> len(get_models(And(0<=x,x <= 4),k=11))
+ 5
+ >>> get_models(And(0<=x**y,x <= 1),k=2) is None
+ True
+ >>> get_models(And(0<=x,x <= -1),k=2)
+ False
+ >>> len(get_models(x+y==7,5))
+ 5
+ >>> len(get_models(And(x<=5,x>=1),7))
+ 5
+ >>> get_models(And(x<=0,x>=5),7)
+ False
+
+ >>> x = Bool('x')
+ >>> get_models(And(x,Not(x)),k=1)
+ False
+ >>> get_models(Implies(x,x),k=1)
+ []
+ >>> get_models(BoolVal(True),k=1)
+ []
+
+
+
+ """
+
+ if z3_debug():
+ assert is_expr(f)
+ assert k>=1
+
+
+
+ s = Solver()
+ s.add(f)
+
+ models = []
+ i = 0
+ while s.check() == sat and i < k:
+ i = i + 1
+
+ m = s.model()
+
+ if not m: #if m == []
+ break
+
+ models.append(m)
+
+
+ #create new constraint to block the current model
+ block = Not(And([v() == m[v] for v in m]))
+ s.add(block)
+
+
+ if s.check() == unknown:
+ return None
+ elif s.check() == unsat and i==0:
+ return False
+ else:
+ return models
+
+def is_tautology(claim,verbose=0):
+ """
+ >>> is_tautology(Implies(Bool('x'),Bool('x')))
+ True
+
+ >>> is_tautology(Implies(Bool('x'),Bool('y')))
+ False
+
+ >>> is_tautology(BoolVal(True))
+ True
+
+ >>> is_tautology(BoolVal(False))
+ False
+
+ """
+ return prove(claim=claim,assume=None,verbose=verbose)[0]
+
+
+def is_contradiction(claim,verbose=0):
+ """
+ >>> x,y=Bools('x y')
+ >>> is_contradiction(BoolVal(False))
+ True
+
+ >>> is_contradiction(BoolVal(True))
+ False
+
+ >>> is_contradiction(x)
+ False
+
+ >>> is_contradiction(Implies(x,y))
+ False
+
+ >>> is_contradiction(Implies(x,x))
+ False
+
+ >>> is_contradiction(And(x,Not(x)))
+ True
+ """
+
+ return prove(claim=Not(claim),assume=None,verbose=verbose)[0]
+
+
+def exact_one_model(f):
+ """
+ return True if f has exactly 1 model, False otherwise.
+
+ EXAMPLES:
+
+ >>> x, y = Ints('x y')
+ >>> exact_one_model(And(0<=x**y,x <= 0))
+ False
+
+ >>> exact_one_model(And(0<=x,x <= 0))
+ True
+
+ >>> exact_one_model(And(0<=x,x <= 1))
+ False
+
+ >>> exact_one_model(And(0<=x,x <= -1))
+ False
+ """
+
+ models = get_models(f,k=2)
+ if isinstance(models,list):
+ return len(models)==1
+ else:
+ return False
+
+
+
+def myBinOp(op,*L):
+ """
+ >>> myAnd(*[Bool('x'),Bool('y')])
+ And(x, y)
+
+ >>> myAnd(*[Bool('x'),None])
+ x
+
+ >>> myAnd(*[Bool('x')])
+ x
+
+ >>> myAnd(*[])
+
+ >>> myAnd(Bool('x'),Bool('y'))
+ And(x, y)
+
+ >>> myAnd(*[Bool('x'),Bool('y')])
+ And(x, y)
+
+ >>> myAnd([Bool('x'),Bool('y')])
+ And(x, y)
+
+ >>> myAnd((Bool('x'),Bool('y')))
+ And(x, y)
+
+ >>> myAnd(*[Bool('x'),Bool('y'),True])
+ Traceback (most recent call last):
+ ...
+ AssertionError
+ """
+
+ if z3_debug():
+ assert op == Z3_OP_OR or op == Z3_OP_AND or op == Z3_OP_IMPLIES
+
+ if len(L)==1 and (isinstance(L[0],list) or isinstance(L[0],tuple)):
+ L = L[0]
+
+ if z3_debug():
+ assert all(not isinstance(l,bool) for l in L)
+
+ L = [l for l in L if is_expr(l)]
+ if L:
+ if len(L)==1:
+ return L[0]
+ else:
+ if op == Z3_OP_OR:
+ return Or(L)
+ elif op == Z3_OP_AND:
+ return And(L)
+ else: #IMPLIES
+ return Implies(L[0],L[1])
+ else:
+ return None
+
+
+def myAnd(*L): return myBinOp(Z3_OP_AND,*L)
+def myOr(*L): return myBinOp(Z3_OP_OR,*L)
+def myImplies(a,b):return myBinOp(Z3_OP_IMPLIES,[a,b])
+
+
+
+Iff = lambda f: And(Implies(f[0],f[1]),Implies(f[1],f[0]))
+
+
+
+def model_str(m,as_str=True):
+ """
+ Returned a 'sorted' model (so that it's easier to see)
+ The model is sorted by its key,
+ e.g. if the model is y = 3 , x = 10, then the result is
+ x = 10, y = 3
+
+ EXAMPLES:
+ see doctest exampels from function prove()
+
+ """
+ if z3_debug():
+ assert m is None or m == [] or isinstance(m,ModelRef)
+
+ if m :
+ vs = [(v,m[v]) for v in m]
+ vs = sorted(vs,key=lambda a,_: str(a))
+ if as_str:
+ return '\n'.join(['{} = {}'.format(k,v) for (k,v) in vs])
+ else:
+ return vs
+ else:
+ return str(m) if as_str else m
+
diff --git a/z3-4.8.9-x64-ubuntu-16.04/bin/python/z3/z3util.pyc b/z3-4.8.9-x64-ubuntu-16.04/bin/python/z3/z3util.pyc
new file mode 100644
index 0000000..ed47b93
Binary files /dev/null and b/z3-4.8.9-x64-ubuntu-16.04/bin/python/z3/z3util.pyc differ
diff --git a/z3-ubuntu-14.04-bin/z3 b/z3-4.8.9-x64-ubuntu-16.04/bin/z3
similarity index 63%
rename from z3-ubuntu-14.04-bin/z3
rename to z3-4.8.9-x64-ubuntu-16.04/bin/z3
index ae74f00..b4652d2 100755
Binary files a/z3-ubuntu-14.04-bin/z3 and b/z3-4.8.9-x64-ubuntu-16.04/bin/z3 differ
diff --git a/z3-4.8.9-x64-ubuntu-16.04/include/z3++.h b/z3-4.8.9-x64-ubuntu-16.04/include/z3++.h
new file mode 100644
index 0000000..e3291df
--- /dev/null
+++ b/z3-4.8.9-x64-ubuntu-16.04/include/z3++.h
@@ -0,0 +1,3755 @@
+/*++
+Copyright (c) 2012 Microsoft Corporation
+
+ Thin C++ layer on top of the Z3 C API.
+ Main features:
+ - Smart pointers for all Z3 objects.
+ - Object-Oriented interface.
+ - Operator overloading.
+ - Exceptions for signaling Z3 errors
+
+ The C API can be used simultaneously with the C++ layer.
+ However, if you use the C API directly, you will have to check the error conditions manually.
+ Of course, you can invoke the method check_error() of the context object.
+Author:
+
+ Leonardo (leonardo) 2012-03-28
+
+Notes:
+
+--*/
+#pragma once
+
+#include
+#include
+#include
+#include
+#include
+#include
+#include
+
+#undef min
+#undef max
+
+/**
+ \defgroup cppapi C++ API
+
+*/
+/*@{*/
+
+/**
+ @name C++ API classes and functions
+*/
+/*@{*/
+
+/**
+ \brief Z3 C++ namespace
+*/
+namespace z3 {
+
+ class exception;
+ class config;
+ class context;
+ class symbol;
+ class params;
+ class param_descrs;
+ class ast;
+ class sort;
+ class func_decl;
+ class expr;
+ class solver;
+ class goal;
+ class tactic;
+ class probe;
+ class model;
+ class func_interp;
+ class func_entry;
+ class statistics;
+ class apply_result;
+ template class cast_ast;
+ template class ast_vector_tpl;
+ typedef ast_vector_tpl ast_vector;
+ typedef ast_vector_tpl expr_vector;
+ typedef ast_vector_tpl sort_vector;
+ typedef ast_vector_tpl func_decl_vector;
+
+ inline void set_param(char const * param, char const * value) { Z3_global_param_set(param, value); }
+ inline void set_param(char const * param, bool value) { Z3_global_param_set(param, value ? "true" : "false"); }
+ inline void set_param(char const * param, int value) { auto str = std::to_string(value); Z3_global_param_set(param, str.c_str()); }
+ inline void reset_params() { Z3_global_param_reset_all(); }
+
+ /**
+ \brief Exception used to sign API usage errors.
+ */
+ class exception : public std::exception {
+ std::string m_msg;
+ public:
+ exception(char const * msg):m_msg(msg) {}
+ virtual ~exception() throw() {}
+ char const * msg() const { return m_msg.c_str(); }
+ char const * what() const throw() { return m_msg.c_str(); }
+ friend std::ostream & operator<<(std::ostream & out, exception const & e);
+ };
+ inline std::ostream & operator<<(std::ostream & out, exception const & e) { out << e.msg(); return out; }
+
+#if !defined(Z3_THROW)
+#if __cpp_exceptions || _CPPUNWIND || __EXCEPTIONS
+#define Z3_THROW(x) throw x
+#else
+#define Z3_THROW(x) {}
+#endif
+#endif // !defined(Z3_THROW)
+
+ /**
+ \brief Z3 global configuration object.
+ */
+ class config {
+ Z3_config m_cfg;
+ config(config const & s);
+ config & operator=(config const & s);
+ public:
+ config() { m_cfg = Z3_mk_config(); }
+ ~config() { Z3_del_config(m_cfg); }
+ operator Z3_config() const { return m_cfg; }
+ /**
+ \brief Set global parameter \c param with string \c value.
+ */
+ void set(char const * param, char const * value) { Z3_set_param_value(m_cfg, param, value); }
+ /**
+ \brief Set global parameter \c param with Boolean \c value.
+ */
+ void set(char const * param, bool value) { Z3_set_param_value(m_cfg, param, value ? "true" : "false"); }
+ /**
+ \brief Set global parameter \c param with integer \c value.
+ */
+ void set(char const * param, int value) {
+ auto str = std::to_string(value);
+ Z3_set_param_value(m_cfg, param, str.c_str());
+ }
+ };
+
+ enum check_result {
+ unsat, sat, unknown
+ };
+
+ enum rounding_mode {
+ RNA,
+ RNE,
+ RTP,
+ RTN,
+ RTZ
+ };
+
+ inline check_result to_check_result(Z3_lbool l) {
+ if (l == Z3_L_TRUE) return sat;
+ else if (l == Z3_L_FALSE) return unsat;
+ return unknown;
+ }
+
+
+ /**
+ \brief A Context manages all other Z3 objects, global configuration options, etc.
+ */
+
+
+ class context {
+ private:
+ bool m_enable_exceptions;
+ rounding_mode m_rounding_mode;
+ Z3_context m_ctx;
+ void init(config & c) {
+ set_context(Z3_mk_context_rc(c));
+ }
+ void set_context(Z3_context ctx) {
+ m_ctx = ctx;
+ m_enable_exceptions = true;
+ m_rounding_mode = RNA;
+ Z3_set_error_handler(m_ctx, 0);
+ Z3_set_ast_print_mode(m_ctx, Z3_PRINT_SMTLIB2_COMPLIANT);
+ }
+
+
+ context(context const & s);
+ context & operator=(context const & s);
+
+ friend class scoped_context;
+ context(Z3_context c) { set_context(c); }
+ void detach() { m_ctx = nullptr; }
+ public:
+ context() { config c; init(c); }
+ context(config & c) { init(c); }
+ ~context() { if (m_ctx) Z3_del_context(m_ctx); }
+ operator Z3_context() const { return m_ctx; }
+
+ /**
+ \brief Auxiliary method used to check for API usage errors.
+ */
+ Z3_error_code check_error() const {
+ Z3_error_code e = Z3_get_error_code(m_ctx);
+ if (e != Z3_OK && enable_exceptions())
+ Z3_THROW(exception(Z3_get_error_msg(m_ctx, e)));
+ return e;
+ }
+
+ void check_parser_error() const {
+ check_error();
+ }
+
+ /**
+ \brief The C++ API uses by defaults exceptions on errors.
+ For applications that don't work well with exceptions (there should be only few)
+ you have the ability to turn off exceptions. The tradeoffs are that applications
+ have to be very careful about using check_error() after calls that may result in an
+ erroneous state.
+ */
+ void set_enable_exceptions(bool f) { m_enable_exceptions = f; }
+
+ bool enable_exceptions() const { return m_enable_exceptions; }
+
+ /**
+ \brief Update global parameter \c param with string \c value.
+ */
+ void set(char const * param, char const * value) { Z3_update_param_value(m_ctx, param, value); }
+ /**
+ \brief Update global parameter \c param with Boolean \c value.
+ */
+ void set(char const * param, bool value) { Z3_update_param_value(m_ctx, param, value ? "true" : "false"); }
+ /**
+ \brief Update global parameter \c param with Integer \c value.
+ */
+ void set(char const * param, int value) {
+ auto str = std::to_string(value);
+ Z3_update_param_value(m_ctx, param, str.c_str());
+ }
+
+ /**
+ \brief Interrupt the current procedure being executed by any object managed by this context.
+ This is a soft interruption: there is no guarantee the object will actually stop.
+ */
+ void interrupt() { Z3_interrupt(m_ctx); }
+
+ /**
+ \brief Create a Z3 symbol based on the given string.
+ */
+ symbol str_symbol(char const * s);
+ /**
+ \brief Create a Z3 symbol based on the given integer.
+ */
+ symbol int_symbol(int n);
+ /**
+ \brief Return the Boolean sort.
+ */
+ sort bool_sort();
+ /**
+ \brief Return the integer sort.
+ */
+ sort int_sort();
+ /**
+ \brief Return the Real sort.
+ */
+ sort real_sort();
+ /**
+ \brief Return the Bit-vector sort of size \c sz. That is, the sort for bit-vectors of size \c sz.
+ */
+ sort bv_sort(unsigned sz);
+ /**
+ \brief Return the sort for ASCII strings.
+ */
+ sort string_sort();
+ /**
+ \brief Return a sequence sort over base sort \c s.
+ */
+ sort seq_sort(sort& s);
+ /**
+ \brief Return a regular expression sort over sequences \c seq_sort.
+ */
+ sort re_sort(sort& seq_sort);
+ /**
+ \brief Return an array sort for arrays from \c d to \c r.
+
+ Example: Given a context \c c, c.array_sort(c.int_sort(), c.bool_sort()) is an array sort from integer to Boolean.
+ */
+ sort array_sort(sort d, sort r);
+ sort array_sort(sort_vector const& d, sort r);
+ /**
+ \brief Return a floating point sort.
+ \c ebits is a number of exponent bits,
+ \c sbits is a number of significand bits,
+ \pre where ebits must be larger than 1 and sbits must be larger than 2.
+ */
+ sort fpa_sort(unsigned ebits, unsigned sbits);
+ /**
+ \brief Return a FloatingPoint sort with given precision bitwidth (16, 32, 64 or 128).
+ */
+ template
+ sort fpa_sort();
+ /**
+ \brief Return a RoundingMode sort.
+ */
+ sort fpa_rounding_mode();
+ /**
+ \brief Sets RoundingMode of FloatingPoints.
+ */
+ void set_rounding_mode(rounding_mode rm);
+ /**
+ \brief Return an enumeration sort: enum_names[0], ..., enum_names[n-1].
+ \c cs and \c ts are output parameters. The method stores in \c cs the constants corresponding to the enumerated elements,
+ and in \c ts the predicates for testing if terms of the enumeration sort correspond to an enumeration.
+ */
+ sort enumeration_sort(char const * name, unsigned n, char const * const * enum_names, func_decl_vector & cs, func_decl_vector & ts);
+
+ /**
+ \brief Return a tuple constructor.
+ \c name is the name of the returned constructor,
+ \c n are the number of arguments, \c names and \c sorts are their projected sorts.
+ \c projs is an output parameter. It contains the set of projection functions.
+ */
+ func_decl tuple_sort(char const * name, unsigned n, char const * const * names, sort const* sorts, func_decl_vector & projs);
+
+ /**
+ \brief create an uninterpreted sort with the name given by the string or symbol.
+ */
+ sort uninterpreted_sort(char const* name);
+ sort uninterpreted_sort(symbol const& name);
+
+ func_decl function(symbol const & name, unsigned arity, sort const * domain, sort const & range);
+ func_decl function(char const * name, unsigned arity, sort const * domain, sort const & range);
+ func_decl function(symbol const& name, sort_vector const& domain, sort const& range);
+ func_decl function(char const * name, sort_vector const& domain, sort const& range);
+ func_decl function(char const * name, sort const & domain, sort const & range);
+ func_decl function(char const * name, sort const & d1, sort const & d2, sort const & range);
+ func_decl function(char const * name, sort const & d1, sort const & d2, sort const & d3, sort const & range);
+ func_decl function(char const * name, sort const & d1, sort const & d2, sort const & d3, sort const & d4, sort const & range);
+ func_decl function(char const * name, sort const & d1, sort const & d2, sort const & d3, sort const & d4, sort const & d5, sort const & range);
+
+ func_decl recfun(symbol const & name, unsigned arity, sort const * domain, sort const & range);
+ func_decl recfun(char const * name, unsigned arity, sort const * domain, sort const & range);
+ func_decl recfun(char const * name, sort const & domain, sort const & range);
+ func_decl recfun(char const * name, sort const & d1, sort const & d2, sort const & range);
+
+ void recdef(func_decl, expr_vector const& args, expr const& body);
+
+ expr constant(symbol const & name, sort const & s);
+ expr constant(char const * name, sort const & s);
+ expr bool_const(char const * name);
+ expr int_const(char const * name);
+ expr real_const(char const * name);
+ expr bv_const(char const * name, unsigned sz);
+ expr fpa_const(char const * name, unsigned ebits, unsigned sbits);
+
+ template
+ expr fpa_const(char const * name);
+
+ expr bool_val(bool b);
+
+ expr int_val(int n);
+ expr int_val(unsigned n);
+ expr int_val(int64_t n);
+ expr int_val(uint64_t n);
+ expr int_val(char const * n);
+
+ expr real_val(int n, int d);
+ expr real_val(int n);
+ expr real_val(unsigned n);
+ expr real_val(int64_t n);
+ expr real_val(uint64_t n);
+ expr real_val(char const * n);
+
+ expr bv_val(int n, unsigned sz);
+ expr bv_val(unsigned n, unsigned sz);
+ expr bv_val(int64_t n, unsigned sz);
+ expr bv_val(uint64_t n, unsigned sz);
+ expr bv_val(char const * n, unsigned sz);
+ expr bv_val(unsigned n, bool const* bits);
+
+ expr fpa_val(double n);
+ expr fpa_val(float n);
+
+ expr string_val(char const* s);
+ expr string_val(char const* s, unsigned n);
+ expr string_val(std::string const& s);
+
+ expr num_val(int n, sort const & s);
+
+ /**
+ \brief parsing
+ */
+ expr_vector parse_string(char const* s);
+ expr_vector parse_file(char const* file);
+
+ expr_vector parse_string(char const* s, sort_vector const& sorts, func_decl_vector const& decls);
+ expr_vector parse_file(char const* s, sort_vector const& sorts, func_decl_vector const& decls);
+ };
+
+ class scoped_context {
+ context m_ctx;
+ public:
+ scoped_context(Z3_context c): m_ctx(c) {}
+ ~scoped_context() { m_ctx.detach(); }
+ context& operator()() { return m_ctx; }
+ };
+
+
+ template
+ class array {
+ T * m_array;
+ unsigned m_size;
+ array(array const & s);
+ array & operator=(array const & s);
+ public:
+ array(unsigned sz):m_size(sz) { m_array = new T[sz]; }
+ template
+ array(ast_vector_tpl const & v);
+ ~array() { delete[] m_array; }
+ void resize(unsigned sz) { delete[] m_array; m_size = sz; m_array = new T[sz]; }
+ unsigned size() const { return m_size; }
+ T & operator[](int i) { assert(0 <= i); assert(static_cast(i) < m_size); return m_array[i]; }
+ T const & operator[](int i) const { assert(0 <= i); assert(static_cast(i) < m_size); return m_array[i]; }
+ T const * ptr() const { return m_array; }
+ T * ptr() { return m_array; }
+ };
+
+ class object {
+ protected:
+ context * m_ctx;
+ public:
+ object(context & c):m_ctx(&c) {}
+ object(object const & s):m_ctx(s.m_ctx) {}
+ context & ctx() const { return *m_ctx; }
+ Z3_error_code check_error() const { return m_ctx->check_error(); }
+ friend void check_context(object const & a, object const & b);
+ };
+ inline void check_context(object const & a, object const & b) { (void)a; (void)b; assert(a.m_ctx == b.m_ctx); }
+
+ class symbol : public object {
+ Z3_symbol m_sym;
+ public:
+ symbol(context & c, Z3_symbol s):object(c), m_sym(s) {}
+ symbol(symbol const & s):object(s), m_sym(s.m_sym) {}
+ symbol & operator=(symbol const & s) { m_ctx = s.m_ctx; m_sym = s.m_sym; return *this; }
+ operator Z3_symbol() const { return m_sym; }
+ Z3_symbol_kind kind() const { return Z3_get_symbol_kind(ctx(), m_sym); }
+ std::string str() const { assert(kind() == Z3_STRING_SYMBOL); return Z3_get_symbol_string(ctx(), m_sym); }
+ int to_int() const { assert(kind() == Z3_INT_SYMBOL); return Z3_get_symbol_int(ctx(), m_sym); }
+ friend std::ostream & operator<<(std::ostream & out, symbol const & s);
+ };
+
+ inline std::ostream & operator<<(std::ostream & out, symbol const & s) {
+ if (s.kind() == Z3_INT_SYMBOL)
+ out << "k!" << s.to_int();
+ else
+ out << s.str();
+ return out;
+ }
+
+
+ class param_descrs : public object {
+ Z3_param_descrs m_descrs;
+ public:
+ param_descrs(context& c, Z3_param_descrs d): object(c), m_descrs(d) { Z3_param_descrs_inc_ref(c, d); }
+ param_descrs(param_descrs const& o): object(o.ctx()), m_descrs(o.m_descrs) { Z3_param_descrs_inc_ref(ctx(), m_descrs); }
+ param_descrs& operator=(param_descrs const& o) {
+ Z3_param_descrs_inc_ref(o.ctx(), o.m_descrs);
+ Z3_param_descrs_dec_ref(ctx(), m_descrs);
+ m_descrs = o.m_descrs;
+ m_ctx = o.m_ctx;
+ return *this;
+ }
+ ~param_descrs() { Z3_param_descrs_dec_ref(ctx(), m_descrs); }
+ static param_descrs simplify_param_descrs(context& c) { return param_descrs(c, Z3_simplify_get_param_descrs(c)); }
+
+ unsigned size() { return Z3_param_descrs_size(ctx(), m_descrs); }
+ symbol name(unsigned i) { return symbol(ctx(), Z3_param_descrs_get_name(ctx(), m_descrs, i)); }
+ Z3_param_kind kind(symbol const& s) { return Z3_param_descrs_get_kind(ctx(), m_descrs, s); }
+ std::string documentation(symbol const& s) { char const* r = Z3_param_descrs_get_documentation(ctx(), m_descrs, s); check_error(); return r; }
+ std::string to_string() const { return Z3_param_descrs_to_string(ctx(), m_descrs); }
+ };
+
+ inline std::ostream& operator<<(std::ostream & out, param_descrs const & d) { return out << d.to_string(); }
+
+ class params : public object {
+ Z3_params m_params;
+ public:
+ params(context & c):object(c) { m_params = Z3_mk_params(c); Z3_params_inc_ref(ctx(), m_params); }
+ params(params const & s):object(s), m_params(s.m_params) { Z3_params_inc_ref(ctx(), m_params); }
+ ~params() { Z3_params_dec_ref(ctx(), m_params); }
+ operator Z3_params() const { return m_params; }
+ params & operator=(params const & s) {
+ Z3_params_inc_ref(s.ctx(), s.m_params);
+ Z3_params_dec_ref(ctx(), m_params);
+ m_ctx = s.m_ctx;
+ m_params = s.m_params;
+ return *this;
+ }
+ void set(char const * k, bool b) { Z3_params_set_bool(ctx(), m_params, ctx().str_symbol(k), b); }
+ void set(char const * k, unsigned n) { Z3_params_set_uint(ctx(), m_params, ctx().str_symbol(k), n); }
+ void set(char const * k, double n) { Z3_params_set_double(ctx(), m_params, ctx().str_symbol(k), n); }
+ void set(char const * k, symbol const & s) { Z3_params_set_symbol(ctx(), m_params, ctx().str_symbol(k), s); }
+ void set(char const * k, char const* s) { Z3_params_set_symbol(ctx(), m_params, ctx().str_symbol(k), ctx().str_symbol(s)); }
+ friend std::ostream & operator<<(std::ostream & out, params const & p);
+ };
+
+ inline std::ostream & operator<<(std::ostream & out, params const & p) {
+ out << Z3_params_to_string(p.ctx(), p); return out;
+ }
+
+ class ast : public object {
+ protected:
+ Z3_ast m_ast;
+ public:
+ ast(context & c):object(c), m_ast(0) {}
+ ast(context & c, Z3_ast n):object(c), m_ast(n) { Z3_inc_ref(ctx(), m_ast); }
+ ast(ast const & s):object(s), m_ast(s.m_ast) { Z3_inc_ref(ctx(), m_ast); }
+ ~ast() { if (m_ast) Z3_dec_ref(*m_ctx, m_ast); }
+ operator Z3_ast() const { return m_ast; }
+ operator bool() const { return m_ast != 0; }
+ ast & operator=(ast const & s) { Z3_inc_ref(s.ctx(), s.m_ast); if (m_ast) Z3_dec_ref(ctx(), m_ast); m_ctx = s.m_ctx; m_ast = s.m_ast; return *this; }
+ Z3_ast_kind kind() const { Z3_ast_kind r = Z3_get_ast_kind(ctx(), m_ast); check_error(); return r; }
+ unsigned hash() const { unsigned r = Z3_get_ast_hash(ctx(), m_ast); check_error(); return r; }
+ friend std::ostream & operator<<(std::ostream & out, ast const & n);
+ std::string to_string() const { return std::string(Z3_ast_to_string(ctx(), m_ast)); }
+
+
+ /**
+ \brief Return true if the ASTs are structurally identical.
+ */
+ friend bool eq(ast const & a, ast const & b);
+ };
+ inline std::ostream & operator<<(std::ostream & out, ast const & n) {
+ out << Z3_ast_to_string(n.ctx(), n.m_ast); return out;
+ }
+
+ inline bool eq(ast const & a, ast const & b) { return Z3_is_eq_ast(a.ctx(), a, b); }
+
+ template
+ class ast_vector_tpl : public object {
+ Z3_ast_vector m_vector;
+ void init(Z3_ast_vector v) { Z3_ast_vector_inc_ref(ctx(), v); m_vector = v; }
+ public:
+ ast_vector_tpl(context & c):object(c) { init(Z3_mk_ast_vector(c)); }
+ ast_vector_tpl(context & c, Z3_ast_vector v):object(c) { init(v); }
+ ast_vector_tpl(ast_vector_tpl const & s):object(s), m_vector(s.m_vector) { Z3_ast_vector_inc_ref(ctx(), m_vector); }
+ ast_vector_tpl(context& c, ast_vector_tpl const& src): object(c) { init(Z3_ast_vector_translate(src.ctx(), src, c)); }
+
+ ~ast_vector_tpl() { Z3_ast_vector_dec_ref(ctx(), m_vector); }
+ operator Z3_ast_vector() const { return m_vector; }
+ unsigned size() const { return Z3_ast_vector_size(ctx(), m_vector); }
+ T operator[](int i) const { assert(0 <= i); Z3_ast r = Z3_ast_vector_get(ctx(), m_vector, i); check_error(); return cast_ast()(ctx(), r); }
+ void push_back(T const & e) { Z3_ast_vector_push(ctx(), m_vector, e); check_error(); }
+ void resize(unsigned sz) { Z3_ast_vector_resize(ctx(), m_vector, sz); check_error(); }
+ T back() const { return operator[](size() - 1); }
+ void pop_back() { assert(size() > 0); resize(size() - 1); }
+ bool empty() const { return size() == 0; }
+ ast_vector_tpl & operator=(ast_vector_tpl const & s) {
+ Z3_ast_vector_inc_ref(s.ctx(), s.m_vector);
+ Z3_ast_vector_dec_ref(ctx(), m_vector);
+ m_ctx = s.m_ctx;
+ m_vector = s.m_vector;
+ return *this;
+ }
+ ast_vector_tpl& set(unsigned idx, ast& a) {
+ Z3_ast_vector_set(ctx(), m_vector, idx, a);
+ return *this;
+ }
+ /*
+ Disabled pending C++98 build upgrade
+ bool contains(T const& x) const {
+ for (T y : *this) if (eq(x, y)) return true;
+ return false;
+ }
+ */
+
+ class iterator {
+ ast_vector_tpl const* m_vector;
+ unsigned m_index;
+ public:
+ iterator(ast_vector_tpl const* v, unsigned i): m_vector(v), m_index(i) {}
+ iterator(iterator const& other): m_vector(other.m_vector), m_index(other.m_index) {}
+ iterator operator=(iterator const& other) { m_vector = other.m_vector; m_index = other.m_index; return *this; }
+
+ bool operator==(iterator const& other) const {
+ return other.m_index == m_index;
+ };
+ bool operator!=(iterator const& other) const {
+ return other.m_index != m_index;
+ };
+ iterator& operator++() {
+ ++m_index;
+ return *this;
+ }
+ void set(T& arg) {
+ Z3_ast_vector_set(m_vector->ctx(), *m_vector, m_index, arg);
+ }
+ iterator operator++(int) { iterator tmp = *this; ++m_index; return tmp; }
+ T * operator->() const { return &(operator*()); }
+ T operator*() const { return (*m_vector)[m_index]; }
+ };
+ iterator begin() const { return iterator(this, 0); }
+ iterator end() const { return iterator(this, size()); }
+ friend std::ostream & operator<<(std::ostream & out, ast_vector_tpl const & v) { out << Z3_ast_vector_to_string(v.ctx(), v); return out; }
+ };
+
+
+ /**
+ \brief A Z3 sort (aka type). Every expression (i.e., formula or term) in Z3 has a sort.
+ */
+ class sort : public ast {
+ public:
+ sort(context & c):ast(c) {}
+ sort(context & c, Z3_sort s):ast(c, reinterpret_cast(s)) {}
+ sort(context & c, Z3_ast a):ast(c, a) {}
+ sort(sort const & s):ast(s) {}
+ operator Z3_sort() const { return reinterpret_cast(m_ast); }
+
+ /**
+ \brief retrieve unique identifier for func_decl.
+ */
+ unsigned id() const { unsigned r = Z3_get_sort_id(ctx(), *this); check_error(); return r; }
+
+ /**
+ \brief Return true if this sort and \c s are equal.
+ */
+ sort & operator=(sort const & s) { return static_cast(ast::operator=(s)); }
+ /**
+ \brief Return the internal sort kind.
+ */
+ Z3_sort_kind sort_kind() const { return Z3_get_sort_kind(*m_ctx, *this); }
+ /**
+ \brief Return name of sort.
+ */
+ symbol name() const { Z3_symbol s = Z3_get_sort_name(ctx(), *this); check_error(); return symbol(ctx(), s); }
+ /**
+ \brief Return true if this sort is the Boolean sort.
+ */
+ bool is_bool() const { return sort_kind() == Z3_BOOL_SORT; }
+ /**
+ \brief Return true if this sort is the Integer sort.
+ */
+ bool is_int() const { return sort_kind() == Z3_INT_SORT; }
+ /**
+ \brief Return true if this sort is the Real sort.
+ */
+ bool is_real() const { return sort_kind() == Z3_REAL_SORT; }
+ /**
+ \brief Return true if this sort is the Integer or Real sort.
+ */
+ bool is_arith() const { return is_int() || is_real(); }
+ /**
+ \brief Return true if this sort is a Bit-vector sort.
+ */
+ bool is_bv() const { return sort_kind() == Z3_BV_SORT; }
+ /**
+ \brief Return true if this sort is a Array sort.
+ */
+ bool is_array() const { return sort_kind() == Z3_ARRAY_SORT; }
+ /**
+ \brief Return true if this sort is a Datatype sort.
+ */
+ bool is_datatype() const { return sort_kind() == Z3_DATATYPE_SORT; }
+ /**
+ \brief Return true if this sort is a Relation sort.
+ */
+ bool is_relation() const { return sort_kind() == Z3_RELATION_SORT; }
+ /**
+ \brief Return true if this sort is a Sequence sort.
+ */
+ bool is_seq() const { return sort_kind() == Z3_SEQ_SORT; }
+ /**
+ \brief Return true if this sort is a regular expression sort.
+ */
+ bool is_re() const { return sort_kind() == Z3_RE_SORT; }
+ /**
+ \brief Return true if this sort is a Finite domain sort.
+ */
+ bool is_finite_domain() const { return sort_kind() == Z3_FINITE_DOMAIN_SORT; }
+ /**
+ \brief Return true if this sort is a Floating point sort.
+ */
+ bool is_fpa() const { return sort_kind() == Z3_FLOATING_POINT_SORT; }
+
+ /**
+ \brief Return the size of this Bit-vector sort.
+
+ \pre is_bv()
+ */
+ unsigned bv_size() const { assert(is_bv()); unsigned r = Z3_get_bv_sort_size(ctx(), *this); check_error(); return r; }
+
+ unsigned fpa_ebits() const { assert(is_fpa()); unsigned r = Z3_fpa_get_ebits(ctx(), *this); check_error(); return r; }
+
+ unsigned fpa_sbits() const { assert(is_fpa()); unsigned r = Z3_fpa_get_sbits(ctx(), *this); check_error(); return r; }
+ /**
+ \brief Return the domain of this Array sort.
+
+ \pre is_array()
+ */
+ sort array_domain() const { assert(is_array()); Z3_sort s = Z3_get_array_sort_domain(ctx(), *this); check_error(); return sort(ctx(), s); }
+ /**
+ \brief Return the range of this Array sort.
+
+ \pre is_array()
+ */
+ sort array_range() const { assert(is_array()); Z3_sort s = Z3_get_array_sort_range(ctx(), *this); check_error(); return sort(ctx(), s); }
+ };
+
+ /**
+ \brief Function declaration (aka function definition). It is the signature of interpreted and uninterpreted functions in Z3.
+ The basic building block in Z3 is the function application.
+ */
+ class func_decl : public ast {
+ public:
+ func_decl(context & c):ast(c) {}
+ func_decl(context & c, Z3_func_decl n):ast(c, reinterpret_cast(n)) {}
+ func_decl(func_decl const & s):ast(s) {}
+ operator Z3_func_decl() const { return reinterpret_cast(m_ast); }
+ func_decl & operator=(func_decl const & s) { return static_cast(ast::operator=(s)); }
+
+ /**
+ \brief retrieve unique identifier for func_decl.
+ */
+ unsigned id() const { unsigned r = Z3_get_func_decl_id(ctx(), *this); check_error(); return r; }
+
+ unsigned arity() const { return Z3_get_arity(ctx(), *this); }
+ sort domain(unsigned i) const { assert(i < arity()); Z3_sort r = Z3_get_domain(ctx(), *this, i); check_error(); return sort(ctx(), r); }
+ sort range() const { Z3_sort r = Z3_get_range(ctx(), *this); check_error(); return sort(ctx(), r); }
+ symbol name() const { Z3_symbol s = Z3_get_decl_name(ctx(), *this); check_error(); return symbol(ctx(), s); }
+ Z3_decl_kind decl_kind() const { return Z3_get_decl_kind(ctx(), *this); }
+
+ func_decl transitive_closure(func_decl const&) {
+ Z3_func_decl tc = Z3_mk_transitive_closure(ctx(), *this); check_error(); return func_decl(ctx(), tc);
+ }
+
+ bool is_const() const { return arity() == 0; }
+
+ expr operator()() const;
+ expr operator()(unsigned n, expr const * args) const;
+ expr operator()(expr_vector const& v) const;
+ expr operator()(expr const & a) const;
+ expr operator()(int a) const;
+ expr operator()(expr const & a1, expr const & a2) const;
+ expr operator()(expr const & a1, int a2) const;
+ expr operator()(int a1, expr const & a2) const;
+ expr operator()(expr const & a1, expr const & a2, expr const & a3) const;
+ expr operator()(expr const & a1, expr const & a2, expr const & a3, expr const & a4) const;
+ expr operator()(expr const & a1, expr const & a2, expr const & a3, expr const & a4, expr const & a5) const;
+ };
+
+ /**
+ \brief forward declarations
+ */
+ expr select(expr const & a, expr const& i);
+ expr select(expr const & a, expr_vector const & i);
+
+ /**
+ \brief A Z3 expression is used to represent formulas and terms. For Z3, a formula is any expression of sort Boolean.
+ Every expression has a sort.
+ */
+ class expr : public ast {
+ public:
+ expr(context & c):ast(c) {}
+ expr(context & c, Z3_ast n):ast(c, reinterpret_cast(n)) {}
+ expr(expr const & n):ast(n) {}
+ expr & operator=(expr const & n) { return static_cast(ast::operator=(n)); }
+
+ /**
+ \brief Return the sort of this expression.
+ */
+ sort get_sort() const { Z3_sort s = Z3_get_sort(*m_ctx, m_ast); check_error(); return sort(*m_ctx, s); }
+
+ /**
+ \brief Return true if this is a Boolean expression.
+ */
+ bool is_bool() const { return get_sort().is_bool(); }
+ /**
+ \brief Return true if this is an integer expression.
+ */
+ bool is_int() const { return get_sort().is_int(); }
+ /**
+ \brief Return true if this is a real expression.
+ */
+ bool is_real() const { return get_sort().is_real(); }
+ /**
+ \brief Return true if this is an integer or real expression.
+ */
+ bool is_arith() const { return get_sort().is_arith(); }
+ /**
+ \brief Return true if this is a Bit-vector expression.
+ */
+ bool is_bv() const { return get_sort().is_bv(); }
+ /**
+ \brief Return true if this is a Array expression.
+ */
+ bool is_array() const { return get_sort().is_array(); }
+ /**
+ \brief Return true if this is a Datatype expression.
+ */
+ bool is_datatype() const { return get_sort().is_datatype(); }
+ /**
+ \brief Return true if this is a Relation expression.
+ */
+ bool is_relation() const { return get_sort().is_relation(); }
+ /**
+ \brief Return true if this is a sequence expression.
+ */
+ bool is_seq() const { return get_sort().is_seq(); }
+ /**
+ \brief Return true if this is a regular expression.
+ */
+ bool is_re() const { return get_sort().is_re(); }
+
+ /**
+ \brief Return true if this is a Finite-domain expression.
+
+ \remark Finite-domain is special kind of interpreted sort:
+ is_bool(), is_bv() and is_finite_domain() are mutually
+ exclusive.
+
+ */
+ bool is_finite_domain() const { return get_sort().is_finite_domain(); }
+ /**
+ \brief Return true if this is a FloatingPoint expression. .
+ */
+ bool is_fpa() const { return get_sort().is_fpa(); }
+
+ /**
+ \brief Return true if this expression is a numeral.
+ Specialized functions also return representations for the numerals as
+ small integers, 64 bit integers or rational or decimal strings.
+ */
+ bool is_numeral() const { return kind() == Z3_NUMERAL_AST; }
+ bool is_numeral_i64(int64_t& i) const { bool r = Z3_get_numeral_int64(ctx(), m_ast, &i); check_error(); return r;}
+ bool is_numeral_u64(uint64_t& i) const { bool r = Z3_get_numeral_uint64(ctx(), m_ast, &i); check_error(); return r;}
+ bool is_numeral_i(int& i) const { bool r = Z3_get_numeral_int(ctx(), m_ast, &i); check_error(); return r;}
+ bool is_numeral_u(unsigned& i) const { bool r = Z3_get_numeral_uint(ctx(), m_ast, &i); check_error(); return r;}
+ bool is_numeral(std::string& s) const { if (!is_numeral()) return false; s = Z3_get_numeral_string(ctx(), m_ast); check_error(); return true; }
+ bool is_numeral(std::string& s, unsigned precision) const { if (!is_numeral()) return false; s = Z3_get_numeral_decimal_string(ctx(), m_ast, precision); check_error(); return true; }
+ bool is_numeral(double& d) const { if (!is_numeral()) return false; d = Z3_get_numeral_double(ctx(), m_ast); check_error(); return true; }
+ bool as_binary(std::string& s) const { if (!is_numeral()) return false; s = Z3_get_numeral_binary_string(ctx(), m_ast); check_error(); return true; }
+
+ /**
+ \brief Return true if this expression is an application.
+ */
+ bool is_app() const { return kind() == Z3_APP_AST || kind() == Z3_NUMERAL_AST; }
+ /**
+ \brief Return true if this expression is a constant (i.e., an application with 0 arguments).
+ */
+ bool is_const() const { return is_app() && num_args() == 0; }
+ /**
+ \brief Return true if this expression is a quantifier.
+ */
+ bool is_quantifier() const { return kind() == Z3_QUANTIFIER_AST; }
+
+ /**
+ \brief Return true if this expression is a universal quantifier.
+ */
+ bool is_forall() const { return Z3_is_quantifier_forall(ctx(), m_ast); }
+ /**
+ \brief Return true if this expression is an existential quantifier.
+ */
+ bool is_exists() const { return Z3_is_quantifier_exists(ctx(), m_ast); }
+ /**
+ \brief Return true if this expression is a lambda expression.
+ */
+ bool is_lambda() const { return Z3_is_lambda(ctx(), m_ast); }
+ /**
+
+ \brief Return true if this expression is a variable.
+ */
+ bool is_var() const { return kind() == Z3_VAR_AST; }
+ /**
+ \brief Return true if expression is an algebraic number.
+ */
+ bool is_algebraic() const { return Z3_is_algebraic_number(ctx(), m_ast); }
+
+ /**
+ \brief Return true if this expression is well sorted (aka type correct).
+ */
+ bool is_well_sorted() const { bool r = Z3_is_well_sorted(ctx(), m_ast); check_error(); return r; }
+
+ /**
+ \brief Return string representation of numeral or algebraic number
+ This method assumes the expression is numeral or algebraic
+
+ \pre is_numeral() || is_algebraic()
+ */
+ std::string get_decimal_string(int precision) const {
+ assert(is_numeral() || is_algebraic());
+ return std::string(Z3_get_numeral_decimal_string(ctx(), m_ast, precision));
+ }
+
+ /**
+ * Retrieve lower and upper bounds for algebraic numerals based on a decimal precision
+ */
+ expr algebraic_lower(unsigned precision) const {
+ assert(is_algebraic());
+ Z3_ast r = Z3_get_algebraic_number_lower(ctx(), m_ast, precision);
+ check_error();
+ return expr(ctx(), r);
+ }
+
+ expr algebraic_upper(unsigned precision) const {
+ assert(is_algebraic());
+ Z3_ast r = Z3_get_algebraic_number_upper(ctx(), m_ast, precision);
+ check_error();
+ return expr(ctx(), r);
+ }
+
+ /**
+ \brief Return coefficients for p of an algebraic number (root-obj p i)
+ */
+ expr_vector algebraic_poly() const {
+ assert(is_algebraic());
+ Z3_ast_vector r = Z3_algebraic_get_poly(ctx(), m_ast);
+ check_error();
+ return expr_vector(ctx(), r);
+ }
+
+ /**
+ \brief Return i of an algebraic number (root-obj p i)
+ */
+ unsigned algebraic_i() const {
+ assert(is_algebraic());
+ unsigned i = Z3_algebraic_get_i(ctx(), m_ast);
+ check_error();
+ return i;
+ }
+
+ /**
+ \brief retrieve unique identifier for expression.
+ */
+ unsigned id() const { unsigned r = Z3_get_ast_id(ctx(), m_ast); check_error(); return r; }
+
+ /**
+ \brief Return int value of numeral, throw if result cannot fit in
+ machine int
+
+ It only makes sense to use this function if the caller can ensure that
+ the result is an integer or if exceptions are enabled.
+ If exceptions are disabled, then use the is_numeral_i function.
+
+ \pre is_numeral()
+ */
+ int get_numeral_int() const {
+ int result = 0;
+ if (!is_numeral_i(result)) {
+ assert(ctx().enable_exceptions());
+ if (!ctx().enable_exceptions()) return 0;
+ Z3_THROW(exception("numeral does not fit in machine int"));
+ }
+ return result;
+ }
+
+ /**
+ \brief Return uint value of numeral, throw if result cannot fit in
+ machine uint
+
+ It only makes sense to use this function if the caller can ensure that
+ the result is an integer or if exceptions are enabled.
+ If exceptions are disabled, then use the is_numeral_u function.
+ \pre is_numeral()
+ */
+ unsigned get_numeral_uint() const {
+ assert(is_numeral());
+ unsigned result = 0;
+ if (!is_numeral_u(result)) {
+ assert(ctx().enable_exceptions());
+ if (!ctx().enable_exceptions()) return 0;
+ Z3_THROW(exception("numeral does not fit in machine uint"));
+ }
+ return result;
+ }
+
+ /**
+ \brief Return \c int64_t value of numeral, throw if result cannot fit in
+ \c int64_t.
+
+ \pre is_numeral()
+ */
+ int64_t get_numeral_int64() const {
+ assert(is_numeral());
+ int64_t result = 0;
+ if (!is_numeral_i64(result)) {
+ assert(ctx().enable_exceptions());
+ if (!ctx().enable_exceptions()) return 0;
+ Z3_THROW(exception("numeral does not fit in machine int64_t"));
+ }
+ return result;
+ }
+
+ /**
+ \brief Return \c uint64_t value of numeral, throw if result cannot fit in
+ \c uint64_t.
+
+ \pre is_numeral()
+ */
+ uint64_t get_numeral_uint64() const {
+ assert(is_numeral());
+ uint64_t result = 0;
+ if (!is_numeral_u64(result)) {
+ assert(ctx().enable_exceptions());
+ if (!ctx().enable_exceptions()) return 0;
+ Z3_THROW(exception("numeral does not fit in machine uint64_t"));
+ }
+ return result;
+ }
+
+ Z3_lbool bool_value() const {
+ return Z3_get_bool_value(ctx(), m_ast);
+ }
+
+ expr numerator() const {
+ assert(is_numeral());
+ Z3_ast r = Z3_get_numerator(ctx(), m_ast);
+ check_error();
+ return expr(ctx(),r);
+ }
+
+
+ expr denominator() const {
+ assert(is_numeral());
+ Z3_ast r = Z3_get_denominator(ctx(), m_ast);
+ check_error();
+ return expr(ctx(),r);
+ }
+
+
+ /**
+ \brief Return true if this expression is a string literal.
+ The string can be accessed using \c get_string() and \c get_escaped_string()
+ */
+ bool is_string_value() const { return Z3_is_string(ctx(), m_ast); }
+
+ /**
+ \brief for a string value expression return an escaped or unescaped string value.
+ \pre expression is for a string value.
+ */
+
+ std::string get_escaped_string() const {
+ assert(is_string_value());
+ char const* s = Z3_get_string(ctx(), m_ast);
+ check_error();
+ return std::string(s);
+ }
+
+ std::string get_string() const {
+ assert(is_string_value());
+ unsigned n;
+ char const* s = Z3_get_lstring(ctx(), m_ast, &n);
+ check_error();
+ return std::string(s, n);
+ }
+
+ operator Z3_app() const { assert(is_app()); return reinterpret_cast(m_ast); }
+
+ /**
+ \brief Return a RoundingMode sort.
+ */
+ sort fpa_rounding_mode() {
+ assert(is_fpa());
+ Z3_sort s = ctx().fpa_rounding_mode();
+ check_error();
+ return sort(ctx(), s);
+ }
+
+
+ /**
+ \brief Return the declaration associated with this application.
+ This method assumes the expression is an application.
+
+ \pre is_app()
+ */
+ func_decl decl() const { Z3_func_decl f = Z3_get_app_decl(ctx(), *this); check_error(); return func_decl(ctx(), f); }
+ /**
+ \brief Return the number of arguments in this application.
+ This method assumes the expression is an application.
+
+ \pre is_app()
+ */
+ unsigned num_args() const { unsigned r = Z3_get_app_num_args(ctx(), *this); check_error(); return r; }
+ /**
+ \brief Return the i-th argument of this application.
+ This method assumes the expression is an application.
+
+ \pre is_app()
+ \pre i < num_args()
+ */
+ expr arg(unsigned i) const { Z3_ast r = Z3_get_app_arg(ctx(), *this, i); check_error(); return expr(ctx(), r); }
+
+ /**
+ \brief Return the 'body' of this quantifier.
+
+ \pre is_quantifier()
+ */
+ expr body() const { assert(is_quantifier()); Z3_ast r = Z3_get_quantifier_body(ctx(), *this); check_error(); return expr(ctx(), r); }
+
+ /**
+ \brief Return an expression representing not(a).
+
+ \pre a.is_bool()
+ */
+ friend expr operator!(expr const & a);
+
+ /**
+ \brief Return an expression representing a and b.
+
+ \pre a.is_bool()
+ \pre b.is_bool()
+ */
+ friend expr operator&&(expr const & a, expr const & b);
+
+
+ /**
+ \brief Return an expression representing a and b.
+ The C++ Boolean value \c b is automatically converted into a Z3 Boolean constant.
+
+ \pre a.is_bool()
+ */
+ friend expr operator&&(expr const & a, bool b);
+ /**
+ \brief Return an expression representing a and b.
+ The C++ Boolean value \c a is automatically converted into a Z3 Boolean constant.
+
+ \pre b.is_bool()
+ */
+ friend expr operator&&(bool a, expr const & b);
+
+ /**
+ \brief Return an expression representing a or b.
+
+ \pre a.is_bool()
+ \pre b.is_bool()
+ */
+ friend expr operator||(expr const & a, expr const & b);
+ /**
+ \brief Return an expression representing a or b.
+ The C++ Boolean value \c b is automatically converted into a Z3 Boolean constant.
+
+ \pre a.is_bool()
+ */
+ friend expr operator||(expr const & a, bool b);
+
+ /**
+ \brief Return an expression representing a or b.
+ The C++ Boolean value \c a is automatically converted into a Z3 Boolean constant.
+
+ \pre b.is_bool()
+ */
+ friend expr operator||(bool a, expr const & b);
+
+ friend expr implies(expr const & a, expr const & b);
+ friend expr implies(expr const & a, bool b);
+ friend expr implies(bool a, expr const & b);
+
+ friend expr mk_or(expr_vector const& args);
+ friend expr mk_and(expr_vector const& args);
+
+ friend expr ite(expr const & c, expr const & t, expr const & e);
+
+ bool is_true() const { return is_app() && Z3_OP_TRUE == decl().decl_kind(); }
+ bool is_false() const { return is_app() && Z3_OP_FALSE == decl().decl_kind(); }
+ bool is_not() const { return is_app() && Z3_OP_NOT == decl().decl_kind(); }
+ bool is_and() const { return is_app() && Z3_OP_AND == decl().decl_kind(); }
+ bool is_or() const { return is_app() && Z3_OP_OR == decl().decl_kind(); }
+ bool is_xor() const { return is_app() && Z3_OP_XOR == decl().decl_kind(); }
+ bool is_implies() const { return is_app() && Z3_OP_IMPLIES == decl().decl_kind(); }
+ bool is_eq() const { return is_app() && Z3_OP_EQ == decl().decl_kind(); }
+ bool is_ite() const { return is_app() && Z3_OP_ITE == decl().decl_kind(); }
+ bool is_distinct() const { return is_app() && Z3_OP_DISTINCT == decl().decl_kind(); }
+
+ friend expr distinct(expr_vector const& args);
+ friend expr concat(expr const& a, expr const& b);
+ friend expr concat(expr_vector const& args);
+
+ friend expr operator==(expr const & a, expr const & b);
+ friend expr operator==(expr const & a, int b);
+ friend expr operator==(int a, expr const & b);
+
+ friend expr operator!=(expr const & a, expr const & b);
+ friend expr operator!=(expr const & a, int b);
+ friend expr operator!=(int a, expr const & b);
+
+ friend expr operator+(expr const & a, expr const & b);
+ friend expr operator+(expr const & a, int b);
+ friend expr operator+(int a, expr const & b);
+ friend expr sum(expr_vector const& args);
+
+ friend expr operator*(expr const & a, expr const & b);
+ friend expr operator*(expr const & a, int b);
+ friend expr operator*(int a, expr const & b);
+
+ /* \brief Power operator */
+ friend expr pw(expr const & a, expr const & b);
+ friend expr pw(expr const & a, int b);
+ friend expr pw(int a, expr const & b);
+
+ /* \brief mod operator */
+ friend expr mod(expr const& a, expr const& b);
+ friend expr mod(expr const& a, int b);
+ friend expr mod(int a, expr const& b);
+
+ /* \brief rem operator */
+ friend expr rem(expr const& a, expr const& b);
+ friend expr rem(expr const& a, int b);
+ friend expr rem(int a, expr const& b);
+
+ friend expr is_int(expr const& e);
+
+ friend expr operator/(expr const & a, expr const & b);
+ friend expr operator/(expr const & a, int b);
+ friend expr operator/(int a, expr const & b);
+
+ friend expr operator-(expr const & a);
+
+ friend expr operator-(expr const & a, expr const & b);
+ friend expr operator-(expr const & a, int b);
+ friend expr operator-(int a, expr const & b);
+
+ friend expr operator<=(expr const & a, expr const & b);
+ friend expr operator<=(expr const & a, int b);
+ friend expr operator<=(int a, expr const & b);
+
+
+ friend expr operator>=(expr const & a, expr const & b);
+ friend expr operator>=(expr const & a, int b);
+ friend expr operator>=(int a, expr const & b);
+
+ friend expr operator<(expr const & a, expr const & b);
+ friend expr operator<(expr const & a, int b);
+ friend expr operator<(int a, expr const & b);
+
+ friend expr operator>(expr const & a, expr const & b);
+ friend expr operator>(expr const & a, int b);
+ friend expr operator>(int a, expr const & b);
+
+ friend expr pble(expr_vector const& es, int const * coeffs, int bound);
+ friend expr pbge(expr_vector const& es, int const * coeffs, int bound);
+ friend expr pbeq(expr_vector const& es, int const * coeffs, int bound);
+ friend expr atmost(expr_vector const& es, unsigned bound);
+ friend expr atleast(expr_vector const& es, unsigned bound);
+
+ friend expr operator&(expr const & a, expr const & b);
+ friend expr operator&(expr const & a, int b);
+ friend expr operator&(int a, expr const & b);
+
+ friend expr operator^(expr const & a, expr const & b);
+ friend expr operator^(expr const & a, int b);
+ friend expr operator^(int a, expr const & b);
+
+ friend expr operator|(expr const & a, expr const & b);
+ friend expr operator|(expr const & a, int b);
+ friend expr operator|(int a, expr const & b);
+ friend expr nand(expr const& a, expr const& b);
+ friend expr nor(expr const& a, expr const& b);
+ friend expr xnor(expr const& a, expr const& b);
+
+ friend expr min(expr const& a, expr const& b);
+ friend expr max(expr const& a, expr const& b);
+
+ friend expr bv2int(expr const& a, bool is_signed);
+ friend expr int2bv(unsigned n, expr const& a);
+ friend expr bvadd_no_overflow(expr const& a, expr const& b, bool is_signed);
+ friend expr bvadd_no_underflow(expr const& a, expr const& b);
+ friend expr bvsub_no_overflow(expr const& a, expr const& b);
+ friend expr bvsub_no_underflow(expr const& a, expr const& b, bool is_signed);
+ friend expr bvsdiv_no_overflow(expr const& a, expr const& b);
+ friend expr bvneg_no_overflow(expr const& a);
+ friend expr bvmul_no_overflow(expr const& a, expr const& b, bool is_signed);
+ friend expr bvmul_no_underflow(expr const& a, expr const& b);
+
+ expr rotate_left(unsigned i) { Z3_ast r = Z3_mk_rotate_left(ctx(), i, *this); ctx().check_error(); return expr(ctx(), r); }
+ expr rotate_right(unsigned i) { Z3_ast r = Z3_mk_rotate_right(ctx(), i, *this); ctx().check_error(); return expr(ctx(), r); }
+ expr repeat(unsigned i) { Z3_ast r = Z3_mk_repeat(ctx(), i, *this); ctx().check_error(); return expr(ctx(), r); }
+
+ friend expr abs(expr const & a);
+ friend expr sqrt(expr const & a, expr const & rm);
+
+ friend expr operator~(expr const & a);
+ expr extract(unsigned hi, unsigned lo) const { Z3_ast r = Z3_mk_extract(ctx(), hi, lo, *this); ctx().check_error(); return expr(ctx(), r); }
+ unsigned lo() const { assert (is_app() && Z3_get_decl_num_parameters(ctx(), decl()) == 2); return static_cast(Z3_get_decl_int_parameter(ctx(), decl(), 1)); }
+ unsigned hi() const { assert (is_app() && Z3_get_decl_num_parameters(ctx(), decl()) == 2); return static_cast(Z3_get_decl_int_parameter(ctx(), decl(), 0)); }
+
+ /**
+ \brief FloatingPoint fused multiply-add.
+ */
+ friend expr fma(expr const& a, expr const& b, expr const& c, expr const& rm);
+
+ /**
+ \brief sequence and regular expression operations.
+ + is overloaded as sequence concatenation and regular expression union.
+ concat is overloaded to handle sequences and regular expressions
+ */
+ expr extract(expr const& offset, expr const& length) const {
+ check_context(*this, offset); check_context(offset, length);
+ Z3_ast r = Z3_mk_seq_extract(ctx(), *this, offset, length); check_error(); return expr(ctx(), r);
+ }
+ expr replace(expr const& src, expr const& dst) const {
+ check_context(*this, src); check_context(src, dst);
+ Z3_ast r = Z3_mk_seq_replace(ctx(), *this, src, dst);
+ check_error();
+ return expr(ctx(), r);
+ }
+ expr unit() const {
+ Z3_ast r = Z3_mk_seq_unit(ctx(), *this);
+ check_error();
+ return expr(ctx(), r);
+ }
+ expr contains(expr const& s) {
+ check_context(*this, s);
+ Z3_ast r = Z3_mk_seq_contains(ctx(), *this, s);
+ check_error();
+ return expr(ctx(), r);
+ }
+ expr at(expr const& index) const {
+ check_context(*this, index);
+ Z3_ast r = Z3_mk_seq_at(ctx(), *this, index);
+ check_error();
+ return expr(ctx(), r);
+ }
+ expr nth(expr const& index) const {
+ check_context(*this, index);
+ Z3_ast r = Z3_mk_seq_nth(ctx(), *this, index);
+ check_error();
+ return expr(ctx(), r);
+ }
+ expr length() const {
+ Z3_ast r = Z3_mk_seq_length(ctx(), *this);
+ check_error();
+ return expr(ctx(), r);
+ }
+ expr stoi() const {
+ Z3_ast r = Z3_mk_str_to_int(ctx(), *this);
+ check_error();
+ return expr(ctx(), r);
+ }
+ expr itos() const {
+ Z3_ast r = Z3_mk_int_to_str(ctx(), *this);
+ check_error();
+ return expr(ctx(), r);
+ }
+
+ friend expr range(expr const& lo, expr const& hi);
+ /**
+ \brief create a looping regular expression.
+ */
+ expr loop(unsigned lo) {
+ Z3_ast r = Z3_mk_re_loop(ctx(), m_ast, lo, 0);
+ check_error();
+ return expr(ctx(), r);
+ }
+ expr loop(unsigned lo, unsigned hi) {
+ Z3_ast r = Z3_mk_re_loop(ctx(), m_ast, lo, hi);
+ check_error();
+ return expr(ctx(), r);
+ }
+
+ /**
+ * index operator defined on arrays and sequences.
+ */
+ expr operator[](expr const& index) const {
+ assert(is_array() || is_seq());
+ if (is_array()) {
+ return select(*this, index);
+ }
+ return nth(index);
+ }
+
+ expr operator[](expr_vector const& index) const {
+ return select(*this, index);
+ }
+
+ /**
+ \brief Return a simplified version of this expression.
+ */
+ expr simplify() const { Z3_ast r = Z3_simplify(ctx(), m_ast); check_error(); return expr(ctx(), r); }
+ /**
+ \brief Return a simplified version of this expression. The parameter \c p is a set of parameters for the Z3 simplifier.
+ */
+ expr simplify(params const & p) const { Z3_ast r = Z3_simplify_ex(ctx(), m_ast, p); check_error(); return expr(ctx(), r); }
+
+ /**
+ \brief Apply substitution. Replace src expressions by dst.
+ */
+ expr substitute(expr_vector const& src, expr_vector const& dst);
+
+ /**
+ \brief Apply substitution. Replace bound variables by expressions.
+ */
+ expr substitute(expr_vector const& dst);
+
+ };
+
+#define _Z3_MK_BIN_(a, b, binop) \
+ check_context(a, b); \
+ Z3_ast r = binop(a.ctx(), a, b); \
+ a.check_error(); \
+ return expr(a.ctx(), r); \
+
+
+ inline expr implies(expr const & a, expr const & b) {
+ assert(a.is_bool() && b.is_bool());
+ _Z3_MK_BIN_(a, b, Z3_mk_implies);
+ }
+ inline expr implies(expr const & a, bool b) { return implies(a, a.ctx().bool_val(b)); }
+ inline expr implies(bool a, expr const & b) { return implies(b.ctx().bool_val(a), b); }
+
+
+ inline expr pw(expr const & a, expr const & b) { _Z3_MK_BIN_(a, b, Z3_mk_power); }
+ inline expr pw(expr const & a, int b) { return pw(a, a.ctx().num_val(b, a.get_sort())); }
+ inline expr pw(int a, expr const & b) { return pw(b.ctx().num_val(a, b.get_sort()), b); }
+
+ inline expr mod(expr const& a, expr const& b) {
+ if (a.is_bv()) {
+ _Z3_MK_BIN_(a, b, Z3_mk_bvsmod);
+ }
+ else {
+ _Z3_MK_BIN_(a, b, Z3_mk_mod);
+ }
+ }
+ inline expr mod(expr const & a, int b) { return mod(a, a.ctx().num_val(b, a.get_sort())); }
+ inline expr mod(int a, expr const & b) { return mod(b.ctx().num_val(a, b.get_sort()), b); }
+
+ inline expr operator%(expr const& a, expr const& b) { return mod(a, b); }
+ inline expr operator%(expr const& a, int b) { return mod(a, b); }
+ inline expr operator%(int a, expr const& b) { return mod(a, b); }
+
+
+ inline expr rem(expr const& a, expr const& b) {
+ if (a.is_fpa() && b.is_fpa()) {
+ _Z3_MK_BIN_(a, b, Z3_mk_fpa_rem);
+ } else {
+ _Z3_MK_BIN_(a, b, Z3_mk_rem);
+ }
+ }
+ inline expr rem(expr const & a, int b) { return rem(a, a.ctx().num_val(b, a.get_sort())); }
+ inline expr rem(int a, expr const & b) { return rem(b.ctx().num_val(a, b.get_sort()), b); }
+
+#undef _Z3_MK_BIN_
+
+#define _Z3_MK_UN_(a, mkun) \
+ Z3_ast r = mkun(a.ctx(), a); \
+ a.check_error(); \
+ return expr(a.ctx(), r); \
+
+
+ inline expr operator!(expr const & a) { assert(a.is_bool()); _Z3_MK_UN_(a, Z3_mk_not); }
+
+ inline expr is_int(expr const& e) { _Z3_MK_UN_(e, Z3_mk_is_int); }
+
+#undef _Z3_MK_UN_
+
+ inline expr operator&&(expr const & a, expr const & b) {
+ check_context(a, b);
+ assert(a.is_bool() && b.is_bool());
+ Z3_ast args[2] = { a, b };
+ Z3_ast r = Z3_mk_and(a.ctx(), 2, args);
+ a.check_error();
+ return expr(a.ctx(), r);
+ }
+
+ inline expr operator&&(expr const & a, bool b) { return a && a.ctx().bool_val(b); }
+ inline expr operator&&(bool a, expr const & b) { return b.ctx().bool_val(a) && b; }
+
+ inline expr operator||(expr const & a, expr const & b) {
+ check_context(a, b);
+ assert(a.is_bool() && b.is_bool());
+ Z3_ast args[2] = { a, b };
+ Z3_ast r = Z3_mk_or(a.ctx(), 2, args);
+ a.check_error();
+ return expr(a.ctx(), r);
+ }
+
+ inline expr operator||(expr const & a, bool b) { return a || a.ctx().bool_val(b); }
+
+ inline expr operator||(bool a, expr const & b) { return b.ctx().bool_val(a) || b; }
+
+ inline expr operator==(expr const & a, expr const & b) {
+ check_context(a, b);
+ Z3_ast r = Z3_mk_eq(a.ctx(), a, b);
+ a.check_error();
+ return expr(a.ctx(), r);
+ }
+ inline expr operator==(expr const & a, int b) { assert(a.is_arith() || a.is_bv() || a.is_fpa()); return a == a.ctx().num_val(b, a.get_sort()); }
+ inline expr operator==(int a, expr const & b) { assert(b.is_arith() || b.is_bv() || b.is_fpa()); return b.ctx().num_val(a, b.get_sort()) == b; }
+
+ inline expr operator!=(expr const & a, expr const & b) {
+ check_context(a, b);
+ Z3_ast args[2] = { a, b };
+ Z3_ast r = Z3_mk_distinct(a.ctx(), 2, args);
+ a.check_error();
+ return expr(a.ctx(), r);
+ }
+ inline expr operator!=(expr const & a, int b) { assert(a.is_arith() || a.is_bv() || a.is_fpa()); return a != a.ctx().num_val(b, a.get_sort()); }
+ inline expr operator!=(int a, expr const & b) { assert(b.is_arith() || b.is_bv() || b.is_fpa()); return b.ctx().num_val(a, b.get_sort()) != b; }
+
+ inline expr operator+(expr const & a, expr const & b) {
+ check_context(a, b);
+ Z3_ast r = 0;
+ if (a.is_arith() && b.is_arith()) {
+ Z3_ast args[2] = { a, b };
+ r = Z3_mk_add(a.ctx(), 2, args);
+ }
+ else if (a.is_bv() && b.is_bv()) {
+ r = Z3_mk_bvadd(a.ctx(), a, b);
+ }
+ else if (a.is_seq() && b.is_seq()) {
+ return concat(a, b);
+ }
+ else if (a.is_re() && b.is_re()) {
+ Z3_ast _args[2] = { a, b };
+ r = Z3_mk_re_union(a.ctx(), 2, _args);
+ }
+ else if (a.is_fpa() && b.is_fpa()) {
+ r = Z3_mk_fpa_add(a.ctx(), a.ctx().fpa_rounding_mode(), a, b);
+ }
+ else {
+ // operator is not supported by given arguments.
+ assert(false);
+ }
+ a.check_error();
+ return expr(a.ctx(), r);
+ }
+ inline expr operator+(expr const & a, int b) { return a + a.ctx().num_val(b, a.get_sort()); }
+ inline expr operator+(int a, expr const & b) { return b.ctx().num_val(a, b.get_sort()) + b; }
+
+ inline expr operator*(expr const & a, expr const & b) {
+ check_context(a, b);
+ Z3_ast r = 0;
+ if (a.is_arith() && b.is_arith()) {
+ Z3_ast args[2] = { a, b };
+ r = Z3_mk_mul(a.ctx(), 2, args);
+ }
+ else if (a.is_bv() && b.is_bv()) {
+ r = Z3_mk_bvmul(a.ctx(), a, b);
+ }
+ else if (a.is_fpa() && b.is_fpa()) {
+ r = Z3_mk_fpa_mul(a.ctx(), a.ctx().fpa_rounding_mode(), a, b);
+ }
+ else {
+ // operator is not supported by given arguments.
+ assert(false);
+ }
+ a.check_error();
+ return expr(a.ctx(), r);
+ }
+ inline expr operator*(expr const & a, int b) { return a * a.ctx().num_val(b, a.get_sort()); }
+ inline expr operator*(int a, expr const & b) { return b.ctx().num_val(a, b.get_sort()) * b; }
+
+
+ inline expr operator>=(expr const & a, expr const & b) {
+ check_context(a, b);
+ Z3_ast r = 0;
+ if (a.is_arith() && b.is_arith()) {
+ r = Z3_mk_ge(a.ctx(), a, b);
+ }
+ else if (a.is_bv() && b.is_bv()) {
+ r = Z3_mk_bvsge(a.ctx(), a, b);
+ }
+ else {
+ // operator is not supported by given arguments.
+ assert(false);
+ }
+ a.check_error();
+ return expr(a.ctx(), r);
+ }
+
+ inline expr operator/(expr const & a, expr const & b) {
+ check_context(a, b);
+ Z3_ast r = 0;
+ if (a.is_arith() && b.is_arith()) {
+ r = Z3_mk_div(a.ctx(), a, b);
+ }
+ else if (a.is_bv() && b.is_bv()) {
+ r = Z3_mk_bvsdiv(a.ctx(), a, b);
+ }
+ else if (a.is_fpa() && b.is_fpa()) {
+ r = Z3_mk_fpa_div(a.ctx(), a.ctx().fpa_rounding_mode(), a, b);
+ }
+ else {
+ // operator is not supported by given arguments.
+ assert(false);
+ }
+ a.check_error();
+ return expr(a.ctx(), r);
+ }
+ inline expr operator/(expr const & a, int b) { return a / a.ctx().num_val(b, a.get_sort()); }
+ inline expr operator/(int a, expr const & b) { return b.ctx().num_val(a, b.get_sort()) / b; }
+
+ inline expr operator-(expr const & a) {
+ Z3_ast r = 0;
+ if (a.is_arith()) {
+ r = Z3_mk_unary_minus(a.ctx(), a);
+ }
+ else if (a.is_bv()) {
+ r = Z3_mk_bvneg(a.ctx(), a);
+ }
+ else if (a.is_fpa()) {
+ r = Z3_mk_fpa_neg(a.ctx(), a);
+ }
+ else {
+ // operator is not supported by given arguments.
+ assert(false);
+ }
+ a.check_error();
+ return expr(a.ctx(), r);
+ }
+
+ inline expr operator-(expr const & a, expr const & b) {
+ check_context(a, b);
+ Z3_ast r = 0;
+ if (a.is_arith() && b.is_arith()) {
+ Z3_ast args[2] = { a, b };
+ r = Z3_mk_sub(a.ctx(), 2, args);
+ }
+ else if (a.is_bv() && b.is_bv()) {
+ r = Z3_mk_bvsub(a.ctx(), a, b);
+ }
+ else if (a.is_fpa() && b.is_fpa()) {
+ r = Z3_mk_fpa_sub(a.ctx(), a.ctx().fpa_rounding_mode(), a, b);
+ }
+ else {
+ // operator is not supported by given arguments.
+ assert(false);
+ }
+ a.check_error();
+ return expr(a.ctx(), r);
+ }
+ inline expr operator-(expr const & a, int b) { return a - a.ctx().num_val(b, a.get_sort()); }
+ inline expr operator-(int a, expr const & b) { return b.ctx().num_val(a, b.get_sort()) - b; }
+
+ inline expr operator<=(expr const & a, expr const & b) {
+ check_context(a, b);
+ Z3_ast r = 0;
+ if (a.is_arith() && b.is_arith()) {
+ r = Z3_mk_le(a.ctx(), a, b);
+ }
+ else if (a.is_bv() && b.is_bv()) {
+ r = Z3_mk_bvsle(a.ctx(), a, b);
+ }
+ else if (a.is_fpa() && b.is_fpa()) {
+ r = Z3_mk_fpa_leq(a.ctx(), a, b);
+ }
+ else {
+ // operator is not supported by given arguments.
+ assert(false);
+ }
+ a.check_error();
+ return expr(a.ctx(), r);
+ }
+ inline expr operator<=(expr const & a, int b) { return a <= a.ctx().num_val(b, a.get_sort()); }
+ inline expr operator<=(int a, expr const & b) { return b.ctx().num_val(a, b.get_sort()) <= b; }
+
+ inline expr operator>=(expr const & a, int b) { return a >= a.ctx().num_val(b, a.get_sort()); }
+ inline expr operator>=(int a, expr const & b) { return b.ctx().num_val(a, b.get_sort()) >= b; }
+
+ inline expr operator<(expr const & a, expr const & b) {
+ check_context(a, b);
+ Z3_ast r = 0;
+ if (a.is_arith() && b.is_arith()) {
+ r = Z3_mk_lt(a.ctx(), a, b);
+ }
+ else if (a.is_bv() && b.is_bv()) {
+ r = Z3_mk_bvslt(a.ctx(), a, b);
+ }
+ else if (a.is_fpa() && b.is_fpa()) {
+ r = Z3_mk_fpa_lt(a.ctx(), a, b);
+ }
+ else {
+ // operator is not supported by given arguments.
+ assert(false);
+ }
+ a.check_error();
+ return expr(a.ctx(), r);
+ }
+ inline expr operator<(expr const & a, int b) { return a < a.ctx().num_val(b, a.get_sort()); }
+ inline expr operator<(int a, expr const & b) { return b.ctx().num_val(a, b.get_sort()) < b; }
+
+ inline expr operator>(expr const & a, expr const & b) {
+ check_context(a, b);
+ Z3_ast r = 0;
+ if (a.is_arith() && b.is_arith()) {
+ r = Z3_mk_gt(a.ctx(), a, b);
+ }
+ else if (a.is_bv() && b.is_bv()) {
+ r = Z3_mk_bvsgt(a.ctx(), a, b);
+ }
+ else if (a.is_fpa() && b.is_fpa()) {
+ r = Z3_mk_fpa_gt(a.ctx(), a, b);
+ }
+ else {
+ // operator is not supported by given arguments.
+ assert(false);
+ }
+ a.check_error();
+ return expr(a.ctx(), r);
+ }
+ inline expr operator>(expr const & a, int b) { return a > a.ctx().num_val(b, a.get_sort()); }
+ inline expr operator>(int a, expr const & b) { return b.ctx().num_val(a, b.get_sort()) > b; }
+
+ inline expr operator&(expr const & a, expr const & b) { if (a.is_bool()) return a && b; check_context(a, b); Z3_ast r = Z3_mk_bvand(a.ctx(), a, b); return expr(a.ctx(), r); }
+ inline expr operator&(expr const & a, int b) { return a & a.ctx().num_val(b, a.get_sort()); }
+ inline expr operator&(int a, expr const & b) { return b.ctx().num_val(a, b.get_sort()) & b; }
+
+ inline expr operator^(expr const & a, expr const & b) { check_context(a, b); Z3_ast r = a.is_bool() ? Z3_mk_xor(a.ctx(), a, b) : Z3_mk_bvxor(a.ctx(), a, b); return expr(a.ctx(), r); }
+ inline expr operator^(expr const & a, int b) { return a ^ a.ctx().num_val(b, a.get_sort()); }
+ inline expr operator^(int a, expr const & b) { return b.ctx().num_val(a, b.get_sort()) ^ b; }
+
+ inline expr operator|(expr const & a, expr const & b) { if (a.is_bool()) return a || b; check_context(a, b); Z3_ast r = Z3_mk_bvor(a.ctx(), a, b); return expr(a.ctx(), r); }
+ inline expr operator|(expr const & a, int b) { return a | a.ctx().num_val(b, a.get_sort()); }
+ inline expr operator|(int a, expr const & b) { return b.ctx().num_val(a, b.get_sort()) | b; }
+
+ inline expr nand(expr const& a, expr const& b) { if (a.is_bool()) return !(a && b); check_context(a, b); Z3_ast r = Z3_mk_bvnand(a.ctx(), a, b); return expr(a.ctx(), r); }
+ inline expr nor(expr const& a, expr const& b) { if (a.is_bool()) return !(a || b); check_context(a, b); Z3_ast r = Z3_mk_bvnor(a.ctx(), a, b); return expr(a.ctx(), r); }
+ inline expr xnor(expr const& a, expr const& b) { if (a.is_bool()) return !(a ^ b); check_context(a, b); Z3_ast r = Z3_mk_bvxnor(a.ctx(), a, b); return expr(a.ctx(), r); }
+ inline expr min(expr const& a, expr const& b) {
+ check_context(a, b);
+ Z3_ast r;
+ if (a.is_arith()) {
+ r = Z3_mk_ite(a.ctx(), Z3_mk_ge(a.ctx(), a, b), b, a);
+ }
+ else if (a.is_bv()) {
+ r = Z3_mk_ite(a.ctx(), Z3_mk_bvuge(a.ctx(), a, b), b, a);
+ }
+ else {
+ assert(a.is_fpa());
+ r = Z3_mk_fpa_min(a.ctx(), a, b);
+ }
+ return expr(a.ctx(), r);
+ }
+ inline expr max(expr const& a, expr const& b) {
+ check_context(a, b);
+ Z3_ast r;
+ if (a.is_arith()) {
+ r = Z3_mk_ite(a.ctx(), Z3_mk_ge(a.ctx(), a, b), a, b);
+ }
+ else if (a.is_bv()) {
+ r = Z3_mk_ite(a.ctx(), Z3_mk_bvuge(a.ctx(), a, b), a, b);
+ }
+ else {
+ assert(a.is_fpa());
+ r = Z3_mk_fpa_max(a.ctx(), a, b);
+ }
+ return expr(a.ctx(), r);
+ }
+ inline expr abs(expr const & a) {
+ Z3_ast r;
+ if (a.is_int()) {
+ expr zero = a.ctx().int_val(0);
+ r = Z3_mk_ite(a.ctx(), Z3_mk_ge(a.ctx(), a, zero), a, -a);
+ }
+ else if (a.is_real()) {
+ expr zero = a.ctx().real_val(0);
+ r = Z3_mk_ite(a.ctx(), Z3_mk_ge(a.ctx(), a, zero), a, -a);
+ }
+ else {
+ r = Z3_mk_fpa_abs(a.ctx(), a);
+ }
+ a.check_error();
+ return expr(a.ctx(), r);
+ }
+ inline expr sqrt(expr const & a, expr const& rm) {
+ check_context(a, rm);
+ assert(a.is_fpa());
+ Z3_ast r = Z3_mk_fpa_sqrt(a.ctx(), rm, a);
+ a.check_error();
+ return expr(a.ctx(), r);
+ }
+ inline expr operator~(expr const & a) { Z3_ast r = Z3_mk_bvnot(a.ctx(), a); return expr(a.ctx(), r); }
+
+ inline expr fma(expr const& a, expr const& b, expr const& c, expr const& rm) {
+ check_context(a, b); check_context(a, c); check_context(a, rm);
+ assert(a.is_fpa() && b.is_fpa() && c.is_fpa());
+ Z3_ast r = Z3_mk_fpa_fma(a.ctx(), rm, a, b, c);
+ a.check_error();
+ return expr(a.ctx(), r);
+ }
+
+
+ /**
+ \brief Create the if-then-else expression ite(c, t, e)
+
+ \pre c.is_bool()
+ */
+ inline expr ite(expr const & c, expr const & t, expr const & e) {
+ check_context(c, t); check_context(c, e);
+ assert(c.is_bool());
+ Z3_ast r = Z3_mk_ite(c.ctx(), c, t, e);
+ c.check_error();
+ return expr(c.ctx(), r);
+ }
+
+
+ /**
+ \brief Wraps a Z3_ast as an expr object. It also checks for errors.
+ This function allows the user to use the whole C API with the C++ layer defined in this file.
+ */
+ inline expr to_expr(context & c, Z3_ast a) {
+ c.check_error();
+ assert(Z3_get_ast_kind(c, a) == Z3_APP_AST ||
+ Z3_get_ast_kind(c, a) == Z3_NUMERAL_AST ||
+ Z3_get_ast_kind(c, a) == Z3_VAR_AST ||
+ Z3_get_ast_kind(c, a) == Z3_QUANTIFIER_AST);
+ return expr(c, a);
+ }
+
+ inline sort to_sort(context & c, Z3_sort s) {
+ c.check_error();
+ return sort(c, s);
+ }
+
+ inline func_decl to_func_decl(context & c, Z3_func_decl f) {
+ c.check_error();
+ return func_decl(c, f);
+ }
+
+ /**
+ \brief signed less than or equal to operator for bitvectors.
+ */
+ inline expr sle(expr const & a, expr const & b) { return to_expr(a.ctx(), Z3_mk_bvsle(a.ctx(), a, b)); }
+ inline expr sle(expr const & a, int b) { return sle(a, a.ctx().num_val(b, a.get_sort())); }
+ inline expr sle(int a, expr const & b) { return sle(b.ctx().num_val(a, b.get_sort()), b); }
+ /**
+ \brief signed less than operator for bitvectors.
+ */
+ inline expr slt(expr const & a, expr const & b) { return to_expr(a.ctx(), Z3_mk_bvslt(a.ctx(), a, b)); }
+ inline expr slt(expr const & a, int b) { return slt(a, a.ctx().num_val(b, a.get_sort())); }
+ inline expr slt(int a, expr const & b) { return slt(b.ctx().num_val(a, b.get_sort()), b); }
+
+
+ /**
+ \brief unsigned less than or equal to operator for bitvectors.
+ */
+ inline expr ule(expr const & a, expr const & b) { return to_expr(a.ctx(), Z3_mk_bvule(a.ctx(), a, b)); }
+ inline expr ule(expr const & a, int b) { return ule(a, a.ctx().num_val(b, a.get_sort())); }
+ inline expr ule(int a, expr const & b) { return ule(b.ctx().num_val(a, b.get_sort()), b); }
+ /**
+ \brief unsigned less than operator for bitvectors.
+ */
+ inline expr ult(expr const & a, expr const & b) { return to_expr(a.ctx(), Z3_mk_bvult(a.ctx(), a, b)); }
+ inline expr ult(expr const & a, int b) { return ult(a, a.ctx().num_val(b, a.get_sort())); }
+ inline expr ult(int a, expr const & b) { return ult(b.ctx().num_val(a, b.get_sort()), b); }
+ /**
+ \brief unsigned greater than or equal to operator for bitvectors.
+ */
+ inline expr uge(expr const & a, expr const & b) { return to_expr(a.ctx(), Z3_mk_bvuge(a.ctx(), a, b)); }
+ inline expr uge(expr const & a, int b) { return uge(a, a.ctx().num_val(b, a.get_sort())); }
+ inline expr uge(int a, expr const & b) { return uge(b.ctx().num_val(a, b.get_sort()), b); }
+ /**
+ \brief unsigned greater than operator for bitvectors.
+ */
+ inline expr ugt(expr const & a, expr const & b) { return to_expr(a.ctx(), Z3_mk_bvugt(a.ctx(), a, b)); }
+ inline expr ugt(expr const & a, int b) { return ugt(a, a.ctx().num_val(b, a.get_sort())); }
+ inline expr ugt(int a, expr const & b) { return ugt(b.ctx().num_val(a, b.get_sort()), b); }
+ /**
+ \brief unsigned division operator for bitvectors.
+ */
+ inline expr udiv(expr const & a, expr const & b) { return to_expr(a.ctx(), Z3_mk_bvudiv(a.ctx(), a, b)); }
+ inline expr udiv(expr const & a, int b) { return udiv(a, a.ctx().num_val(b, a.get_sort())); }
+ inline expr udiv(int a, expr const & b) { return udiv(b.ctx().num_val(a, b.get_sort()), b); }
+
+ /**
+ \brief signed remainder operator for bitvectors
+ */
+ inline expr srem(expr const & a, expr const & b) { return to_expr(a.ctx(), Z3_mk_bvsrem(a.ctx(), a, b)); }
+ inline expr srem(expr const & a, int b) { return srem(a, a.ctx().num_val(b, a.get_sort())); }
+ inline expr srem(int a, expr const & b) { return srem(b.ctx().num_val(a, b.get_sort()), b); }
+
+ /**
+ \brief signed modulus operator for bitvectors
+ */
+ inline expr smod(expr const & a, expr const & b) { return to_expr(a.ctx(), Z3_mk_bvsmod(a.ctx(), a, b)); }
+ inline expr smod(expr const & a, int b) { return smod(a, a.ctx().num_val(b, a.get_sort())); }
+ inline expr smod(int a, expr const & b) { return smod(b.ctx().num_val(a, b.get_sort()), b); }
+
+ /**
+ \brief unsigned reminder operator for bitvectors
+ */
+ inline expr urem(expr const & a, expr const & b) { return to_expr(a.ctx(), Z3_mk_bvurem(a.ctx(), a, b)); }
+ inline expr urem(expr const & a, int b) { return urem(a, a.ctx().num_val(b, a.get_sort())); }
+ inline expr urem(int a, expr const & b) { return urem(b.ctx().num_val(a, b.get_sort()), b); }
+
+ /**
+ \brief shift left operator for bitvectors
+ */
+ inline expr shl(expr const & a, expr const & b) { return to_expr(a.ctx(), Z3_mk_bvshl(a.ctx(), a, b)); }
+ inline expr shl(expr const & a, int b) { return shl(a, a.ctx().num_val(b, a.get_sort())); }
+ inline expr shl(int a, expr const & b) { return shl(b.ctx().num_val(a, b.get_sort()), b); }
+
+ /**
+ \brief logic shift right operator for bitvectors
+ */
+ inline expr lshr(expr const & a, expr const & b) { return to_expr(a.ctx(), Z3_mk_bvlshr(a.ctx(), a, b)); }
+ inline expr lshr(expr const & a, int b) { return lshr(a, a.ctx().num_val(b, a.get_sort())); }
+ inline expr lshr(int a, expr const & b) { return lshr(b.ctx().num_val(a, b.get_sort()), b); }
+
+ /**
+ \brief arithmetic shift right operator for bitvectors
+ */
+ inline expr ashr(expr const & a, expr const & b) { return to_expr(a.ctx(), Z3_mk_bvashr(a.ctx(), a, b)); }
+ inline expr ashr(expr const & a, int b) { return ashr(a, a.ctx().num_val(b, a.get_sort())); }
+ inline expr ashr(int a, expr const & b) { return ashr(b.ctx().num_val(a, b.get_sort()), b); }
+
+ /**
+ \brief Extend the given bit-vector with zeros to the (unsigned) equivalent bitvector of size m+i, where m is the size of the given bit-vector.
+ */
+ inline expr zext(expr const & a, unsigned i) { return to_expr(a.ctx(), Z3_mk_zero_ext(a.ctx(), i, a)); }
+
+ /**
+ \brief bit-vector and integer conversions.
+ */
+ inline expr bv2int(expr const& a, bool is_signed) { Z3_ast r = Z3_mk_bv2int(a.ctx(), a, is_signed); a.check_error(); return expr(a.ctx(), r); }
+ inline expr int2bv(unsigned n, expr const& a) { Z3_ast r = Z3_mk_int2bv(a.ctx(), n, a); a.check_error(); return expr(a.ctx(), r); }
+
+ /**
+ \brief bit-vector overflow/underflow checks
+ */
+ inline expr bvadd_no_overflow(expr const& a, expr const& b, bool is_signed) {
+ check_context(a, b); Z3_ast r = Z3_mk_bvadd_no_overflow(a.ctx(), a, b, is_signed); a.check_error(); return expr(a.ctx(), r);
+ }
+ inline expr bvadd_no_underflow(expr const& a, expr const& b) {
+ check_context(a, b); Z3_ast r = Z3_mk_bvadd_no_underflow(a.ctx(), a, b); a.check_error(); return expr(a.ctx(), r);
+ }
+ inline expr bvsub_no_overflow(expr const& a, expr const& b) {
+ check_context(a, b); Z3_ast r = Z3_mk_bvsub_no_overflow(a.ctx(), a, b); a.check_error(); return expr(a.ctx(), r);
+ }
+ inline expr bvsub_no_underflow(expr const& a, expr const& b, bool is_signed) {
+ check_context(a, b); Z3_ast r = Z3_mk_bvsub_no_underflow(a.ctx(), a, b, is_signed); a.check_error(); return expr(a.ctx(), r);
+ }
+ inline expr bvsdiv_no_overflow(expr const& a, expr const& b) {
+ check_context(a, b); Z3_ast r = Z3_mk_bvsdiv_no_overflow(a.ctx(), a, b); a.check_error(); return expr(a.ctx(), r);
+ }
+ inline expr bvneg_no_overflow(expr const& a) {
+ Z3_ast r = Z3_mk_bvneg_no_overflow(a.ctx(), a); a.check_error(); return expr(a.ctx(), r);
+ }
+ inline expr bvmul_no_overflow(expr const& a, expr const& b, bool is_signed) {
+ check_context(a, b); Z3_ast r = Z3_mk_bvmul_no_overflow(a.ctx(), a, b, is_signed); a.check_error(); return expr(a.ctx(), r);
+ }
+ inline expr bvmul_no_underflow(expr const& a, expr const& b) {
+ check_context(a, b); Z3_ast r = Z3_mk_bvmul_no_underflow(a.ctx(), a, b); a.check_error(); return expr(a.ctx(), r);
+ }
+
+
+ /**
+ \brief Sign-extend of the given bit-vector to the (signed) equivalent bitvector of size m+i, where m is the size of the given bit-vector.
+ */
+ inline expr sext(expr const & a, unsigned i) { return to_expr(a.ctx(), Z3_mk_sign_ext(a.ctx(), i, a)); }
+
+ inline func_decl linear_order(sort const& a, unsigned index) {
+ return to_func_decl(a.ctx(), Z3_mk_linear_order(a.ctx(), a, index));
+ }
+ inline func_decl partial_order(sort const& a, unsigned index) {
+ return to_func_decl(a.ctx(), Z3_mk_partial_order(a.ctx(), a, index));
+ }
+ inline func_decl piecewise_linear_order(sort const& a, unsigned index) {
+ return to_func_decl(a.ctx(), Z3_mk_piecewise_linear_order(a.ctx(), a, index));
+ }
+ inline func_decl tree_order(sort const& a, unsigned index) {
+ return to_func_decl(a.ctx(), Z3_mk_tree_order(a.ctx(), a, index));
+ }
+
+ template<> class cast_ast {
+ public:
+ ast operator()(context & c, Z3_ast a) { return ast(c, a); }
+ };
+
+ template<> class cast_ast {
+ public:
+ expr operator()(context & c, Z3_ast a) {
+ assert(Z3_get_ast_kind(c, a) == Z3_NUMERAL_AST ||
+ Z3_get_ast_kind(c, a) == Z3_APP_AST ||
+ Z3_get_ast_kind(c, a) == Z3_QUANTIFIER_AST ||
+ Z3_get_ast_kind(c, a) == Z3_VAR_AST);
+ return expr(c, a);
+ }
+ };
+
+ template<> class cast_ast {
+ public:
+ sort operator()(context & c, Z3_ast a) {
+ assert(Z3_get_ast_kind(c, a) == Z3_SORT_AST);
+ return sort(c, reinterpret_cast(a));
+ }
+ };
+
+ template<> class cast_ast {
+ public:
+ func_decl operator()(context & c, Z3_ast a) {
+ assert(Z3_get_ast_kind(c, a) == Z3_FUNC_DECL_AST);
+ return func_decl(c, reinterpret_cast(a));
+ }
+ };
+
+ template
+ template
+ array::array(ast_vector_tpl const & v) {
+ m_array = new T[v.size()];
+ m_size = v.size();
+ for (unsigned i = 0; i < m_size; i++) {
+ m_array[i] = v[i];
+ }
+ }
+
+ // Basic functions for creating quantified formulas.
+ // The C API should be used for creating quantifiers with patterns, weights, many variables, etc.
+ inline expr forall(expr const & x, expr const & b) {
+ check_context(x, b);
+ Z3_app vars[] = {(Z3_app) x};
+ Z3_ast r = Z3_mk_forall_const(b.ctx(), 0, 1, vars, 0, 0, b); b.check_error(); return expr(b.ctx(), r);
+ }
+ inline expr forall(expr const & x1, expr const & x2, expr const & b) {
+ check_context(x1, b); check_context(x2, b);
+ Z3_app vars[] = {(Z3_app) x1, (Z3_app) x2};
+ Z3_ast r = Z3_mk_forall_const(b.ctx(), 0, 2, vars, 0, 0, b); b.check_error(); return expr(b.ctx(), r);
+ }
+ inline expr forall(expr const & x1, expr const & x2, expr const & x3, expr const & b) {
+ check_context(x1, b); check_context(x2, b); check_context(x3, b);
+ Z3_app vars[] = {(Z3_app) x1, (Z3_app) x2, (Z3_app) x3 };
+ Z3_ast r = Z3_mk_forall_const(b.ctx(), 0, 3, vars, 0, 0, b); b.check_error(); return expr(b.ctx(), r);
+ }
+ inline expr forall(expr const & x1, expr const & x2, expr const & x3, expr const & x4, expr const & b) {
+ check_context(x1, b); check_context(x2, b); check_context(x3, b); check_context(x4, b);
+ Z3_app vars[] = {(Z3_app) x1, (Z3_app) x2, (Z3_app) x3, (Z3_app) x4 };
+ Z3_ast r = Z3_mk_forall_const(b.ctx(), 0, 4, vars, 0, 0, b); b.check_error(); return expr(b.ctx(), r);
+ }
+ inline expr forall(expr_vector const & xs, expr const & b) {
+ array vars(xs);
+ Z3_ast r = Z3_mk_forall_const(b.ctx(), 0, vars.size(), vars.ptr(), 0, 0, b); b.check_error(); return expr(b.ctx(), r);
+ }
+ inline expr exists(expr const & x, expr const & b) {
+ check_context(x, b);
+ Z3_app vars[] = {(Z3_app) x};
+ Z3_ast r = Z3_mk_exists_const(b.ctx(), 0, 1, vars, 0, 0, b); b.check_error(); return expr(b.ctx(), r);
+ }
+ inline expr exists(expr const & x1, expr const & x2, expr const & b) {
+ check_context(x1, b); check_context(x2, b);
+ Z3_app vars[] = {(Z3_app) x1, (Z3_app) x2};
+ Z3_ast r = Z3_mk_exists_const(b.ctx(), 0, 2, vars, 0, 0, b); b.check_error(); return expr(b.ctx(), r);
+ }
+ inline expr exists(expr const & x1, expr const & x2, expr const & x3, expr const & b) {
+ check_context(x1, b); check_context(x2, b); check_context(x3, b);
+ Z3_app vars[] = {(Z3_app) x1, (Z3_app) x2, (Z3_app) x3 };
+ Z3_ast r = Z3_mk_exists_const(b.ctx(), 0, 3, vars, 0, 0, b); b.check_error(); return expr(b.ctx(), r);
+ }
+ inline expr exists(expr const & x1, expr const & x2, expr const & x3, expr const & x4, expr const & b) {
+ check_context(x1, b); check_context(x2, b); check_context(x3, b); check_context(x4, b);
+ Z3_app vars[] = {(Z3_app) x1, (Z3_app) x2, (Z3_app) x3, (Z3_app) x4 };
+ Z3_ast r = Z3_mk_exists_const(b.ctx(), 0, 4, vars, 0, 0, b); b.check_error(); return expr(b.ctx(), r);
+ }
+ inline expr exists(expr_vector const & xs, expr const & b) {
+ array vars(xs);
+ Z3_ast r = Z3_mk_exists_const(b.ctx(), 0, vars.size(), vars.ptr(), 0, 0, b); b.check_error(); return expr(b.ctx(), r);
+ }
+ inline expr lambda(expr const & x, expr const & b) {
+ check_context(x, b);
+ Z3_app vars[] = {(Z3_app) x};
+ Z3_ast r = Z3_mk_lambda_const(b.ctx(), 1, vars, b); b.check_error(); return expr(b.ctx(), r);
+ }
+ inline expr lambda(expr const & x1, expr const & x2, expr const & b) {
+ check_context(x1, b); check_context(x2, b);
+ Z3_app vars[] = {(Z3_app) x1, (Z3_app) x2};
+ Z3_ast r = Z3_mk_lambda_const(b.ctx(), 2, vars, b); b.check_error(); return expr(b.ctx(), r);
+ }
+ inline expr lambda(expr const & x1, expr const & x2, expr const & x3, expr const & b) {
+ check_context(x1, b); check_context(x2, b); check_context(x3, b);
+ Z3_app vars[] = {(Z3_app) x1, (Z3_app) x2, (Z3_app) x3 };
+ Z3_ast r = Z3_mk_lambda_const(b.ctx(), 3, vars, b); b.check_error(); return expr(b.ctx(), r);
+ }
+ inline expr lambda(expr const & x1, expr const & x2, expr const & x3, expr const & x4, expr const & b) {
+ check_context(x1, b); check_context(x2, b); check_context(x3, b); check_context(x4, b);
+ Z3_app vars[] = {(Z3_app) x1, (Z3_app) x2, (Z3_app) x3, (Z3_app) x4 };
+ Z3_ast r = Z3_mk_lambda_const(b.ctx(), 4, vars, b); b.check_error(); return expr(b.ctx(), r);
+ }
+ inline expr lambda(expr_vector const & xs, expr const & b) {
+ array vars(xs);
+ Z3_ast r = Z3_mk_lambda_const(b.ctx(), vars.size(), vars.ptr(), b); b.check_error(); return expr(b.ctx(), r);
+ }
+
+ inline expr pble(expr_vector const& es, int const* coeffs, int bound) {
+ assert(es.size() > 0);
+ context& ctx = es[0].ctx();
+ array _es(es);
+ Z3_ast r = Z3_mk_pble(ctx, _es.size(), _es.ptr(), coeffs, bound);
+ ctx.check_error();
+ return expr(ctx, r);
+ }
+ inline expr pbge(expr_vector const& es, int const* coeffs, int bound) {
+ assert(es.size() > 0);
+ context& ctx = es[0].ctx();
+ array _es(es);
+ Z3_ast r = Z3_mk_pbge(ctx, _es.size(), _es.ptr(), coeffs, bound);
+ ctx.check_error();
+ return expr(ctx, r);
+ }
+ inline expr pbeq(expr_vector const& es, int const* coeffs, int bound) {
+ assert(es.size() > 0);
+ context& ctx = es[0].ctx();
+ array _es(es);
+ Z3_ast r = Z3_mk_pbeq(ctx, _es.size(), _es.ptr(), coeffs, bound);
+ ctx.check_error();
+ return expr(ctx, r);
+ }
+ inline expr atmost(expr_vector const& es, unsigned bound) {
+ assert(es.size() > 0);
+ context& ctx = es[0].ctx();
+ array _es(es);
+ Z3_ast r = Z3_mk_atmost(ctx, _es.size(), _es.ptr(), bound);
+ ctx.check_error();
+ return expr(ctx, r);
+ }
+ inline expr atleast(expr_vector const& es, unsigned bound) {
+ assert(es.size() > 0);
+ context& ctx = es[0].ctx();
+ array _es(es);
+ Z3_ast r = Z3_mk_atleast(ctx, _es.size(), _es.ptr(), bound);
+ ctx.check_error();
+ return expr(ctx, r);
+ }
+ inline expr sum(expr_vector const& args) {
+ assert(args.size() > 0);
+ context& ctx = args[0].ctx();
+ array _args(args);
+ Z3_ast r = Z3_mk_add(ctx, _args.size(), _args.ptr());
+ ctx.check_error();
+ return expr(ctx, r);
+ }
+
+ inline expr distinct(expr_vector const& args) {
+ assert(args.size() > 0);
+ context& ctx = args[0].ctx();
+ array _args(args);
+ Z3_ast r = Z3_mk_distinct(ctx, _args.size(), _args.ptr());
+ ctx.check_error();
+ return expr(ctx, r);
+ }
+
+ inline expr concat(expr const& a, expr const& b) {
+ check_context(a, b);
+ Z3_ast r;
+ if (Z3_is_seq_sort(a.ctx(), a.get_sort())) {
+ Z3_ast _args[2] = { a, b };
+ r = Z3_mk_seq_concat(a.ctx(), 2, _args);
+ }
+ else if (Z3_is_re_sort(a.ctx(), a.get_sort())) {
+ Z3_ast _args[2] = { a, b };
+ r = Z3_mk_re_concat(a.ctx(), 2, _args);
+ }
+ else {
+ r = Z3_mk_concat(a.ctx(), a, b);
+ }
+ a.ctx().check_error();
+ return expr(a.ctx(), r);
+ }
+
+ inline expr concat(expr_vector const& args) {
+ Z3_ast r;
+ assert(args.size() > 0);
+ if (args.size() == 1) {
+ return args[0];
+ }
+ context& ctx = args[0].ctx();
+ array _args(args);
+ if (Z3_is_seq_sort(ctx, args[0].get_sort())) {
+ r = Z3_mk_seq_concat(ctx, _args.size(), _args.ptr());
+ }
+ else if (Z3_is_re_sort(ctx, args[0].get_sort())) {
+ r = Z3_mk_re_concat(ctx, _args.size(), _args.ptr());
+ }
+ else {
+ r = _args[args.size()-1];
+ for (unsigned i = args.size()-1; i > 0; ) {
+ --i;
+ r = Z3_mk_concat(ctx, _args[i], r);
+ ctx.check_error();
+ }
+ }
+ ctx.check_error();
+ return expr(ctx, r);
+ }
+
+ inline expr mk_or(expr_vector const& args) {
+ array _args(args);
+ Z3_ast r = Z3_mk_or(args.ctx(), _args.size(), _args.ptr());
+ args.check_error();
+ return expr(args.ctx(), r);
+ }
+ inline expr mk_and(expr_vector const& args) {
+ array _args(args);
+ Z3_ast r = Z3_mk_and(args.ctx(), _args.size(), _args.ptr());
+ args.check_error();
+ return expr(args.ctx(), r);
+ }
+
+
+ class func_entry : public object {
+ Z3_func_entry m_entry;
+ void init(Z3_func_entry e) {
+ m_entry = e;
+ Z3_func_entry_inc_ref(ctx(), m_entry);
+ }
+ public:
+ func_entry(context & c, Z3_func_entry e):object(c) { init(e); }
+ func_entry(func_entry const & s):object(s) { init(s.m_entry); }
+ ~func_entry() { Z3_func_entry_dec_ref(ctx(), m_entry); }
+ operator Z3_func_entry() const { return m_entry; }
+ func_entry & operator=(func_entry const & s) {
+ Z3_func_entry_inc_ref(s.ctx(), s.m_entry);
+ Z3_func_entry_dec_ref(ctx(), m_entry);
+ m_ctx = s.m_ctx;
+ m_entry = s.m_entry;
+ return *this;
+ }
+ expr value() const { Z3_ast r = Z3_func_entry_get_value(ctx(), m_entry); check_error(); return expr(ctx(), r); }
+ unsigned num_args() const { unsigned r = Z3_func_entry_get_num_args(ctx(), m_entry); check_error(); return r; }
+ expr arg(unsigned i) const { Z3_ast r = Z3_func_entry_get_arg(ctx(), m_entry, i); check_error(); return expr(ctx(), r); }
+ };
+
+ class func_interp : public object {
+ Z3_func_interp m_interp;
+ void init(Z3_func_interp e) {
+ m_interp = e;
+ Z3_func_interp_inc_ref(ctx(), m_interp);
+ }
+ public:
+ func_interp(context & c, Z3_func_interp e):object(c) { init(e); }
+ func_interp(func_interp const & s):object(s) { init(s.m_interp); }
+ ~func_interp() { Z3_func_interp_dec_ref(ctx(), m_interp); }
+ operator Z3_func_interp() const { return m_interp; }
+ func_interp & operator=(func_interp const & s) {
+ Z3_func_interp_inc_ref(s.ctx(), s.m_interp);
+ Z3_func_interp_dec_ref(ctx(), m_interp);
+ m_ctx = s.m_ctx;
+ m_interp = s.m_interp;
+ return *this;
+ }
+ expr else_value() const { Z3_ast r = Z3_func_interp_get_else(ctx(), m_interp); check_error(); return expr(ctx(), r); }
+ unsigned num_entries() const { unsigned r = Z3_func_interp_get_num_entries(ctx(), m_interp); check_error(); return r; }
+ func_entry entry(unsigned i) const { Z3_func_entry e = Z3_func_interp_get_entry(ctx(), m_interp, i); check_error(); return func_entry(ctx(), e); }
+ void add_entry(expr_vector const& args, expr& value) {
+ Z3_func_interp_add_entry(ctx(), m_interp, args, value);
+ check_error();
+ }
+ void set_else(expr& value) {
+ Z3_func_interp_set_else(ctx(), m_interp, value);
+ check_error();
+ }
+ };
+
+ class model : public object {
+ Z3_model m_model;
+ void init(Z3_model m) {
+ m_model = m;
+ Z3_model_inc_ref(ctx(), m);
+ }
+ public:
+ struct translate {};
+ model(context & c):object(c) { init(Z3_mk_model(c)); }
+ model(context & c, Z3_model m):object(c) { init(m); }
+ model(model const & s):object(s) { init(s.m_model); }
+ model(model& src, context& dst, translate) : object(dst) { init(Z3_model_translate(src.ctx(), src, dst)); }
+ ~model() { Z3_model_dec_ref(ctx(), m_model); }
+ operator Z3_model() const { return m_model; }
+ model & operator=(model const & s) {
+ Z3_model_inc_ref(s.ctx(), s.m_model);
+ Z3_model_dec_ref(ctx(), m_model);
+ m_ctx = s.m_ctx;
+ m_model = s.m_model;
+ return *this;
+ }
+
+ expr eval(expr const & n, bool model_completion=false) const {
+ check_context(*this, n);
+ Z3_ast r = 0;
+ bool status = Z3_model_eval(ctx(), m_model, n, model_completion, &r);
+ check_error();
+ if (status == false && ctx().enable_exceptions())
+ Z3_THROW(exception("failed to evaluate expression"));
+ return expr(ctx(), r);
+ }
+
+ unsigned num_consts() const { return Z3_model_get_num_consts(ctx(), m_model); }
+ unsigned num_funcs() const { return Z3_model_get_num_funcs(ctx(), m_model); }
+ func_decl get_const_decl(unsigned i) const { Z3_func_decl r = Z3_model_get_const_decl(ctx(), m_model, i); check_error(); return func_decl(ctx(), r); }
+ func_decl get_func_decl(unsigned i) const { Z3_func_decl r = Z3_model_get_func_decl(ctx(), m_model, i); check_error(); return func_decl(ctx(), r); }
+ unsigned size() const { return num_consts() + num_funcs(); }
+ func_decl operator[](int i) const {
+ assert(0 <= i);
+ return static_cast(i) < num_consts() ? get_const_decl(i) : get_func_decl(i - num_consts());
+ }
+
+ // returns interpretation of constant declaration c.
+ // If c is not assigned any value in the model it returns
+ // an expression with a null ast reference.
+ expr get_const_interp(func_decl c) const {
+ check_context(*this, c);
+ Z3_ast r = Z3_model_get_const_interp(ctx(), m_model, c);
+ check_error();
+ return expr(ctx(), r);
+ }
+ func_interp get_func_interp(func_decl f) const {
+ check_context(*this, f);
+ Z3_func_interp r = Z3_model_get_func_interp(ctx(), m_model, f);
+ check_error();
+ return func_interp(ctx(), r);
+ }
+
+ // returns true iff the model contains an interpretation
+ // for function f.
+ bool has_interp(func_decl f) const {
+ check_context(*this, f);
+ return Z3_model_has_interp(ctx(), m_model, f);
+ }
+
+ func_interp add_func_interp(func_decl& f, expr& else_val) {
+ Z3_func_interp r = Z3_add_func_interp(ctx(), m_model, f, else_val);
+ check_error();
+ return func_interp(ctx(), r);
+ }
+
+ void add_const_interp(func_decl& f, expr& value) {
+ Z3_add_const_interp(ctx(), m_model, f, value);
+ check_error();
+ }
+
+ friend std::ostream & operator<<(std::ostream & out, model const & m);
+
+ std::string to_string() const { return std::string(Z3_model_to_string(ctx(), m_model)); }
+ };
+ inline std::ostream & operator<<(std::ostream & out, model const & m) { out << Z3_model_to_string(m.ctx(), m); return out; }
+
+ class stats : public object {
+ Z3_stats m_stats;
+ void init(Z3_stats e) {
+ m_stats = e;
+ Z3_stats_inc_ref(ctx(), m_stats);
+ }
+ public:
+ stats(context & c):object(c), m_stats(0) {}
+ stats(context & c, Z3_stats e):object(c) { init(e); }
+ stats(stats const & s):object(s) { init(s.m_stats); }
+ ~stats() { if (m_stats) Z3_stats_dec_ref(ctx(), m_stats); }
+ operator Z3_stats() const { return m_stats; }
+ stats & operator=(stats const & s) {
+ Z3_stats_inc_ref(s.ctx(), s.m_stats);
+ if (m_stats) Z3_stats_dec_ref(ctx(), m_stats);
+ m_ctx = s.m_ctx;
+ m_stats = s.m_stats;
+ return *this;
+ }
+ unsigned size() const { return Z3_stats_size(ctx(), m_stats); }
+ std::string key(unsigned i) const { Z3_string s = Z3_stats_get_key(ctx(), m_stats, i); check_error(); return s; }
+ bool is_uint(unsigned i) const { bool r = Z3_stats_is_uint(ctx(), m_stats, i); check_error(); return r; }
+ bool is_double(unsigned i) const { bool r = Z3_stats_is_double(ctx(), m_stats, i); check_error(); return r; }
+ unsigned uint_value(unsigned i) const { unsigned r = Z3_stats_get_uint_value(ctx(), m_stats, i); check_error(); return r; }
+ double double_value(unsigned i) const { double r = Z3_stats_get_double_value(ctx(), m_stats, i); check_error(); return r; }
+ friend std::ostream & operator<<(std::ostream & out, stats const & s);
+ };
+ inline std::ostream & operator<<(std::ostream & out, stats const & s) { out << Z3_stats_to_string(s.ctx(), s); return out; }
+
+
+ inline std::ostream & operator<<(std::ostream & out, check_result r) {
+ if (r == unsat) out << "unsat";
+ else if (r == sat) out << "sat";
+ else out << "unknown";
+ return out;
+ }
+
+
+ class solver : public object {
+ Z3_solver m_solver;
+ void init(Z3_solver s) {
+ m_solver = s;
+ Z3_solver_inc_ref(ctx(), s);
+ }
+ public:
+ struct simple {};
+ struct translate {};
+ solver(context & c):object(c) { init(Z3_mk_solver(c)); }
+ solver(context & c, simple):object(c) { init(Z3_mk_simple_solver(c)); }
+ solver(context & c, Z3_solver s):object(c) { init(s); }
+ solver(context & c, char const * logic):object(c) { init(Z3_mk_solver_for_logic(c, c.str_symbol(logic))); }
+ solver(context & c, solver const& src, translate): object(c) { init(Z3_solver_translate(src.ctx(), src, c)); }
+ solver(solver const & s):object(s) { init(s.m_solver); }
+ ~solver() { Z3_solver_dec_ref(ctx(), m_solver); }
+ operator Z3_solver() const { return m_solver; }
+ solver & operator=(solver const & s) {
+ Z3_solver_inc_ref(s.ctx(), s.m_solver);
+ Z3_solver_dec_ref(ctx(), m_solver);
+ m_ctx = s.m_ctx;
+ m_solver = s.m_solver;
+ return *this;
+ }
+ void set(params const & p) { Z3_solver_set_params(ctx(), m_solver, p); check_error(); }
+ void set(char const * k, bool v) { params p(ctx()); p.set(k, v); set(p); }
+ void set(char const * k, unsigned v) { params p(ctx()); p.set(k, v); set(p); }
+ void set(char const * k, double v) { params p(ctx()); p.set(k, v); set(p); }
+ void set(char const * k, symbol const & v) { params p(ctx()); p.set(k, v); set(p); }
+ void set(char const * k, char const* v) { params p(ctx()); p.set(k, v); set(p); }
+ void push() { Z3_solver_push(ctx(), m_solver); check_error(); }
+ void pop(unsigned n = 1) { Z3_solver_pop(ctx(), m_solver, n); check_error(); }
+ void reset() { Z3_solver_reset(ctx(), m_solver); check_error(); }
+ void add(expr const & e) { assert(e.is_bool()); Z3_solver_assert(ctx(), m_solver, e); check_error(); }
+ void add(expr const & e, expr const & p) {
+ assert(e.is_bool()); assert(p.is_bool()); assert(p.is_const());
+ Z3_solver_assert_and_track(ctx(), m_solver, e, p);
+ check_error();
+ }
+ void add(expr const & e, char const * p) {
+ add(e, ctx().bool_const(p));
+ }
+ void add(expr_vector const& v) {
+ check_context(*this, v);
+ for (unsigned i = 0; i < v.size(); ++i)
+ add(v[i]);
+ }
+ void from_file(char const* file) { Z3_solver_from_file(ctx(), m_solver, file); ctx().check_parser_error(); }
+ void from_string(char const* s) { Z3_solver_from_string(ctx(), m_solver, s); ctx().check_parser_error(); }
+
+ expr lower(expr const& e) {
+ Z3_ast r = Z3_solver_get_implied_lower(ctx(), m_solver, e); check_error(); return expr(ctx(), r);
+ }
+ expr upper(expr const& e) {
+ Z3_ast r = Z3_solver_get_implied_upper(ctx(), m_solver, e); check_error(); return expr(ctx(), r);
+ }
+ expr value(expr const& e) {
+ Z3_ast r = Z3_solver_get_implied_value(ctx(), m_solver, e); check_error(); return expr(ctx(), r);
+ }
+
+ check_result check() { Z3_lbool r = Z3_solver_check(ctx(), m_solver); check_error(); return to_check_result(r); }
+ check_result check(unsigned n, expr * const assumptions) {
+ array _assumptions(n);
+ for (unsigned i = 0; i < n; i++) {
+ check_context(*this, assumptions[i]);
+ _assumptions[i] = assumptions[i];
+ }
+ Z3_lbool r = Z3_solver_check_assumptions(ctx(), m_solver, n, _assumptions.ptr());
+ check_error();
+ return to_check_result(r);
+ }
+ check_result check(expr_vector const& assumptions) {
+ unsigned n = assumptions.size();
+ array _assumptions(n);
+ for (unsigned i = 0; i < n; i++) {
+ check_context(*this, assumptions[i]);
+ _assumptions[i] = assumptions[i];
+ }
+ Z3_lbool r = Z3_solver_check_assumptions(ctx(), m_solver, n, _assumptions.ptr());
+ check_error();
+ return to_check_result(r);
+ }
+ model get_model() const { Z3_model m = Z3_solver_get_model(ctx(), m_solver); check_error(); return model(ctx(), m); }
+ check_result consequences(expr_vector& assumptions, expr_vector& vars, expr_vector& conseq) {
+ Z3_lbool r = Z3_solver_get_consequences(ctx(), m_solver, assumptions, vars, conseq);
+ check_error();
+ return to_check_result(r);
+ }
+ std::string reason_unknown() const { Z3_string r = Z3_solver_get_reason_unknown(ctx(), m_solver); check_error(); return r; }
+ stats statistics() const { Z3_stats r = Z3_solver_get_statistics(ctx(), m_solver); check_error(); return stats(ctx(), r); }
+ expr_vector unsat_core() const { Z3_ast_vector r = Z3_solver_get_unsat_core(ctx(), m_solver); check_error(); return expr_vector(ctx(), r); }
+ expr_vector assertions() const { Z3_ast_vector r = Z3_solver_get_assertions(ctx(), m_solver); check_error(); return expr_vector(ctx(), r); }
+ expr_vector non_units() const { Z3_ast_vector r = Z3_solver_get_non_units(ctx(), m_solver); check_error(); return expr_vector(ctx(), r); }
+ expr_vector units() const { Z3_ast_vector r = Z3_solver_get_units(ctx(), m_solver); check_error(); return expr_vector(ctx(), r); }
+ expr_vector trail() const { Z3_ast_vector r = Z3_solver_get_trail(ctx(), m_solver); check_error(); return expr_vector(ctx(), r); }
+ expr_vector trail(array& levels) const {
+ Z3_ast_vector r = Z3_solver_get_trail(ctx(), m_solver);
+ check_error();
+ expr_vector result(ctx(), r);
+ unsigned sz = result.size();
+ levels.resize(sz);
+ Z3_solver_get_levels(ctx(), m_solver, r, sz, levels.ptr());
+ check_error();
+ return result;
+ }
+ expr proof() const { Z3_ast r = Z3_solver_get_proof(ctx(), m_solver); check_error(); return expr(ctx(), r); }
+ friend std::ostream & operator<<(std::ostream & out, solver const & s);
+
+ std::string to_smt2(char const* status = "unknown") {
+ array es(assertions());
+ Z3_ast const* fmls = es.ptr();
+ Z3_ast fml = 0;
+ unsigned sz = es.size();
+ if (sz > 0) {
+ --sz;
+ fml = fmls[sz];
+ }
+ else {
+ fml = ctx().bool_val(true);
+ }
+ return std::string(Z3_benchmark_to_smtlib_string(
+ ctx(),
+ "", "", status, "",
+ sz,
+ fmls,
+ fml));
+ }
+
+ std::string dimacs(bool include_names = true) const { return std::string(Z3_solver_to_dimacs_string(ctx(), m_solver, include_names)); }
+
+ param_descrs get_param_descrs() { return param_descrs(ctx(), Z3_solver_get_param_descrs(ctx(), m_solver)); }
+
+
+ expr_vector cube(expr_vector& vars, unsigned cutoff) {
+ Z3_ast_vector r = Z3_solver_cube(ctx(), m_solver, vars, cutoff);
+ check_error();
+ return expr_vector(ctx(), r);
+ }
+
+ class cube_iterator {
+ solver& m_solver;
+ unsigned& m_cutoff;
+ expr_vector& m_vars;
+ expr_vector m_cube;
+ bool m_end;
+ bool m_empty;
+
+ void inc() {
+ assert(!m_end && !m_empty);
+ m_cube = m_solver.cube(m_vars, m_cutoff);
+ m_cutoff = 0xFFFFFFFF;
+ if (m_cube.size() == 1 && m_cube[0].is_false()) {
+ m_cube = z3::expr_vector(m_solver.ctx());
+ m_end = true;
+ }
+ else if (m_cube.empty()) {
+ m_empty = true;
+ }
+ }
+ public:
+ cube_iterator(solver& s, expr_vector& vars, unsigned& cutoff, bool end):
+ m_solver(s),
+ m_cutoff(cutoff),
+ m_vars(vars),
+ m_cube(s.ctx()),
+ m_end(end),
+ m_empty(false) {
+ if (!m_end) {
+ inc();
+ }
+ }
+
+ cube_iterator& operator++() {
+ assert(!m_end);
+ if (m_empty) {
+ m_end = true;
+ }
+ else {
+ inc();
+ }
+ return *this;
+ }
+ cube_iterator operator++(int) { assert(false); return *this; }
+ expr_vector const * operator->() const { return &(operator*()); }
+ expr_vector const& operator*() const { return m_cube; }
+
+ bool operator==(cube_iterator const& other) {
+ return other.m_end == m_end;
+ };
+ bool operator!=(cube_iterator const& other) {
+ return other.m_end != m_end;
+ };
+
+ };
+
+ class cube_generator {
+ solver& m_solver;
+ unsigned m_cutoff;
+ expr_vector m_default_vars;
+ expr_vector& m_vars;
+ public:
+ cube_generator(solver& s):
+ m_solver(s),
+ m_cutoff(0xFFFFFFFF),
+ m_default_vars(s.ctx()),
+ m_vars(m_default_vars)
+ {}
+
+ cube_generator(solver& s, expr_vector& vars):
+ m_solver(s),
+ m_cutoff(0xFFFFFFFF),
+ m_default_vars(s.ctx()),
+ m_vars(vars)
+ {}
+
+ cube_iterator begin() { return cube_iterator(m_solver, m_vars, m_cutoff, false); }
+ cube_iterator end() { return cube_iterator(m_solver, m_vars, m_cutoff, true); }
+ void set_cutoff(unsigned c) { m_cutoff = c; }
+ };
+
+ cube_generator cubes() { return cube_generator(*this); }
+ cube_generator cubes(expr_vector& vars) { return cube_generator(*this, vars); }
+
+ };
+ inline std::ostream & operator<<(std::ostream & out, solver const & s) { out << Z3_solver_to_string(s.ctx(), s); return out; }
+
+ class goal : public object {
+ Z3_goal m_goal;
+ void init(Z3_goal s) {
+ m_goal = s;
+ Z3_goal_inc_ref(ctx(), s);
+ }
+ public:
+ goal(context & c, bool models=true, bool unsat_cores=false, bool proofs=false):object(c) { init(Z3_mk_goal(c, models, unsat_cores, proofs)); }
+ goal(context & c, Z3_goal s):object(c) { init(s); }
+ goal(goal const & s):object(s) { init(s.m_goal); }
+ ~goal() { Z3_goal_dec_ref(ctx(), m_goal); }
+ operator Z3_goal() const { return m_goal; }
+ goal & operator=(goal const & s) {
+ Z3_goal_inc_ref(s.ctx(), s.m_goal);
+ Z3_goal_dec_ref(ctx(), m_goal);
+ m_ctx = s.m_ctx;
+ m_goal = s.m_goal;
+ return *this;
+ }
+ void add(expr const & f) { check_context(*this, f); Z3_goal_assert(ctx(), m_goal, f); check_error(); }
+ void add(expr_vector const& v) { check_context(*this, v); for (unsigned i = 0; i < v.size(); ++i) add(v[i]); }
+ unsigned size() const { return Z3_goal_size(ctx(), m_goal); }
+ expr operator[](int i) const { assert(0 <= i); Z3_ast r = Z3_goal_formula(ctx(), m_goal, i); check_error(); return expr(ctx(), r); }
+ Z3_goal_prec precision() const { return Z3_goal_precision(ctx(), m_goal); }
+ bool inconsistent() const { return Z3_goal_inconsistent(ctx(), m_goal); }
+ unsigned depth() const { return Z3_goal_depth(ctx(), m_goal); }
+ void reset() { Z3_goal_reset(ctx(), m_goal); }
+ unsigned num_exprs() const { return Z3_goal_num_exprs(ctx(), m_goal); }
+ bool is_decided_sat() const { return Z3_goal_is_decided_sat(ctx(), m_goal); }
+ bool is_decided_unsat() const { return Z3_goal_is_decided_unsat(ctx(), m_goal); }
+ model convert_model(model const & m) const {
+ check_context(*this, m);
+ Z3_model new_m = Z3_goal_convert_model(ctx(), m_goal, m);
+ check_error();
+ return model(ctx(), new_m);
+ }
+ model get_model() const {
+ Z3_model new_m = Z3_goal_convert_model(ctx(), m_goal, 0);
+ check_error();
+ return model(ctx(), new_m);
+ }
+ expr as_expr() const {
+ unsigned n = size();
+ if (n == 0)
+ return ctx().bool_val(true);
+ else if (n == 1)
+ return operator[](0);
+ else {
+ array args(n);
+ for (unsigned i = 0; i < n; i++)
+ args[i] = operator[](i);
+ return expr(ctx(), Z3_mk_and(ctx(), n, args.ptr()));
+ }
+ }
+ std::string dimacs(bool include_names = true) const { return std::string(Z3_goal_to_dimacs_string(ctx(), m_goal, include_names)); }
+ friend std::ostream & operator<<(std::ostream & out, goal const & g);
+ };
+ inline std::ostream & operator<<(std::ostream & out, goal const & g) { out << Z3_goal_to_string(g.ctx(), g); return out; }
+
+ class apply_result : public object {
+ Z3_apply_result m_apply_result;
+ void init(Z3_apply_result s) {
+ m_apply_result = s;
+ Z3_apply_result_inc_ref(ctx(), s);
+ }
+ public:
+ apply_result(context & c, Z3_apply_result s):object(c) { init(s); }
+ apply_result(apply_result const & s):object(s) { init(s.m_apply_result); }
+ ~apply_result() { Z3_apply_result_dec_ref(ctx(), m_apply_result); }
+ operator Z3_apply_result() const { return m_apply_result; }
+ apply_result & operator=(apply_result const & s) {
+ Z3_apply_result_inc_ref(s.ctx(), s.m_apply_result);
+ Z3_apply_result_dec_ref(ctx(), m_apply_result);
+ m_ctx = s.m_ctx;
+ m_apply_result = s.m_apply_result;
+ return *this;
+ }
+ unsigned size() const { return Z3_apply_result_get_num_subgoals(ctx(), m_apply_result); }
+ goal operator[](int i) const { assert(0 <= i); Z3_goal r = Z3_apply_result_get_subgoal(ctx(), m_apply_result, i); check_error(); return goal(ctx(), r); }
+ friend std::ostream & operator<<(std::ostream & out, apply_result const & r);
+ };
+ inline std::ostream & operator<<(std::ostream & out, apply_result const & r) { out << Z3_apply_result_to_string(r.ctx(), r); return out; }
+
+ class tactic : public object {
+ Z3_tactic m_tactic;
+ void init(Z3_tactic s) {
+ m_tactic = s;
+ Z3_tactic_inc_ref(ctx(), s);
+ }
+ public:
+ tactic(context & c, char const * name):object(c) { Z3_tactic r = Z3_mk_tactic(c, name); check_error(); init(r); }
+ tactic(context & c, Z3_tactic s):object(c) { init(s); }
+ tactic(tactic const & s):object(s) { init(s.m_tactic); }
+ ~tactic() { Z3_tactic_dec_ref(ctx(), m_tactic); }
+ operator Z3_tactic() const { return m_tactic; }
+ tactic & operator=(tactic const & s) {
+ Z3_tactic_inc_ref(s.ctx(), s.m_tactic);
+ Z3_tactic_dec_ref(ctx(), m_tactic);
+ m_ctx = s.m_ctx;
+ m_tactic = s.m_tactic;
+ return *this;
+ }
+ solver mk_solver() const { Z3_solver r = Z3_mk_solver_from_tactic(ctx(), m_tactic); check_error(); return solver(ctx(), r); }
+ apply_result apply(goal const & g) const {
+ check_context(*this, g);
+ Z3_apply_result r = Z3_tactic_apply(ctx(), m_tactic, g);
+ check_error();
+ return apply_result(ctx(), r);
+ }
+ apply_result operator()(goal const & g) const {
+ return apply(g);
+ }
+ std::string help() const { char const * r = Z3_tactic_get_help(ctx(), m_tactic); check_error(); return r; }
+ friend tactic operator&(tactic const & t1, tactic const & t2);
+ friend tactic operator|(tactic const & t1, tactic const & t2);
+ friend tactic repeat(tactic const & t, unsigned max);
+ friend tactic with(tactic const & t, params const & p);
+ friend tactic try_for(tactic const & t, unsigned ms);
+ friend tactic par_or(unsigned n, tactic const* tactics);
+ friend tactic par_and_then(tactic const& t1, tactic const& t2);
+ param_descrs get_param_descrs() { return param_descrs(ctx(), Z3_tactic_get_param_descrs(ctx(), m_tactic)); }
+ };
+
+ inline tactic operator&(tactic const & t1, tactic const & t2) {
+ check_context(t1, t2);
+ Z3_tactic r = Z3_tactic_and_then(t1.ctx(), t1, t2);
+ t1.check_error();
+ return tactic(t1.ctx(), r);
+ }
+
+ inline tactic operator|(tactic const & t1, tactic const & t2) {
+ check_context(t1, t2);
+ Z3_tactic r = Z3_tactic_or_else(t1.ctx(), t1, t2);
+ t1.check_error();
+ return tactic(t1.ctx(), r);
+ }
+
+ inline tactic repeat(tactic const & t, unsigned max=UINT_MAX) {
+ Z3_tactic r = Z3_tactic_repeat(t.ctx(), t, max);
+ t.check_error();
+ return tactic(t.ctx(), r);
+ }
+
+ inline tactic with(tactic const & t, params const & p) {
+ Z3_tactic r = Z3_tactic_using_params(t.ctx(), t, p);
+ t.check_error();
+ return tactic(t.ctx(), r);
+ }
+ inline tactic try_for(tactic const & t, unsigned ms) {
+ Z3_tactic r = Z3_tactic_try_for(t.ctx(), t, ms);
+ t.check_error();
+ return tactic(t.ctx(), r);
+ }
+ inline tactic par_or(unsigned n, tactic const* tactics) {
+ if (n == 0) {
+ Z3_THROW(exception("a non-zero number of tactics need to be passed to par_or"));
+ }
+ array buffer(n);
+ for (unsigned i = 0; i < n; ++i) buffer[i] = tactics[i];
+ return tactic(tactics[0].ctx(), Z3_tactic_par_or(tactics[0].ctx(), n, buffer.ptr()));
+ }
+
+ inline tactic par_and_then(tactic const & t1, tactic const & t2) {
+ check_context(t1, t2);
+ Z3_tactic r = Z3_tactic_par_and_then(t1.ctx(), t1, t2);
+ t1.check_error();
+ return tactic(t1.ctx(), r);
+ }
+
+ class probe : public object {
+ Z3_probe m_probe;
+ void init(Z3_probe s) {
+ m_probe = s;
+ Z3_probe_inc_ref(ctx(), s);
+ }
+ public:
+ probe(context & c, char const * name):object(c) { Z3_probe r = Z3_mk_probe(c, name); check_error(); init(r); }
+ probe(context & c, double val):object(c) { Z3_probe r = Z3_probe_const(c, val); check_error(); init(r); }
+ probe(context & c, Z3_probe s):object(c) { init(s); }
+ probe(probe const & s):object(s) { init(s.m_probe); }
+ ~probe() { Z3_probe_dec_ref(ctx(), m_probe); }
+ operator Z3_probe() const { return m_probe; }
+ probe & operator=(probe const & s) {
+ Z3_probe_inc_ref(s.ctx(), s.m_probe);
+ Z3_probe_dec_ref(ctx(), m_probe);
+ m_ctx = s.m_ctx;
+ m_probe = s.m_probe;
+ return *this;
+ }
+ double apply(goal const & g) const { double r = Z3_probe_apply(ctx(), m_probe, g); check_error(); return r; }
+ double operator()(goal const & g) const { return apply(g); }
+ friend probe operator<=(probe const & p1, probe const & p2);
+ friend probe operator<=(probe const & p1, double p2);
+ friend probe operator<=(double p1, probe const & p2);
+ friend probe operator>=(probe const & p1, probe const & p2);
+ friend probe operator>=(probe const & p1, double p2);
+ friend probe operator>=(double p1, probe const & p2);
+ friend probe operator<(probe const & p1, probe const & p2);
+ friend probe operator<(probe const & p1, double p2);
+ friend probe operator<(double p1, probe const & p2);
+ friend probe operator>(probe const & p1, probe const & p2);
+ friend probe operator>(probe const & p1, double p2);
+ friend probe operator>(double p1, probe const & p2);
+ friend probe operator==(probe const & p1, probe const & p2);
+ friend probe operator==(probe const & p1, double p2);
+ friend probe operator==(double p1, probe const & p2);
+ friend probe operator&&(probe const & p1, probe const & p2);
+ friend probe operator||(probe const & p1, probe const & p2);
+ friend probe operator!(probe const & p);
+ };
+
+ inline probe operator<=(probe const & p1, probe const & p2) {
+ check_context(p1, p2); Z3_probe r = Z3_probe_le(p1.ctx(), p1, p2); p1.check_error(); return probe(p1.ctx(), r);
+ }
+ inline probe operator<=(probe const & p1, double p2) { return p1 <= probe(p1.ctx(), p2); }
+ inline probe operator<=(double p1, probe const & p2) { return probe(p2.ctx(), p1) <= p2; }
+ inline probe operator>=(probe const & p1, probe const & p2) {
+ check_context(p1, p2); Z3_probe r = Z3_probe_ge(p1.ctx(), p1, p2); p1.check_error(); return probe(p1.ctx(), r);
+ }
+ inline probe operator>=(probe const & p1, double p2) { return p1 >= probe(p1.ctx(), p2); }
+ inline probe operator>=(double p1, probe const & p2) { return probe(p2.ctx(), p1) >= p2; }
+ inline probe operator<(probe const & p1, probe const & p2) {
+ check_context(p1, p2); Z3_probe r = Z3_probe_lt(p1.ctx(), p1, p2); p1.check_error(); return probe(p1.ctx(), r);
+ }
+ inline probe operator<(probe const & p1, double p2) { return p1 < probe(p1.ctx(), p2); }
+ inline probe operator<(double p1, probe const & p2) { return probe(p2.ctx(), p1) < p2; }
+ inline probe operator>(probe const & p1, probe const & p2) {
+ check_context(p1, p2); Z3_probe r = Z3_probe_gt(p1.ctx(), p1, p2); p1.check_error(); return probe(p1.ctx(), r);
+ }
+ inline probe operator>(probe const & p1, double p2) { return p1 > probe(p1.ctx(), p2); }
+ inline probe operator>(double p1, probe const & p2) { return probe(p2.ctx(), p1) > p2; }
+ inline probe operator==(probe const & p1, probe const & p2) {
+ check_context(p1, p2); Z3_probe r = Z3_probe_eq(p1.ctx(), p1, p2); p1.check_error(); return probe(p1.ctx(), r);
+ }
+ inline probe operator==(probe const & p1, double p2) { return p1 == probe(p1.ctx(), p2); }
+ inline probe operator==(double p1, probe const & p2) { return probe(p2.ctx(), p1) == p2; }
+ inline probe operator&&(probe const & p1, probe const & p2) {
+ check_context(p1, p2); Z3_probe r = Z3_probe_and(p1.ctx(), p1, p2); p1.check_error(); return probe(p1.ctx(), r);
+ }
+ inline probe operator||(probe const & p1, probe const & p2) {
+ check_context(p1, p2); Z3_probe r = Z3_probe_or(p1.ctx(), p1, p2); p1.check_error(); return probe(p1.ctx(), r);
+ }
+ inline probe operator!(probe const & p) {
+ Z3_probe r = Z3_probe_not(p.ctx(), p); p.check_error(); return probe(p.ctx(), r);
+ }
+
+ class optimize : public object {
+ Z3_optimize m_opt;
+
+ public:
+ class handle {
+ unsigned m_h;
+ public:
+ handle(unsigned h): m_h(h) {}
+ unsigned h() const { return m_h; }
+ };
+ optimize(context& c):object(c) { m_opt = Z3_mk_optimize(c); Z3_optimize_inc_ref(c, m_opt); }
+ optimize(optimize& o):object(o) {
+ Z3_optimize_inc_ref(o.ctx(), o.m_opt);
+ m_opt = o.m_opt;
+ }
+ optimize(context& c, optimize& src):object(c) {
+ m_opt = Z3_mk_optimize(c);
+ Z3_optimize_inc_ref(c, m_opt);
+ add(expr_vector(c, src.assertions()));
+ expr_vector v(c, src.objectives());
+ for (expr_vector::iterator it = v.begin(); it != v.end(); ++it) minimize(*it);
+ }
+ optimize& operator=(optimize const& o) {
+ Z3_optimize_inc_ref(o.ctx(), o.m_opt);
+ Z3_optimize_dec_ref(ctx(), m_opt);
+ m_opt = o.m_opt;
+ m_ctx = o.m_ctx;
+ return *this;
+ }
+ ~optimize() { Z3_optimize_dec_ref(ctx(), m_opt); }
+ operator Z3_optimize() const { return m_opt; }
+ void add(expr const& e) {
+ assert(e.is_bool());
+ Z3_optimize_assert(ctx(), m_opt, e);
+ }
+ void add(expr_vector const& es) {
+ for (expr_vector::iterator it = es.begin(); it != es.end(); ++it) add(*it);
+ }
+ void add(expr const& e, expr const& t) {
+ assert(e.is_bool());
+ Z3_optimize_assert_and_track(ctx(), m_opt, e, t);
+ }
+ void add(expr const& e, char const* p) {
+ assert(e.is_bool());
+ add(e, ctx().bool_const(p));
+ }
+ handle add_soft(expr const& e, unsigned weight) {
+ assert(e.is_bool());
+ auto str = std::to_string(weight);
+ return handle(Z3_optimize_assert_soft(ctx(), m_opt, e, str.c_str(), 0));
+ }
+ handle add_soft(expr const& e, char const* weight) {
+ assert(e.is_bool());
+ return handle(Z3_optimize_assert_soft(ctx(), m_opt, e, weight, 0));
+ }
+ handle add(expr const& e, unsigned weight) {
+ return add_soft(e, weight);
+ }
+ handle maximize(expr const& e) {
+ return handle(Z3_optimize_maximize(ctx(), m_opt, e));
+ }
+ handle minimize(expr const& e) {
+ return handle(Z3_optimize_minimize(ctx(), m_opt, e));
+ }
+ void push() {
+ Z3_optimize_push(ctx(), m_opt);
+ }
+ void pop() {
+ Z3_optimize_pop(ctx(), m_opt);
+ }
+ check_result check() { Z3_lbool r = Z3_optimize_check(ctx(), m_opt, 0, 0); check_error(); return to_check_result(r); }
+ check_result check(expr_vector const& asms) {
+ unsigned n = asms.size();
+ array _asms(n);
+ for (unsigned i = 0; i < n; i++) {
+ check_context(*this, asms[i]);
+ _asms[i] = asms[i];
+ }
+ Z3_lbool r = Z3_optimize_check(ctx(), m_opt, n, _asms.ptr());
+ check_error();
+ return to_check_result(r);
+ }
+ model get_model() const { Z3_model m = Z3_optimize_get_model(ctx(), m_opt); check_error(); return model(ctx(), m); }
+ expr_vector unsat_core() const { Z3_ast_vector r = Z3_optimize_get_unsat_core(ctx(), m_opt); check_error(); return expr_vector(ctx(), r); }
+ void set(params const & p) { Z3_optimize_set_params(ctx(), m_opt, p); check_error(); }
+ expr lower(handle const& h) {
+ Z3_ast r = Z3_optimize_get_lower(ctx(), m_opt, h.h());
+ check_error();
+ return expr(ctx(), r);
+ }
+ expr upper(handle const& h) {
+ Z3_ast r = Z3_optimize_get_upper(ctx(), m_opt, h.h());
+ check_error();
+ return expr(ctx(), r);
+ }
+ expr_vector assertions() const { Z3_ast_vector r = Z3_optimize_get_assertions(ctx(), m_opt); check_error(); return expr_vector(ctx(), r); }
+ expr_vector objectives() const { Z3_ast_vector r = Z3_optimize_get_objectives(ctx(), m_opt); check_error(); return expr_vector(ctx(), r); }
+ stats statistics() const { Z3_stats r = Z3_optimize_get_statistics(ctx(), m_opt); check_error(); return stats(ctx(), r); }
+ friend std::ostream & operator<<(std::ostream & out, optimize const & s);
+ void from_file(char const* filename) { Z3_optimize_from_file(ctx(), m_opt, filename); check_error(); }
+ void from_string(char const* constraints) { Z3_optimize_from_string(ctx(), m_opt, constraints); check_error(); }
+ std::string help() const { char const * r = Z3_optimize_get_help(ctx(), m_opt); check_error(); return r; }
+ };
+ inline std::ostream & operator<<(std::ostream & out, optimize const & s) { out << Z3_optimize_to_string(s.ctx(), s.m_opt); return out; }
+
+ class fixedpoint : public object {
+ Z3_fixedpoint m_fp;
+ public:
+ fixedpoint(context& c):object(c) { m_fp = Z3_mk_fixedpoint(c); Z3_fixedpoint_inc_ref(c, m_fp); }
+ ~fixedpoint() { Z3_fixedpoint_dec_ref(ctx(), m_fp); }
+ operator Z3_fixedpoint() const { return m_fp; }
+ void from_string(char const* s) { Z3_fixedpoint_from_string(ctx(), m_fp, s); check_error(); }
+ void from_file(char const* s) { Z3_fixedpoint_from_file(ctx(), m_fp, s); check_error(); }
+ void add_rule(expr& rule, symbol const& name) { Z3_fixedpoint_add_rule(ctx(), m_fp, rule, name); check_error(); }
+ void add_fact(func_decl& f, unsigned * args) { Z3_fixedpoint_add_fact(ctx(), m_fp, f, f.arity(), args); check_error(); }
+ check_result query(expr& q) { Z3_lbool r = Z3_fixedpoint_query(ctx(), m_fp, q); check_error(); return to_check_result(r); }
+ check_result query(func_decl_vector& relations) {
+ array rs(relations);
+ Z3_lbool r = Z3_fixedpoint_query_relations(ctx(), m_fp, rs.size(), rs.ptr());
+ check_error();
+ return to_check_result(r);
+ }
+ expr get_answer() { Z3_ast r = Z3_fixedpoint_get_answer(ctx(), m_fp); check_error(); return expr(ctx(), r); }
+ std::string reason_unknown() { return Z3_fixedpoint_get_reason_unknown(ctx(), m_fp); }
+ void update_rule(expr& rule, symbol const& name) { Z3_fixedpoint_update_rule(ctx(), m_fp, rule, name); check_error(); }
+ unsigned get_num_levels(func_decl& p) { unsigned r = Z3_fixedpoint_get_num_levels(ctx(), m_fp, p); check_error(); return r; }
+ expr get_cover_delta(int level, func_decl& p) {
+ Z3_ast r = Z3_fixedpoint_get_cover_delta(ctx(), m_fp, level, p);
+ check_error();
+ return expr(ctx(), r);
+ }
+ void add_cover(int level, func_decl& p, expr& property) { Z3_fixedpoint_add_cover(ctx(), m_fp, level, p, property); check_error(); }
+ stats statistics() const { Z3_stats r = Z3_fixedpoint_get_statistics(ctx(), m_fp); check_error(); return stats(ctx(), r); }
+ void register_relation(func_decl& p) { Z3_fixedpoint_register_relation(ctx(), m_fp, p); }
+ expr_vector assertions() const { Z3_ast_vector r = Z3_fixedpoint_get_assertions(ctx(), m_fp); check_error(); return expr_vector(ctx(), r); }
+ expr_vector rules() const { Z3_ast_vector r = Z3_fixedpoint_get_rules(ctx(), m_fp); check_error(); return expr_vector(ctx(), r); }
+ void set(params const & p) { Z3_fixedpoint_set_params(ctx(), m_fp, p); check_error(); }
+ std::string help() const { return Z3_fixedpoint_get_help(ctx(), m_fp); }
+ param_descrs get_param_descrs() { return param_descrs(ctx(), Z3_fixedpoint_get_param_descrs(ctx(), m_fp)); }
+ std::string to_string() { return Z3_fixedpoint_to_string(ctx(), m_fp, 0, 0); }
+ std::string to_string(expr_vector const& queries) {
+ array qs(queries);
+ return Z3_fixedpoint_to_string(ctx(), m_fp, qs.size(), qs.ptr());
+ }
+ };
+ inline std::ostream & operator<<(std::ostream & out, fixedpoint const & f) { return out << Z3_fixedpoint_to_string(f.ctx(), f, 0, 0); }
+
+ inline tactic fail_if(probe const & p) {
+ Z3_tactic r = Z3_tactic_fail_if(p.ctx(), p);
+ p.check_error();
+ return tactic(p.ctx(), r);
+ }
+ inline tactic when(probe const & p, tactic const & t) {
+ check_context(p, t);
+ Z3_tactic r = Z3_tactic_when(t.ctx(), p, t);
+ t.check_error();
+ return tactic(t.ctx(), r);
+ }
+ inline tactic cond(probe const & p, tactic const & t1, tactic const & t2) {
+ check_context(p, t1); check_context(p, t2);
+ Z3_tactic r = Z3_tactic_cond(t1.ctx(), p, t1, t2);
+ t1.check_error();
+ return tactic(t1.ctx(), r);
+ }
+
+ inline symbol context::str_symbol(char const * s) { Z3_symbol r = Z3_mk_string_symbol(m_ctx, s); check_error(); return symbol(*this, r); }
+ inline symbol context::int_symbol(int n) { Z3_symbol r = Z3_mk_int_symbol(m_ctx, n); check_error(); return symbol(*this, r); }
+
+ inline sort context::bool_sort() { Z3_sort s = Z3_mk_bool_sort(m_ctx); check_error(); return sort(*this, s); }
+ inline sort context::int_sort() { Z3_sort s = Z3_mk_int_sort(m_ctx); check_error(); return sort(*this, s); }
+ inline sort context::real_sort() { Z3_sort s = Z3_mk_real_sort(m_ctx); check_error(); return sort(*this, s); }
+ inline sort context::bv_sort(unsigned sz) { Z3_sort s = Z3_mk_bv_sort(m_ctx, sz); check_error(); return sort(*this, s); }
+ inline sort context::string_sort() { Z3_sort s = Z3_mk_string_sort(m_ctx); check_error(); return sort(*this, s); }
+ inline sort context::seq_sort(sort& s) { Z3_sort r = Z3_mk_seq_sort(m_ctx, s); check_error(); return sort(*this, r); }
+ inline sort context::re_sort(sort& s) { Z3_sort r = Z3_mk_re_sort(m_ctx, s); check_error(); return sort(*this, r); }
+ inline sort context::fpa_sort(unsigned ebits, unsigned sbits) { Z3_sort s = Z3_mk_fpa_sort(m_ctx, ebits, sbits); check_error(); return sort(*this, s); }
+
+ template<>
+ inline sort context::fpa_sort<16>() { return fpa_sort(5, 11); }
+
+ template<>
+ inline sort context::fpa_sort<32>() { return fpa_sort(8, 24); }
+
+ template<>
+ inline sort context::fpa_sort<64>() { return fpa_sort(11, 53); }
+
+ template<>
+ inline sort context::fpa_sort<128>() { return fpa_sort(15, 113); }
+
+ inline sort context::fpa_rounding_mode() {
+ switch (m_rounding_mode) {
+ case RNA: return sort(*this, Z3_mk_fpa_rna(m_ctx));
+ case RNE: return sort(*this, Z3_mk_fpa_rne(m_ctx));
+ case RTP: return sort(*this, Z3_mk_fpa_rtp(m_ctx));
+ case RTN: return sort(*this, Z3_mk_fpa_rtn(m_ctx));
+ case RTZ: return sort(*this, Z3_mk_fpa_rtz(m_ctx));
+ default: return sort(*this);
+ }
+ }
+
+ inline void context::set_rounding_mode(rounding_mode rm) { m_rounding_mode = rm; }
+
+ inline sort context::array_sort(sort d, sort r) { Z3_sort s = Z3_mk_array_sort(m_ctx, d, r); check_error(); return sort(*this, s); }
+ inline sort context::array_sort(sort_vector const& d, sort r) {
+ array dom(d);
+ Z3_sort s = Z3_mk_array_sort_n(m_ctx, dom.size(), dom.ptr(), r); check_error(); return sort(*this, s);
+ }
+ inline sort context::enumeration_sort(char const * name, unsigned n, char const * const * enum_names, func_decl_vector & cs, func_decl_vector & ts) {
+ array _enum_names(n);
+ for (unsigned i = 0; i < n; i++) { _enum_names[i] = Z3_mk_string_symbol(*this, enum_names[i]); }
+ array _cs(n);
+ array _ts(n);
+ Z3_symbol _name = Z3_mk_string_symbol(*this, name);
+ sort s = to_sort(*this, Z3_mk_enumeration_sort(*this, _name, n, _enum_names.ptr(), _cs.ptr(), _ts.ptr()));
+ check_error();
+ for (unsigned i = 0; i < n; i++) { cs.push_back(func_decl(*this, _cs[i])); ts.push_back(func_decl(*this, _ts[i])); }
+ return s;
+ }
+ inline func_decl context::tuple_sort(char const * name, unsigned n, char const * const * names, sort const* sorts, func_decl_vector & projs) {
+ array _names(n);
+ array _sorts(n);
+ for (unsigned i = 0; i < n; i++) { _names[i] = Z3_mk_string_symbol(*this, names[i]); _sorts[i] = sorts[i]; }
+ array _projs(n);
+ Z3_symbol _name = Z3_mk_string_symbol(*this, name);
+ Z3_func_decl tuple;
+ sort _ignore_s = to_sort(*this, Z3_mk_tuple_sort(*this, _name, n, _names.ptr(), _sorts.ptr(), &tuple, _projs.ptr()));
+ check_error();
+ for (unsigned i = 0; i < n; i++) { projs.push_back(func_decl(*this, _projs[i])); }
+ return func_decl(*this, tuple);
+ }
+
+ inline sort context::uninterpreted_sort(char const* name) {
+ Z3_symbol _name = Z3_mk_string_symbol(*this, name);
+ return to_sort(*this, Z3_mk_uninterpreted_sort(*this, _name));
+ }
+ inline sort context::uninterpreted_sort(symbol const& name) {
+ return to_sort(*this, Z3_mk_uninterpreted_sort(*this, name));
+ }
+
+ inline func_decl context::function(symbol const & name, unsigned arity, sort const * domain, sort const & range) {
+ array args(arity);
+ for (unsigned i = 0; i < arity; i++) {
+ check_context(domain[i], range);
+ args[i] = domain[i];
+ }
+ Z3_func_decl f = Z3_mk_func_decl(m_ctx, name, arity, args.ptr(), range);
+ check_error();
+ return func_decl(*this, f);
+ }
+
+ inline func_decl context::function(char const * name, unsigned arity, sort const * domain, sort const & range) {
+ return function(range.ctx().str_symbol(name), arity, domain, range);
+ }
+
+ inline func_decl context::function(symbol const& name, sort_vector const& domain, sort const& range) {
+ array args(domain.size());
+ for (unsigned i = 0; i < domain.size(); i++) {
+ check_context(domain[i], range);
+ args[i] = domain[i];
+ }
+ Z3_func_decl f = Z3_mk_func_decl(m_ctx, name, domain.size(), args.ptr(), range);
+ check_error();
+ return func_decl(*this, f);
+ }
+
+ inline func_decl context::function(char const * name, sort_vector const& domain, sort const& range) {
+ return function(range.ctx().str_symbol(name), domain, range);
+ }
+
+
+ inline func_decl context::function(char const * name, sort const & domain, sort const & range) {
+ check_context(domain, range);
+ Z3_sort args[1] = { domain };
+ Z3_func_decl f = Z3_mk_func_decl(m_ctx, str_symbol(name), 1, args, range);
+ check_error();
+ return func_decl(*this, f);
+ }
+
+ inline func_decl context::function(char const * name, sort const & d1, sort const & d2, sort const & range) {
+ check_context(d1, range); check_context(d2, range);
+ Z3_sort args[2] = { d1, d2 };
+ Z3_func_decl f = Z3_mk_func_decl(m_ctx, str_symbol(name), 2, args, range);
+ check_error();
+ return func_decl(*this, f);
+ }
+
+ inline func_decl context::function(char const * name, sort const & d1, sort const & d2, sort const & d3, sort const & range) {
+ check_context(d1, range); check_context(d2, range); check_context(d3, range);
+ Z3_sort args[3] = { d1, d2, d3 };
+ Z3_func_decl f = Z3_mk_func_decl(m_ctx, str_symbol(name), 3, args, range);
+ check_error();
+ return func_decl(*this, f);
+ }
+
+ inline func_decl context::function(char const * name, sort const & d1, sort const & d2, sort const & d3, sort const & d4, sort const & range) {
+ check_context(d1, range); check_context(d2, range); check_context(d3, range); check_context(d4, range);
+ Z3_sort args[4] = { d1, d2, d3, d4 };
+ Z3_func_decl f = Z3_mk_func_decl(m_ctx, str_symbol(name), 4, args, range);
+ check_error();
+ return func_decl(*this, f);
+ }
+
+ inline func_decl context::function(char const * name, sort const & d1, sort const & d2, sort const & d3, sort const & d4, sort const & d5, sort const & range) {
+ check_context(d1, range); check_context(d2, range); check_context(d3, range); check_context(d4, range); check_context(d5, range);
+ Z3_sort args[5] = { d1, d2, d3, d4, d5 };
+ Z3_func_decl f = Z3_mk_func_decl(m_ctx, str_symbol(name), 5, args, range);
+ check_error();
+ return func_decl(*this, f);
+ }
+
+ inline func_decl context::recfun(symbol const & name, unsigned arity, sort const * domain, sort const & range) {
+ array args(arity);
+ for (unsigned i = 0; i < arity; i++) {
+ check_context(domain[i], range);
+ args[i] = domain[i];
+ }
+ Z3_func_decl f = Z3_mk_rec_func_decl(m_ctx, name, arity, args.ptr(), range);
+ check_error();
+ return func_decl(*this, f);
+
+ }
+
+ inline func_decl context::recfun(char const * name, unsigned arity, sort const * domain, sort const & range) {
+ return recfun(str_symbol(name), arity, domain, range);
+ }
+
+ inline func_decl context::recfun(char const * name, sort const& d1, sort const & range) {
+ return recfun(str_symbol(name), 1, &d1, range);
+ }
+
+ inline func_decl context::recfun(char const * name, sort const& d1, sort const& d2, sort const & range) {
+ sort dom[2] = { d1, d2 };
+ return recfun(str_symbol(name), 2, dom, range);
+ }
+
+ inline void context::recdef(func_decl f, expr_vector const& args, expr const& body) {
+ check_context(f, args); check_context(f, body);
+ array vars(args);
+ Z3_add_rec_def(f.ctx(), f, vars.size(), vars.ptr(), body);
+ }
+
+ inline expr context::constant(symbol const & name, sort const & s) {
+ Z3_ast r = Z3_mk_const(m_ctx, name, s);
+ check_error();
+ return expr(*this, r);
+ }
+ inline expr context::constant(char const * name, sort const & s) { return constant(str_symbol(name), s); }
+ inline expr context::bool_const(char const * name) { return constant(name, bool_sort()); }
+ inline expr context::int_const(char const * name) { return constant(name, int_sort()); }
+ inline expr context::real_const(char const * name) { return constant(name, real_sort()); }
+ inline expr context::bv_const(char const * name, unsigned sz) { return constant(name, bv_sort(sz)); }
+ inline expr context::fpa_const(char const * name, unsigned ebits, unsigned sbits) { return constant(name, fpa_sort(ebits, sbits)); }
+
+ template
+ inline expr context::fpa_const(char const * name) { return constant(name, fpa_sort()); }
+
+ inline expr context::bool_val(bool b) { return b ? expr(*this, Z3_mk_true(m_ctx)) : expr(*this, Z3_mk_false(m_ctx)); }
+
+ inline expr context::int_val(int n) { Z3_ast r = Z3_mk_int(m_ctx, n, int_sort()); check_error(); return expr(*this, r); }
+ inline expr context::int_val(unsigned n) { Z3_ast r = Z3_mk_unsigned_int(m_ctx, n, int_sort()); check_error(); return expr(*this, r); }
+ inline expr context::int_val(int64_t n) { Z3_ast r = Z3_mk_int64(m_ctx, n, int_sort()); check_error(); return expr(*this, r); }
+ inline expr context::int_val(uint64_t n) { Z3_ast r = Z3_mk_unsigned_int64(m_ctx, n, int_sort()); check_error(); return expr(*this, r); }
+ inline expr context::int_val(char const * n) { Z3_ast r = Z3_mk_numeral(m_ctx, n, int_sort()); check_error(); return expr(*this, r); }
+
+ inline expr context::real_val(int n, int d) { Z3_ast r = Z3_mk_real(m_ctx, n, d); check_error(); return expr(*this, r); }
+ inline expr context::real_val(int n) { Z3_ast r = Z3_mk_int(m_ctx, n, real_sort()); check_error(); return expr(*this, r); }
+ inline expr context::real_val(unsigned n) { Z3_ast r = Z3_mk_unsigned_int(m_ctx, n, real_sort()); check_error(); return expr(*this, r); }
+ inline expr context::real_val(int64_t n) { Z3_ast r = Z3_mk_int64(m_ctx, n, real_sort()); check_error(); return expr(*this, r); }
+ inline expr context::real_val(uint64_t n) { Z3_ast r = Z3_mk_unsigned_int64(m_ctx, n, real_sort()); check_error(); return expr(*this, r); }
+ inline expr context::real_val(char const * n) { Z3_ast r = Z3_mk_numeral(m_ctx, n, real_sort()); check_error(); return expr(*this, r); }
+
+ inline expr context::bv_val(int n, unsigned sz) { sort s = bv_sort(sz); Z3_ast r = Z3_mk_int(m_ctx, n, s); check_error(); return expr(*this, r); }
+ inline expr context::bv_val(unsigned n, unsigned sz) { sort s = bv_sort(sz); Z3_ast r = Z3_mk_unsigned_int(m_ctx, n, s); check_error(); return expr(*this, r); }
+ inline expr context::bv_val(int64_t n, unsigned sz) { sort s = bv_sort(sz); Z3_ast r = Z3_mk_int64(m_ctx, n, s); check_error(); return expr(*this, r); }
+ inline expr context::bv_val(uint64_t n, unsigned sz) { sort s = bv_sort(sz); Z3_ast r = Z3_mk_unsigned_int64(m_ctx, n, s); check_error(); return expr(*this, r); }
+ inline expr context::bv_val(char const * n, unsigned sz) { sort s = bv_sort(sz); Z3_ast r = Z3_mk_numeral(m_ctx, n, s); check_error(); return expr(*this, r); }
+ inline expr context::bv_val(unsigned n, bool const* bits) {
+ array _bits(n);
+ for (unsigned i = 0; i < n; ++i) _bits[i] = bits[i] ? 1 : 0;
+ Z3_ast r = Z3_mk_bv_numeral(m_ctx, n, _bits.ptr()); check_error(); return expr(*this, r);
+ }
+
+ inline expr context::fpa_val(double n) { sort s = fpa_sort<64>(); Z3_ast r = Z3_mk_fpa_numeral_double(m_ctx, n, s); check_error(); return expr(*this, r); }
+ inline expr context::fpa_val(float n) { sort s = fpa_sort<32>(); Z3_ast r = Z3_mk_fpa_numeral_float(m_ctx, n, s); check_error(); return expr(*this, r); }
+
+ inline expr context::string_val(char const* s, unsigned n) { Z3_ast r = Z3_mk_lstring(m_ctx, n, s); check_error(); return expr(*this, r); }
+ inline expr context::string_val(char const* s) { Z3_ast r = Z3_mk_string(m_ctx, s); check_error(); return expr(*this, r); }
+ inline expr context::string_val(std::string const& s) { Z3_ast r = Z3_mk_string(m_ctx, s.c_str()); check_error(); return expr(*this, r); }
+
+ inline expr context::num_val(int n, sort const & s) { Z3_ast r = Z3_mk_int(m_ctx, n, s); check_error(); return expr(*this, r); }
+
+ inline expr func_decl::operator()(unsigned n, expr const * args) const {
+ array _args(n);
+ for (unsigned i = 0; i < n; i++) {
+ check_context(*this, args[i]);
+ _args[i] = args[i];
+ }
+ Z3_ast r = Z3_mk_app(ctx(), *this, n, _args.ptr());
+ check_error();
+ return expr(ctx(), r);
+
+ }
+ inline expr func_decl::operator()(expr_vector const& args) const {
+ array _args(args.size());
+ for (unsigned i = 0; i < args.size(); i++) {
+ check_context(*this, args[i]);
+ _args[i] = args[i];
+ }
+ Z3_ast r = Z3_mk_app(ctx(), *this, args.size(), _args.ptr());
+ check_error();
+ return expr(ctx(), r);
+ }
+ inline expr func_decl::operator()() const {
+ Z3_ast r = Z3_mk_app(ctx(), *this, 0, 0);
+ ctx().check_error();
+ return expr(ctx(), r);
+ }
+ inline expr func_decl::operator()(expr const & a) const {
+ check_context(*this, a);
+ Z3_ast args[1] = { a };
+ Z3_ast r = Z3_mk_app(ctx(), *this, 1, args);
+ ctx().check_error();
+ return expr(ctx(), r);
+ }
+ inline expr func_decl::operator()(int a) const {
+ Z3_ast args[1] = { ctx().num_val(a, domain(0)) };
+ Z3_ast r = Z3_mk_app(ctx(), *this, 1, args);
+ ctx().check_error();
+ return expr(ctx(), r);
+ }
+ inline expr func_decl::operator()(expr const & a1, expr const & a2) const {
+ check_context(*this, a1); check_context(*this, a2);
+ Z3_ast args[2] = { a1, a2 };
+ Z3_ast r = Z3_mk_app(ctx(), *this, 2, args);
+ ctx().check_error();
+ return expr(ctx(), r);
+ }
+ inline expr func_decl::operator()(expr const & a1, int a2) const {
+ check_context(*this, a1);
+ Z3_ast args[2] = { a1, ctx().num_val(a2, domain(1)) };
+ Z3_ast r = Z3_mk_app(ctx(), *this, 2, args);
+ ctx().check_error();
+ return expr(ctx(), r);
+ }
+ inline expr func_decl::operator()(int a1, expr const & a2) const {
+ check_context(*this, a2);
+ Z3_ast args[2] = { ctx().num_val(a1, domain(0)), a2 };
+ Z3_ast r = Z3_mk_app(ctx(), *this, 2, args);
+ ctx().check_error();
+ return expr(ctx(), r);
+ }
+ inline expr func_decl::operator()(expr const & a1, expr const & a2, expr const & a3) const {
+ check_context(*this, a1); check_context(*this, a2); check_context(*this, a3);
+ Z3_ast args[3] = { a1, a2, a3 };
+ Z3_ast r = Z3_mk_app(ctx(), *this, 3, args);
+ ctx().check_error();
+ return expr(ctx(), r);
+ }
+ inline expr func_decl::operator()(expr const & a1, expr const & a2, expr const & a3, expr const & a4) const {
+ check_context(*this, a1); check_context(*this, a2); check_context(*this, a3); check_context(*this, a4);
+ Z3_ast args[4] = { a1, a2, a3, a4 };
+ Z3_ast r = Z3_mk_app(ctx(), *this, 4, args);
+ ctx().check_error();
+ return expr(ctx(), r);
+ }
+ inline expr func_decl::operator()(expr const & a1, expr const & a2, expr const & a3, expr const & a4, expr const & a5) const {
+ check_context(*this, a1); check_context(*this, a2); check_context(*this, a3); check_context(*this, a4); check_context(*this, a5);
+ Z3_ast args[5] = { a1, a2, a3, a4, a5 };
+ Z3_ast r = Z3_mk_app(ctx(), *this, 5, args);
+ ctx().check_error();
+ return expr(ctx(), r);
+ }
+
+ inline expr to_real(expr const & a) { Z3_ast r = Z3_mk_int2real(a.ctx(), a); a.check_error(); return expr(a.ctx(), r); }
+
+ inline func_decl function(symbol const & name, unsigned arity, sort const * domain, sort const & range) {
+ return range.ctx().function(name, arity, domain, range);
+ }
+ inline func_decl function(char const * name, unsigned arity, sort const * domain, sort const & range) {
+ return range.ctx().function(name, arity, domain, range);
+ }
+ inline func_decl function(char const * name, sort const & domain, sort const & range) {
+ return range.ctx().function(name, domain, range);
+ }
+ inline func_decl function(char const * name, sort const & d1, sort const & d2, sort const & range) {
+ return range.ctx().function(name, d1, d2, range);
+ }
+ inline func_decl function(char const * name, sort const & d1, sort const & d2, sort const & d3, sort const & range) {
+ return range.ctx().function(name, d1, d2, d3, range);
+ }
+ inline func_decl function(char const * name, sort const & d1, sort const & d2, sort const & d3, sort const & d4, sort const & range) {
+ return range.ctx().function(name, d1, d2, d3, d4, range);
+ }
+ inline func_decl function(char const * name, sort const & d1, sort const & d2, sort const & d3, sort const & d4, sort const & d5, sort const & range) {
+ return range.ctx().function(name, d1, d2, d3, d4, d5, range);
+ }
+ inline func_decl function(char const* name, sort_vector const& domain, sort const& range) {
+ return range.ctx().function(name, domain, range);
+ }
+ inline func_decl function(std::string const& name, sort_vector const& domain, sort const& range) {
+ return range.ctx().function(name.c_str(), domain, range);
+ }
+
+ inline func_decl recfun(symbol const & name, unsigned arity, sort const * domain, sort const & range) {
+ return range.ctx().recfun(name, arity, domain, range);
+ }
+ inline func_decl recfun(char const * name, unsigned arity, sort const * domain, sort const & range) {
+ return range.ctx().recfun(name, arity, domain, range);
+ }
+ inline func_decl recfun(char const * name, sort const& d1, sort const & range) {
+ return range.ctx().recfun(name, d1, range);
+ }
+ inline func_decl recfun(char const * name, sort const& d1, sort const& d2, sort const & range) {
+ return range.ctx().recfun(name, d1, d2, range);
+ }
+
+ inline expr select(expr const & a, expr const & i) {
+ check_context(a, i);
+ Z3_ast r = Z3_mk_select(a.ctx(), a, i);
+ a.check_error();
+ return expr(a.ctx(), r);
+ }
+ inline expr select(expr const & a, int i) {
+ return select(a, a.ctx().num_val(i, a.get_sort().array_domain()));
+ }
+ inline expr select(expr const & a, expr_vector const & i) {
+ check_context(a, i);
+ array idxs(i);
+ Z3_ast r = Z3_mk_select_n(a.ctx(), a, idxs.size(), idxs.ptr());
+ a.check_error();
+ return expr(a.ctx(), r);
+ }
+
+ inline expr store(expr const & a, expr const & i, expr const & v) {
+ check_context(a, i); check_context(a, v);
+ Z3_ast r = Z3_mk_store(a.ctx(), a, i, v);
+ a.check_error();
+ return expr(a.ctx(), r);
+ }
+
+ inline expr store(expr const & a, int i, expr const & v) { return store(a, a.ctx().num_val(i, a.get_sort().array_domain()), v); }
+ inline expr store(expr const & a, expr i, int v) { return store(a, i, a.ctx().num_val(v, a.get_sort().array_range())); }
+ inline expr store(expr const & a, int i, int v) {
+ return store(a, a.ctx().num_val(i, a.get_sort().array_domain()), a.ctx().num_val(v, a.get_sort().array_range()));
+ }
+ inline expr store(expr const & a, expr_vector const & i, expr const & v) {
+ check_context(a, i); check_context(a, v);
+ array idxs(i);
+ Z3_ast r = Z3_mk_store_n(a.ctx(), a, idxs.size(), idxs.ptr(), v);
+ a.check_error();
+ return expr(a.ctx(), r);
+ }
+
+ inline expr as_array(func_decl & f) {
+ Z3_ast r = Z3_mk_as_array(f.ctx(), f);
+ f.check_error();
+ return expr(f.ctx(), r);
+ }
+
+#define MK_EXPR1(_fn, _arg) \
+ Z3_ast r = _fn(_arg.ctx(), _arg); \
+ _arg.check_error(); \
+ return expr(_arg.ctx(), r);
+
+#define MK_EXPR2(_fn, _arg1, _arg2) \
+ check_context(_arg1, _arg2); \
+ Z3_ast r = _fn(_arg1.ctx(), _arg1, _arg2); \
+ _arg1.check_error(); \
+ return expr(_arg1.ctx(), r);
+
+ inline expr const_array(sort const & d, expr const & v) {
+ MK_EXPR2(Z3_mk_const_array, d, v);
+ }
+
+ inline expr empty_set(sort const& s) {
+ MK_EXPR1(Z3_mk_empty_set, s);
+ }
+
+ inline expr full_set(sort const& s) {
+ MK_EXPR1(Z3_mk_full_set, s);
+ }
+
+ inline expr set_add(expr const& s, expr const& e) {
+ MK_EXPR2(Z3_mk_set_add, s, e);
+ }
+
+ inline expr set_del(expr const& s, expr const& e) {
+ MK_EXPR2(Z3_mk_set_del, s, e);
+ }
+
+ inline expr set_union(expr const& a, expr const& b) {
+ check_context(a, b);
+ Z3_ast es[2] = { a, b };
+ Z3_ast r = Z3_mk_set_union(a.ctx(), 2, es);
+ a.check_error();
+ return expr(a.ctx(), r);
+ }
+
+ inline expr set_intersect(expr const& a, expr const& b) {
+ check_context(a, b);
+ Z3_ast es[2] = { a, b };
+ Z3_ast r = Z3_mk_set_intersect(a.ctx(), 2, es);
+ a.check_error();
+ return expr(a.ctx(), r);
+ }
+
+ inline expr set_difference(expr const& a, expr const& b) {
+ MK_EXPR2(Z3_mk_set_difference, a, b);
+ }
+
+ inline expr set_complement(expr const& a) {
+ MK_EXPR1(Z3_mk_set_complement, a);
+ }
+
+ inline expr set_member(expr const& s, expr const& e) {
+ MK_EXPR2(Z3_mk_set_member, s, e);
+ }
+
+ inline expr set_subset(expr const& a, expr const& b) {
+ MK_EXPR2(Z3_mk_set_subset, a, b);
+ }
+
+ // sequence and regular expression operations.
+ // union is +
+ // concat is overloaded to handle sequences and regular expressions
+
+ inline expr empty(sort const& s) {
+ Z3_ast r = Z3_mk_seq_empty(s.ctx(), s);
+ s.check_error();
+ return expr(s.ctx(), r);
+ }
+ inline expr suffixof(expr const& a, expr const& b) {
+ check_context(a, b);
+ Z3_ast r = Z3_mk_seq_suffix(a.ctx(), a, b);
+ a.check_error();
+ return expr(a.ctx(), r);
+ }
+ inline expr prefixof(expr const& a, expr const& b) {
+ check_context(a, b);
+ Z3_ast r = Z3_mk_seq_prefix(a.ctx(), a, b);
+ a.check_error();
+ return expr(a.ctx(), r);
+ }
+ inline expr indexof(expr const& s, expr const& substr, expr const& offset) {
+ check_context(s, substr); check_context(s, offset);
+ Z3_ast r = Z3_mk_seq_index(s.ctx(), s, substr, offset);
+ s.check_error();
+ return expr(s.ctx(), r);
+ }
+ inline expr last_indexof(expr const& s, expr const& substr) {
+ check_context(s, substr);
+ Z3_ast r = Z3_mk_seq_last_index(s.ctx(), s, substr);
+ s.check_error();
+ return expr(s.ctx(), r);
+ }
+ inline expr to_re(expr const& s) {
+ MK_EXPR1(Z3_mk_seq_to_re, s);
+ }
+ inline expr in_re(expr const& s, expr const& re) {
+ MK_EXPR2(Z3_mk_seq_in_re, s, re);
+ }
+ inline expr plus(expr const& re) {
+ MK_EXPR1(Z3_mk_re_plus, re);
+ }
+ inline expr option(expr const& re) {
+ MK_EXPR1(Z3_mk_re_option, re);
+ }
+ inline expr star(expr const& re) {
+ MK_EXPR1(Z3_mk_re_star, re);
+ }
+ inline expr re_empty(sort const& s) {
+ Z3_ast r = Z3_mk_re_empty(s.ctx(), s);
+ s.check_error();
+ return expr(s.ctx(), r);
+ }
+ inline expr re_full(sort const& s) {
+ Z3_ast r = Z3_mk_re_full(s.ctx(), s);
+ s.check_error();
+ return expr(s.ctx(), r);
+ }
+ inline expr re_intersect(expr_vector const& args) {
+ assert(args.size() > 0);
+ context& ctx = args[0].ctx();
+ array _args(args);
+ Z3_ast r = Z3_mk_re_intersect(ctx, _args.size(), _args.ptr());
+ ctx.check_error();
+ return expr(ctx, r);
+ }
+ inline expr re_complement(expr const& a) {
+ MK_EXPR1(Z3_mk_re_complement, a);
+ }
+ inline expr range(expr const& lo, expr const& hi) {
+ check_context(lo, hi);
+ Z3_ast r = Z3_mk_re_range(lo.ctx(), lo, hi);
+ lo.check_error();
+ return expr(lo.ctx(), r);
+ }
+
+
+
+
+
+ inline expr_vector context::parse_string(char const* s) {
+ Z3_ast_vector r = Z3_parse_smtlib2_string(*this, s, 0, 0, 0, 0, 0, 0);
+ check_error();
+ return expr_vector(*this, r);
+
+ }
+ inline expr_vector context::parse_file(char const* s) {
+ Z3_ast_vector r = Z3_parse_smtlib2_file(*this, s, 0, 0, 0, 0, 0, 0);
+ check_error();
+ return expr_vector(*this, r);
+ }
+
+ inline expr_vector context::parse_string(char const* s, sort_vector const& sorts, func_decl_vector const& decls) {
+ array sort_names(sorts.size());
+ array decl_names(decls.size());
+ array sorts1(sorts);
+ array decls1(decls);
+ for (unsigned i = 0; i < sorts.size(); ++i) {
+ sort_names[i] = sorts[i].name();
+ }
+ for (unsigned i = 0; i < decls.size(); ++i) {
+ decl_names[i] = decls[i].name();
+ }
+
+ Z3_ast_vector r = Z3_parse_smtlib2_string(*this, s, sorts.size(), sort_names.ptr(), sorts1.ptr(), decls.size(), decl_names.ptr(), decls1.ptr());
+ check_error();
+ return expr_vector(*this, r);
+ }
+
+ inline expr_vector context::parse_file(char const* s, sort_vector const& sorts, func_decl_vector const& decls) {
+ array sort_names(sorts.size());
+ array decl_names(decls.size());
+ array sorts1(sorts);
+ array decls1(decls);
+ for (unsigned i = 0; i < sorts.size(); ++i) {
+ sort_names[i] = sorts[i].name();
+ }
+ for (unsigned i = 0; i < decls.size(); ++i) {
+ decl_names[i] = decls[i].name();
+ }
+ Z3_ast_vector r = Z3_parse_smtlib2_file(*this, s, sorts.size(), sort_names.ptr(), sorts1.ptr(), decls.size(), decl_names.ptr(), decls1.ptr());
+ check_error();
+ return expr_vector(*this, r);
+ }
+
+
+ inline expr expr::substitute(expr_vector const& src, expr_vector const& dst) {
+ assert(src.size() == dst.size());
+ array _src(src.size());
+ array _dst(dst.size());
+ for (unsigned i = 0; i < src.size(); ++i) {
+ _src[i] = src[i];
+ _dst[i] = dst[i];
+ }
+ Z3_ast r = Z3_substitute(ctx(), m_ast, src.size(), _src.ptr(), _dst.ptr());
+ check_error();
+ return expr(ctx(), r);
+ }
+
+ inline expr expr::substitute(expr_vector const& dst) {
+ array _dst(dst.size());
+ for (unsigned i = 0; i < dst.size(); ++i) {
+ _dst[i] = dst[i];
+ }
+ Z3_ast r = Z3_substitute_vars(ctx(), m_ast, dst.size(), _dst.ptr());
+ check_error();
+ return expr(ctx(), r);
+ }
+
+
+ class user_propagator_base {
+
+ typedef std::function fixed_eh_t;
+ typedef std::function final_eh_t;
+ typedef std::function eq_eh_t;
+
+ final_eh_t m_final_eh;
+ eq_eh_t m_eq_eh;
+ fixed_eh_t m_fixed_eh;
+ solver* s;
+ Z3_context c;
+ Z3_solver_callback cb { nullptr };
+
+ Z3_context ctx() {
+ return c ? c : (Z3_context)s->ctx();
+ }
+
+ struct scoped_cb {
+ user_propagator_base* p;
+ scoped_cb(void* _p, Z3_solver_callback cb):p(static_cast(_p)) {
+ p->cb = cb;
+ }
+ ~scoped_cb() {
+ p->cb = nullptr;
+ }
+ };
+
+ static void push_eh(void* p) {
+ static_cast(p)->push();
+ }
+
+ static void pop_eh(void* p, unsigned num_scopes) {
+ static_cast(p)->pop(num_scopes);
+ }
+
+ static void* fresh_eh(void* p, Z3_context ctx) {
+ return static_cast(p)->fresh(ctx);
+ }
+
+ static void fixed_eh(void* _p, Z3_solver_callback cb, unsigned id, Z3_ast _value) {
+ user_propagator_base* p = static_cast(_p);
+ scoped_cb _cb(p, cb);
+ scoped_context ctx(p->ctx());
+ expr value(ctx(), _value);
+ static_cast(p)->m_fixed_eh(id, value);
+ }
+
+ static void eq_eh(void* p, Z3_solver_callback cb, unsigned x, unsigned y) {
+ scoped_cb _cb(p, cb);
+ static_cast(p)->m_eq_eh(x, y);
+ }
+
+ static void final_eh(void* p, Z3_solver_callback cb) {
+ scoped_cb _cb(p, cb);
+ static_cast(p)->m_final_eh();
+ }
+
+
+ public:
+ user_propagator_base(solver* s): s(s), c(nullptr) {}
+ user_propagator_base(Z3_context c): s(nullptr), c(c) {}
+
+ virtual void push() = 0;
+ virtual void pop(unsigned num_scopes) = 0;
+
+ /**
+ \brief user_propagators created using \c fresh() are created during
+ search and their lifetimes are restricted to search time. They should
+ be garbage collected by the propagator used to invoke \c fresh().
+ The life-time of the Z3_context object can only be assumed valid during
+ callbacks, such as \c fixed(), which contains expressions based on the
+ context.
+ */
+ virtual user_propagator_base* fresh(Z3_context ctx) = 0;
+
+ /**
+ \brief register callbacks.
+ Callbacks can only be registered with user_propagators
+ that were created using a solver.
+ */
+
+ void fixed(fixed_eh_t& f) {
+ assert(s);
+ m_fixed_eh = f;
+ Z3_solver_propagate_fixed(ctx(), *s, fixed_eh);
+ }
+
+ void eq(eq_eh_t& f) {
+ assert(s);
+ m_eq_eh = f;
+ Z3_solver_propagate_eq(ctx(), *s, eq_eh);
+ }
+
+ /**
+ \brief register a callback on final-check.
+ During the final check stage, all propagations have been processed.
+ This is an opportunity for the user-propagator to delay some analysis
+ that could be expensive to perform incrementally. It is also an opportunity
+ for the propagator to implement branch and bound optimization.
+ */
+
+ void final(final_eh_t& f) {
+ assert(s);
+ m_final_eh = f;
+ Z3_solver_propagate_final(ctx(), *s, final_eh);
+ }
+
+ /**
+ \brief tracks \c e by a unique identifier that is returned by the call.
+
+ If the \c fixed() callback is registered and if \c e is a Boolean or Bit-vector,
+ the \c fixed() callback gets invoked when \c e is bound to a value.
+ If the \c eq() callback is registered, then equalities between registered expressions
+ are reported.
+ A consumer can use the \c propagate or \c conflict functions to invoke propagations
+ or conflicts as a consequence of these callbacks. These functions take a list of identifiers
+ for registered expressions that have been fixed. The list of identifiers must correspond to
+ already fixed values. Similarly, a list of propagated equalities can be supplied. These must
+ correspond to equalities that have been registered during a callback.
+ */
+
+ unsigned add(expr const& e) {
+ assert(s);
+ return Z3_solver_propagate_register(ctx(), *s, e);
+ }
+
+ void conflict(unsigned num_fixed, unsigned const* fixed) {
+ assert(cb);
+ scoped_context _ctx(ctx());
+ expr conseq = _ctx().bool_val(false);
+ Z3_solver_propagate_consequence(ctx(), cb, num_fixed, fixed, 0, nullptr, nullptr, conseq);
+ }
+
+ void propagate(unsigned num_fixed, unsigned const* fixed, expr const& conseq) {
+ assert(cb);
+ assert(conseq.ctx() == ctx());
+ Z3_solver_propagate_consequence(ctx(), cb, num_fixed, fixed, 0, nullptr, nullptr, conseq);
+ }
+
+ void propagate(unsigned num_fixed, unsigned const* fixed,
+ unsigned num_eqs, unsigned const* lhs, unsigned const * rhs,
+ expr const& conseq) {
+ assert(cb);
+ assert(conseq.ctx() == ctx());
+ Z3_solver_propagate_consequence(ctx(), cb, num_fixed, fixed, num_eqs, lhs, rhs, conseq);
+ }
+ };
+
+
+
+
+}
+
+/*@}*/
+/*@}*/
+#undef Z3_THROW
+
diff --git a/z3-4.8.9-x64-ubuntu-16.04/include/z3.h b/z3-4.8.9-x64-ubuntu-16.04/include/z3.h
new file mode 100644
index 0000000..2ad00d8
--- /dev/null
+++ b/z3-4.8.9-x64-ubuntu-16.04/include/z3.h
@@ -0,0 +1,36 @@
+/*++
+Copyright (c) 2007 Microsoft Corporation
+
+Module Name:
+
+ z3.h
+
+Abstract:
+
+ Z3 API.
+
+Author:
+
+ Nikolaj Bjorner (nbjorner)
+ Leonardo de Moura (leonardo) 2007-06-8
+
+Notes:
+
+--*/
+
+#pragma once
+
+#include
+#include
+#include
+#include "z3_macros.h"
+#include "z3_api.h"
+#include "z3_ast_containers.h"
+#include "z3_algebraic.h"
+#include "z3_polynomial.h"
+#include "z3_rcf.h"
+#include "z3_fixedpoint.h"
+#include "z3_optimization.h"
+#include "z3_fpa.h"
+#include "z3_spacer.h"
+
diff --git a/z3-4.8.9-x64-ubuntu-16.04/include/z3_algebraic.h b/z3-4.8.9-x64-ubuntu-16.04/include/z3_algebraic.h
new file mode 100644
index 0000000..952692e
--- /dev/null
+++ b/z3-4.8.9-x64-ubuntu-16.04/include/z3_algebraic.h
@@ -0,0 +1,249 @@
+/*++
+Copyright (c) 2012 Microsoft Corporation
+
+Module Name:
+
+ z3_algebraic.h
+
+Abstract:
+
+ Additional APIs for handling Z3 algebraic numbers encoded as
+ Z3_ASTs
+
+Author:
+
+ Leonardo de Moura (leonardo) 2012-12-07
+
+Notes:
+
+--*/
+
+#pragma once
+
+#ifdef __cplusplus
+extern "C" {
+#endif // __cplusplus
+
+ /** \defgroup capi C API */
+ /*@{*/
+
+ /** @name Algebraic Numbers */
+ /*@{*/
+ /**
+ \brief Return \c true if \c a can be used as value in the Z3 real algebraic
+ number package.
+
+ def_API('Z3_algebraic_is_value', BOOL, (_in(CONTEXT), _in(AST)))
+ */
+ bool Z3_API Z3_algebraic_is_value(Z3_context c, Z3_ast a);
+
+ /**
+ \brief Return \c true if \c a is positive, and \c false otherwise.
+
+ \pre Z3_algebraic_is_value(c, a)
+
+ def_API('Z3_algebraic_is_pos', BOOL, (_in(CONTEXT), _in(AST)))
+ */
+ bool Z3_API Z3_algebraic_is_pos(Z3_context c, Z3_ast a);
+
+ /**
+ \brief Return \c true if \c a is negative, and \c false otherwise.
+
+ \pre Z3_algebraic_is_value(c, a)
+
+ def_API('Z3_algebraic_is_neg', BOOL, (_in(CONTEXT), _in(AST)))
+ */
+ bool Z3_API Z3_algebraic_is_neg(Z3_context c, Z3_ast a);
+
+ /**
+ \brief Return \c true if \c a is zero, and \c false otherwise.
+
+ \pre Z3_algebraic_is_value(c, a)
+
+ def_API('Z3_algebraic_is_zero', BOOL, (_in(CONTEXT), _in(AST)))
+ */
+ bool Z3_API Z3_algebraic_is_zero(Z3_context c, Z3_ast a);
+
+ /**
+ \brief Return 1 if \c a is positive, 0 if \c a is zero, and -1 if \c a is negative.
+
+ \pre Z3_algebraic_is_value(c, a)
+
+ def_API('Z3_algebraic_sign', INT, (_in(CONTEXT), _in(AST)))
+ */
+ int Z3_API Z3_algebraic_sign(Z3_context c, Z3_ast a);
+
+ /**
+ \brief Return the value a + b.
+
+ \pre Z3_algebraic_is_value(c, a)
+ \pre Z3_algebraic_is_value(c, b)
+ \post Z3_algebraic_is_value(c, result)
+
+ def_API('Z3_algebraic_add', AST, (_in(CONTEXT), _in(AST), _in(AST)))
+ */
+ Z3_ast Z3_API Z3_algebraic_add(Z3_context c, Z3_ast a, Z3_ast b);
+
+ /**
+ \brief Return the value a - b.
+
+ \pre Z3_algebraic_is_value(c, a)
+ \pre Z3_algebraic_is_value(c, b)
+ \post Z3_algebraic_is_value(c, result)
+
+ def_API('Z3_algebraic_sub', AST, (_in(CONTEXT), _in(AST), _in(AST)))
+ */
+ Z3_ast Z3_API Z3_algebraic_sub(Z3_context c, Z3_ast a, Z3_ast b);
+
+ /**
+ \brief Return the value a * b.
+
+ \pre Z3_algebraic_is_value(c, a)
+ \pre Z3_algebraic_is_value(c, b)
+ \post Z3_algebraic_is_value(c, result)
+
+ def_API('Z3_algebraic_mul', AST, (_in(CONTEXT), _in(AST), _in(AST)))
+ */
+ Z3_ast Z3_API Z3_algebraic_mul(Z3_context c, Z3_ast a, Z3_ast b);
+
+ /**
+ \brief Return the value a / b.
+
+ \pre Z3_algebraic_is_value(c, a)
+ \pre Z3_algebraic_is_value(c, b)
+ \pre !Z3_algebraic_is_zero(c, b)
+ \post Z3_algebraic_is_value(c, result)
+
+ def_API('Z3_algebraic_div', AST, (_in(CONTEXT), _in(AST), _in(AST)))
+ */
+ Z3_ast Z3_API Z3_algebraic_div(Z3_context c, Z3_ast a, Z3_ast b);
+
+ /**
+ \brief Return the a^(1/k)
+
+ \pre Z3_algebraic_is_value(c, a)
+ \pre k is even => !Z3_algebraic_is_neg(c, a)
+ \post Z3_algebraic_is_value(c, result)
+
+ def_API('Z3_algebraic_root', AST, (_in(CONTEXT), _in(AST), _in(UINT)))
+ */
+ Z3_ast Z3_API Z3_algebraic_root(Z3_context c, Z3_ast a, unsigned k);
+
+ /**
+ \brief Return the a^k
+
+ \pre Z3_algebraic_is_value(c, a)
+ \post Z3_algebraic_is_value(c, result)
+
+ def_API('Z3_algebraic_power', AST, (_in(CONTEXT), _in(AST), _in(UINT)))
+ */
+ Z3_ast Z3_API Z3_algebraic_power(Z3_context c, Z3_ast a, unsigned k);
+
+ /**
+ \brief Return \c true if a < b, and \c false otherwise.
+
+ \pre Z3_algebraic_is_value(c, a)
+ \pre Z3_algebraic_is_value(c, b)
+
+ def_API('Z3_algebraic_lt', BOOL, (_in(CONTEXT), _in(AST), _in(AST)))
+ */
+ bool Z3_API Z3_algebraic_lt(Z3_context c, Z3_ast a, Z3_ast b);
+
+ /**
+ \brief Return \c true if a > b, and \c false otherwise.
+
+ \pre Z3_algebraic_is_value(c, a)
+ \pre Z3_algebraic_is_value(c, b)
+
+ def_API('Z3_algebraic_gt', BOOL, (_in(CONTEXT), _in(AST), _in(AST)))
+ */
+ bool Z3_API Z3_algebraic_gt(Z3_context c, Z3_ast a, Z3_ast b);
+
+ /**
+ \brief Return \c true if a <= b, and \c false otherwise.
+
+ \pre Z3_algebraic_is_value(c, a)
+ \pre Z3_algebraic_is_value(c, b)
+
+ def_API('Z3_algebraic_le', BOOL, (_in(CONTEXT), _in(AST), _in(AST)))
+ */
+ bool Z3_API Z3_algebraic_le(Z3_context c, Z3_ast a, Z3_ast b);
+
+ /**
+ \brief Return \c true if a >= b, and \c false otherwise.
+
+ \pre Z3_algebraic_is_value(c, a)
+ \pre Z3_algebraic_is_value(c, b)
+
+ def_API('Z3_algebraic_ge', BOOL, (_in(CONTEXT), _in(AST), _in(AST)))
+ */
+ bool Z3_API Z3_algebraic_ge(Z3_context c, Z3_ast a, Z3_ast b);
+
+ /**
+ \brief Return \c true if a == b, and \c false otherwise.
+
+ \pre Z3_algebraic_is_value(c, a)
+ \pre Z3_algebraic_is_value(c, b)
+
+ def_API('Z3_algebraic_eq', BOOL, (_in(CONTEXT), _in(AST), _in(AST)))
+ */
+ bool Z3_API Z3_algebraic_eq(Z3_context c, Z3_ast a, Z3_ast b);
+
+ /**
+ \brief Return \c true if a != b, and \c false otherwise.
+
+ \pre Z3_algebraic_is_value(c, a)
+ \pre Z3_algebraic_is_value(c, b)
+
+ def_API('Z3_algebraic_neq', BOOL, (_in(CONTEXT), _in(AST), _in(AST)))
+ */
+ bool Z3_API Z3_algebraic_neq(Z3_context c, Z3_ast a, Z3_ast b);
+
+ /**
+ \brief Given a multivariate polynomial p(x_0, ..., x_{n-1}, x_n), returns the
+ roots of the univariate polynomial p(a[0], ..., a[n-1], x_n).
+
+ \pre p is a Z3 expression that contains only arithmetic terms and free variables.
+ \pre forall i in [0, n) Z3_algebraic_is_value(c, a[i])
+ \post forall r in result Z3_algebraic_is_value(c, result)
+
+ def_API('Z3_algebraic_roots', AST_VECTOR, (_in(CONTEXT), _in(AST), _in(UINT), _in_array(2, AST)))
+ */
+ Z3_ast_vector Z3_API Z3_algebraic_roots(Z3_context c, Z3_ast p, unsigned n, Z3_ast a[]);
+
+ /**
+ \brief Given a multivariate polynomial p(x_0, ..., x_{n-1}), return the
+ sign of p(a[0], ..., a[n-1]).
+
+ \pre p is a Z3 expression that contains only arithmetic terms and free variables.
+ \pre forall i in [0, n) Z3_algebraic_is_value(c, a[i])
+
+ def_API('Z3_algebraic_eval', INT, (_in(CONTEXT), _in(AST), _in(UINT), _in_array(2, AST)))
+ */
+ int Z3_API Z3_algebraic_eval(Z3_context c, Z3_ast p, unsigned n, Z3_ast a[]);
+
+ /**
+ \brief Return the coefficients of the defining polynomial.
+
+ \pre Z3_algebraic_is_value(c, a)
+
+ def_API('Z3_algebraic_get_poly', AST_VECTOR, (_in(CONTEXT), _in(AST)))
+ */
+ Z3_ast_vector Z3_API Z3_algebraic_get_poly(Z3_context c, Z3_ast a);
+
+ /**
+ \brief Return which root of the polynomial the algebraic number represents.
+
+ \pre Z3_algebraic_is_value(c, a)
+
+ def_API('Z3_algebraic_get_i', UINT, (_in(CONTEXT), _in(AST)))
+ */
+ unsigned Z3_API Z3_algebraic_get_i(Z3_context c, Z3_ast a);
+
+ /*@}*/
+ /*@}*/
+
+#ifdef __cplusplus
+}
+#endif // __cplusplus
+
diff --git a/z3-4.8.9-x64-ubuntu-16.04/include/z3_api.h b/z3-4.8.9-x64-ubuntu-16.04/include/z3_api.h
new file mode 100644
index 0000000..4311a0b
--- /dev/null
+++ b/z3-4.8.9-x64-ubuntu-16.04/include/z3_api.h
@@ -0,0 +1,6846 @@
+/*++
+ Copyright (c) 2015 Microsoft Corporation
+--*/
+
+#pragma once
+
+DEFINE_TYPE(Z3_symbol);
+DEFINE_TYPE(Z3_literals);
+DEFINE_TYPE(Z3_config);
+DEFINE_TYPE(Z3_context);
+DEFINE_TYPE(Z3_sort);
+#define Z3_sort_opt Z3_sort
+DEFINE_TYPE(Z3_func_decl);
+DEFINE_TYPE(Z3_ast);
+#define Z3_ast_opt Z3_ast
+DEFINE_TYPE(Z3_app);
+DEFINE_TYPE(Z3_pattern);
+DEFINE_TYPE(Z3_model);
+DEFINE_TYPE(Z3_constructor);
+DEFINE_TYPE(Z3_constructor_list);
+DEFINE_TYPE(Z3_params);
+DEFINE_TYPE(Z3_param_descrs);
+DEFINE_TYPE(Z3_goal);
+DEFINE_TYPE(Z3_tactic);
+DEFINE_TYPE(Z3_probe);
+DEFINE_TYPE(Z3_stats);
+DEFINE_TYPE(Z3_solver);
+DEFINE_TYPE(Z3_solver_callback);
+DEFINE_TYPE(Z3_ast_vector);
+DEFINE_TYPE(Z3_ast_map);
+DEFINE_TYPE(Z3_apply_result);
+DEFINE_TYPE(Z3_func_interp);
+#define Z3_func_interp_opt Z3_func_interp
+DEFINE_TYPE(Z3_func_entry);
+DEFINE_TYPE(Z3_fixedpoint);
+DEFINE_TYPE(Z3_optimize);
+DEFINE_TYPE(Z3_rcf_num);
+
+/** \defgroup capi C API */
+/*@{*/
+
+/** @name Types
+ @{
+
+ Most of the types in the C API are opaque pointers.
+
+ - \c Z3_config: configuration object used to initialize logical contexts.
+ - \c Z3_context: manager of all other Z3 objects, global configuration options, etc.
+ - \c Z3_symbol: Lisp-like symbol used to name types, constants, and functions. A symbol can be created using string or integers.
+ - \c Z3_ast: abstract syntax tree node. That is, the data-structure used in Z3 to represent terms, formulas and types.
+ - \c Z3_sort: kind of AST used to represent types.
+ - \c Z3_func_decl: kind of AST used to represent function symbols.
+ - \c Z3_app: kind of AST used to represent function applications.
+ - \c Z3_pattern: kind of AST used to represent pattern and multi-patterns used to guide quantifier instantiation.
+ - \c Z3_constructor: type constructor for a (recursive) datatype.
+ - \c Z3_constructor_list: list of constructors for a (recursive) datatype.
+ - \c Z3_params: parameter set used to configure many components such as: simplifiers, tactics, solvers, etc.
+ - \c Z3_param_descrs: provides a collection of parameter names, their types, default values and documentation strings. Solvers, tactics, and other objects accept different collection of parameters.
+ - \c Z3_model: model for the constraints asserted into the logical context.
+ - \c Z3_func_interp: interpretation of a function in a model.
+ - \c Z3_func_entry: representation of the value of a \c Z3_func_interp at a particular point.
+ - \c Z3_fixedpoint: context for the recursive predicate solver.
+ - \c Z3_optimize: context for solving optimization queries.
+ - \c Z3_ast_vector: vector of \c Z3_ast objects.
+ - \c Z3_ast_map: mapping from \c Z3_ast to \c Z3_ast objects.
+ - \c Z3_goal: set of formulas that can be solved and/or transformed using tactics and solvers.
+ - \c Z3_tactic: basic building block for creating custom solvers for specific problem domains.
+ - \c Z3_probe: function/predicate used to inspect a goal and collect information that may be used to decide which solver and/or preprocessing step will be used.
+ - \c Z3_apply_result: collection of subgoals resulting from applying of a tactic to a goal.
+ - \c Z3_solver: (incremental) solver, possibly specialized by a particular tactic or logic.
+ - \c Z3_stats: statistical data for a solver.
+*/
+
+/**
+ \brief Z3 Boolean type. It is just an alias for \c bool.
+*/
+typedef bool Z3_bool;
+
+/**
+ \brief Z3 string type. It is just an alias for \ccode{const char *}.
+*/
+typedef const char * Z3_string;
+typedef char const* Z3_char_ptr;
+typedef Z3_string * Z3_string_ptr;
+
+/**
+ \brief True value. It is just an alias for \c true.
+*/
+#define Z3_TRUE true
+
+/**
+ \brief False value. It is just an alias for \c false.
+*/
+#define Z3_FALSE false
+
+/**
+ \brief Lifted Boolean type: \c false, \c undefined, \c true.
+*/
+typedef enum
+{
+ Z3_L_FALSE = -1,
+ Z3_L_UNDEF,
+ Z3_L_TRUE
+} Z3_lbool;
+
+/**
+ \brief The different kinds of symbol.
+ In Z3, a symbol can be represented using integers and strings (See #Z3_get_symbol_kind).
+
+ \sa Z3_mk_int_symbol
+ \sa Z3_mk_string_symbol
+*/
+typedef enum
+{
+ Z3_INT_SYMBOL,
+ Z3_STRING_SYMBOL
+} Z3_symbol_kind;
+
+
+/**
+ \brief The different kinds of parameters that can be associated with function symbols.
+ \sa Z3_get_decl_num_parameters
+ \sa Z3_get_decl_parameter_kind
+
+ - Z3_PARAMETER_INT is used for integer parameters.
+ - Z3_PARAMETER_DOUBLE is used for double parameters.
+ - Z3_PARAMETER_RATIONAL is used for parameters that are rational numbers.
+ - Z3_PARAMETER_SYMBOL is used for parameters that are symbols.
+ - Z3_PARAMETER_SORT is used for sort parameters.
+ - Z3_PARAMETER_AST is used for expression parameters.
+ - Z3_PARAMETER_FUNC_DECL is used for function declaration parameters.
+*/
+typedef enum
+{
+ Z3_PARAMETER_INT,
+ Z3_PARAMETER_DOUBLE,
+ Z3_PARAMETER_RATIONAL,
+ Z3_PARAMETER_SYMBOL,
+ Z3_PARAMETER_SORT,
+ Z3_PARAMETER_AST,
+ Z3_PARAMETER_FUNC_DECL
+} Z3_parameter_kind;
+
+/**
+ \brief The different kinds of Z3 types (See #Z3_get_sort_kind).
+*/
+typedef enum
+{
+ Z3_UNINTERPRETED_SORT,
+ Z3_BOOL_SORT,
+ Z3_INT_SORT,
+ Z3_REAL_SORT,
+ Z3_BV_SORT,
+ Z3_ARRAY_SORT,
+ Z3_DATATYPE_SORT,
+ Z3_RELATION_SORT,
+ Z3_FINITE_DOMAIN_SORT,
+ Z3_FLOATING_POINT_SORT,
+ Z3_ROUNDING_MODE_SORT,
+ Z3_SEQ_SORT,
+ Z3_RE_SORT,
+ Z3_UNKNOWN_SORT = 1000
+} Z3_sort_kind;
+
+/**
+ \brief
+ The different kinds of Z3 AST (abstract syntax trees). That is, terms, formulas and types.
+
+ - Z3_APP_AST: constant and applications
+ - Z3_NUMERAL_AST: numeral constants
+ - Z3_VAR_AST: bound variables
+ - Z3_QUANTIFIER_AST: quantifiers
+ - Z3_SORT_AST: sort
+ - Z3_FUNC_DECL_AST: function declaration
+ - Z3_UNKNOWN_AST: internal
+*/
+typedef enum
+{
+ Z3_NUMERAL_AST,
+ Z3_APP_AST,
+ Z3_VAR_AST,
+ Z3_QUANTIFIER_AST,
+ Z3_SORT_AST,
+ Z3_FUNC_DECL_AST,
+ Z3_UNKNOWN_AST = 1000
+} Z3_ast_kind;
+
+/**
+ \brief The different kinds of interpreted function kinds.
+
+ - Z3_OP_TRUE The constant true.
+
+ - Z3_OP_FALSE The constant false.
+
+ - Z3_OP_EQ The equality predicate.
+
+ - Z3_OP_DISTINCT The n-ary distinct predicate (every argument is mutually distinct).
+
+ - Z3_OP_ITE The ternary if-then-else term.
+
+ - Z3_OP_AND n-ary conjunction.
+
+ - Z3_OP_OR n-ary disjunction.
+
+ - Z3_OP_IFF equivalence (binary).
+
+ - Z3_OP_XOR Exclusive or.
+
+ - Z3_OP_NOT Negation.
+
+ - Z3_OP_IMPLIES Implication.
+
+ - Z3_OP_OEQ Binary equivalence modulo namings. This binary predicate is used in proof terms.
+ It captures equisatisfiability and equivalence modulo renamings.
+
+ - Z3_OP_ANUM Arithmetic numeral.
+
+ - Z3_OP_AGNUM Arithmetic algebraic numeral. Algebraic numbers are used to represent irrational numbers in Z3.
+
+ - Z3_OP_LE <=.
+
+ - Z3_OP_GE >=.
+
+ - Z3_OP_LT <.
+
+ - Z3_OP_GT >.
+
+ - Z3_OP_ADD Addition - Binary.
+
+ - Z3_OP_SUB Binary subtraction.
+
+ - Z3_OP_UMINUS Unary minus.
+
+ - Z3_OP_MUL Multiplication - Binary.
+
+ - Z3_OP_DIV Division - Binary.
+
+ - Z3_OP_IDIV Integer division - Binary.
+
+ - Z3_OP_REM Remainder - Binary.
+
+ - Z3_OP_MOD Modulus - Binary.
+
+ - Z3_OP_TO_REAL Coercion of integer to real - Unary.
+
+ - Z3_OP_TO_INT Coercion of real to integer - Unary.
+
+ - Z3_OP_IS_INT Check if real is also an integer - Unary.
+
+ - Z3_OP_POWER Power operator x^y.
+
+ - Z3_OP_STORE Array store. It satisfies select(store(a,i,v),j) = if i = j then v else select(a,j).
+ Array store takes at least 3 arguments.
+
+ - Z3_OP_SELECT Array select.
+
+ - Z3_OP_CONST_ARRAY The constant array. For example, select(const(v),i) = v holds for every v and i. The function is unary.
+
+ - Z3_OP_ARRAY_DEFAULT Default value of arrays. For example default(const(v)) = v. The function is unary.
+
+ - Z3_OP_ARRAY_MAP Array map operator.
+ It satisfies map[f](a1,..,a_n)[i] = f(a1[i],...,a_n[i]) for every i.
+
+ - Z3_OP_SET_UNION Set union between two Boolean arrays (two arrays whose range type is Boolean). The function is binary.
+
+ - Z3_OP_SET_INTERSECT Set intersection between two Boolean arrays. The function is binary.
+
+ - Z3_OP_SET_DIFFERENCE Set difference between two Boolean arrays. The function is binary.
+
+ - Z3_OP_SET_COMPLEMENT Set complement of a Boolean array. The function is unary.
+
+ - Z3_OP_SET_SUBSET Subset predicate between two Boolean arrays. The relation is binary.
+
+ - Z3_OP_AS_ARRAY An array value that behaves as the function graph of the
+ function passed as parameter.
+
+ - Z3_OP_ARRAY_EXT Array extensionality function. It takes two arrays as arguments and produces an index, such that the arrays
+ are different if they are different on the index.
+
+ - Z3_OP_BNUM Bit-vector numeral.
+
+ - Z3_OP_BIT1 One bit bit-vector.
+
+ - Z3_OP_BIT0 Zero bit bit-vector.
+
+ - Z3_OP_BNEG Unary minus.
+
+ - Z3_OP_BADD Binary addition.
+
+ - Z3_OP_BSUB Binary subtraction.
+
+ - Z3_OP_BMUL Binary multiplication.
+
+ - Z3_OP_BSDIV Binary signed division.
+
+ - Z3_OP_BUDIV Binary unsigned division.
+
+ - Z3_OP_BSREM Binary signed remainder.
+
+ - Z3_OP_BUREM Binary unsigned remainder.
+
+ - Z3_OP_BSMOD Binary signed modulus.
+
+ - Z3_OP_BSDIV0 Unary function. bsdiv(x,0) is congruent to bsdiv0(x).
+
+ - Z3_OP_BUDIV0 Unary function. budiv(x,0) is congruent to budiv0(x).
+
+ - Z3_OP_BSREM0 Unary function. bsrem(x,0) is congruent to bsrem0(x).
+
+ - Z3_OP_BUREM0 Unary function. burem(x,0) is congruent to burem0(x).
+
+ - Z3_OP_BSMOD0 Unary function. bsmod(x,0) is congruent to bsmod0(x).
+
+ - Z3_OP_ULEQ Unsigned bit-vector <= - Binary relation.
+
+ - Z3_OP_SLEQ Signed bit-vector <= - Binary relation.
+
+ - Z3_OP_UGEQ Unsigned bit-vector >= - Binary relation.
+
+ - Z3_OP_SGEQ Signed bit-vector >= - Binary relation.
+
+ - Z3_OP_ULT Unsigned bit-vector < - Binary relation.
+
+ - Z3_OP_SLT Signed bit-vector < - Binary relation.
+
+ - Z3_OP_UGT Unsigned bit-vector > - Binary relation.
+
+ - Z3_OP_SGT Signed bit-vector > - Binary relation.
+
+ - Z3_OP_BAND Bit-wise and - Binary.
+
+ - Z3_OP_BOR Bit-wise or - Binary.
+
+ - Z3_OP_BNOT Bit-wise not - Unary.
+
+ - Z3_OP_BXOR Bit-wise xor - Binary.
+
+ - Z3_OP_BNAND Bit-wise nand - Binary.
+
+ - Z3_OP_BNOR Bit-wise nor - Binary.
+
+ - Z3_OP_BXNOR Bit-wise xnor - Binary.
+
+ - Z3_OP_CONCAT Bit-vector concatenation - Binary.
+
+ - Z3_OP_SIGN_EXT Bit-vector sign extension.
+
+ - Z3_OP_ZERO_EXT Bit-vector zero extension.
+
+ - Z3_OP_EXTRACT Bit-vector extraction.
+
+ - Z3_OP_REPEAT Repeat bit-vector n times.
+
+ - Z3_OP_BREDOR Bit-vector reduce or - Unary.
+
+ - Z3_OP_BREDAND Bit-vector reduce and - Unary.
+
+ - Z3_OP_BCOMP .
+
+ - Z3_OP_BSHL Shift left.
+
+ - Z3_OP_BLSHR Logical shift right.
+
+ - Z3_OP_BASHR Arithmetical shift right.
+
+ - Z3_OP_ROTATE_LEFT Left rotation.
+
+ - Z3_OP_ROTATE_RIGHT Right rotation.
+
+ - Z3_OP_EXT_ROTATE_LEFT (extended) Left rotation. Similar to Z3_OP_ROTATE_LEFT, but it is a binary operator instead of a parametric one.
+
+ - Z3_OP_EXT_ROTATE_RIGHT (extended) Right rotation. Similar to Z3_OP_ROTATE_RIGHT, but it is a binary operator instead of a parametric one.
+
+ - Z3_OP_INT2BV Coerce integer to bit-vector. NB. This function
+ is not supported by the decision procedures. Only the most
+ rudimentary simplification rules are applied to this function.
+
+ - Z3_OP_BV2INT Coerce bit-vector to integer. NB. This function
+ is not supported by the decision procedures. Only the most
+ rudimentary simplification rules are applied to this function.
+
+ - Z3_OP_CARRY Compute the carry bit in a full-adder.
+ The meaning is given by the equivalence
+ (carry l1 l2 l3) <=> (or (and l1 l2) (and l1 l3) (and l2 l3)))
+
+ - Z3_OP_XOR3 Compute ternary XOR.
+ The meaning is given by the equivalence
+ (xor3 l1 l2 l3) <=> (xor (xor l1 l2) l3)
+
+ - Z3_OP_BSMUL_NO_OVFL: a predicate to check that bit-wise signed multiplication does not overflow.
+ Signed multiplication overflows if the operands have the same sign and the result of multiplication
+ does not fit within the available bits. \sa Z3_mk_bvmul_no_overflow.
+
+ - Z3_OP_BUMUL_NO_OVFL: check that bit-wise unsigned multiplication does not overflow.
+ Unsigned multiplication overflows if the result does not fit within the available bits.
+ \sa Z3_mk_bvmul_no_overflow.
+
+ - Z3_OP_BSMUL_NO_UDFL: check that bit-wise signed multiplication does not underflow.
+ Signed multiplication underflows if the operands have opposite signs and the result of multiplication
+ does not fit within the available bits. Z3_mk_bvmul_no_underflow.
+
+ - Z3_OP_BSDIV_I: Binary signed division.
+ It has the same semantics as Z3_OP_BSDIV, but created in a context where the second operand can be assumed to be non-zero.
+
+ - Z3_OP_BUDIV_I: Binary unsigned division.
+ It has the same semantics as Z3_OP_BUDIV, but created in a context where the second operand can be assumed to be non-zero.
+
+ - Z3_OP_BSREM_I: Binary signed remainder.
+ It has the same semantics as Z3_OP_BSREM, but created in a context where the second operand can be assumed to be non-zero.
+
+ - Z3_OP_BUREM_I: Binary unsigned remainder.
+ It has the same semantics as Z3_OP_BUREM, but created in a context where the second operand can be assumed to be non-zero.
+
+ - Z3_OP_BSMOD_I: Binary signed modulus.
+ It has the same semantics as Z3_OP_BSMOD, but created in a context where the second operand can be assumed to be non-zero.
+
+ - Z3_OP_PR_UNDEF: Undef/Null proof object.
+
+ - Z3_OP_PR_TRUE: Proof for the expression 'true'.
+
+ - Z3_OP_PR_ASSERTED: Proof for a fact asserted by the user.
+
+ - Z3_OP_PR_GOAL: Proof for a fact (tagged as goal) asserted by the user.
+
+ - Z3_OP_PR_MODUS_PONENS: Given a proof for p and a proof for (implies p q), produces a proof for q.
+ \nicebox{
+ T1: p
+ T2: (implies p q)
+ [mp T1 T2]: q
+ }
+ The second antecedents may also be a proof for (iff p q).
+
+ - Z3_OP_PR_REFLEXIVITY: A proof for (R t t), where R is a reflexive relation. This proof object has no antecedents.
+ The only reflexive relations that are used are
+ equivalence modulo namings, equality and equivalence.
+ That is, R is either '~', '=' or 'iff'.
+
+ - Z3_OP_PR_SYMMETRY: Given an symmetric relation R and a proof for (R t s), produces a proof for (R s t).
+ \nicebox{
+ T1: (R t s)
+ [symmetry T1]: (R s t)
+ }
+ T1 is the antecedent of this proof object.
+
+ - Z3_OP_PR_TRANSITIVITY: Given a transitive relation R, and proofs for (R t s) and (R s u), produces a proof
+ for (R t u).
+ \nicebox{
+ T1: (R t s)
+ T2: (R s u)
+ [trans T1 T2]: (R t u)
+ }
+
+ - Z3_OP_PR_TRANSITIVITY_STAR: Condensed transitivity proof.
+ It combines several symmetry and transitivity proofs.
+
+ Example:
+ \nicebox{
+ T1: (R a b)
+ T2: (R c b)
+ T3: (R c d)
+ [trans* T1 T2 T3]: (R a d)
+ }
+ R must be a symmetric and transitive relation.
+
+ Assuming that this proof object is a proof for (R s t), then
+ a proof checker must check if it is possible to prove (R s t)
+ using the antecedents, symmetry and transitivity. That is,
+ if there is a path from s to t, if we view every
+ antecedent (R a b) as an edge between a and b.
+
+ - Z3_OP_PR_MONOTONICITY: Monotonicity proof object.
+ \nicebox{
+ T1: (R t_1 s_1)
+ ...
+ Tn: (R t_n s_n)
+ [monotonicity T1 ... Tn]: (R (f t_1 ... t_n) (f s_1 ... s_n))
+ }
+ Remark: if t_i == s_i, then the antecedent Ti is suppressed.
+ That is, reflexivity proofs are suppressed to save space.
+
+ - Z3_OP_PR_QUANT_INTRO: Given a proof for (~ p q), produces a proof for (~ (forall (x) p) (forall (x) q)).
+
+ T1: (~ p q)
+ [quant-intro T1]: (~ (forall (x) p) (forall (x) q))
+
+ - Z3_OP_PR_BIND: Given a proof p, produces a proof of lambda x . p, where x are free variables in p.
+ T1: f
+ [proof-bind T1] forall (x) f
+
+ - Z3_OP_PR_DISTRIBUTIVITY: Distributivity proof object.
+ Given that f (= or) distributes over g (= and), produces a proof for
+
+ (= (f a (g c d))
+ (g (f a c) (f a d)))
+
+ If f and g are associative, this proof also justifies the following equality:
+
+ (= (f (g a b) (g c d))
+ (g (f a c) (f a d) (f b c) (f b d)))
+
+ where each f and g can have arbitrary number of arguments.
+
+ This proof object has no antecedents.
+ Remark. This rule is used by the CNF conversion pass and
+ instantiated by f = or, and g = and.
+
+ - Z3_OP_PR_AND_ELIM: Given a proof for (and l_1 ... l_n), produces a proof for l_i
+
+ \nicebox{
+ T1: (and l_1 ... l_n)
+ [and-elim T1]: l_i
+ }
+ - Z3_OP_PR_NOT_OR_ELIM: Given a proof for (not (or l_1 ... l_n)), produces a proof for (not l_i).
+
+ \nicebox{
+ T1: (not (or l_1 ... l_n))
+ [not-or-elim T1]: (not l_i)
+ }
+
+ - Z3_OP_PR_REWRITE: A proof for a local rewriting step (= t s).
+ The head function symbol of t is interpreted.
+
+ This proof object has no antecedents.
+ The conclusion of a rewrite rule is either an equality (= t s),
+ an equivalence (iff t s), or equi-satisfiability (~ t s).
+ Remark: if f is bool, then = is iff.
+
+
+ Examples:
+ \nicebox{
+ (= (+ x 0) x)
+ (= (+ x 1 2) (+ 3 x))
+ (iff (or x false) x)
+ }
+
+ - Z3_OP_PR_REWRITE_STAR: A proof for rewriting an expression t into an expression s.
+ This proof object can have n antecedents.
+ The antecedents are proofs for equalities used as substitution rules.
+ The proof rule is used in a few cases. The cases are:
+ - When applying contextual simplification (CONTEXT_SIMPLIFIER=true)
+ - When converting bit-vectors to Booleans (BIT2BOOL=true)
+
+ - Z3_OP_PR_PULL_QUANT: A proof for (iff (f (forall (x) q(x)) r) (forall (x) (f (q x) r))). This proof object has no antecedents.
+
+ - Z3_OP_PR_PUSH_QUANT: A proof for:
+
+ \nicebox{
+ (iff (forall (x_1 ... x_m) (and p_1[x_1 ... x_m] ... p_n[x_1 ... x_m]))
+ (and (forall (x_1 ... x_m) p_1[x_1 ... x_m])
+ ...
+ (forall (x_1 ... x_m) p_n[x_1 ... x_m])))
+ }
+ This proof object has no antecedents.
+
+ - Z3_OP_PR_ELIM_UNUSED_VARS:
+ A proof for (iff (forall (x_1 ... x_n y_1 ... y_m) p[x_1 ... x_n])
+ (forall (x_1 ... x_n) p[x_1 ... x_n]))
+
+ It is used to justify the elimination of unused variables.
+ This proof object has no antecedents.
+
+ - Z3_OP_PR_DER: A proof for destructive equality resolution:
+ (iff (forall (x) (or (not (= x t)) P[x])) P[t])
+ if x does not occur in t.
+
+ This proof object has no antecedents.
+
+ Several variables can be eliminated simultaneously.
+
+ - Z3_OP_PR_QUANT_INST: A proof of (or (not (forall (x) (P x))) (P a))
+
+ - Z3_OP_PR_HYPOTHESIS: Mark a hypothesis in a natural deduction style proof.
+
+ - Z3_OP_PR_LEMMA:
+
+ \nicebox{
+ T1: false
+ [lemma T1]: (or (not l_1) ... (not l_n))
+ }
+ This proof object has one antecedent: a hypothetical proof for false.
+ It converts the proof in a proof for (or (not l_1) ... (not l_n)),
+ when T1 contains the open hypotheses: l_1, ..., l_n.
+ The hypotheses are closed after an application of a lemma.
+ Furthermore, there are no other open hypotheses in the subtree covered by
+ the lemma.
+
+ - Z3_OP_PR_UNIT_RESOLUTION:
+ \nicebox{
+ T1: (or l_1 ... l_n l_1' ... l_m')
+ T2: (not l_1)
+ ...
+ T(n+1): (not l_n)
+ [unit-resolution T1 ... T(n+1)]: (or l_1' ... l_m')
+ }
+
+ - Z3_OP_PR_IFF_TRUE:
+ \nicebox{
+ T1: p
+ [iff-true T1]: (iff p true)
+ }
+
+ - Z3_OP_PR_IFF_FALSE:
+ \nicebox{
+ T1: (not p)
+ [iff-false T1]: (iff p false)
+ }
+
+ - Z3_OP_PR_COMMUTATIVITY:
+
+ [comm]: (= (f a b) (f b a))
+
+ f is a commutative operator.
+
+ This proof object has no antecedents.
+ Remark: if f is bool, then = is iff.
+
+ - Z3_OP_PR_DEF_AXIOM: Proof object used to justify Tseitin's like axioms:
+
+ \nicebox{
+ (or (not (and p q)) p)
+ (or (not (and p q)) q)
+ (or (not (and p q r)) p)
+ (or (not (and p q r)) q)
+ (or (not (and p q r)) r)
+ ...
+ (or (and p q) (not p) (not q))
+ (or (not (or p q)) p q)
+ (or (or p q) (not p))
+ (or (or p q) (not q))
+ (or (not (iff p q)) (not p) q)
+ (or (not (iff p q)) p (not q))
+ (or (iff p q) (not p) (not q))
+ (or (iff p q) p q)
+ (or (not (ite a b c)) (not a) b)
+ (or (not (ite a b c)) a c)
+ (or (ite a b c) (not a) (not b))
+ (or (ite a b c) a (not c))
+ (or (not (not a)) (not a))
+ (or (not a) a)
+ }
+ This proof object has no antecedents.
+ Note: all axioms are propositional tautologies.
+ Note also that 'and' and 'or' can take multiple arguments.
+ You can recover the propositional tautologies by
+ unfolding the Boolean connectives in the axioms a small
+ bounded number of steps (=3).
+
+ - Z3_OP_PR_ASSUMPTION_ADD
+ Clausal proof adding axiom
+
+ - Z3_OP_PR_LEMMA_ADD
+ Clausal proof lemma addition
+
+ - Z3_OP_PR_REDUNDANT_DEL
+ Clausal proof lemma deletion
+
+ - Z3_OP_PR_CLAUSE_TRAIL,
+ Clausal proof trail of additions and deletions
+
+ - Z3_OP_PR_DEF_INTRO: Introduces a name for a formula/term.
+ Suppose e is an expression with free variables x, and def-intro
+ introduces the name n(x). The possible cases are:
+
+ When e is of Boolean type:
+ [def-intro]: (and (or n (not e)) (or (not n) e))
+
+ or:
+ [def-intro]: (or (not n) e)
+ when e only occurs positively.
+
+ When e is of the form (ite cond th el):
+ [def-intro]: (and (or (not cond) (= n th)) (or cond (= n el)))
+
+ Otherwise:
+ [def-intro]: (= n e)
+
+ - Z3_OP_PR_APPLY_DEF:
+ [apply-def T1]: F ~ n
+ F is 'equivalent' to n, given that T1 is a proof that
+ n is a name for F.
+
+ - Z3_OP_PR_IFF_OEQ:
+ T1: (iff p q)
+ [iff~ T1]: (~ p q)
+
+ - Z3_OP_PR_NNF_POS: Proof for a (positive) NNF step. Example:
+ \nicebox{
+ T1: (not s_1) ~ r_1
+ T2: (not s_2) ~ r_2
+ T3: s_1 ~ r_1'
+ T4: s_2 ~ r_2'
+ [nnf-pos T1 T2 T3 T4]: (~ (iff s_1 s_2)
+ (and (or r_1 r_2') (or r_1' r_2)))
+ }
+ The negation normal form steps NNF_POS and NNF_NEG are used in the following cases:
+ (a) When creating the NNF of a positive force quantifier.
+ The quantifier is retained (unless the bound variables are eliminated).
+ Example
+ \nicebox{
+ T1: q ~ q_new
+ [nnf-pos T1]: (~ (forall (x T) q) (forall (x T) q_new))
+ }
+ (b) When recursively creating NNF over Boolean formulas, where the top-level
+ connective is changed during NNF conversion. The relevant Boolean connectives
+ for NNF_POS are 'implies', 'iff', 'xor', 'ite'.
+ NNF_NEG furthermore handles the case where negation is pushed
+ over Boolean connectives 'and' and 'or'.
+
+
+ - Z3_OP_PR_NNF_NEG: Proof for a (negative) NNF step. Examples:
+ \nicebox{
+ T1: (not s_1) ~ r_1
+ ...
+ Tn: (not s_n) ~ r_n
+ [nnf-neg T1 ... Tn]: (not (and s_1 ... s_n)) ~ (or r_1 ... r_n)
+ and
+ T1: (not s_1) ~ r_1
+ ...
+ Tn: (not s_n) ~ r_n
+ [nnf-neg T1 ... Tn]: (not (or s_1 ... s_n)) ~ (and r_1 ... r_n)
+ and
+ T1: (not s_1) ~ r_1
+ T2: (not s_2) ~ r_2
+ T3: s_1 ~ r_1'
+ T4: s_2 ~ r_2'
+ [nnf-neg T1 T2 T3 T4]: (~ (not (iff s_1 s_2))
+ (and (or r_1 r_2) (or r_1' r_2')))
+ }
+
+ - Z3_OP_PR_SKOLEMIZE: Proof for:
+
+ \nicebox{
+ [sk]: (~ (not (forall x (p x y))) (not (p (sk y) y)))
+ [sk]: (~ (exists x (p x y)) (p (sk y) y))
+ }
+
+ This proof object has no antecedents.
+
+ - Z3_OP_PR_MODUS_PONENS_OEQ: Modus ponens style rule for equi-satisfiability.
+ \nicebox{
+ T1: p
+ T2: (~ p q)
+ [mp~ T1 T2]: q
+ }
+
+ - Z3_OP_PR_TH_LEMMA: Generic proof for theory lemmas.
+
+ The theory lemma function comes with one or more parameters.
+ The first parameter indicates the name of the theory.
+ For the theory of arithmetic, additional parameters provide hints for
+ checking the theory lemma.
+ The hints for arithmetic are:
+
+ - farkas - followed by rational coefficients. Multiply the coefficients to the
+ inequalities in the lemma, add the (negated) inequalities and obtain a contradiction.
+
+ - triangle-eq - Indicates a lemma related to the equivalence:
+ \nicebox{
+ (iff (= t1 t2) (and (<= t1 t2) (<= t2 t1)))
+ }
+
+ - gcd-test - Indicates an integer linear arithmetic lemma that uses a gcd test.
+
+
+ - Z3_OP_PR_HYPER_RESOLVE: Hyper-resolution rule.
+
+ The premises of the rules is a sequence of clauses.
+ The first clause argument is the main clause of the rule.
+ with a literal from the first (main) clause.
+
+ Premises of the rules are of the form
+ \nicebox{
+ (or l0 l1 l2 .. ln)
+ }
+ or
+ \nicebox{
+ (=> (and l1 l2 .. ln) l0)
+ }
+ or in the most general (ground) form:
+ \nicebox{
+ (=> (and ln+1 ln+2 .. ln+m) (or l0 l1 .. ln))
+ }
+ In other words we use the following (Prolog style) convention for Horn
+ implications:
+ The head of a Horn implication is position 0,
+ the first conjunct in the body of an implication is position 1
+ the second conjunct in the body of an implication is position 2
+
+ For general implications where the head is a disjunction, the
+ first n positions correspond to the n disjuncts in the head.
+ The next m positions correspond to the m conjuncts in the body.
+
+ The premises can be universally quantified so that the most
+ general non-ground form is:
+
+ \nicebox{
+ (forall (vars) (=> (and ln+1 ln+2 .. ln+m) (or l0 l1 .. ln)))
+ }
+
+ The hyper-resolution rule takes a sequence of parameters.
+ The parameters are substitutions of bound variables separated by pairs
+ of literal positions from the main clause and side clause.
+
+
+ - Z3_OP_RA_STORE: Insert a record into a relation.
+ The function takes \c n+1 arguments, where the first argument is the relation and the remaining \c n elements
+ correspond to the \c n columns of the relation.
+
+ - Z3_OP_RA_EMPTY: Creates the empty relation.
+
+ - Z3_OP_RA_IS_EMPTY: Tests if the relation is empty.
+
+ - Z3_OP_RA_JOIN: Create the relational join.
+
+ - Z3_OP_RA_UNION: Create the union or convex hull of two relations.
+ The function takes two arguments.
+
+ - Z3_OP_RA_WIDEN: Widen two relations.
+ The function takes two arguments.
+
+ - Z3_OP_RA_PROJECT: Project the columns (provided as numbers in the parameters).
+ The function takes one argument.
+
+ - Z3_OP_RA_FILTER: Filter (restrict) a relation with respect to a predicate.
+ The first argument is a relation.
+ The second argument is a predicate with free de-Bruijn indices
+ corresponding to the columns of the relation.
+ So the first column in the relation has index 0.
+
+ - Z3_OP_RA_NEGATION_FILTER: Intersect the first relation with respect to negation
+ of the second relation (the function takes two arguments).
+ Logically, the specification can be described by a function
+
+ target = filter_by_negation(pos, neg, columns)
+
+ where columns are pairs c1, d1, .., cN, dN of columns from pos and neg, such that
+ target are elements in x in pos, such that there is no y in neg that agrees with
+ x on the columns c1, d1, .., cN, dN.
+
+
+ - Z3_OP_RA_RENAME: rename columns in the relation.
+ The function takes one argument.
+ The parameters contain the renaming as a cycle.
+
+ - Z3_OP_RA_COMPLEMENT: Complement the relation.
+
+ - Z3_OP_RA_SELECT: Check if a record is an element of the relation.
+ The function takes \c n+1 arguments, where the first argument is a relation,
+ and the remaining \c n arguments correspond to a record.
+
+ - Z3_OP_RA_CLONE: Create a fresh copy (clone) of a relation.
+ The function is logically the identity, but
+ in the context of a register machine allows
+ for #Z3_OP_RA_UNION to perform destructive updates to the first argument.
+
+
+ - Z3_OP_FD_LT: A less than predicate over the finite domain Z3_FINITE_DOMAIN_SORT.
+
+ - Z3_OP_LABEL: A label (used by the Boogie Verification condition generator).
+ The label has two parameters, a string and a Boolean polarity.
+ It takes one argument, a formula.
+
+ - Z3_OP_LABEL_LIT: A label literal (used by the Boogie Verification condition generator).
+ A label literal has a set of string parameters. It takes no arguments.
+
+ - Z3_OP_DT_CONSTRUCTOR: datatype constructor.
+
+ - Z3_OP_DT_RECOGNISER: datatype recognizer.
+
+ - Z3_OP_DT_IS: datatype recognizer.
+
+ - Z3_OP_DT_ACCESSOR: datatype accessor.
+
+ - Z3_OP_DT_UPDATE_FIELD: datatype field update.
+
+ - Z3_OP_PB_AT_MOST: Cardinality constraint.
+ E.g., x + y + z <= 2
+
+ - Z3_OP_PB_AT_LEAST: Cardinality constraint.
+ E.g., x + y + z >= 2
+
+ - Z3_OP_PB_LE: Generalized Pseudo-Boolean cardinality constraint.
+ Example 2*x + 3*y <= 4
+
+ - Z3_OP_PB_GE: Generalized Pseudo-Boolean cardinality constraint.
+ Example 2*x + 3*y + 2*z >= 4
+
+ - Z3_OP_PB_EQ: Generalized Pseudo-Boolean equality constraint.
+ Example 2*x + 1*y + 2*z + 1*u = 4
+
+ - Z3_OP_SPECIAL_RELATION_LO: A relation that is a total linear order
+
+ - Z3_OP_SPECIAL_RELATION_PO: A relation that is a partial order
+
+ - Z3_OP_SPECIAL_RELATION_PLO: A relation that is a piecewise linear order
+
+ - Z3_OP_SPECIAL_RELATION_TO: A relation that is a tree order
+
+ - Z3_OP_SPECIAL_RELATION_TC: Transitive closure of a relation
+
+ - Z3_OP_SPECIAL_RELATION_TRC: Transitive reflexive closure of a relation
+
+ - Z3_OP_FPA_RM_NEAREST_TIES_TO_EVEN: Floating-point rounding mode RNE
+
+ - Z3_OP_FPA_RM_NEAREST_TIES_TO_AWAY: Floating-point rounding mode RNA
+
+ - Z3_OP_FPA_RM_TOWARD_POSITIVE: Floating-point rounding mode RTP
+
+ - Z3_OP_FPA_RM_TOWARD_NEGATIVE: Floating-point rounding mode RTN
+
+ - Z3_OP_FPA_RM_TOWARD_ZERO: Floating-point rounding mode RTZ
+
+ - Z3_OP_FPA_NUM: Floating-point value
+
+ - Z3_OP_FPA_PLUS_INF: Floating-point +oo
+
+ - Z3_OP_FPA_MINUS_INF: Floating-point -oo
+
+ - Z3_OP_FPA_NAN: Floating-point NaN
+
+ - Z3_OP_FPA_PLUS_ZERO: Floating-point +zero
+
+ - Z3_OP_FPA_MINUS_ZERO: Floating-point -zero
+
+ - Z3_OP_FPA_ADD: Floating-point addition
+
+ - Z3_OP_FPA_SUB: Floating-point subtraction
+
+ - Z3_OP_FPA_NEG: Floating-point negation
+
+ - Z3_OP_FPA_MUL: Floating-point multiplication
+
+ - Z3_OP_FPA_DIV: Floating-point division
+
+ - Z3_OP_FPA_REM: Floating-point remainder
+
+ - Z3_OP_FPA_ABS: Floating-point absolute value
+
+ - Z3_OP_FPA_MIN: Floating-point minimum
+
+ - Z3_OP_FPA_MAX: Floating-point maximum
+
+ - Z3_OP_FPA_FMA: Floating-point fused multiply-add
+
+ - Z3_OP_FPA_SQRT: Floating-point square root
+
+ - Z3_OP_FPA_ROUND_TO_INTEGRAL: Floating-point round to integral
+
+ - Z3_OP_FPA_EQ: Floating-point equality
+
+ - Z3_OP_FPA_LT: Floating-point less than
+
+ - Z3_OP_FPA_GT: Floating-point greater than
+
+ - Z3_OP_FPA_LE: Floating-point less than or equal
+
+ - Z3_OP_FPA_GE: Floating-point greater than or equal
+
+ - Z3_OP_FPA_IS_NAN: Floating-point isNaN
+
+ - Z3_OP_FPA_IS_INF: Floating-point isInfinite
+
+ - Z3_OP_FPA_IS_ZERO: Floating-point isZero
+
+ - Z3_OP_FPA_IS_NORMAL: Floating-point isNormal
+
+ - Z3_OP_FPA_IS_SUBNORMAL: Floating-point isSubnormal
+
+ - Z3_OP_FPA_IS_NEGATIVE: Floating-point isNegative
+
+ - Z3_OP_FPA_IS_POSITIVE: Floating-point isPositive
+
+ - Z3_OP_FPA_FP: Floating-point constructor from 3 bit-vectors
+
+ - Z3_OP_FPA_TO_FP: Floating-point conversion (various)
+
+ - Z3_OP_FPA_TO_FP_UNSIGNED: Floating-point conversion from unsigned bit-vector
+
+ - Z3_OP_FPA_TO_UBV: Floating-point conversion to unsigned bit-vector
+
+ - Z3_OP_FPA_TO_SBV: Floating-point conversion to signed bit-vector
+
+ - Z3_OP_FPA_TO_REAL: Floating-point conversion to real number
+
+ - Z3_OP_FPA_TO_IEEE_BV: Floating-point conversion to IEEE-754 bit-vector
+
+ - Z3_OP_FPA_BVWRAP: (Implicitly) represents the internal bitvector-
+ representation of a floating-point term (used for the lazy encoding
+ of non-relevant terms in theory_fpa)
+
+ - Z3_OP_FPA_BV2RM: Conversion of a 3-bit bit-vector term to a
+ floating-point rounding-mode term
+
+ The conversion uses the following values:
+ 0 = 000 = Z3_OP_FPA_RM_NEAREST_TIES_TO_EVEN,
+ 1 = 001 = Z3_OP_FPA_RM_NEAREST_TIES_TO_AWAY,
+ 2 = 010 = Z3_OP_FPA_RM_TOWARD_POSITIVE,
+ 3 = 011 = Z3_OP_FPA_RM_TOWARD_NEGATIVE,
+ 4 = 100 = Z3_OP_FPA_RM_TOWARD_ZERO.
+
+ - Z3_OP_INTERNAL: internal (often interpreted) symbol, but no additional
+ information is exposed. Tools may use the string representation of the
+ function declaration to obtain more information.
+
+ - Z3_OP_UNINTERPRETED: kind used for uninterpreted symbols.
+*/
+typedef enum {
+ // Basic
+ Z3_OP_TRUE = 0x100,
+ Z3_OP_FALSE,
+ Z3_OP_EQ,
+ Z3_OP_DISTINCT,
+ Z3_OP_ITE,
+ Z3_OP_AND,
+ Z3_OP_OR,
+ Z3_OP_IFF,
+ Z3_OP_XOR,
+ Z3_OP_NOT,
+ Z3_OP_IMPLIES,
+ Z3_OP_OEQ,
+
+ // Arithmetic
+ Z3_OP_ANUM = 0x200,
+ Z3_OP_AGNUM,
+ Z3_OP_LE,
+ Z3_OP_GE,
+ Z3_OP_LT,
+ Z3_OP_GT,
+ Z3_OP_ADD,
+ Z3_OP_SUB,
+ Z3_OP_UMINUS,
+ Z3_OP_MUL,
+ Z3_OP_DIV,
+ Z3_OP_IDIV,
+ Z3_OP_REM,
+ Z3_OP_MOD,
+ Z3_OP_TO_REAL,
+ Z3_OP_TO_INT,
+ Z3_OP_IS_INT,
+ Z3_OP_POWER,
+
+ // Arrays & Sets
+ Z3_OP_STORE = 0x300,
+ Z3_OP_SELECT,
+ Z3_OP_CONST_ARRAY,
+ Z3_OP_ARRAY_MAP,
+ Z3_OP_ARRAY_DEFAULT,
+ Z3_OP_SET_UNION,
+ Z3_OP_SET_INTERSECT,
+ Z3_OP_SET_DIFFERENCE,
+ Z3_OP_SET_COMPLEMENT,
+ Z3_OP_SET_SUBSET,
+ Z3_OP_AS_ARRAY,
+ Z3_OP_ARRAY_EXT,
+ Z3_OP_SET_HAS_SIZE,
+ Z3_OP_SET_CARD,
+
+ // Bit-vectors
+ Z3_OP_BNUM = 0x400,
+ Z3_OP_BIT1,
+ Z3_OP_BIT0,
+ Z3_OP_BNEG,
+ Z3_OP_BADD,
+ Z3_OP_BSUB,
+ Z3_OP_BMUL,
+
+ Z3_OP_BSDIV,
+ Z3_OP_BUDIV,
+ Z3_OP_BSREM,
+ Z3_OP_BUREM,
+ Z3_OP_BSMOD,
+
+ // special functions to record the division by 0 cases
+ // these are internal functions
+ Z3_OP_BSDIV0,
+ Z3_OP_BUDIV0,
+ Z3_OP_BSREM0,
+ Z3_OP_BUREM0,
+ Z3_OP_BSMOD0,
+
+ Z3_OP_ULEQ,
+ Z3_OP_SLEQ,
+ Z3_OP_UGEQ,
+ Z3_OP_SGEQ,
+ Z3_OP_ULT,
+ Z3_OP_SLT,
+ Z3_OP_UGT,
+ Z3_OP_SGT,
+
+ Z3_OP_BAND,
+ Z3_OP_BOR,
+ Z3_OP_BNOT,
+ Z3_OP_BXOR,
+ Z3_OP_BNAND,
+ Z3_OP_BNOR,
+ Z3_OP_BXNOR,
+
+ Z3_OP_CONCAT,
+ Z3_OP_SIGN_EXT,
+ Z3_OP_ZERO_EXT,
+ Z3_OP_EXTRACT,
+ Z3_OP_REPEAT,
+
+ Z3_OP_BREDOR,
+ Z3_OP_BREDAND,
+ Z3_OP_BCOMP,
+
+ Z3_OP_BSHL,
+ Z3_OP_BLSHR,
+ Z3_OP_BASHR,
+ Z3_OP_ROTATE_LEFT,
+ Z3_OP_ROTATE_RIGHT,
+ Z3_OP_EXT_ROTATE_LEFT,
+ Z3_OP_EXT_ROTATE_RIGHT,
+
+ Z3_OP_BIT2BOOL,
+ Z3_OP_INT2BV,
+ Z3_OP_BV2INT,
+ Z3_OP_CARRY,
+ Z3_OP_XOR3,
+
+ Z3_OP_BSMUL_NO_OVFL,
+ Z3_OP_BUMUL_NO_OVFL,
+ Z3_OP_BSMUL_NO_UDFL,
+ Z3_OP_BSDIV_I,
+ Z3_OP_BUDIV_I,
+ Z3_OP_BSREM_I,
+ Z3_OP_BUREM_I,
+ Z3_OP_BSMOD_I,
+
+ // Proofs
+ Z3_OP_PR_UNDEF = 0x500,
+ Z3_OP_PR_TRUE,
+ Z3_OP_PR_ASSERTED,
+ Z3_OP_PR_GOAL,
+ Z3_OP_PR_MODUS_PONENS,
+ Z3_OP_PR_REFLEXIVITY,
+ Z3_OP_PR_SYMMETRY,
+ Z3_OP_PR_TRANSITIVITY,
+ Z3_OP_PR_TRANSITIVITY_STAR,
+ Z3_OP_PR_MONOTONICITY,
+ Z3_OP_PR_QUANT_INTRO,
+ Z3_OP_PR_BIND,
+ Z3_OP_PR_DISTRIBUTIVITY,
+ Z3_OP_PR_AND_ELIM,
+ Z3_OP_PR_NOT_OR_ELIM,
+ Z3_OP_PR_REWRITE,
+ Z3_OP_PR_REWRITE_STAR,
+ Z3_OP_PR_PULL_QUANT,
+ Z3_OP_PR_PUSH_QUANT,
+ Z3_OP_PR_ELIM_UNUSED_VARS,
+ Z3_OP_PR_DER,
+ Z3_OP_PR_QUANT_INST,
+ Z3_OP_PR_HYPOTHESIS,
+ Z3_OP_PR_LEMMA,
+ Z3_OP_PR_UNIT_RESOLUTION,
+ Z3_OP_PR_IFF_TRUE,
+ Z3_OP_PR_IFF_FALSE,
+ Z3_OP_PR_COMMUTATIVITY,
+ Z3_OP_PR_DEF_AXIOM,
+ Z3_OP_PR_ASSUMPTION_ADD,
+ Z3_OP_PR_LEMMA_ADD,
+ Z3_OP_PR_REDUNDANT_DEL,
+ Z3_OP_PR_CLAUSE_TRAIL,
+ Z3_OP_PR_DEF_INTRO,
+ Z3_OP_PR_APPLY_DEF,
+ Z3_OP_PR_IFF_OEQ,
+ Z3_OP_PR_NNF_POS,
+ Z3_OP_PR_NNF_NEG,
+ Z3_OP_PR_SKOLEMIZE,
+ Z3_OP_PR_MODUS_PONENS_OEQ,
+ Z3_OP_PR_TH_LEMMA,
+ Z3_OP_PR_HYPER_RESOLVE,
+
+ // Relational algebra
+ Z3_OP_RA_STORE = 0x600,
+ Z3_OP_RA_EMPTY,
+ Z3_OP_RA_IS_EMPTY,
+ Z3_OP_RA_JOIN,
+ Z3_OP_RA_UNION,
+ Z3_OP_RA_WIDEN,
+ Z3_OP_RA_PROJECT,
+ Z3_OP_RA_FILTER,
+ Z3_OP_RA_NEGATION_FILTER,
+ Z3_OP_RA_RENAME,
+ Z3_OP_RA_COMPLEMENT,
+ Z3_OP_RA_SELECT,
+ Z3_OP_RA_CLONE,
+ Z3_OP_FD_CONSTANT,
+ Z3_OP_FD_LT,
+
+ // Sequences
+ Z3_OP_SEQ_UNIT,
+ Z3_OP_SEQ_EMPTY,
+ Z3_OP_SEQ_CONCAT,
+ Z3_OP_SEQ_PREFIX,
+ Z3_OP_SEQ_SUFFIX,
+ Z3_OP_SEQ_CONTAINS,
+ Z3_OP_SEQ_EXTRACT,
+ Z3_OP_SEQ_REPLACE,
+ Z3_OP_SEQ_AT,
+ Z3_OP_SEQ_NTH,
+ Z3_OP_SEQ_LENGTH,
+ Z3_OP_SEQ_INDEX,
+ Z3_OP_SEQ_LAST_INDEX,
+ Z3_OP_SEQ_TO_RE,
+ Z3_OP_SEQ_IN_RE,
+
+ // strings
+ Z3_OP_STR_TO_INT,
+ Z3_OP_INT_TO_STR,
+
+ // regular expressions
+ Z3_OP_RE_PLUS,
+ Z3_OP_RE_STAR,
+ Z3_OP_RE_OPTION,
+ Z3_OP_RE_CONCAT,
+ Z3_OP_RE_UNION,
+ Z3_OP_RE_RANGE,
+ Z3_OP_RE_LOOP,
+ Z3_OP_RE_INTERSECT,
+ Z3_OP_RE_EMPTY_SET,
+ Z3_OP_RE_FULL_SET,
+ Z3_OP_RE_COMPLEMENT,
+
+ // Auxiliary
+ Z3_OP_LABEL = 0x700,
+ Z3_OP_LABEL_LIT,
+
+ // Datatypes
+ Z3_OP_DT_CONSTRUCTOR=0x800,
+ Z3_OP_DT_RECOGNISER,
+ Z3_OP_DT_IS,
+ Z3_OP_DT_ACCESSOR,
+ Z3_OP_DT_UPDATE_FIELD,
+
+ // Pseudo Booleans
+ Z3_OP_PB_AT_MOST=0x900,
+ Z3_OP_PB_AT_LEAST,
+ Z3_OP_PB_LE,
+ Z3_OP_PB_GE,
+ Z3_OP_PB_EQ,
+
+ // Special relations
+ Z3_OP_SPECIAL_RELATION_LO = 0xa000,
+ Z3_OP_SPECIAL_RELATION_PO,
+ Z3_OP_SPECIAL_RELATION_PLO,
+ Z3_OP_SPECIAL_RELATION_TO,
+ Z3_OP_SPECIAL_RELATION_TC,
+ Z3_OP_SPECIAL_RELATION_TRC,
+
+
+ // Floating-Point Arithmetic
+ Z3_OP_FPA_RM_NEAREST_TIES_TO_EVEN = 0xb000,
+ Z3_OP_FPA_RM_NEAREST_TIES_TO_AWAY,
+ Z3_OP_FPA_RM_TOWARD_POSITIVE,
+ Z3_OP_FPA_RM_TOWARD_NEGATIVE,
+ Z3_OP_FPA_RM_TOWARD_ZERO,
+
+ Z3_OP_FPA_NUM,
+ Z3_OP_FPA_PLUS_INF,
+ Z3_OP_FPA_MINUS_INF,
+ Z3_OP_FPA_NAN,
+ Z3_OP_FPA_PLUS_ZERO,
+ Z3_OP_FPA_MINUS_ZERO,
+
+ Z3_OP_FPA_ADD,
+ Z3_OP_FPA_SUB,
+ Z3_OP_FPA_NEG,
+ Z3_OP_FPA_MUL,
+ Z3_OP_FPA_DIV,
+ Z3_OP_FPA_REM,
+ Z3_OP_FPA_ABS,
+ Z3_OP_FPA_MIN,
+ Z3_OP_FPA_MAX,
+ Z3_OP_FPA_FMA,
+ Z3_OP_FPA_SQRT,
+ Z3_OP_FPA_ROUND_TO_INTEGRAL,
+
+ Z3_OP_FPA_EQ,
+ Z3_OP_FPA_LT,
+ Z3_OP_FPA_GT,
+ Z3_OP_FPA_LE,
+ Z3_OP_FPA_GE,
+ Z3_OP_FPA_IS_NAN,
+ Z3_OP_FPA_IS_INF,
+ Z3_OP_FPA_IS_ZERO,
+ Z3_OP_FPA_IS_NORMAL,
+ Z3_OP_FPA_IS_SUBNORMAL,
+ Z3_OP_FPA_IS_NEGATIVE,
+ Z3_OP_FPA_IS_POSITIVE,
+
+ Z3_OP_FPA_FP,
+ Z3_OP_FPA_TO_FP,
+ Z3_OP_FPA_TO_FP_UNSIGNED,
+ Z3_OP_FPA_TO_UBV,
+ Z3_OP_FPA_TO_SBV,
+ Z3_OP_FPA_TO_REAL,
+
+ Z3_OP_FPA_TO_IEEE_BV,
+
+ Z3_OP_FPA_BVWRAP,
+ Z3_OP_FPA_BV2RM,
+
+ Z3_OP_INTERNAL,
+
+ Z3_OP_UNINTERPRETED
+} Z3_decl_kind;
+
+/**
+ \brief The different kinds of parameters that can be associated with parameter sets.
+ (see #Z3_mk_params).
+
+ - Z3_PK_UINT integer parameters.
+ - Z3_PK_BOOL boolean parameters.
+ - Z3_PK_DOUBLE double parameters.
+ - Z3_PK_SYMBOL symbol parameters.
+ - Z3_PK_STRING string parameters.
+ - Z3_PK_OTHER all internal parameter kinds which are not exposed in the API.
+ - Z3_PK_INVALID invalid parameter.
+*/
+typedef enum {
+ Z3_PK_UINT,
+ Z3_PK_BOOL,
+ Z3_PK_DOUBLE,
+ Z3_PK_SYMBOL,
+ Z3_PK_STRING,
+ Z3_PK_OTHER,
+ Z3_PK_INVALID
+} Z3_param_kind;
+
+/**
+ \brief Z3 pretty printing modes (See #Z3_set_ast_print_mode).
+
+ - Z3_PRINT_SMTLIB_FULL: Print AST nodes in SMTLIB verbose format.
+ - Z3_PRINT_LOW_LEVEL: Print AST nodes using a low-level format.
+ - Z3_PRINT_SMTLIB2_COMPLIANT: Print AST nodes in SMTLIB 2.x compliant format.
+*/
+typedef enum {
+ Z3_PRINT_SMTLIB_FULL,
+ Z3_PRINT_LOW_LEVEL,
+ Z3_PRINT_SMTLIB2_COMPLIANT
+} Z3_ast_print_mode;
+
+
+/**
+ \brief Z3 error codes (See #Z3_get_error_code).
+
+ - Z3_OK: No error.
+ - Z3_SORT_ERROR: User tried to build an invalid (type incorrect) AST.
+ - Z3_IOB: Index out of bounds.
+ - Z3_INVALID_ARG: Invalid argument was provided.
+ - Z3_PARSER_ERROR: An error occurred when parsing a string or file.
+ - Z3_NO_PARSER: Parser output is not available, that is, user didn't invoke #Z3_parse_smtlib2_string or #Z3_parse_smtlib2_file.
+ - Z3_INVALID_PATTERN: Invalid pattern was used to build a quantifier.
+ - Z3_MEMOUT_FAIL: A memory allocation failure was encountered.
+ - Z3_FILE_ACCESS_ERRROR: A file could not be accessed.
+ - Z3_INVALID_USAGE: API call is invalid in the current state.
+ - Z3_INTERNAL_FATAL: An error internal to Z3 occurred.
+ - Z3_DEC_REF_ERROR: Trying to decrement the reference counter of an AST that was deleted or the reference counter was not initialized with #Z3_inc_ref.
+ - Z3_EXCEPTION: Internal Z3 exception. Additional details can be retrieved using #Z3_get_error_msg.
+*/
+typedef enum
+{
+ Z3_OK,
+ Z3_SORT_ERROR,
+ Z3_IOB,
+ Z3_INVALID_ARG,
+ Z3_PARSER_ERROR,
+ Z3_NO_PARSER,
+ Z3_INVALID_PATTERN,
+ Z3_MEMOUT_FAIL,
+ Z3_FILE_ACCESS_ERROR,
+ Z3_INTERNAL_FATAL,
+ Z3_INVALID_USAGE,
+ Z3_DEC_REF_ERROR,
+ Z3_EXCEPTION
+} Z3_error_code;
+
+/**
+ Definitions for update_api.py
+
+ def_Type('CONFIG', 'Z3_config', 'Config')
+ def_Type('CONTEXT', 'Z3_context', 'ContextObj')
+ def_Type('AST', 'Z3_ast', 'Ast')
+ def_Type('APP', 'Z3_app', 'Ast')
+ def_Type('SORT', 'Z3_sort', 'Sort')
+ def_Type('FUNC_DECL', 'Z3_func_decl', 'FuncDecl')
+ def_Type('PATTERN', 'Z3_pattern', 'Pattern')
+ def_Type('MODEL', 'Z3_model', 'Model')
+ def_Type('LITERALS', 'Z3_literals', 'Literals')
+ def_Type('CONSTRUCTOR', 'Z3_constructor', 'Constructor')
+ def_Type('CONSTRUCTOR_LIST', 'Z3_constructor_list', 'ConstructorList')
+ def_Type('SOLVER', 'Z3_solver', 'SolverObj')
+ def_Type('SOLVER_CALLBACK', 'Z3_solver_callback', 'SolverCallbackObj')
+ def_Type('GOAL', 'Z3_goal', 'GoalObj')
+ def_Type('TACTIC', 'Z3_tactic', 'TacticObj')
+ def_Type('PARAMS', 'Z3_params', 'Params')
+ def_Type('PROBE', 'Z3_probe', 'ProbeObj')
+ def_Type('STATS', 'Z3_stats', 'StatsObj')
+ def_Type('AST_VECTOR', 'Z3_ast_vector', 'AstVectorObj')
+ def_Type('AST_MAP', 'Z3_ast_map', 'AstMapObj')
+ def_Type('APPLY_RESULT', 'Z3_apply_result', 'ApplyResultObj')
+ def_Type('FUNC_INTERP', 'Z3_func_interp', 'FuncInterpObj')
+ def_Type('FUNC_ENTRY', 'Z3_func_entry', 'FuncEntryObj')
+ def_Type('FIXEDPOINT', 'Z3_fixedpoint', 'FixedpointObj')
+ def_Type('OPTIMIZE', 'Z3_optimize', 'OptimizeObj')
+ def_Type('PARAM_DESCRS', 'Z3_param_descrs', 'ParamDescrs')
+ def_Type('RCF_NUM', 'Z3_rcf_num', 'RCFNumObj')
+*/
+
+/**
+ \brief Z3 custom error handler (See #Z3_set_error_handler).
+*/
+typedef void Z3_error_handler(Z3_context c, Z3_error_code e);
+
+
+/**
+ \brief callback functions for user propagator.
+*/
+typedef void Z3_push_eh(void* ctx);
+typedef void Z3_pop_eh(void* ctx, unsigned num_scopes);
+typedef void* Z3_fresh_eh(void* ctx, Z3_context new_context);
+typedef void Z3_fixed_eh(void* ctx, Z3_solver_callback cb, unsigned id, Z3_ast value);
+typedef void Z3_eq_eh(void* ctx, Z3_solver_callback cb, unsigned x, unsigned y);
+typedef void Z3_final_eh(void* ctx, Z3_solver_callback cb);
+
+/**
+ \brief A Goal is essentially a set of formulas.
+ Z3 provide APIs for building strategies/tactics for solving and transforming Goals.
+ Some of these transformations apply under/over approximations.
+
+ - Z3_GOAL_PRECISE: Approximations/Relaxations were not applied on the goal (sat and unsat answers were preserved).
+ - Z3_GOAL_UNDER: Goal is the product of a under-approximation (sat answers are preserved).
+ - Z3_GOAL_OVER: Goal is the product of an over-approximation (unsat answers are preserved).
+ - Z3_GOAL_UNDER_OVER: Goal is garbage (it is the product of over- and under-approximations, sat and unsat answers are not preserved).
+*/
+typedef enum
+{
+ Z3_GOAL_PRECISE,
+ Z3_GOAL_UNDER,
+ Z3_GOAL_OVER,
+ Z3_GOAL_UNDER_OVER
+} Z3_goal_prec;
+
+/*@}*/
+
+#ifdef __cplusplus
+extern "C" {
+#endif // __cplusplus
+
+ /** @name Global Parameters */
+
+ /*@{*/
+ /**
+ \brief Set a global (or module) parameter.
+ This setting is shared by all Z3 contexts.
+
+ When a Z3 module is initialized it will use the value of these parameters
+ when Z3_params objects are not provided.
+
+ The name of parameter can be composed of characters [a-z][A-Z], digits [0-9], '-' and '_'.
+ The character '.' is a delimiter (more later).
+
+ The parameter names are case-insensitive. The character '-' should be viewed as an "alias" for '_'.
+ Thus, the following parameter names are considered equivalent: "pp.decimal-precision" and "PP.DECIMAL_PRECISION".
+
+ This function can be used to set parameters for a specific Z3 module.
+ This can be done by using ..
+ For example:
+ Z3_global_param_set('pp.decimal', 'true')
+ will set the parameter "decimal" in the module "pp" to true.
+
+ \sa Z3_global_param_get
+ \sa Z3_global_param_reset_all
+
+ def_API('Z3_global_param_set', VOID, (_in(STRING), _in(STRING)))
+ */
+ void Z3_API Z3_global_param_set(Z3_string param_id, Z3_string param_value);
+
+
+ /**
+ \brief Restore the value of all global (and module) parameters.
+ This command will not affect already created objects (such as tactics and solvers).
+
+ \sa Z3_global_param_get
+ \sa Z3_global_param_set
+
+ def_API('Z3_global_param_reset_all', VOID, ())
+ */
+ void Z3_API Z3_global_param_reset_all(void);
+
+ /**
+ \brief Get a global (or module) parameter.
+
+ Returns \c false if the parameter value does not exist.
+
+ \sa Z3_global_param_reset_all
+ \sa Z3_global_param_set
+
+ \remark This function cannot be invoked simultaneously from different threads without synchronization.
+ The result string stored in param_value is stored in shared location.
+
+ def_API('Z3_global_param_get', BOOL, (_in(STRING), _out(STRING)))
+ */
+ Z3_bool_opt Z3_API Z3_global_param_get(Z3_string param_id, Z3_string_ptr param_value);
+
+ /*@}*/
+
+ /** @name Create configuration */
+ /*@{*/
+
+ /**
+ \brief Create a configuration object for the Z3 context object.
+
+ Configurations are created in order to assign parameters prior to creating
+ contexts for Z3 interaction. For example, if the users wishes to use proof
+ generation, then call:
+
+ \ccode{Z3_set_param_value(cfg\, "proof"\, "true")}
+
+ \remark In previous versions of Z3, the \c Z3_config was used to store
+ global and module configurations. Now, we should use \c Z3_global_param_set.
+
+ The following parameters can be set:
+
+ - proof (Boolean) Enable proof generation
+ - debug_ref_count (Boolean) Enable debug support for Z3_ast reference counting
+ - trace (Boolean) Tracing support for VCC
+ - trace_file_name (String) Trace out file for VCC traces
+ - timeout (unsigned) default timeout (in milliseconds) used for solvers
+ - well_sorted_check type checker
+ - auto_config use heuristics to automatically select solver and configure it
+ - model model generation for solvers, this parameter can be overwritten when creating a solver
+ - model_validate validate models produced by solvers
+ - unsat_core unsat-core generation for solvers, this parameter can be overwritten when creating a solver
+
+ \sa Z3_set_param_value
+ \sa Z3_del_config
+
+ def_API('Z3_mk_config', CONFIG, ())
+ */
+ Z3_config Z3_API Z3_mk_config(void);
+
+ /**
+ \brief Delete the given configuration object.
+
+ \sa Z3_mk_config
+
+ def_API('Z3_del_config', VOID, (_in(CONFIG),))
+ */
+ void Z3_API Z3_del_config(Z3_config c);
+
+ /**
+ \brief Set a configuration parameter.
+
+ The following parameters can be set for
+
+ \sa Z3_mk_config
+
+ def_API('Z3_set_param_value', VOID, (_in(CONFIG), _in(STRING), _in(STRING)))
+ */
+ void Z3_API Z3_set_param_value(Z3_config c, Z3_string param_id, Z3_string param_value);
+
+ /*@}*/
+
+ /** @name Context and AST Reference Counting */
+ /*@{*/
+
+ /**
+ \brief Create a context using the given configuration.
+
+ After a context is created, the configuration cannot be changed,
+ although some parameters can be changed using #Z3_update_param_value.
+ All main interaction with Z3 happens in the context of a \c Z3_context.
+
+ In contrast to #Z3_mk_context_rc, the life time of \c Z3_ast objects
+ are determined by the scope level of #Z3_solver_push and #Z3_solver_pop.
+ In other words, a \c Z3_ast object remains valid until there is a
+ call to #Z3_solver_pop that takes the current scope below the level where
+ the object was created.
+
+ Note that all other reference counted objects, including \c Z3_model,
+ \c Z3_solver, \c Z3_func_interp have to be managed by the caller.
+ Their reference counts are not handled by the context.
+
+ Further remarks:
+ - \c Z3_sort, \c Z3_func_decl, \c Z3_app, \c Z3_pattern are \c Z3_ast's.
+ - Z3 uses hash-consing, i.e., when the same \c Z3_ast is created twice,
+ Z3 will return the same pointer twice.
+
+ \sa Z3_del_context
+
+ def_API('Z3_mk_context', CONTEXT, (_in(CONFIG),))
+ */
+ Z3_context Z3_API Z3_mk_context(Z3_config c);
+
+ /**
+ \brief Create a context using the given configuration.
+ This function is similar to #Z3_mk_context. However,
+ in the context returned by this function, the user
+ is responsible for managing \c Z3_ast reference counters.
+ Managing reference counters is a burden and error-prone,
+ but allows the user to use the memory more efficiently.
+ The user must invoke #Z3_inc_ref for any \c Z3_ast returned
+ by Z3, and #Z3_dec_ref whenever the \c Z3_ast is not needed
+ anymore. This idiom is similar to the one used in
+ BDD (binary decision diagrams) packages such as CUDD.
+
+ Remarks:
+
+ - \c Z3_sort, \c Z3_func_decl, \c Z3_app, \c Z3_pattern are \c Z3_ast's.
+ - After a context is created, the configuration cannot be changed.
+ - All main interaction with Z3 happens in the context of a \c Z3_context.
+ - Z3 uses hash-consing, i.e., when the same \c Z3_ast is created twice,
+ Z3 will return the same pointer twice.
+
+ def_API('Z3_mk_context_rc', CONTEXT, (_in(CONFIG),))
+ */
+ Z3_context Z3_API Z3_mk_context_rc(Z3_config c);
+
+ /**
+ \brief Delete the given logical context.
+
+ \sa Z3_mk_context
+
+ def_API('Z3_del_context', VOID, (_in(CONTEXT),))
+ */
+ void Z3_API Z3_del_context(Z3_context c);
+
+ /**
+ \brief Increment the reference counter of the given AST.
+ The context \c c should have been created using #Z3_mk_context_rc.
+ This function is a NOOP if \c c was created using #Z3_mk_context.
+
+ def_API('Z3_inc_ref', VOID, (_in(CONTEXT), _in(AST)))
+ */
+ void Z3_API Z3_inc_ref(Z3_context c, Z3_ast a);
+
+ /**
+ \brief Decrement the reference counter of the given AST.
+ The context \c c should have been created using #Z3_mk_context_rc.
+ This function is a NOOP if \c c was created using #Z3_mk_context.
+
+ def_API('Z3_dec_ref', VOID, (_in(CONTEXT), _in(AST)))
+ */
+ void Z3_API Z3_dec_ref(Z3_context c, Z3_ast a);
+
+ /**
+ \brief Set a value of a context parameter.
+
+ \sa Z3_global_param_set
+
+ def_API('Z3_update_param_value', VOID, (_in(CONTEXT), _in(STRING), _in(STRING)))
+ */
+ void Z3_API Z3_update_param_value(Z3_context c, Z3_string param_id, Z3_string param_value);
+
+ /**
+ \brief Interrupt the execution of a Z3 procedure.
+ This procedure can be used to interrupt: solvers, simplifiers and tactics.
+
+ def_API('Z3_interrupt', VOID, (_in(CONTEXT),))
+ */
+ void Z3_API Z3_interrupt(Z3_context c);
+
+
+ /*@}*/
+
+ /** @name Parameters */
+ /*@{*/
+
+ /**
+ \brief Create a Z3 (empty) parameter set.
+ Starting at Z3 4.0, parameter sets are used to configure many components such as:
+ simplifiers, tactics, solvers, etc.
+
+ \remark Reference counting must be used to manage parameter sets, even when the \c Z3_context was
+ created using #Z3_mk_context instead of #Z3_mk_context_rc.
+
+ def_API('Z3_mk_params', PARAMS, (_in(CONTEXT),))
+ */
+ Z3_params Z3_API Z3_mk_params(Z3_context c);
+
+ /**
+ \brief Increment the reference counter of the given parameter set.
+
+ def_API('Z3_params_inc_ref', VOID, (_in(CONTEXT), _in(PARAMS)))
+ */
+ void Z3_API Z3_params_inc_ref(Z3_context c, Z3_params p);
+
+ /**
+ \brief Decrement the reference counter of the given parameter set.
+
+ def_API('Z3_params_dec_ref', VOID, (_in(CONTEXT), _in(PARAMS)))
+ */
+ void Z3_API Z3_params_dec_ref(Z3_context c, Z3_params p);
+
+ /**
+ \brief Add a Boolean parameter \c k with value \c v to the parameter set \c p.
+
+ def_API('Z3_params_set_bool', VOID, (_in(CONTEXT), _in(PARAMS), _in(SYMBOL), _in(BOOL)))
+ */
+ void Z3_API Z3_params_set_bool(Z3_context c, Z3_params p, Z3_symbol k, bool v);
+
+ /**
+ \brief Add a unsigned parameter \c k with value \c v to the parameter set \c p.
+
+ def_API('Z3_params_set_uint', VOID, (_in(CONTEXT), _in(PARAMS), _in(SYMBOL), _in(UINT)))
+ */
+ void Z3_API Z3_params_set_uint(Z3_context c, Z3_params p, Z3_symbol k, unsigned v);
+
+ /**
+ \brief Add a double parameter \c k with value \c v to the parameter set \c p.
+
+ def_API('Z3_params_set_double', VOID, (_in(CONTEXT), _in(PARAMS), _in(SYMBOL), _in(DOUBLE)))
+ */
+ void Z3_API Z3_params_set_double(Z3_context c, Z3_params p, Z3_symbol k, double v);
+
+ /**
+ \brief Add a symbol parameter \c k with value \c v to the parameter set \c p.
+
+ def_API('Z3_params_set_symbol', VOID, (_in(CONTEXT), _in(PARAMS), _in(SYMBOL), _in(SYMBOL)))
+ */
+ void Z3_API Z3_params_set_symbol(Z3_context c, Z3_params p, Z3_symbol k, Z3_symbol v);
+
+ /**
+ \brief Convert a parameter set into a string. This function is mainly used for printing the
+ contents of a parameter set.
+
+ def_API('Z3_params_to_string', STRING, (_in(CONTEXT), _in(PARAMS)))
+ */
+ Z3_string Z3_API Z3_params_to_string(Z3_context c, Z3_params p);
+
+ /**
+ \brief Validate the parameter set \c p against the parameter description set \c d.
+
+ The procedure invokes the error handler if \c p is invalid.
+
+ def_API('Z3_params_validate', VOID, (_in(CONTEXT), _in(PARAMS), _in(PARAM_DESCRS)))
+ */
+ void Z3_API Z3_params_validate(Z3_context c, Z3_params p, Z3_param_descrs d);
+
+ /*@}*/
+
+ /** @name Parameter Descriptions */
+ /*@{*/
+
+ /**
+ \brief Increment the reference counter of the given parameter description set.
+
+ def_API('Z3_param_descrs_inc_ref', VOID, (_in(CONTEXT), _in(PARAM_DESCRS)))
+ */
+ void Z3_API Z3_param_descrs_inc_ref(Z3_context c, Z3_param_descrs p);
+
+ /**
+ \brief Decrement the reference counter of the given parameter description set.
+
+ def_API('Z3_param_descrs_dec_ref', VOID, (_in(CONTEXT), _in(PARAM_DESCRS)))
+ */
+ void Z3_API Z3_param_descrs_dec_ref(Z3_context c, Z3_param_descrs p);
+
+ /**
+ \brief Return the kind associated with the given parameter name \c n.
+
+ def_API('Z3_param_descrs_get_kind', UINT, (_in(CONTEXT), _in(PARAM_DESCRS), _in(SYMBOL)))
+ */
+ Z3_param_kind Z3_API Z3_param_descrs_get_kind(Z3_context c, Z3_param_descrs p, Z3_symbol n);
+
+ /**
+ \brief Return the number of parameters in the given parameter description set.
+
+ def_API('Z3_param_descrs_size', UINT, (_in(CONTEXT), _in(PARAM_DESCRS)))
+ */
+ unsigned Z3_API Z3_param_descrs_size(Z3_context c, Z3_param_descrs p);
+
+ /**
+ \brief Return the name of the parameter at given index \c i.
+
+ \pre i < Z3_param_descrs_size(c, p)
+
+ def_API('Z3_param_descrs_get_name', SYMBOL, (_in(CONTEXT), _in(PARAM_DESCRS), _in(UINT)))
+ */
+ Z3_symbol Z3_API Z3_param_descrs_get_name(Z3_context c, Z3_param_descrs p, unsigned i);
+
+ /**
+ \brief Retrieve documentation string corresponding to parameter name \c s.
+
+ def_API('Z3_param_descrs_get_documentation', STRING, (_in(CONTEXT), _in(PARAM_DESCRS), _in(SYMBOL)))
+ */
+ Z3_string Z3_API Z3_param_descrs_get_documentation(Z3_context c, Z3_param_descrs p, Z3_symbol s);
+
+ /**
+ \brief Convert a parameter description set into a string. This function is mainly used for printing the
+ contents of a parameter description set.
+
+ def_API('Z3_param_descrs_to_string', STRING, (_in(CONTEXT), _in(PARAM_DESCRS)))
+ */
+ Z3_string Z3_API Z3_param_descrs_to_string(Z3_context c, Z3_param_descrs p);
+
+ /*@}*/
+
+ /** @name Symbols */
+ /*@{*/
+
+ /**
+ \brief Create a Z3 symbol using an integer.
+
+ Symbols are used to name several term and type constructors.
+
+ NB. Not all integers can be passed to this function.
+ The legal range of unsigned integers is 0 to 2^30-1.
+
+ \sa Z3_get_symbol_int
+ \sa Z3_mk_string_symbol
+
+ def_API('Z3_mk_int_symbol', SYMBOL, (_in(CONTEXT), _in(INT)))
+ */
+ Z3_symbol Z3_API Z3_mk_int_symbol(Z3_context c, int i);
+
+ /**
+ \brief Create a Z3 symbol using a C string.
+
+ Symbols are used to name several term and type constructors.
+
+ \sa Z3_get_symbol_string
+ \sa Z3_mk_int_symbol
+
+ def_API('Z3_mk_string_symbol', SYMBOL, (_in(CONTEXT), _in(STRING)))
+ */
+ Z3_symbol Z3_API Z3_mk_string_symbol(Z3_context c, Z3_string s);
+
+ /*@}*/
+
+ /** @name Sorts */
+ /*@{*/
+
+ /**
+ \brief Create a free (uninterpreted) type using the given name (symbol).
+
+ Two free types are considered the same iff the have the same name.
+
+ def_API('Z3_mk_uninterpreted_sort', SORT, (_in(CONTEXT), _in(SYMBOL)))
+ */
+ Z3_sort Z3_API Z3_mk_uninterpreted_sort(Z3_context c, Z3_symbol s);
+
+ /**
+ \brief Create the Boolean type.
+
+ This type is used to create propositional variables and predicates.
+
+ def_API('Z3_mk_bool_sort', SORT, (_in(CONTEXT), ))
+ */
+ Z3_sort Z3_API Z3_mk_bool_sort(Z3_context c);
+
+ /**
+ \brief Create the integer type.
+
+ This type is not the int type found in programming languages.
+ A machine integer can be represented using bit-vectors. The function
+ #Z3_mk_bv_sort creates a bit-vector type.
+
+ \sa Z3_mk_bv_sort
+
+ def_API('Z3_mk_int_sort', SORT, (_in(CONTEXT), ))
+ */
+ Z3_sort Z3_API Z3_mk_int_sort(Z3_context c);
+
+ /**
+ \brief Create the real type.
+
+ Note that this type is not a floating point number.
+
+ def_API('Z3_mk_real_sort', SORT, (_in(CONTEXT), ))
+ */
+ Z3_sort Z3_API Z3_mk_real_sort(Z3_context c);
+
+ /**
+ \brief Create a bit-vector type of the given size.
+
+ This type can also be seen as a machine integer.
+
+ \remark The size of the bit-vector type must be greater than zero.
+
+ def_API('Z3_mk_bv_sort', SORT, (_in(CONTEXT), _in(UINT)))
+ */
+ Z3_sort Z3_API Z3_mk_bv_sort(Z3_context c, unsigned sz);
+
+ /**
+ \brief Create a named finite domain sort.
+
+ To create constants that belong to the finite domain,
+ use the APIs for creating numerals and pass a numeric
+ constant together with the sort returned by this call.
+ The numeric constant should be between 0 and the less
+ than the size of the domain.
+
+ \sa Z3_get_finite_domain_sort_size
+
+ def_API('Z3_mk_finite_domain_sort', SORT, (_in(CONTEXT), _in(SYMBOL), _in(UINT64)))
+ */
+ Z3_sort Z3_API Z3_mk_finite_domain_sort(Z3_context c, Z3_symbol name, uint64_t size);
+
+ /**
+ \brief Create an array type.
+
+ We usually represent the array type as: \ccode{[domain -> range]}.
+ Arrays are usually used to model the heap/memory in software verification.
+
+ \sa Z3_mk_select
+ \sa Z3_mk_store
+
+ def_API('Z3_mk_array_sort', SORT, (_in(CONTEXT), _in(SORT), _in(SORT)))
+ */
+ Z3_sort Z3_API Z3_mk_array_sort(Z3_context c, Z3_sort domain, Z3_sort range);
+
+ /**
+ \brief Create an array type with N arguments
+
+ \sa Z3_mk_select_n
+ \sa Z3_mk_store_n
+
+ def_API('Z3_mk_array_sort_n', SORT, (_in(CONTEXT), _in(UINT), _in_array(1, SORT), _in(SORT)))
+ */
+ Z3_sort Z3_API Z3_mk_array_sort_n(Z3_context c, unsigned n, Z3_sort const * domain, Z3_sort range);
+
+ /**
+ \brief Create a tuple type.
+
+ A tuple with \c n fields has a constructor and \c n projections.
+ This function will also declare the constructor and projection functions.
+
+ \param c logical context
+ \param mk_tuple_name name of the constructor function associated with the tuple type.
+ \param num_fields number of fields in the tuple type.
+ \param field_names name of the projection functions.
+ \param field_sorts type of the tuple fields.
+ \param mk_tuple_decl output parameter that will contain the constructor declaration.
+ \param proj_decl output parameter that will contain the projection function declarations. This field must be a buffer of size \c num_fields allocated by the user.
+
+ def_API('Z3_mk_tuple_sort', SORT, (_in(CONTEXT), _in(SYMBOL), _in(UINT), _in_array(2, SYMBOL), _in_array(2, SORT), _out(FUNC_DECL), _out_array(2, FUNC_DECL)))
+ */
+ Z3_sort Z3_API Z3_mk_tuple_sort(Z3_context c,
+ Z3_symbol mk_tuple_name,
+ unsigned num_fields,
+ Z3_symbol const field_names[],
+ Z3_sort const field_sorts[],
+ Z3_func_decl * mk_tuple_decl,
+ Z3_func_decl proj_decl[]);
+
+ /**
+ \brief Create a enumeration sort.
+
+ An enumeration sort with \c n elements.
+ This function will also declare the functions corresponding to the enumerations.
+
+ \param c logical context
+ \param name name of the enumeration sort.
+ \param n number of elements in enumeration sort.
+ \param enum_names names of the enumerated elements.
+ \param enum_consts constants corresponding to the enumerated elements.
+ \param enum_testers predicates testing if terms of the enumeration sort correspond to an enumeration.
+
+ For example, if this function is called with three symbols A, B, C and the name S, then
+ \c s is a sort whose name is S, and the function returns three terms corresponding to A, B, C in
+ \c enum_consts. The array \c enum_testers has three predicates of type \ccode{(s -> Bool)}.
+ The first predicate (corresponding to A) is true when applied to A, and false otherwise.
+ Similarly for the other predicates.
+
+ def_API('Z3_mk_enumeration_sort', SORT, (_in(CONTEXT), _in(SYMBOL), _in(UINT), _in_array(2, SYMBOL), _out_array(2, FUNC_DECL), _out_array(2, FUNC_DECL)))
+ */
+ Z3_sort Z3_API Z3_mk_enumeration_sort(Z3_context c,
+ Z3_symbol name,
+ unsigned n,
+ Z3_symbol const enum_names[],
+ Z3_func_decl enum_consts[],
+ Z3_func_decl enum_testers[]);
+
+ /**
+ \brief Create a list sort
+
+ A list sort over \c elem_sort
+ This function declares the corresponding constructors and testers for lists.
+
+ \param c logical context
+ \param name name of the list sort.
+ \param elem_sort sort of list elements.
+ \param nil_decl declaration for the empty list.
+ \param is_nil_decl test for the empty list.
+ \param cons_decl declaration for a cons cell.
+ \param is_cons_decl cons cell test.
+ \param head_decl list head.
+ \param tail_decl list tail.
+
+ def_API('Z3_mk_list_sort', SORT, (_in(CONTEXT), _in(SYMBOL), _in(SORT), _out(FUNC_DECL), _out(FUNC_DECL), _out(FUNC_DECL), _out(FUNC_DECL), _out(FUNC_DECL), _out(FUNC_DECL)))
+ */
+ Z3_sort Z3_API Z3_mk_list_sort(Z3_context c,
+ Z3_symbol name,
+ Z3_sort elem_sort,
+ Z3_func_decl* nil_decl,
+ Z3_func_decl* is_nil_decl,
+ Z3_func_decl* cons_decl,
+ Z3_func_decl* is_cons_decl,
+ Z3_func_decl* head_decl,
+ Z3_func_decl* tail_decl
+ );
+
+ /**
+ \brief Create a constructor.
+
+ \param c logical context.
+ \param name constructor name.
+ \param recognizer name of recognizer function.
+ \param num_fields number of fields in constructor.
+ \param field_names names of the constructor fields.
+ \param sorts field sorts, 0 if the field sort refers to a recursive sort.
+ \param sort_refs reference to datatype sort that is an argument to the constructor; if the corresponding
+ sort reference is 0, then the value in sort_refs should be an index referring to
+ one of the recursive datatypes that is declared.
+
+ \sa Z3_del_constructor
+ \sa Z3_mk_constructor_list
+ \sa Z3_query_constructor
+
+ def_API('Z3_mk_constructor', CONSTRUCTOR, (_in(CONTEXT), _in(SYMBOL), _in(SYMBOL), _in(UINT), _in_array(3, SYMBOL), _in_array(3, SORT), _in_array(3, UINT)))
+ */
+ Z3_constructor Z3_API Z3_mk_constructor(Z3_context c,
+ Z3_symbol name,
+ Z3_symbol recognizer,
+ unsigned num_fields,
+ Z3_symbol const field_names[],
+ Z3_sort_opt const sorts[],
+ unsigned sort_refs[]
+ );
+
+ /**
+ \brief Reclaim memory allocated to constructor.
+
+ \param c logical context.
+ \param constr constructor.
+
+ \sa Z3_mk_constructor
+
+ def_API('Z3_del_constructor', VOID, (_in(CONTEXT), _in(CONSTRUCTOR)))
+ */
+ void Z3_API Z3_del_constructor(Z3_context c, Z3_constructor constr);
+
+ /**
+ \brief Create datatype, such as lists, trees, records, enumerations or unions of records.
+ The datatype may be recursive. Return the datatype sort.
+
+ \param c logical context.
+ \param name name of datatype.
+ \param num_constructors number of constructors passed in.
+ \param constructors array of constructor containers.
+
+ \sa Z3_mk_constructor
+ \sa Z3_mk_constructor_list
+ \sa Z3_mk_datatypes
+
+ def_API('Z3_mk_datatype', SORT, (_in(CONTEXT), _in(SYMBOL), _in(UINT), _inout_array(2, CONSTRUCTOR)))
+ */
+ Z3_sort Z3_API Z3_mk_datatype(Z3_context c,
+ Z3_symbol name,
+ unsigned num_constructors,
+ Z3_constructor constructors[]);
+
+ /**
+ \brief Create list of constructors.
+
+ \param c logical context.
+ \param num_constructors number of constructors in list.
+ \param constructors list of constructors.
+
+ \sa Z3_del_constructor_list
+ \sa Z3_mk_constructor
+
+ def_API('Z3_mk_constructor_list', CONSTRUCTOR_LIST, (_in(CONTEXT), _in(UINT), _in_array(1, CONSTRUCTOR)))
+ */
+ Z3_constructor_list Z3_API Z3_mk_constructor_list(Z3_context c,
+ unsigned num_constructors,
+ Z3_constructor const constructors[]);
+
+ /**
+ \brief Reclaim memory allocated for constructor list.
+
+ Each constructor inside the constructor list must be independently reclaimed using #Z3_del_constructor.
+
+ \param c logical context.
+ \param clist constructor list container.
+
+ \sa Z3_mk_constructor_list
+
+ def_API('Z3_del_constructor_list', VOID, (_in(CONTEXT), _in(CONSTRUCTOR_LIST)))
+ */
+ void Z3_API Z3_del_constructor_list(Z3_context c, Z3_constructor_list clist);
+
+ /**
+ \brief Create mutually recursive datatypes.
+
+ \param c logical context.
+ \param num_sorts number of datatype sorts.
+ \param sort_names names of datatype sorts.
+ \param sorts array of datatype sorts.
+ \param constructor_lists list of constructors, one list per sort.
+
+ \sa Z3_mk_constructor
+ \sa Z3_mk_constructor_list
+ \sa Z3_mk_datatype
+
+ def_API('Z3_mk_datatypes', VOID, (_in(CONTEXT), _in(UINT), _in_array(1, SYMBOL), _out_array(1, SORT), _inout_array(1, CONSTRUCTOR_LIST)))
+ */
+ void Z3_API Z3_mk_datatypes(Z3_context c,
+ unsigned num_sorts,
+ Z3_symbol const sort_names[],
+ Z3_sort sorts[],
+ Z3_constructor_list constructor_lists[]);
+
+ /**
+ \brief Query constructor for declared functions.
+
+ \param c logical context.
+ \param constr constructor container. The container must have been passed in to a #Z3_mk_datatype call.
+ \param num_fields number of accessor fields in the constructor.
+ \param constructor constructor function declaration, allocated by user.
+ \param tester constructor test function declaration, allocated by user.
+ \param accessors array of accessor function declarations allocated by user. The array must contain num_fields elements.
+
+ \sa Z3_mk_constructor
+
+ def_API('Z3_query_constructor', VOID, (_in(CONTEXT), _in(CONSTRUCTOR), _in(UINT), _out(FUNC_DECL), _out(FUNC_DECL), _out_array(2, FUNC_DECL)))
+ */
+ void Z3_API Z3_query_constructor(Z3_context c,
+ Z3_constructor constr,
+ unsigned num_fields,
+ Z3_func_decl* constructor,
+ Z3_func_decl* tester,
+ Z3_func_decl accessors[]);
+
+ /*@}*/
+
+ /** @name Constants and Applications */
+ /*@{*/
+
+ /**
+ \brief Declare a constant or function.
+
+ \param c logical context.
+ \param s name of the constant or function.
+ \param domain_size number of arguments. It is 0 when declaring a constant.
+ \param domain array containing the sort of each argument. The array must contain domain_size elements. It is 0 when declaring a constant.
+ \param range sort of the constant or the return sort of the function.
+
+ After declaring a constant or function, the function
+ #Z3_mk_app can be used to create a constant or function
+ application.
+
+ \sa Z3_mk_app
+ \sa Z3_mk_fresh_func_decl
+ \sa Z3_mk_rec_func_decl
+
+ def_API('Z3_mk_func_decl', FUNC_DECL, (_in(CONTEXT), _in(SYMBOL), _in(UINT), _in_array(2, SORT), _in(SORT)))
+ */
+ Z3_func_decl Z3_API Z3_mk_func_decl(Z3_context c, Z3_symbol s,
+ unsigned domain_size, Z3_sort const domain[],
+ Z3_sort range);
+
+
+
+ /**
+ \brief Create a constant or function application.
+
+ \sa Z3_mk_fresh_func_decl
+ \sa Z3_mk_func_decl
+ \sa Z3_mk_rec_func_decl
+
+ def_API('Z3_mk_app', AST, (_in(CONTEXT), _in(FUNC_DECL), _in(UINT), _in_array(2, AST)))
+ */
+ Z3_ast Z3_API Z3_mk_app(
+ Z3_context c,
+ Z3_func_decl d,
+ unsigned num_args,
+ Z3_ast const args[]);
+
+ /**
+ \brief Declare and create a constant.
+
+ This function is a shorthand for:
+ \code
+ Z3_func_decl d = Z3_mk_func_decl(c, s, 0, 0, ty);
+ Z3_ast n = Z3_mk_app(c, d, 0, 0);
+ \endcode
+
+ \sa Z3_mk_app
+ \sa Z3_mk_fresh_const
+ \sa Z3_mk_func_decl
+
+ def_API('Z3_mk_const', AST, (_in(CONTEXT), _in(SYMBOL), _in(SORT)))
+ */
+ Z3_ast Z3_API Z3_mk_const(Z3_context c, Z3_symbol s, Z3_sort ty);
+
+ /**
+ \brief Declare a fresh constant or function.
+
+ Z3 will generate an unique name for this function declaration.
+ If prefix is different from \c NULL, then the name generate by Z3 will start with \c prefix.
+
+ \remark If \c prefix is \c NULL, then it is assumed to be the empty string.
+
+ \sa Z3_mk_func_decl
+
+ def_API('Z3_mk_fresh_func_decl', FUNC_DECL, (_in(CONTEXT), _in(STRING), _in(UINT), _in_array(2, SORT), _in(SORT)))
+ */
+ Z3_func_decl Z3_API Z3_mk_fresh_func_decl(Z3_context c, Z3_string prefix,
+ unsigned domain_size, Z3_sort const domain[],
+ Z3_sort range);
+
+ /**
+ \brief Declare and create a fresh constant.
+
+ This function is a shorthand for:
+ \code Z3_func_decl d = Z3_mk_fresh_func_decl(c, prefix, 0, 0, ty); Z3_ast n = Z3_mk_app(c, d, 0, 0); \endcode
+
+ \remark If \c prefix is \c NULL, then it is assumed to be the empty string.
+
+ \sa Z3_mk_app
+ \sa Z3_mk_const
+ \sa Z3_mk_fresh_func_decl
+ \sa Z3_mk_func_decl
+
+ def_API('Z3_mk_fresh_const', AST, (_in(CONTEXT), _in(STRING), _in(SORT)))
+ */
+ Z3_ast Z3_API Z3_mk_fresh_const(Z3_context c, Z3_string prefix, Z3_sort ty);
+
+
+ /**
+ \brief Declare a recursive function
+
+ \param c logical context.
+ \param s name of the function.
+ \param domain_size number of arguments. It should be greater than 0.
+ \param domain array containing the sort of each argument. The array must contain domain_size elements.
+ \param range sort of the constant or the return sort of the function.
+
+ After declaring recursive function, it should be associated with a recursive definition #Z3_add_rec_def.
+ The function #Z3_mk_app can be used to create a constant or function
+ application.
+
+ \sa Z3_add_rec_def
+ \sa Z3_mk_app
+ \sa Z3_mk_func_decl
+
+ def_API('Z3_mk_rec_func_decl', FUNC_DECL, (_in(CONTEXT), _in(SYMBOL), _in(UINT), _in_array(2, SORT), _in(SORT)))
+ */
+ Z3_func_decl Z3_API Z3_mk_rec_func_decl(Z3_context c, Z3_symbol s,
+ unsigned domain_size, Z3_sort const domain[],
+ Z3_sort range);
+
+ /**
+ \brief Define the body of a recursive function.
+
+ \param c logical context.
+ \param f function declaration.
+ \param n number of arguments to the function
+ \param args constants that are used as arguments to the recursive function in the definition.
+ \param body body of the recursive function
+
+ After declaring a recursive function or a collection of mutually recursive functions, use
+ this function to provide the definition for the recursive function.
+
+ \sa Z3_mk_rec_func_decl
+
+ def_API('Z3_add_rec_def', VOID, (_in(CONTEXT), _in(FUNC_DECL), _in(UINT), _in_array(2, AST), _in(AST)))
+ */
+ void Z3_API Z3_add_rec_def(Z3_context c, Z3_func_decl f, unsigned n, Z3_ast args[], Z3_ast body);
+
+ /*@}*/
+
+ /** @name Propositional Logic and Equality */
+ /*@{*/
+ /**
+ \brief Create an AST node representing \c true.
+
+ def_API('Z3_mk_true', AST, (_in(CONTEXT), ))
+ */
+ Z3_ast Z3_API Z3_mk_true(Z3_context c);
+
+ /**
+ \brief Create an AST node representing \c false.
+
+ def_API('Z3_mk_false', AST, (_in(CONTEXT), ))
+ */
+ Z3_ast Z3_API Z3_mk_false(Z3_context c);
+
+ /**
+ \brief Create an AST node representing \ccode{l = r}.
+
+ The nodes \c l and \c r must have the same type.
+
+ def_API('Z3_mk_eq', AST, (_in(CONTEXT), _in(AST), _in(AST)))
+ */
+ Z3_ast Z3_API Z3_mk_eq(Z3_context c, Z3_ast l, Z3_ast r);
+
+ /**
+ \brief Create an AST node representing \ccode{distinct(args[0], ..., args[num_args-1])}.
+
+ The \c distinct construct is used for declaring the arguments pairwise distinct.
+ That is, \ccode{Forall 0 <= i < j < num_args. not args[i] = args[j]}.
+
+ All arguments must have the same sort.
+
+ \remark The number of arguments of a distinct construct must be greater than one.
+
+ def_API('Z3_mk_distinct', AST, (_in(CONTEXT), _in(UINT), _in_array(1, AST)))
+ */
+ Z3_ast Z3_API Z3_mk_distinct(Z3_context c, unsigned num_args, Z3_ast const args[]);
+
+ /**
+ \brief Create an AST node representing \ccode{not(a)}.
+
+ The node \c a must have Boolean sort.
+
+ def_API('Z3_mk_not', AST, (_in(CONTEXT), _in(AST)))
+ */
+ Z3_ast Z3_API Z3_mk_not(Z3_context c, Z3_ast a);
+
+ /**
+ \brief Create an AST node representing an if-then-else: \ccode{ite(t1, t2, t3)}.
+
+ The node \c t1 must have Boolean sort, \c t2 and \c t3 must have the same sort.
+ The sort of the new node is equal to the sort of \c t2 and \c t3.
+
+ def_API('Z3_mk_ite', AST, (_in(CONTEXT), _in(AST), _in(AST), _in(AST)))
+ */
+ Z3_ast Z3_API Z3_mk_ite(Z3_context c, Z3_ast t1, Z3_ast t2, Z3_ast t3);
+
+ /**
+ \brief Create an AST node representing \ccode{t1 iff t2}.
+
+ The nodes \c t1 and \c t2 must have Boolean sort.
+
+ def_API('Z3_mk_iff', AST, (_in(CONTEXT), _in(AST), _in(AST)))
+ */
+ Z3_ast Z3_API Z3_mk_iff(Z3_context c, Z3_ast t1, Z3_ast t2);
+
+ /**
+ \brief Create an AST node representing \ccode{t1 implies t2}.
+
+ The nodes \c t1 and \c t2 must have Boolean sort.
+
+ def_API('Z3_mk_implies', AST, (_in(CONTEXT), _in(AST), _in(AST)))
+ */
+ Z3_ast Z3_API Z3_mk_implies(Z3_context c, Z3_ast t1, Z3_ast t2);
+
+ /**
+ \brief Create an AST node representing \ccode{t1 xor t2}.
+
+ The nodes \c t1 and \c t2 must have Boolean sort.
+
+ def_API('Z3_mk_xor', AST, (_in(CONTEXT), _in(AST), _in(AST)))
+ */
+ Z3_ast Z3_API Z3_mk_xor(Z3_context c, Z3_ast t1, Z3_ast t2);
+
+ /**
+ \brief Create an AST node representing \ccode{args[0] and ... and args[num_args-1]}.
+
+ The array \c args must have \c num_args elements.
+ All arguments must have Boolean sort.
+
+ \remark The number of arguments must be greater than zero.
+
+ def_API('Z3_mk_and', AST, (_in(CONTEXT), _in(UINT), _in_array(1, AST)))
+ */
+ Z3_ast Z3_API Z3_mk_and(Z3_context c, unsigned num_args, Z3_ast const args[]);
+
+ /**
+ \brief Create an AST node representing \ccode{args[0] or ... or args[num_args-1]}.
+
+ The array \c args must have \c num_args elements.
+ All arguments must have Boolean sort.
+
+ \remark The number of arguments must be greater than zero.
+
+ def_API('Z3_mk_or', AST, (_in(CONTEXT), _in(UINT), _in_array(1, AST)))
+ */
+ Z3_ast Z3_API Z3_mk_or(Z3_context c, unsigned num_args, Z3_ast const args[]);
+ /*@}*/
+
+ /** @name Integers and Reals */
+ /*@{*/
+ /**
+ \brief Create an AST node representing \ccode{args[0] + ... + args[num_args-1]}.
+
+ The array \c args must have \c num_args elements.
+ All arguments must have int or real sort.
+
+ \remark The number of arguments must be greater than zero.
+
+ def_API('Z3_mk_add', AST, (_in(CONTEXT), _in(UINT), _in_array(1, AST)))
+ */
+ Z3_ast Z3_API Z3_mk_add(Z3_context c, unsigned num_args, Z3_ast const args[]);
+
+ /**
+ \brief Create an AST node representing \ccode{args[0] * ... * args[num_args-1]}.
+
+ The array \c args must have \c num_args elements.
+ All arguments must have int or real sort.
+
+ \remark Z3 has limited support for non-linear arithmetic.
+ \remark The number of arguments must be greater than zero.
+
+ def_API('Z3_mk_mul', AST, (_in(CONTEXT), _in(UINT), _in_array(1, AST)))
+ */
+ Z3_ast Z3_API Z3_mk_mul(Z3_context c, unsigned num_args, Z3_ast const args[]);
+
+ /**
+ \brief Create an AST node representing \ccode{args[0] - ... - args[num_args - 1]}.
+
+ The array \c args must have \c num_args elements.
+ All arguments must have int or real sort.
+
+ \remark The number of arguments must be greater than zero.
+
+ def_API('Z3_mk_sub', AST, (_in(CONTEXT), _in(UINT), _in_array(1, AST)))
+ */
+ Z3_ast Z3_API Z3_mk_sub(Z3_context c, unsigned num_args, Z3_ast const args[]);
+
+ /**
+ \brief Create an AST node representing \ccode{- arg}.
+
+ The arguments must have int or real type.
+
+ def_API('Z3_mk_unary_minus', AST, (_in(CONTEXT), _in(AST)))
+ */
+ Z3_ast Z3_API Z3_mk_unary_minus(Z3_context c, Z3_ast arg);
+
+ /**
+ \brief Create an AST node representing \ccode{arg1 div arg2}.
+
+ The arguments must either both have int type or both have real type.
+ If the arguments have int type, then the result type is an int type, otherwise the
+ the result type is real.
+
+ def_API('Z3_mk_div', AST, (_in(CONTEXT), _in(AST), _in(AST)))
+ */
+ Z3_ast Z3_API Z3_mk_div(Z3_context c, Z3_ast arg1, Z3_ast arg2);
+
+ /**
+ \brief Create an AST node representing \ccode{arg1 mod arg2}.
+
+ The arguments must have int type.
+
+ def_API('Z3_mk_mod', AST, (_in(CONTEXT), _in(AST), _in(AST)))
+ */
+ Z3_ast Z3_API Z3_mk_mod(Z3_context c, Z3_ast arg1, Z3_ast arg2);
+
+ /**
+ \brief Create an AST node representing \ccode{arg1 rem arg2}.
+
+ The arguments must have int type.
+
+ def_API('Z3_mk_rem', AST, (_in(CONTEXT), _in(AST), _in(AST)))
+ */
+ Z3_ast Z3_API Z3_mk_rem(Z3_context c, Z3_ast arg1, Z3_ast arg2);
+
+ /**
+ \brief Create an AST node representing \ccode{arg1 ^ arg2}.
+
+ The arguments must have int or real type.
+
+ def_API('Z3_mk_power', AST, (_in(CONTEXT), _in(AST), _in(AST)))
+ */
+ Z3_ast Z3_API Z3_mk_power(Z3_context c, Z3_ast arg1, Z3_ast arg2);
+
+ /**
+ \brief Create less than.
+
+ The nodes \c t1 and \c t2 must have the same sort, and must be int or real.
+
+ def_API('Z3_mk_lt', AST, (_in(CONTEXT), _in(AST), _in(AST)))
+ */
+ Z3_ast Z3_API Z3_mk_lt(Z3_context c, Z3_ast t1, Z3_ast t2);
+
+ /**
+ \brief Create less than or equal to.
+
+ The nodes \c t1 and \c t2 must have the same sort, and must be int or real.
+
+ def_API('Z3_mk_le', AST, (_in(CONTEXT), _in(AST), _in(AST)))
+ */
+ Z3_ast Z3_API Z3_mk_le(Z3_context c, Z3_ast t1, Z3_ast t2);
+
+ /**
+ \brief Create greater than.
+
+ The nodes \c t1 and \c t2 must have the same sort, and must be int or real.
+
+ def_API('Z3_mk_gt', AST, (_in(CONTEXT), _in(AST), _in(AST)))
+ */
+ Z3_ast Z3_API Z3_mk_gt(Z3_context c, Z3_ast t1, Z3_ast t2);
+
+ /**
+ \brief Create greater than or equal to.
+
+ The nodes \c t1 and \c t2 must have the same sort, and must be int or real.
+
+ def_API('Z3_mk_ge', AST, (_in(CONTEXT), _in(AST), _in(AST)))
+ */
+ Z3_ast Z3_API Z3_mk_ge(Z3_context c, Z3_ast t1, Z3_ast t2);
+
+ /**
+ \brief Create division predicate.
+
+ The nodes \c t1 and \c t2 must be of integer sort.
+ The predicate is true when \c t1 divides \c t2. For the predicate to be part of
+ linear integer arithmetic, the first argument \c t1 must be a non-zero integer.
+
+ def_API('Z3_mk_divides', AST, (_in(CONTEXT), _in(AST), _in(AST)))
+ */
+ Z3_ast Z3_API Z3_mk_divides(Z3_context c, Z3_ast t1, Z3_ast t2);
+
+ /**
+ \brief Coerce an integer to a real.
+
+ There is also a converse operation exposed.
+ It follows the semantics prescribed by the SMT-LIB standard.
+
+ You can take the floor of a real by
+ creating an auxiliary integer constant \c k and
+ and asserting \ccode{mk_int2real(k) <= t1 < mk_int2real(k)+1}.
+
+ The node \c t1 must have sort integer.
+
+ \sa Z3_mk_real2int
+ \sa Z3_mk_is_int
+
+ def_API('Z3_mk_int2real', AST, (_in(CONTEXT), _in(AST)))
+ */
+ Z3_ast Z3_API Z3_mk_int2real(Z3_context c, Z3_ast t1);
+
+ /**
+ \brief Coerce a real to an integer.
+
+ The semantics of this function follows the SMT-LIB standard
+ for the function to_int
+
+ \sa Z3_mk_int2real
+ \sa Z3_mk_is_int
+
+ def_API('Z3_mk_real2int', AST, (_in(CONTEXT), _in(AST)))
+ */
+ Z3_ast Z3_API Z3_mk_real2int(Z3_context c, Z3_ast t1);
+
+ /**
+ \brief Check if a real number is an integer.
+
+ \sa Z3_mk_int2real
+ \sa Z3_mk_real2int
+
+ def_API('Z3_mk_is_int', AST, (_in(CONTEXT), _in(AST)))
+ */
+ Z3_ast Z3_API Z3_mk_is_int(Z3_context c, Z3_ast t1);
+ /*@}*/
+
+ /** @name Bit-vectors */
+ /*@{*/
+ /**
+ \brief Bitwise negation.
+
+ The node \c t1 must have a bit-vector sort.
+
+ def_API('Z3_mk_bvnot', AST, (_in(CONTEXT), _in(AST)))
+ */
+ Z3_ast Z3_API Z3_mk_bvnot(Z3_context c, Z3_ast t1);
+
+ /**
+ \brief Take conjunction of bits in vector, return vector of length 1.
+
+ The node \c t1 must have a bit-vector sort.
+
+ def_API('Z3_mk_bvredand', AST, (_in(CONTEXT), _in(AST)))
+ */
+ Z3_ast Z3_API Z3_mk_bvredand(Z3_context c, Z3_ast t1);
+
+ /**
+ \brief Take disjunction of bits in vector, return vector of length 1.
+
+ The node \c t1 must have a bit-vector sort.
+
+ def_API('Z3_mk_bvredor', AST, (_in(CONTEXT), _in(AST)))
+ */
+ Z3_ast Z3_API Z3_mk_bvredor(Z3_context c, Z3_ast t1);
+
+ /**
+ \brief Bitwise and.
+
+ The nodes \c t1 and \c t2 must have the same bit-vector sort.
+
+ def_API('Z3_mk_bvand', AST, (_in(CONTEXT), _in(AST), _in(AST)))
+ */
+ Z3_ast Z3_API Z3_mk_bvand(Z3_context c, Z3_ast t1, Z3_ast t2);
+
+ /**
+ \brief Bitwise or.
+
+ The nodes \c t1 and \c t2 must have the same bit-vector sort.
+
+ def_API('Z3_mk_bvor', AST, (_in(CONTEXT), _in(AST), _in(AST)))
+ */
+ Z3_ast Z3_API Z3_mk_bvor(Z3_context c, Z3_ast t1, Z3_ast t2);
+
+ /**
+ \brief Bitwise exclusive-or.
+
+ The nodes \c t1 and \c t2 must have the same bit-vector sort.
+
+ def_API('Z3_mk_bvxor', AST, (_in(CONTEXT), _in(AST), _in(AST)))
+ */
+ Z3_ast Z3_API Z3_mk_bvxor(Z3_context c, Z3_ast t1, Z3_ast t2);
+
+ /**
+ \brief Bitwise nand.
+
+ The nodes \c t1 and \c t2 must have the same bit-vector sort.
+
+ def_API('Z3_mk_bvnand', AST, (_in(CONTEXT), _in(AST), _in(AST)))
+ */
+ Z3_ast Z3_API Z3_mk_bvnand(Z3_context c, Z3_ast t1, Z3_ast t2);
+
+ /**
+ \brief Bitwise nor.
+
+ The nodes \c t1 and \c t2 must have the same bit-vector sort.
+
+ def_API('Z3_mk_bvnor', AST, (_in(CONTEXT), _in(AST), _in(AST)))
+ */
+ Z3_ast Z3_API Z3_mk_bvnor(Z3_context c, Z3_ast t1, Z3_ast t2);
+
+ /**
+ \brief Bitwise xnor.
+
+ The nodes \c t1 and \c t2 must have the same bit-vector sort.
+
+ def_API('Z3_mk_bvxnor', AST, (_in(CONTEXT), _in(AST), _in(AST)))
+ */
+ Z3_ast Z3_API Z3_mk_bvxnor(Z3_context c, Z3_ast t1, Z3_ast t2);
+
+ /**
+ \brief Standard two's complement unary minus.
+
+ The node \c t1 must have bit-vector sort.
+
+ def_API('Z3_mk_bvneg', AST, (_in(CONTEXT), _in(AST)))
+ */
+ Z3_ast Z3_API Z3_mk_bvneg(Z3_context c, Z3_ast t1);
+
+ /**
+ \brief Standard two's complement addition.
+
+ The nodes \c t1 and \c t2 must have the same bit-vector sort.
+
+ def_API('Z3_mk_bvadd', AST, (_in(CONTEXT), _in(AST), _in(AST)))
+ */
+ Z3_ast Z3_API Z3_mk_bvadd(Z3_context c, Z3_ast t1, Z3_ast t2);
+
+ /**
+ \brief Standard two's complement subtraction.
+
+ The nodes \c t1 and \c t2 must have the same bit-vector sort.
+
+ def_API('Z3_mk_bvsub', AST, (_in(CONTEXT), _in(AST), _in(AST)))
+ */
+ Z3_ast Z3_API Z3_mk_bvsub(Z3_context c, Z3_ast t1, Z3_ast t2);
+
+ /**
+ \brief Standard two's complement multiplication.
+
+ The nodes \c t1 and \c t2 must have the same bit-vector sort.
+
+ def_API('Z3_mk_bvmul', AST, (_in(CONTEXT), _in(AST), _in(AST)))
+ */
+ Z3_ast Z3_API Z3_mk_bvmul(Z3_context c, Z3_ast t1, Z3_ast t2);
+
+ /**
+ \brief Unsigned division.
+
+ It is defined as the \c floor of \ccode{t1/t2} if \c t2 is
+ different from zero. If \ccode{t2} is zero, then the result
+ is undefined.
+
+ The nodes \c t1 and \c t2 must have the same bit-vector sort.
+
+ def_API('Z3_mk_bvudiv', AST, (_in(CONTEXT), _in(AST), _in(AST)))
+ */
+ Z3_ast Z3_API Z3_mk_bvudiv(Z3_context c, Z3_ast t1, Z3_ast t2);
+
+ /**
+ \brief Two's complement signed division.
+
+ It is defined in the following way:
+
+ - The \c floor of \ccode{t1/t2} if \c t2 is different from zero, and \ccode{t1*t2 >= 0}.
+
+ - The \c ceiling of \ccode{t1/t2} if \c t2 is different from zero, and \ccode{t1*t2 < 0}.
+
+ If \ccode{t2} is zero, then the result is undefined.
+
+ The nodes \c t1 and \c t2 must have the same bit-vector sort.
+
+ def_API('Z3_mk_bvsdiv', AST, (_in(CONTEXT), _in(AST), _in(AST)))
+ */
+ Z3_ast Z3_API Z3_mk_bvsdiv(Z3_context c, Z3_ast t1, Z3_ast t2);
+
+ /**
+ \brief Unsigned remainder.
+
+ It is defined as \ccode{t1 - (t1 /u t2) * t2}, where \ccode{/u} represents unsigned division.
+
+ If \ccode{t2} is zero, then the result is undefined.
+
+ The nodes \c t1 and \c t2 must have the same bit-vector sort.
+
+ def_API('Z3_mk_bvurem', AST, (_in(CONTEXT), _in(AST), _in(AST)))
+ */
+ Z3_ast Z3_API Z3_mk_bvurem(Z3_context c, Z3_ast t1, Z3_ast t2);
+
+ /**
+ \brief Two's complement signed remainder (sign follows dividend).
+
+ It is defined as \ccode{t1 - (t1 /s t2) * t2}, where \ccode{/s} represents signed division.
+ The most significant bit (sign) of the result is equal to the most significant bit of \c t1.
+
+ If \ccode{t2} is zero, then the result is undefined.
+
+ The nodes \c t1 and \c t2 must have the same bit-vector sort.
+
+ \sa Z3_mk_bvsmod
+
+ def_API('Z3_mk_bvsrem', AST, (_in(CONTEXT), _in(AST), _in(AST)))
+ */
+ Z3_ast Z3_API Z3_mk_bvsrem(Z3_context c, Z3_ast t1, Z3_ast t2);
+
+ /**
+ \brief Two's complement signed remainder (sign follows divisor).
+
+ If \ccode{t2} is zero, then the result is undefined.
+
+ The nodes \c t1 and \c t2 must have the same bit-vector sort.
+
+ \sa Z3_mk_bvsrem
+
+ def_API('Z3_mk_bvsmod', AST, (_in(CONTEXT), _in(AST), _in(AST)))
+ */
+ Z3_ast Z3_API Z3_mk_bvsmod(Z3_context c, Z3_ast t1, Z3_ast t2);
+
+ /**
+ \brief Unsigned less than.
+
+ The nodes \c t1 and \c t2 must have the same bit-vector sort.
+
+ def_API('Z3_mk_bvult', AST, (_in(CONTEXT), _in(AST), _in(AST)))
+ */
+ Z3_ast Z3_API Z3_mk_bvult(Z3_context c, Z3_ast t1, Z3_ast t2);
+
+ /**
+ \brief Two's complement signed less than.
+
+ It abbreviates:
+ \code
+ (or (and (= (extract[|m-1|:|m-1|] t1) bit1)
+ (= (extract[|m-1|:|m-1|] t2) bit0))
+ (and (= (extract[|m-1|:|m-1|] t1) (extract[|m-1|:|m-1|] t2))
+ (bvult t1 t2)))
+ \endcode
+
+ The nodes \c t1 and \c t2 must have the same bit-vector sort.
+
+ def_API('Z3_mk_bvslt', AST, (_in(CONTEXT), _in(AST), _in(AST)))
+ */
+ Z3_ast Z3_API Z3_mk_bvslt(Z3_context c, Z3_ast t1, Z3_ast t2);
+
+ /**
+ \brief Unsigned less than or equal to.
+
+ The nodes \c t1 and \c t2 must have the same bit-vector sort.
+
+ def_API('Z3_mk_bvule', AST, (_in(CONTEXT), _in(AST), _in(AST)))
+ */
+ Z3_ast Z3_API Z3_mk_bvule(Z3_context c, Z3_ast t1, Z3_ast t2);
+
+ /**
+ \brief Two's complement signed less than or equal to.
+
+ The nodes \c t1 and \c t2 must have the same bit-vector sort.
+
+ def_API('Z3_mk_bvsle', AST, (_in(CONTEXT), _in(AST), _in(AST)))
+ */
+ Z3_ast Z3_API Z3_mk_bvsle(Z3_context c, Z3_ast t1, Z3_ast t2);
+
+ /**
+ \brief Unsigned greater than or equal to.
+
+ The nodes \c t1 and \c t2 must have the same bit-vector sort.
+
+ def_API('Z3_mk_bvuge', AST, (_in(CONTEXT), _in(AST), _in(AST)))
+ */
+ Z3_ast Z3_API Z3_mk_bvuge(Z3_context c, Z3_ast t1, Z3_ast t2);
+
+ /**
+ \brief Two's complement signed greater than or equal to.
+
+ The nodes \c t1 and \c t2 must have the same bit-vector sort.
+
+ def_API('Z3_mk_bvsge', AST, (_in(CONTEXT), _in(AST), _in(AST)))
+ */
+ Z3_ast Z3_API Z3_mk_bvsge(Z3_context c, Z3_ast t1, Z3_ast t2);
+
+ /**
+ \brief Unsigned greater than.
+
+ The nodes \c t1 and \c t2 must have the same bit-vector sort.
+
+ def_API('Z3_mk_bvugt', AST, (_in(CONTEXT), _in(AST), _in(AST)))
+ */
+ Z3_ast Z3_API Z3_mk_bvugt(Z3_context c, Z3_ast t1, Z3_ast t2);
+
+ /**
+ \brief Two's complement signed greater than.
+
+ The nodes \c t1 and \c t2 must have the same bit-vector sort.
+
+ def_API('Z3_mk_bvsgt', AST, (_in(CONTEXT), _in(AST), _in(AST)))
+ */
+ Z3_ast Z3_API Z3_mk_bvsgt(Z3_context c, Z3_ast t1, Z3_ast t2);
+
+ /**
+ \brief Concatenate the given bit-vectors.
+
+ The nodes \c t1 and \c t2 must have (possibly different) bit-vector sorts
+
+ The result is a bit-vector of size \ccode{n1+n2}, where \c n1 (\c n2) is the size
+ of \c t1 (\c t2).
+
+ def_API('Z3_mk_concat', AST, (_in(CONTEXT), _in(AST), _in(AST)))
+ */
+ Z3_ast Z3_API Z3_mk_concat(Z3_context c, Z3_ast t1, Z3_ast t2);
+
+ /**
+ \brief Extract the bits \c high down to \c low from a bit-vector of
+ size \c m to yield a new bit-vector of size \c n, where \ccode{n = high - low + 1}.
+
+ The node \c t1 must have a bit-vector sort.
+
+ def_API('Z3_mk_extract', AST, (_in(CONTEXT), _in(UINT), _in(UINT), _in(AST)))
+ */
+ Z3_ast Z3_API Z3_mk_extract(Z3_context c, unsigned high, unsigned low, Z3_ast t1);
+
+ /**
+ \brief Sign-extend of the given bit-vector to the (signed) equivalent bit-vector of
+ size \ccode{m+i}, where \c m is the size of the given
+ bit-vector.
+
+ The node \c t1 must have a bit-vector sort.
+
+ def_API('Z3_mk_sign_ext', AST, (_in(CONTEXT), _in(UINT), _in(AST)))
+ */
+ Z3_ast Z3_API Z3_mk_sign_ext(Z3_context c, unsigned i, Z3_ast t1);
+
+ /**
+ \brief Extend the given bit-vector with zeros to the (unsigned) equivalent
+ bit-vector of size \ccode{m+i}, where \c m is the size of the
+ given bit-vector.
+
+ The node \c t1 must have a bit-vector sort.
+
+ def_API('Z3_mk_zero_ext', AST, (_in(CONTEXT), _in(UINT), _in(AST)))
+ */
+ Z3_ast Z3_API Z3_mk_zero_ext(Z3_context c, unsigned i, Z3_ast t1);
+
+ /**
+ \brief Repeat the given bit-vector up length \ccode{i}.
+
+ The node \c t1 must have a bit-vector sort.
+
+ def_API('Z3_mk_repeat', AST, (_in(CONTEXT), _in(UINT), _in(AST)))
+ */
+ Z3_ast Z3_API Z3_mk_repeat(Z3_context c, unsigned i, Z3_ast t1);
+
+ /**
+ \brief Shift left.
+
+ It is equivalent to multiplication by \ccode{2^x} where \c x is the value of the
+ third argument.
+
+ NB. The semantics of shift operations varies between environments. This
+ definition does not necessarily capture directly the semantics of the
+ programming language or assembly architecture you are modeling.
+
+ The nodes \c t1 and \c t2 must have the same bit-vector sort.
+
+ def_API('Z3_mk_bvshl', AST, (_in(CONTEXT), _in(AST), _in(AST)))
+ */
+ Z3_ast Z3_API Z3_mk_bvshl(Z3_context c, Z3_ast t1, Z3_ast t2);
+
+ /**
+ \brief Logical shift right.
+
+ It is equivalent to unsigned division by \ccode{2^x} where \c x is the
+ value of the third argument.
+
+ NB. The semantics of shift operations varies between environments. This
+ definition does not necessarily capture directly the semantics of the
+ programming language or assembly architecture you are modeling.
+
+ The nodes \c t1 and \c t2 must have the same bit-vector sort.
+
+ def_API('Z3_mk_bvlshr', AST, (_in(CONTEXT), _in(AST), _in(AST)))
+ */
+ Z3_ast Z3_API Z3_mk_bvlshr(Z3_context c, Z3_ast t1, Z3_ast t2);
+
+ /**
+ \brief Arithmetic shift right.
+
+ It is like logical shift right except that the most significant
+ bits of the result always copy the most significant bit of the
+ second argument.
+
+ The semantics of shift operations varies between environments. This
+ definition does not necessarily capture directly the semantics of the
+ programming language or assembly architecture you are modeling.
+
+ The nodes \c t1 and \c t2 must have the same bit-vector sort.
+
+ def_API('Z3_mk_bvashr', AST, (_in(CONTEXT), _in(AST), _in(AST)))
+ */
+ Z3_ast Z3_API Z3_mk_bvashr(Z3_context c, Z3_ast t1, Z3_ast t2);
+
+ /**
+ \brief Rotate bits of \c t1 to the left \c i times.
+
+ The node \c t1 must have a bit-vector sort.
+
+ def_API('Z3_mk_rotate_left', AST, (_in(CONTEXT), _in(UINT), _in(AST)))
+ */
+ Z3_ast Z3_API Z3_mk_rotate_left(Z3_context c, unsigned i, Z3_ast t1);
+
+ /**
+ \brief Rotate bits of \c t1 to the right \c i times.
+
+ The node \c t1 must have a bit-vector sort.
+
+ def_API('Z3_mk_rotate_right', AST, (_in(CONTEXT), _in(UINT), _in(AST)))
+ */
+ Z3_ast Z3_API Z3_mk_rotate_right(Z3_context c, unsigned i, Z3_ast t1);
+
+ /**
+ \brief Rotate bits of \c t1 to the left \c t2 times.
+
+ The nodes \c t1 and \c t2 must have the same bit-vector sort.
+
+ def_API('Z3_mk_ext_rotate_left', AST, (_in(CONTEXT), _in(AST), _in(AST)))
+ */
+ Z3_ast Z3_API Z3_mk_ext_rotate_left(Z3_context c, Z3_ast t1, Z3_ast t2);
+
+ /**
+ \brief Rotate bits of \c t1 to the right \c t2 times.
+
+ The nodes \c t1 and \c t2 must have the same bit-vector sort.
+
+ def_API('Z3_mk_ext_rotate_right', AST, (_in(CONTEXT), _in(AST), _in(AST)))
+ */
+ Z3_ast Z3_API Z3_mk_ext_rotate_right(Z3_context c, Z3_ast t1, Z3_ast t2);
+
+ /**
+ \brief Create an \c n bit bit-vector from the integer argument \c t1.
+
+ The resulting bit-vector has \c n bits, where the i'th bit (counting
+ from 0 to \c n-1) is 1 if \c (t1 div 2^i) mod 2 is 1.
+
+ The node \c t1 must have integer sort.
+
+ def_API('Z3_mk_int2bv', AST, (_in(CONTEXT), _in(UINT), _in(AST)))
+ */
+ Z3_ast Z3_API Z3_mk_int2bv(Z3_context c, unsigned n, Z3_ast t1);
+
+ /**
+ \brief Create an integer from the bit-vector argument \c t1.
+ If \c is_signed is false, then the bit-vector \c t1 is treated as unsigned.
+ So the result is non-negative
+ and in the range \ccode{[0..2^N-1]}, where N are the number of bits in \c t1.
+ If \c is_signed is true, \c t1 is treated as a signed bit-vector.
+
+
+ The node \c t1 must have a bit-vector sort.
+
+ def_API('Z3_mk_bv2int', AST, (_in(CONTEXT), _in(AST), _in(BOOL)))
+ */
+ Z3_ast Z3_API Z3_mk_bv2int(Z3_context c,Z3_ast t1, bool is_signed);
+
+ /**
+ \brief Create a predicate that checks that the bit-wise addition
+ of \c t1 and \c t2 does not overflow.
+
+ The nodes \c t1 and \c t2 must have the same bit-vector sort.
+ The returned node is of sort Bool.
+
+ def_API('Z3_mk_bvadd_no_overflow', AST, (_in(CONTEXT), _in(AST), _in(AST), _in(BOOL)))
+ */
+ Z3_ast Z3_API Z3_mk_bvadd_no_overflow(Z3_context c, Z3_ast t1, Z3_ast t2, bool is_signed);
+
+ /**
+ \brief Create a predicate that checks that the bit-wise signed addition
+ of \c t1 and \c t2 does not underflow.
+
+ The nodes \c t1 and \c t2 must have the same bit-vector sort.
+ The returned node is of sort Bool.
+
+ def_API('Z3_mk_bvadd_no_underflow', AST, (_in(CONTEXT), _in(AST), _in(AST)))
+ */
+ Z3_ast Z3_API Z3_mk_bvadd_no_underflow(Z3_context c, Z3_ast t1, Z3_ast t2);
+
+ /**
+ \brief Create a predicate that checks that the bit-wise signed subtraction
+ of \c t1 and \c t2 does not overflow.
+
+ The nodes \c t1 and \c t2 must have the same bit-vector sort.
+ The returned node is of sort Bool.
+
+ def_API('Z3_mk_bvsub_no_overflow', AST, (_in(CONTEXT), _in(AST), _in(AST)))
+ */
+ Z3_ast Z3_API Z3_mk_bvsub_no_overflow(Z3_context c, Z3_ast t1, Z3_ast t2);
+
+ /**
+ \brief Create a predicate that checks that the bit-wise subtraction
+ of \c t1 and \c t2 does not underflow.
+
+ The nodes \c t1 and \c t2 must have the same bit-vector sort.
+ The returned node is of sort Bool.
+
+ def_API('Z3_mk_bvsub_no_underflow', AST, (_in(CONTEXT), _in(AST), _in(AST), _in(BOOL)))
+ */
+ Z3_ast Z3_API Z3_mk_bvsub_no_underflow(Z3_context c, Z3_ast t1, Z3_ast t2, bool is_signed);
+
+ /**
+ \brief Create a predicate that checks that the bit-wise signed division
+ of \c t1 and \c t2 does not overflow.
+
+ The nodes \c t1 and \c t2 must have the same bit-vector sort.
+ The returned node is of sort Bool.
+
+ def_API('Z3_mk_bvsdiv_no_overflow', AST, (_in(CONTEXT), _in(AST), _in(AST)))
+ */
+ Z3_ast Z3_API Z3_mk_bvsdiv_no_overflow(Z3_context c, Z3_ast t1, Z3_ast t2);
+
+ /**
+ \brief Check that bit-wise negation does not overflow when
+ \c t1 is interpreted as a signed bit-vector.
+
+ The node \c t1 must have bit-vector sort.
+ The returned node is of sort Bool.
+
+ def_API('Z3_mk_bvneg_no_overflow', AST, (_in(CONTEXT), _in(AST)))
+ */
+ Z3_ast Z3_API Z3_mk_bvneg_no_overflow(Z3_context c, Z3_ast t1);
+
+ /**
+ \brief Create a predicate that checks that the bit-wise multiplication
+ of \c t1 and \c t2 does not overflow.
+
+ The nodes \c t1 and \c t2 must have the same bit-vector sort.
+ The returned node is of sort Bool.
+
+ def_API('Z3_mk_bvmul_no_overflow', AST, (_in(CONTEXT), _in(AST), _in(AST), _in(BOOL)))
+ */
+ Z3_ast Z3_API Z3_mk_bvmul_no_overflow(Z3_context c, Z3_ast t1, Z3_ast t2, bool is_signed);
+
+ /**
+ \brief Create a predicate that checks that the bit-wise signed multiplication
+ of \c t1 and \c t2 does not underflow.
+
+ The nodes \c t1 and \c t2 must have the same bit-vector sort.
+ The returned node is of sort Bool.
+
+ def_API('Z3_mk_bvmul_no_underflow', AST, (_in(CONTEXT), _in(AST), _in(AST)))
+ */
+ Z3_ast Z3_API Z3_mk_bvmul_no_underflow(Z3_context c, Z3_ast t1, Z3_ast t2);
+ /*@}*/
+
+ /** @name Arrays */
+ /*@{*/
+ /**
+ \brief Array read.
+ The argument \c a is the array and \c i is the index of the array that gets read.
+
+ The node \c a must have an array sort \ccode{[domain -> range]},
+ and \c i must have the sort \c domain.
+ The sort of the result is \c range.
+
+ \sa Z3_mk_array_sort
+ \sa Z3_mk_store
+
+ def_API('Z3_mk_select', AST, (_in(CONTEXT), _in(AST), _in(AST)))
+ */
+ Z3_ast Z3_API Z3_mk_select(Z3_context c, Z3_ast a, Z3_ast i);
+
+
+
+ /**
+ \brief n-ary Array read.
+ The argument \c a is the array and \c idxs are the indices of the array that gets read.
+
+ def_API('Z3_mk_select_n', AST, (_in(CONTEXT), _in(AST), _in(UINT), _in_array(2, AST)))
+
+ */
+ Z3_ast Z3_API Z3_mk_select_n(Z3_context c, Z3_ast a, unsigned n, Z3_ast const* idxs);
+
+
+ /**
+ \brief Array update.
+
+ The node \c a must have an array sort \ccode{[domain -> range]}, \c i must have sort \c domain,
+ \c v must have sort range. The sort of the result is \ccode{[domain -> range]}.
+ The semantics of this function is given by the theory of arrays described in the SMT-LIB
+ standard. See http://smtlib.org for more details.
+ The result of this function is an array that is equal to \c a (with respect to \c select)
+ on all indices except for \c i, where it maps to \c v (and the \c select of \c a with
+ respect to \c i may be a different value).
+
+ \sa Z3_mk_array_sort
+ \sa Z3_mk_select
+
+ def_API('Z3_mk_store', AST, (_in(CONTEXT), _in(AST), _in(AST), _in(AST)))
+ */
+ Z3_ast Z3_API Z3_mk_store(Z3_context c, Z3_ast a, Z3_ast i, Z3_ast v);
+
+
+ /**
+ \brief n-ary Array update.
+
+ def_API('Z3_mk_store_n', AST, (_in(CONTEXT), _in(AST), _in(UINT), _in_array(2, AST), _in(AST)))
+
+ */
+ Z3_ast Z3_API Z3_mk_store_n(Z3_context c, Z3_ast a, unsigned n, Z3_ast const* idxs, Z3_ast v);
+
+ /**
+ \brief Create the constant array.
+
+ The resulting term is an array, such that a \c select on an arbitrary index
+ produces the value \c v.
+
+ \param c logical context.
+ \param domain domain sort for the array.
+ \param v value that the array maps to.
+
+ def_API('Z3_mk_const_array', AST, (_in(CONTEXT), _in(SORT), _in(AST)))
+ */
+ Z3_ast Z3_API Z3_mk_const_array(Z3_context c, Z3_sort domain, Z3_ast v);
+
+ /**
+ \brief Map f on the argument arrays.
+
+ The \c n nodes \c args must be of array sorts \ccode{[domain_i -> range_i]}.
+ The function declaration \c f must have type \ccode{ range_1 .. range_n -> range}.
+ \c v must have sort range. The sort of the result is \ccode{[domain_i -> range]}.
+
+ \sa Z3_mk_array_sort
+ \sa Z3_mk_store
+ \sa Z3_mk_select
+
+ def_API('Z3_mk_map', AST, (_in(CONTEXT), _in(FUNC_DECL), _in(UINT), _in_array(2, AST)))
+ */
+ Z3_ast Z3_API Z3_mk_map(Z3_context c, Z3_func_decl f, unsigned n, Z3_ast const* args);
+
+ /**
+ \brief Access the array default value.
+ Produces the default range value, for arrays that can be represented as
+ finite maps with a default range value.
+
+ \param c logical context.
+ \param array array value whose default range value is accessed.
+
+ def_API('Z3_mk_array_default', AST, (_in(CONTEXT), _in(AST)))
+ */
+ Z3_ast Z3_API Z3_mk_array_default(Z3_context c, Z3_ast array);
+
+ /**
+ \brief Create array with the same interpretation as a function.
+ The array satisfies the property (f x) = (select (_ as-array f) x)
+ for every argument x.
+
+ def_API('Z3_mk_as_array', AST, (_in(CONTEXT), _in(FUNC_DECL)))
+ */
+ Z3_ast Z3_API Z3_mk_as_array(Z3_context c, Z3_func_decl f);
+
+ /**
+ \brief Create predicate that holds if Boolean array \c set has \c k elements set to true.
+
+ def_API('Z3_mk_set_has_size', AST, (_in(CONTEXT), _in(AST), _in(AST)))
+ */
+ Z3_ast Z3_API Z3_mk_set_has_size(Z3_context c, Z3_ast set, Z3_ast k);
+
+ /*@}*/
+
+ /** @name Sets */
+ /*@{*/
+ /**
+ \brief Create Set type.
+
+ def_API('Z3_mk_set_sort', SORT, (_in(CONTEXT), _in(SORT)))
+ */
+ Z3_sort Z3_API Z3_mk_set_sort(Z3_context c, Z3_sort ty);
+
+ /**
+ \brief Create the empty set.
+
+ def_API('Z3_mk_empty_set', AST, (_in(CONTEXT), _in(SORT)))
+ */
+ Z3_ast Z3_API Z3_mk_empty_set(Z3_context c, Z3_sort domain);
+
+ /**
+ \brief Create the full set.
+
+ def_API('Z3_mk_full_set', AST, (_in(CONTEXT), _in(SORT)))
+ */
+ Z3_ast Z3_API Z3_mk_full_set(Z3_context c, Z3_sort domain);
+
+ /**
+ \brief Add an element to a set.
+
+ The first argument must be a set, the second an element.
+
+ def_API('Z3_mk_set_add', AST, (_in(CONTEXT), _in(AST), _in(AST)))
+ */
+ Z3_ast Z3_API Z3_mk_set_add(Z3_context c, Z3_ast set, Z3_ast elem);
+
+ /**
+ \brief Remove an element to a set.
+
+ The first argument must be a set, the second an element.
+
+ def_API('Z3_mk_set_del', AST, (_in(CONTEXT), _in(AST), _in(AST)))
+ */
+ Z3_ast Z3_API Z3_mk_set_del(Z3_context c, Z3_ast set, Z3_ast elem);
+
+ /**
+ \brief Take the union of a list of sets.
+
+ def_API('Z3_mk_set_union', AST, (_in(CONTEXT), _in(UINT), _in_array(1, AST)))
+ */
+ Z3_ast Z3_API Z3_mk_set_union(Z3_context c, unsigned num_args, Z3_ast const args[]);
+
+ /**
+ \brief Take the intersection of a list of sets.
+
+ def_API('Z3_mk_set_intersect', AST, (_in(CONTEXT), _in(UINT), _in_array(1, AST)))
+ */
+ Z3_ast Z3_API Z3_mk_set_intersect(Z3_context c, unsigned num_args, Z3_ast const args[]);
+
+ /**
+ \brief Take the set difference between two sets.
+
+ def_API('Z3_mk_set_difference', AST, (_in(CONTEXT), _in(AST), _in(AST)))
+ */
+ Z3_ast Z3_API Z3_mk_set_difference(Z3_context c, Z3_ast arg1, Z3_ast arg2);
+
+ /**
+ \brief Take the complement of a set.
+
+ def_API('Z3_mk_set_complement', AST, (_in(CONTEXT), _in(AST)))
+ */
+ Z3_ast Z3_API Z3_mk_set_complement(Z3_context c, Z3_ast arg);
+
+ /**
+ \brief Check for set membership.
+
+ The first argument should be an element type of the set.
+
+ def_API('Z3_mk_set_member', AST, (_in(CONTEXT), _in(AST), _in(AST)))
+ */
+ Z3_ast Z3_API Z3_mk_set_member(Z3_context c, Z3_ast elem, Z3_ast set);
+
+ /**
+ \brief Check for subsetness of sets.
+
+ def_API('Z3_mk_set_subset', AST, (_in(CONTEXT), _in(AST), _in(AST)))
+ */
+ Z3_ast Z3_API Z3_mk_set_subset(Z3_context c, Z3_ast arg1, Z3_ast arg2);
+
+ /**
+ \brief Create array extensionality index given two arrays with the same sort.
+ The meaning is given by the axiom:
+ (=> (= (select A (array-ext A B)) (select B (array-ext A B))) (= A B))
+
+ def_API('Z3_mk_array_ext', AST, (_in(CONTEXT), _in(AST), _in(AST)))
+ */
+
+ Z3_ast Z3_API Z3_mk_array_ext(Z3_context c, Z3_ast arg1, Z3_ast arg2);
+ /*@}*/
+
+ /** @name Numerals */
+ /*@{*/
+ /**
+ \brief Create a numeral of a given sort.
+
+ \param c logical context.
+ \param numeral A string representing the numeral value in decimal notation. The string may be of the form `[num]*[.[num]*][E[+|-][num]+]`.
+ If the given sort is a real, then the numeral can be a rational, that is, a string of the form `[num]* / [num]*` .
+ \param ty The sort of the numeral. In the current implementation, the given sort can be an int, real, finite-domain, or bit-vectors of arbitrary size.
+
+ \sa Z3_mk_int
+ \sa Z3_mk_unsigned_int
+
+ def_API('Z3_mk_numeral', AST, (_in(CONTEXT), _in(STRING), _in(SORT)))
+ */
+ Z3_ast Z3_API Z3_mk_numeral(Z3_context c, Z3_string numeral, Z3_sort ty);
+
+ /**
+ \brief Create a real from a fraction.
+
+ \param c logical context.
+ \param num numerator of rational.
+ \param den denominator of rational.
+
+ \pre den != 0
+
+ \sa Z3_mk_numeral
+ \sa Z3_mk_int
+ \sa Z3_mk_unsigned_int
+
+ def_API('Z3_mk_real', AST, (_in(CONTEXT), _in(INT), _in(INT)))
+ */
+ Z3_ast Z3_API Z3_mk_real(Z3_context c, int num, int den);
+
+ /**
+ \brief Create a numeral of an int, bit-vector, or finite-domain sort.
+
+ This function can be used to create numerals that fit in a machine integer.
+ It is slightly faster than #Z3_mk_numeral since it is not necessary to parse a string.
+
+ \sa Z3_mk_numeral
+
+ def_API('Z3_mk_int', AST, (_in(CONTEXT), _in(INT), _in(SORT)))
+ */
+ Z3_ast Z3_API Z3_mk_int(Z3_context c, int v, Z3_sort ty);
+
+ /**
+ \brief Create a numeral of a int, bit-vector, or finite-domain sort.
+
+ This function can be used to create numerals that fit in a machine unsigned integer.
+ It is slightly faster than #Z3_mk_numeral since it is not necessary to parse a string.
+
+ \sa Z3_mk_numeral
+
+ def_API('Z3_mk_unsigned_int', AST, (_in(CONTEXT), _in(UINT), _in(SORT)))
+ */
+ Z3_ast Z3_API Z3_mk_unsigned_int(Z3_context c, unsigned v, Z3_sort ty);
+
+ /**
+ \brief Create a numeral of a int, bit-vector, or finite-domain sort.
+
+ This function can be used to create numerals that fit in a machine \c int64_t integer.
+ It is slightly faster than #Z3_mk_numeral since it is not necessary to parse a string.
+
+ \sa Z3_mk_numeral
+
+ def_API('Z3_mk_int64', AST, (_in(CONTEXT), _in(INT64), _in(SORT)))
+ */
+ Z3_ast Z3_API Z3_mk_int64(Z3_context c, int64_t v, Z3_sort ty);
+
+ /**
+ \brief Create a numeral of a int, bit-vector, or finite-domain sort.
+
+ This function can be used to create numerals that fit in a machine \c uint64_t integer.
+ It is slightly faster than #Z3_mk_numeral since it is not necessary to parse a string.
+
+ \sa Z3_mk_numeral
+
+ def_API('Z3_mk_unsigned_int64', AST, (_in(CONTEXT), _in(UINT64), _in(SORT)))
+ */
+ Z3_ast Z3_API Z3_mk_unsigned_int64(Z3_context c, uint64_t v, Z3_sort ty);
+
+ /**
+ \brief create a bit-vector numeral from a vector of Booleans.
+
+ \sa Z3_mk_numeral
+ def_API('Z3_mk_bv_numeral', AST, (_in(CONTEXT), _in(UINT), _in_array(1, BOOL)))
+ */
+ Z3_ast Z3_API Z3_mk_bv_numeral(Z3_context c, unsigned sz, bool const* bits);
+
+ /*@}*/
+
+ /** @name Sequences and regular expressions */
+ /*@{*/
+
+ /**
+ \brief Create a sequence sort out of the sort for the elements.
+
+ def_API('Z3_mk_seq_sort', SORT, (_in(CONTEXT), _in(SORT)))
+ */
+ Z3_sort Z3_API Z3_mk_seq_sort(Z3_context c, Z3_sort s);
+
+ /**
+ \brief Check if \c s is a sequence sort.
+
+ def_API('Z3_is_seq_sort', BOOL, (_in(CONTEXT), _in(SORT)))
+ */
+ bool Z3_API Z3_is_seq_sort(Z3_context c, Z3_sort s);
+
+ /**
+ \brief Retrieve basis sort for sequence sort.
+
+ def_API('Z3_get_seq_sort_basis', SORT, (_in(CONTEXT), _in(SORT)))
+ */
+ Z3_sort Z3_API Z3_get_seq_sort_basis(Z3_context c, Z3_sort s);
+
+ /**
+ \brief Create a regular expression sort out of a sequence sort.
+
+ def_API('Z3_mk_re_sort', SORT, (_in(CONTEXT), _in(SORT)))
+ */
+ Z3_sort Z3_API Z3_mk_re_sort(Z3_context c, Z3_sort seq);
+
+ /**
+ \brief Check if \c s is a regular expression sort.
+
+ def_API('Z3_is_re_sort', BOOL, (_in(CONTEXT), _in(SORT)))
+ */
+ bool Z3_API Z3_is_re_sort(Z3_context c, Z3_sort s);
+
+ /**
+ \brief Retrieve basis sort for regex sort.
+
+ def_API('Z3_get_re_sort_basis', SORT, (_in(CONTEXT), _in(SORT)))
+ */
+ Z3_sort Z3_API Z3_get_re_sort_basis(Z3_context c, Z3_sort s);
+
+ /**
+ \brief Create a sort for 8 bit strings.
+
+ This function creates a sort for ASCII strings.
+ Each character is 8 bits.
+
+ def_API('Z3_mk_string_sort', SORT ,(_in(CONTEXT), ))
+ */
+ Z3_sort Z3_API Z3_mk_string_sort(Z3_context c);
+
+ /**
+ \brief Check if \c s is a string sort.
+
+ def_API('Z3_is_string_sort', BOOL, (_in(CONTEXT), _in(SORT)))
+ */
+ bool Z3_API Z3_is_string_sort(Z3_context c, Z3_sort s);
+
+ /**
+ \brief Create a string constant out of the string that is passed in
+ def_API('Z3_mk_string' ,AST ,(_in(CONTEXT), _in(STRING)))
+ */
+ Z3_ast Z3_API Z3_mk_string(Z3_context c, Z3_string s);
+
+ /**
+ \brief Create a string constant out of the string that is passed in
+ It takes the length of the string as well to take into account
+ 0 characters. The string is unescaped.
+
+ def_API('Z3_mk_lstring' ,AST ,(_in(CONTEXT), _in(UINT), _in(STRING)))
+ */
+ Z3_ast Z3_API Z3_mk_lstring(Z3_context c, unsigned len, Z3_string s);
+
+ /**
+ \brief Determine if \c s is a string constant.
+
+ def_API('Z3_is_string', BOOL, (_in(CONTEXT), _in(AST)))
+ */
+ bool Z3_API Z3_is_string(Z3_context c, Z3_ast s);
+
+ /**
+ \brief Retrieve the string constant stored in \c s.
+
+ \pre Z3_is_string(c, s)
+
+ def_API('Z3_get_string' ,STRING ,(_in(CONTEXT), _in(AST)))
+ */
+ Z3_string Z3_API Z3_get_string(Z3_context c, Z3_ast s);
+
+ /**
+ \brief Retrieve the unescaped string constant stored in \c s.
+
+ \pre Z3_is_string(c, s)
+
+ def_API('Z3_get_lstring' ,CHAR_PTR ,(_in(CONTEXT), _in(AST), _out(UINT)))
+ */
+ Z3_char_ptr Z3_API Z3_get_lstring(Z3_context c, Z3_ast s, unsigned* length);
+
+ /**
+ \brief Create an empty sequence of the sequence sort \c seq.
+
+ \pre s is a sequence sort.
+
+ def_API('Z3_mk_seq_empty' ,AST ,(_in(CONTEXT), _in(SORT)))
+ */
+ Z3_ast Z3_API Z3_mk_seq_empty(Z3_context c, Z3_sort seq);
+
+ /**
+ \brief Create a unit sequence of \c a.
+
+ def_API('Z3_mk_seq_unit' ,AST ,(_in(CONTEXT), _in(AST)))
+ */
+ Z3_ast Z3_API Z3_mk_seq_unit(Z3_context c, Z3_ast a);
+
+ /**
+ \brief Concatenate sequences.
+
+ \pre n > 0
+
+ def_API('Z3_mk_seq_concat' ,AST ,(_in(CONTEXT), _in(UINT), _in_array(1, AST)))
+ */
+ Z3_ast Z3_API Z3_mk_seq_concat(Z3_context c, unsigned n, Z3_ast const args[]);
+
+ /**
+ \brief Check if \c prefix is a prefix of \c s.
+
+ \pre prefix and s are the same sequence sorts.
+
+ def_API('Z3_mk_seq_prefix' ,AST ,(_in(CONTEXT), _in(AST), _in(AST)))
+ */
+ Z3_ast Z3_API Z3_mk_seq_prefix(Z3_context c, Z3_ast prefix, Z3_ast s);
+
+ /**
+ \brief Check if \c suffix is a suffix of \c s.
+
+ \pre \c suffix and \c s are the same sequence sorts.
+
+ def_API('Z3_mk_seq_suffix' ,AST ,(_in(CONTEXT), _in(AST), _in(AST)))
+ */
+ Z3_ast Z3_API Z3_mk_seq_suffix(Z3_context c, Z3_ast suffix, Z3_ast s);
+
+ /**
+ \brief Check if \c container contains \c containee.
+
+ \pre \c container and \c containee are the same sequence sorts.
+
+ def_API('Z3_mk_seq_contains' ,AST ,(_in(CONTEXT), _in(AST), _in(AST)))
+ */
+ Z3_ast Z3_API Z3_mk_seq_contains(Z3_context c, Z3_ast container, Z3_ast containee);
+
+
+ /**
+ \brief Check if \c s1 is lexicographically strictly less than \c s2.
+
+ \pre \c s1 and \c s2 are strings
+
+ def_API('Z3_mk_str_lt' ,AST ,(_in(CONTEXT), _in(AST), _in(AST)))
+ */
+ Z3_ast Z3_API Z3_mk_str_lt(Z3_context c, Z3_ast prefix, Z3_ast s);
+
+ /**
+ \brief Check if \c s1 is equal or lexicographically strictly less than \c s2.
+
+ \pre \c s1 and \c s2 are strings
+
+ def_API('Z3_mk_str_le' ,AST ,(_in(CONTEXT), _in(AST), _in(AST)))
+ */
+ Z3_ast Z3_API Z3_mk_str_le(Z3_context c, Z3_ast prefix, Z3_ast s);
+
+ /**
+ \brief Extract subsequence starting at \c offset of \c length.
+
+ def_API('Z3_mk_seq_extract' ,AST ,(_in(CONTEXT), _in(AST), _in(AST), _in(AST)))
+ */
+ Z3_ast Z3_API Z3_mk_seq_extract(Z3_context c, Z3_ast s, Z3_ast offset, Z3_ast length);
+
+ /**
+ \brief Replace the first occurrence of \c src with \c dst in \c s.
+
+ def_API('Z3_mk_seq_replace' ,AST ,(_in(CONTEXT), _in(AST), _in(AST), _in(AST)))
+ */
+ Z3_ast Z3_API Z3_mk_seq_replace(Z3_context c, Z3_ast s, Z3_ast src, Z3_ast dst);
+
+ /**
+ \brief Retrieve from \c s the unit sequence positioned at position \c index.
+ The sequence is empty if the index is out of bounds.
+
+ def_API('Z3_mk_seq_at' ,AST ,(_in(CONTEXT), _in(AST), _in(AST)))
+ */
+ Z3_ast Z3_API Z3_mk_seq_at(Z3_context c, Z3_ast s, Z3_ast index);
+
+ /**
+ \brief Retrieve from \c s the element positioned at position \c index.
+ The function is under-specified if the index is out of bounds.
+
+ def_API('Z3_mk_seq_nth' ,AST ,(_in(CONTEXT), _in(AST), _in(AST)))
+ */
+ Z3_ast Z3_API Z3_mk_seq_nth(Z3_context c, Z3_ast s, Z3_ast index);
+
+ /**
+ \brief Return the length of the sequence \c s.
+
+ def_API('Z3_mk_seq_length' ,AST ,(_in(CONTEXT), _in(AST)))
+ */
+ Z3_ast Z3_API Z3_mk_seq_length(Z3_context c, Z3_ast s);
+
+
+ /**
+ \brief Return index of first occurrence of \c substr in \c s starting from offset \c offset.
+ If \c s does not contain \c substr, then the value is -1, if \c offset is the length of \c s, then the value is -1 as well.
+ The value is -1 if \c offset is negative or larger than the length of \c s.
+
+ def_API('Z3_mk_seq_index' ,AST ,(_in(CONTEXT), _in(AST), _in(AST), _in(AST)))
+ */
+ Z3_ast Z3_API Z3_mk_seq_index(Z3_context c, Z3_ast s, Z3_ast substr, Z3_ast offset);
+
+ /**
+ \brief Return the last occurrence of \c substr in \c s.
+ If \c s does not contain \c substr, then the value is -1,
+ def_API('Z3_mk_seq_last_index', AST, (_in(CONTEXT), _in(AST), _in(AST)))
+ */
+ Z3_ast Z3_API Z3_mk_seq_last_index(Z3_context c, Z3_ast, Z3_ast substr);
+
+ /**
+ \brief Convert string to integer.
+
+ def_API('Z3_mk_str_to_int' ,AST ,(_in(CONTEXT), _in(AST)))
+ */
+ Z3_ast Z3_API Z3_mk_str_to_int(Z3_context c, Z3_ast s);
+
+
+ /**
+ \brief Integer to string conversion.
+
+ def_API('Z3_mk_int_to_str' ,AST ,(_in(CONTEXT), _in(AST)))
+ */
+ Z3_ast Z3_API Z3_mk_int_to_str(Z3_context c, Z3_ast s);
+
+ /**
+ \brief Create a regular expression that accepts the sequence \c seq.
+
+ def_API('Z3_mk_seq_to_re' ,AST ,(_in(CONTEXT), _in(AST)))
+ */
+ Z3_ast Z3_API Z3_mk_seq_to_re(Z3_context c, Z3_ast seq);
+
+ /**
+ \brief Check if \c seq is in the language generated by the regular expression \c re.
+
+ def_API('Z3_mk_seq_in_re' ,AST ,(_in(CONTEXT), _in(AST), _in(AST)))
+ */
+ Z3_ast Z3_API Z3_mk_seq_in_re(Z3_context c, Z3_ast seq, Z3_ast re);
+
+ /**
+ \brief Create the regular language \c re+.
+
+ def_API('Z3_mk_re_plus' ,AST ,(_in(CONTEXT), _in(AST)))
+ */
+ Z3_ast Z3_API Z3_mk_re_plus(Z3_context c, Z3_ast re);
+
+ /**
+ \brief Create the regular language \c re*.
+
+ def_API('Z3_mk_re_star' ,AST ,(_in(CONTEXT), _in(AST)))
+ */
+ Z3_ast Z3_API Z3_mk_re_star(Z3_context c, Z3_ast re);
+
+ /**
+ \brief Create the regular language \c [re].
+
+ def_API('Z3_mk_re_option' ,AST ,(_in(CONTEXT), _in(AST)))
+ */
+ Z3_ast Z3_API Z3_mk_re_option(Z3_context c, Z3_ast re);
+
+ /**
+ \brief Create the union of the regular languages.
+
+ \pre n > 0
+
+ def_API('Z3_mk_re_union' ,AST ,(_in(CONTEXT), _in(UINT), _in_array(1, AST)))
+ */
+ Z3_ast Z3_API Z3_mk_re_union(Z3_context c, unsigned n, Z3_ast const args[]);
+
+ /**
+ \brief Create the concatenation of the regular languages.
+
+ \pre n > 0
+
+ def_API('Z3_mk_re_concat' ,AST ,(_in(CONTEXT), _in(UINT), _in_array(1, AST)))
+ */
+ Z3_ast Z3_API Z3_mk_re_concat(Z3_context c, unsigned n, Z3_ast const args[]);
+
+
+ /**
+ \brief Create the range regular expression over two sequences of length 1.
+
+ def_API('Z3_mk_re_range' ,AST ,(_in(CONTEXT), _in(AST), _in(AST)))
+ */
+ Z3_ast Z3_API Z3_mk_re_range(Z3_context c, Z3_ast lo, Z3_ast hi);
+
+ /**
+ \brief Create a regular expression loop. The supplied regular expression \c r is repeated
+ between \c lo and \c hi times. The \c lo should be below \c hi with one exception: when
+ supplying the value \c hi as 0, the meaning is to repeat the argument \c r at least
+ \c lo number of times, and with an unbounded upper bound.
+
+ def_API('Z3_mk_re_loop', AST, (_in(CONTEXT), _in(AST), _in(UINT), _in(UINT)))
+ */
+ Z3_ast Z3_API Z3_mk_re_loop(Z3_context c, Z3_ast r, unsigned lo, unsigned hi);
+
+ /**
+ \brief Create the intersection of the regular languages.
+
+ \pre n > 0
+
+ def_API('Z3_mk_re_intersect' ,AST ,(_in(CONTEXT), _in(UINT), _in_array(1, AST)))
+ */
+ Z3_ast Z3_API Z3_mk_re_intersect(Z3_context c, unsigned n, Z3_ast const args[]);
+
+ /**
+ \brief Create the complement of the regular language \c re.
+
+ def_API('Z3_mk_re_complement' ,AST ,(_in(CONTEXT), _in(AST)))
+ */
+ Z3_ast Z3_API Z3_mk_re_complement(Z3_context c, Z3_ast re);
+
+ /**
+ \brief Create an empty regular expression of sort \c re.
+
+ \pre re is a regular expression sort.
+
+ def_API('Z3_mk_re_empty' ,AST ,(_in(CONTEXT), _in(SORT)))
+ */
+ Z3_ast Z3_API Z3_mk_re_empty(Z3_context c, Z3_sort re);
+
+
+ /**
+ \brief Create an universal regular expression of sort \c re.
+
+ \pre re is a regular expression sort.
+
+ def_API('Z3_mk_re_full' ,AST ,(_in(CONTEXT), _in(SORT)))
+ */
+ Z3_ast Z3_API Z3_mk_re_full(Z3_context c, Z3_sort re);
+
+ /*@}*/
+
+
+ /** @name Special relations */
+ /*@{*/
+ /**
+ \brief create a linear ordering relation over signature \c a.
+ The relation is identified by the index \c id.
+
+ def_API('Z3_mk_linear_order', FUNC_DECL ,(_in(CONTEXT), _in(SORT), _in(UINT)))
+ */
+ Z3_func_decl Z3_API Z3_mk_linear_order(Z3_context c, Z3_sort a, unsigned id);
+
+ /**
+ \brief create a partial ordering relation over signature \c a and index \c id.
+
+ def_API('Z3_mk_partial_order', FUNC_DECL ,(_in(CONTEXT), _in(SORT), _in(UINT)))
+ */
+ Z3_func_decl Z3_API Z3_mk_partial_order(Z3_context c, Z3_sort a, unsigned id);
+
+ /**
+ \brief create a piecewise linear ordering relation over signature \c a and index \c id.
+
+ def_API('Z3_mk_piecewise_linear_order', FUNC_DECL ,(_in(CONTEXT), _in(SORT), _in(UINT)))
+ */
+ Z3_func_decl Z3_API Z3_mk_piecewise_linear_order(Z3_context c, Z3_sort a, unsigned id);
+
+ /**
+ \brief create a tree ordering relation over signature \c a identified using index \c id.
+
+ def_API('Z3_mk_tree_order', FUNC_DECL, (_in(CONTEXT), _in(SORT), _in(UINT)))
+ */
+ Z3_func_decl Z3_API Z3_mk_tree_order(Z3_context c, Z3_sort a, unsigned id);
+
+ /**
+ \brief create transitive closure of binary relation.
+
+ \pre f is a binary relation, such that the two arguments have the same sorts.
+
+ The resulting relation f+ represents the transitive closure of f.
+
+ def_API('Z3_mk_transitive_closure', FUNC_DECL ,(_in(CONTEXT), _in(FUNC_DECL)))
+ */
+ Z3_func_decl Z3_API Z3_mk_transitive_closure(Z3_context c, Z3_func_decl f);
+
+ /*@}*/
+
+ /** @name Quantifiers */
+ /*@{*/
+ /**
+ \brief Create a pattern for quantifier instantiation.
+
+ Z3 uses pattern matching to instantiate quantifiers. If a
+ pattern is not provided for a quantifier, then Z3 will
+ automatically compute a set of patterns for it. However, for
+ optimal performance, the user should provide the patterns.
+
+ Patterns comprise a list of terms. The list should be
+ non-empty. If the list comprises of more than one term, it is
+ a called a multi-pattern.
+
+ In general, one can pass in a list of (multi-)patterns in the
+ quantifier constructor.
+
+ \sa Z3_mk_forall
+ \sa Z3_mk_exists
+
+ def_API('Z3_mk_pattern', PATTERN, (_in(CONTEXT), _in(UINT), _in_array(1, AST)))
+ */
+ Z3_pattern Z3_API Z3_mk_pattern(Z3_context c, unsigned num_patterns, Z3_ast const terms[]);
+
+ /**
+ \brief Create a bound variable.
+
+ Bound variables are indexed by de-Bruijn indices. It is perhaps easiest to explain
+ the meaning of de-Bruijn indices by indicating the compilation process from
+ non-de-Bruijn formulas to de-Bruijn format.
+
+ \verbatim
+ abs(forall (x1) phi) = forall (x1) abs1(phi, x1, 0)
+ abs(forall (x1, x2) phi) = abs(forall (x1) abs(forall (x2) phi))
+ abs1(x, x, n) = b_n
+ abs1(y, x, n) = y
+ abs1(f(t1,...,tn), x, n) = f(abs1(t1,x,n), ..., abs1(tn,x,n))
+ abs1(forall (x1) phi, x, n) = forall (x1) (abs1(phi, x, n+1))
+ \endverbatim
+
+ The last line is significant: the index of a bound variable is different depending
+ on the scope in which it appears. The deeper x appears, the higher is its
+ index.
+
+ \param c logical context
+ \param index de-Bruijn index
+ \param ty sort of the bound variable
+
+ \sa Z3_mk_forall
+ \sa Z3_mk_exists
+
+ def_API('Z3_mk_bound', AST, (_in(CONTEXT), _in(UINT), _in(SORT)))
+ */
+ Z3_ast Z3_API Z3_mk_bound(Z3_context c, unsigned index, Z3_sort ty);
+
+ /**
+ \brief Create a forall formula. It takes an expression \c body that contains bound variables
+ of the same sorts as the sorts listed in the array \c sorts. The bound variables are de-Bruijn indices created
+ using #Z3_mk_bound. The array \c decl_names contains the names that the quantified formula uses for the
+ bound variables. Z3 applies the convention that the last element in the \c decl_names and \c sorts array
+ refers to the variable with index 0, the second to last element of \c decl_names and \c sorts refers
+ to the variable with index 1, etc.
+
+ \param c logical context.
+ \param weight quantifiers are associated with weights indicating the importance of using the quantifier during instantiation. By default, pass the weight 0.
+ \param num_patterns number of patterns.
+ \param patterns array containing the patterns created using #Z3_mk_pattern.
+ \param num_decls number of variables to be bound.
+ \param sorts the sorts of the bound variables.
+ \param decl_names names of the bound variables
+ \param body the body of the quantifier.
+
+ \sa Z3_mk_pattern
+ \sa Z3_mk_bound
+ \sa Z3_mk_exists
+
+ def_API('Z3_mk_forall', AST, (_in(CONTEXT), _in(UINT), _in(UINT), _in_array(2, PATTERN), _in(UINT), _in_array(4, SORT), _in_array(4, SYMBOL), _in(AST)))
+ */
+ Z3_ast Z3_API Z3_mk_forall(Z3_context c, unsigned weight,
+ unsigned num_patterns, Z3_pattern const patterns[],
+ unsigned num_decls, Z3_sort const sorts[],
+ Z3_symbol const decl_names[],
+ Z3_ast body);
+
+ /**
+ \brief Create an exists formula. Similar to #Z3_mk_forall.
+
+ \sa Z3_mk_pattern
+ \sa Z3_mk_bound
+ \sa Z3_mk_forall
+ \sa Z3_mk_quantifier
+
+ def_API('Z3_mk_exists', AST, (_in(CONTEXT), _in(UINT), _in(UINT), _in_array(2, PATTERN), _in(UINT), _in_array(4, SORT), _in_array(4, SYMBOL), _in(AST)))
+ */
+ Z3_ast Z3_API Z3_mk_exists(Z3_context c, unsigned weight,
+ unsigned num_patterns, Z3_pattern const patterns[],
+ unsigned num_decls, Z3_sort const sorts[],
+ Z3_symbol const decl_names[],
+ Z3_ast body);
+
+ /**
+ \brief Create a quantifier - universal or existential, with pattern hints.
+ See the documentation for #Z3_mk_forall for an explanation of the parameters.
+
+ \param c logical context.
+ \param is_forall flag to indicate if this is a universal or existential quantifier.
+ \param weight quantifiers are associated with weights indicating the importance of using the quantifier during instantiation. By default, pass the weight 0.
+ \param num_patterns number of patterns.
+ \param patterns array containing the patterns created using #Z3_mk_pattern.
+ \param num_decls number of variables to be bound.
+ \param sorts array of sorts of the bound variables.
+ \param decl_names names of the bound variables.
+ \param body the body of the quantifier.
+
+ \sa Z3_mk_pattern
+ \sa Z3_mk_bound
+ \sa Z3_mk_forall
+ \sa Z3_mk_exists
+
+ def_API('Z3_mk_quantifier', AST, (_in(CONTEXT), _in(BOOL), _in(UINT), _in(UINT), _in_array(3, PATTERN), _in(UINT), _in_array(5, SORT), _in_array(5, SYMBOL), _in(AST)))
+ */
+ Z3_ast Z3_API Z3_mk_quantifier(
+ Z3_context c,
+ bool is_forall,
+ unsigned weight,
+ unsigned num_patterns, Z3_pattern const patterns[],
+ unsigned num_decls, Z3_sort const sorts[],
+ Z3_symbol const decl_names[],
+ Z3_ast body);
+
+
+ /**
+ \brief Create a quantifier - universal or existential, with pattern hints, no patterns, and attributes
+
+ \param c logical context.
+ \param is_forall flag to indicate if this is a universal or existential quantifier.
+ \param quantifier_id identifier to identify quantifier
+ \param skolem_id identifier to identify skolem constants introduced by quantifier.
+ \param weight quantifiers are associated with weights indicating the importance of using the quantifier during instantiation. By default, pass the weight 0.
+ \param num_patterns number of patterns.
+ \param patterns array containing the patterns created using #Z3_mk_pattern.
+ \param num_no_patterns number of no_patterns.
+ \param no_patterns array containing subexpressions to be excluded from inferred patterns.
+ \param num_decls number of variables to be bound.
+ \param sorts array of sorts of the bound variables.
+ \param decl_names names of the bound variables.
+ \param body the body of the quantifier.
+
+ \sa Z3_mk_pattern
+ \sa Z3_mk_bound
+ \sa Z3_mk_forall
+ \sa Z3_mk_exists
+
+ def_API('Z3_mk_quantifier_ex', AST, (_in(CONTEXT), _in(BOOL), _in(UINT), _in(SYMBOL), _in(SYMBOL), _in(UINT), _in_array(5, PATTERN), _in(UINT), _in_array(7, AST), _in(UINT), _in_array(9, SORT), _in_array(9, SYMBOL), _in(AST)))
+ */
+ Z3_ast Z3_API Z3_mk_quantifier_ex(
+ Z3_context c,
+ bool is_forall,
+ unsigned weight,
+ Z3_symbol quantifier_id,
+ Z3_symbol skolem_id,
+ unsigned num_patterns, Z3_pattern const patterns[],
+ unsigned num_no_patterns, Z3_ast const no_patterns[],
+ unsigned num_decls, Z3_sort const sorts[],
+ Z3_symbol const decl_names[],
+ Z3_ast body);
+
+ /**
+ \brief Create a universal quantifier using a list of constants that
+ will form the set of bound variables.
+
+ \param c logical context.
+ \param weight quantifiers are associated with weights indicating the importance of using
+ the quantifier during instantiation. By default, pass the weight 0.
+ \param num_bound number of constants to be abstracted into bound variables.
+ \param bound array of constants to be abstracted into bound variables.
+ \param num_patterns number of patterns.
+ \param patterns array containing the patterns created using #Z3_mk_pattern.
+ \param body the body of the quantifier.
+
+ \sa Z3_mk_pattern
+ \sa Z3_mk_exists_const
+
+ def_API('Z3_mk_forall_const', AST, (_in(CONTEXT), _in(UINT), _in(UINT), _in_array(2, APP), _in(UINT), _in_array(4, PATTERN), _in(AST)))
+ */
+ Z3_ast Z3_API Z3_mk_forall_const(
+ Z3_context c,
+ unsigned weight,
+ unsigned num_bound,
+ Z3_app const bound[],
+ unsigned num_patterns,
+ Z3_pattern const patterns[],
+ Z3_ast body
+ );
+
+ /**
+ \brief Similar to #Z3_mk_forall_const.
+
+ \brief Create an existential quantifier using a list of constants that
+ will form the set of bound variables.
+
+ \param c logical context.
+ \param weight quantifiers are associated with weights indicating the importance of using
+ the quantifier during instantiation. By default, pass the weight 0.
+ \param num_bound number of constants to be abstracted into bound variables.
+ \param bound array of constants to be abstracted into bound variables.
+ \param num_patterns number of patterns.
+ \param patterns array containing the patterns created using #Z3_mk_pattern.
+ \param body the body of the quantifier.
+
+ \sa Z3_mk_pattern
+ \sa Z3_mk_forall_const
+
+ def_API('Z3_mk_exists_const', AST, (_in(CONTEXT), _in(UINT), _in(UINT), _in_array(2, APP), _in(UINT), _in_array(4, PATTERN), _in(AST)))
+ */
+ Z3_ast Z3_API Z3_mk_exists_const(
+ Z3_context c,
+ unsigned weight,
+ unsigned num_bound,
+ Z3_app const bound[],
+ unsigned num_patterns,
+ Z3_pattern const patterns[],
+ Z3_ast body
+ );
+
+ /**
+ \brief Create a universal or existential quantifier using a list of
+ constants that will form the set of bound variables.
+
+ def_API('Z3_mk_quantifier_const', AST, (_in(CONTEXT), _in(BOOL), _in(UINT), _in(UINT), _in_array(3, APP), _in(UINT), _in_array(5, PATTERN), _in(AST)))
+ */
+ Z3_ast Z3_API Z3_mk_quantifier_const(
+ Z3_context c,
+ bool is_forall,
+ unsigned weight,
+ unsigned num_bound, Z3_app const bound[],
+ unsigned num_patterns, Z3_pattern const patterns[],
+ Z3_ast body
+ );
+
+ /**
+ \brief Create a universal or existential quantifier using a list of
+ constants that will form the set of bound variables.
+
+ def_API('Z3_mk_quantifier_const_ex', AST, (_in(CONTEXT), _in(BOOL), _in(UINT), _in(SYMBOL), _in(SYMBOL), _in(UINT), _in_array(5, APP), _in(UINT), _in_array(7, PATTERN), _in(UINT), _in_array(9, AST), _in(AST)))
+ */
+ Z3_ast Z3_API Z3_mk_quantifier_const_ex(
+ Z3_context c,
+ bool is_forall,
+ unsigned weight,
+ Z3_symbol quantifier_id,
+ Z3_symbol skolem_id,
+ unsigned num_bound, Z3_app const bound[],
+ unsigned num_patterns, Z3_pattern const patterns[],
+ unsigned num_no_patterns, Z3_ast const no_patterns[],
+ Z3_ast body
+ );
+
+ /**
+ \brief Create a lambda expression. It takes an expression \c body that contains bound variables
+ of the same sorts as the sorts listed in the array \c sorts. The bound variables are de-Bruijn indices created
+ using #Z3_mk_bound. The array \c decl_names contains the names that the quantified formula uses for the
+ bound variables. Z3 applies the convention that the last element in the \c decl_names and \c sorts array
+ refers to the variable with index 0, the second to last element of \c decl_names and \c sorts refers
+ to the variable with index 1, etc.
+ The sort of the resulting expression is \c (Array sorts range) where \c range is the sort of \c body.
+ For example, if the lambda binds two variables of sort \c Int and \c Bool, and the \c body has sort \c Real,
+ the sort of the expression is \c (Array Int Bool Real).
+
+ \param c logical context
+ \param num_decls number of variables to be bound.
+ \param sorts the sorts of the bound variables.
+ \param decl_names names of the bound variables
+ \param body the body of the lambda expression.
+
+ \sa Z3_mk_bound
+ \sa Z3_mk_forall
+ \sa Z3_mk_lambda_const
+
+ def_API('Z3_mk_lambda', AST, (_in(CONTEXT), _in(UINT), _in_array(1, SORT), _in_array(1, SYMBOL), _in(AST)))
+ */
+ Z3_ast Z3_API Z3_mk_lambda(Z3_context c,
+ unsigned num_decls, Z3_sort const sorts[],
+ Z3_symbol const decl_names[],
+ Z3_ast body);
+
+ /**
+ \brief Create a lambda expression using a list of constants that form the set
+ of bound variables
+
+ \param c logical context.
+ \param num_bound number of constants to be abstracted into bound variables.
+ \param bound array of constants to be abstracted into bound variables.
+ \param body the body of the lambda expression.
+
+ \sa Z3_mk_bound
+ \sa Z3_mk_forall
+ \sa Z3_mk_lambda
+
+ def_API('Z3_mk_lambda_const', AST, (_in(CONTEXT), _in(UINT), _in_array(1, APP), _in(AST)))
+ */
+ Z3_ast Z3_API Z3_mk_lambda_const(Z3_context c,
+ unsigned num_bound, Z3_app const bound[],
+ Z3_ast body);
+
+
+ /*@}*/
+
+ /** @name Accessors */
+ /*@{*/
+ /**
+ \brief Return \c Z3_INT_SYMBOL if the symbol was constructed
+ using #Z3_mk_int_symbol, and \c Z3_STRING_SYMBOL if the symbol
+ was constructed using #Z3_mk_string_symbol.
+
+ def_API('Z3_get_symbol_kind', UINT, (_in(CONTEXT), _in(SYMBOL)))
+ */
+ Z3_symbol_kind Z3_API Z3_get_symbol_kind(Z3_context c, Z3_symbol s);
+
+ /**
+ \brief Return the symbol int value.
+
+ \pre Z3_get_symbol_kind(s) == Z3_INT_SYMBOL
+
+ \sa Z3_mk_int_symbol
+
+ def_API('Z3_get_symbol_int', INT, (_in(CONTEXT), _in(SYMBOL)))
+ */
+ int Z3_API Z3_get_symbol_int(Z3_context c, Z3_symbol s);
+
+ /**
+ \brief Return the symbol name.
+
+ \pre Z3_get_symbol_kind(s) == Z3_STRING_SYMBOL
+
+ \warning The returned buffer is statically allocated by Z3. It will
+ be automatically deallocated when #Z3_del_context is invoked.
+ So, the buffer is invalidated in the next call to \c Z3_get_symbol_string.
+
+ \sa Z3_mk_string_symbol
+
+ def_API('Z3_get_symbol_string', STRING, (_in(CONTEXT), _in(SYMBOL)))
+ */
+ Z3_string Z3_API Z3_get_symbol_string(Z3_context c, Z3_symbol s);
+
+ /**
+ \brief Return the sort name as a symbol.
+
+ def_API('Z3_get_sort_name', SYMBOL, (_in(CONTEXT), _in(SORT)))
+ */
+ Z3_symbol Z3_API Z3_get_sort_name(Z3_context c, Z3_sort d);
+
+ /**
+ \brief Return a unique identifier for \c s.
+
+ def_API('Z3_get_sort_id', UINT, (_in(CONTEXT), _in(SORT)))
+ */
+ unsigned Z3_API Z3_get_sort_id(Z3_context c, Z3_sort s);
+
+ /**
+ \brief Convert a \c Z3_sort into \c Z3_ast. This is just type casting.
+
+ def_API('Z3_sort_to_ast', AST, (_in(CONTEXT), _in(SORT)))
+ */
+ Z3_ast Z3_API Z3_sort_to_ast(Z3_context c, Z3_sort s);
+
+ /**
+ \brief compare sorts.
+
+ def_API('Z3_is_eq_sort', BOOL, (_in(CONTEXT), _in(SORT), _in(SORT)))
+ */
+ bool Z3_API Z3_is_eq_sort(Z3_context c, Z3_sort s1, Z3_sort s2);
+
+ /**
+ \brief Return the sort kind (e.g., array, tuple, int, bool, etc).
+
+ \sa Z3_sort_kind
+
+ def_API('Z3_get_sort_kind', UINT, (_in(CONTEXT), _in(SORT)))
+ */
+ Z3_sort_kind Z3_API Z3_get_sort_kind(Z3_context c, Z3_sort t);
+
+ /**
+ \brief Return the size of the given bit-vector sort.
+
+ \pre Z3_get_sort_kind(c, t) == Z3_BV_SORT
+
+ \sa Z3_mk_bv_sort
+ \sa Z3_get_sort_kind
+
+ def_API('Z3_get_bv_sort_size', UINT, (_in(CONTEXT), _in(SORT)))
+ */
+ unsigned Z3_API Z3_get_bv_sort_size(Z3_context c, Z3_sort t);
+
+ /**
+ \brief Store the size of the sort in \c r. Return \c false if the call failed.
+ That is, Z3_get_sort_kind(s) == Z3_FINITE_DOMAIN_SORT
+
+ def_API('Z3_get_finite_domain_sort_size', BOOL, (_in(CONTEXT), _in(SORT), _out(UINT64)))
+ */
+ Z3_bool_opt Z3_API Z3_get_finite_domain_sort_size(Z3_context c, Z3_sort s, uint64_t* r);
+
+ /**
+ \brief Return the domain of the given array sort.
+ In the case of a multi-dimensional array, this function returns the sort of the first dimension.
+
+ \pre Z3_get_sort_kind(c, t) == Z3_ARRAY_SORT
+
+ \sa Z3_mk_array_sort
+ \sa Z3_get_sort_kind
+
+ def_API('Z3_get_array_sort_domain', SORT, (_in(CONTEXT), _in(SORT)))
+ */
+ Z3_sort Z3_API Z3_get_array_sort_domain(Z3_context c, Z3_sort t);
+
+ /**
+ \brief Return the range of the given array sort.
+
+ \pre Z3_get_sort_kind(c, t) == Z3_ARRAY_SORT
+
+ \sa Z3_mk_array_sort
+ \sa Z3_get_sort_kind
+
+ def_API('Z3_get_array_sort_range', SORT, (_in(CONTEXT), _in(SORT)))
+ */
+ Z3_sort Z3_API Z3_get_array_sort_range(Z3_context c, Z3_sort t);
+
+ /**
+ \brief Return the constructor declaration of the given tuple
+ sort.
+
+ \pre Z3_get_sort_kind(c, t) == Z3_DATATYPE_SORT
+
+ \sa Z3_mk_tuple_sort
+ \sa Z3_get_sort_kind
+
+ def_API('Z3_get_tuple_sort_mk_decl', FUNC_DECL, (_in(CONTEXT), _in(SORT)))
+ */
+ Z3_func_decl Z3_API Z3_get_tuple_sort_mk_decl(Z3_context c, Z3_sort t);
+
+ /**
+ \brief Return the number of fields of the given tuple sort.
+
+ \pre Z3_get_sort_kind(c, t) == Z3_DATATYPE_SORT
+
+ \sa Z3_mk_tuple_sort
+ \sa Z3_get_sort_kind
+
+ def_API('Z3_get_tuple_sort_num_fields', UINT, (_in(CONTEXT), _in(SORT)))
+ */
+ unsigned Z3_API Z3_get_tuple_sort_num_fields(Z3_context c, Z3_sort t);
+
+ /**
+ \brief Return the i-th field declaration (i.e., projection function declaration)
+ of the given tuple sort.
+
+ \pre Z3_get_sort_kind(t) == Z3_DATATYPE_SORT
+ \pre i < Z3_get_tuple_sort_num_fields(c, t)
+
+ \sa Z3_mk_tuple_sort
+ \sa Z3_get_sort_kind
+
+ def_API('Z3_get_tuple_sort_field_decl', FUNC_DECL, (_in(CONTEXT), _in(SORT), _in(UINT)))
+ */
+ Z3_func_decl Z3_API Z3_get_tuple_sort_field_decl(Z3_context c, Z3_sort t, unsigned i);
+
+ /**
+ \brief Return number of constructors for datatype.
+
+ \pre Z3_get_sort_kind(t) == Z3_DATATYPE_SORT
+
+ \sa Z3_get_datatype_sort_constructor
+ \sa Z3_get_datatype_sort_recognizer
+ \sa Z3_get_datatype_sort_constructor_accessor
+
+ def_API('Z3_get_datatype_sort_num_constructors', UINT, (_in(CONTEXT), _in(SORT)))
+ */
+ unsigned Z3_API Z3_get_datatype_sort_num_constructors(
+ Z3_context c, Z3_sort t);
+
+ /**
+ \brief Return idx'th constructor.
+
+ \pre Z3_get_sort_kind(t) == Z3_DATATYPE_SORT
+ \pre idx < Z3_get_datatype_sort_num_constructors(c, t)
+
+ \sa Z3_get_datatype_sort_num_constructors
+ \sa Z3_get_datatype_sort_recognizer
+ \sa Z3_get_datatype_sort_constructor_accessor
+
+ def_API('Z3_get_datatype_sort_constructor', FUNC_DECL, (_in(CONTEXT), _in(SORT), _in(UINT)))
+ */
+ Z3_func_decl Z3_API Z3_get_datatype_sort_constructor(
+ Z3_context c, Z3_sort t, unsigned idx);
+
+ /**
+ \brief Return idx'th recognizer.
+
+ \pre Z3_get_sort_kind(t) == Z3_DATATYPE_SORT
+ \pre idx < Z3_get_datatype_sort_num_constructors(c, t)
+
+ \sa Z3_get_datatype_sort_num_constructors
+ \sa Z3_get_datatype_sort_constructor
+ \sa Z3_get_datatype_sort_constructor_accessor
+
+ def_API('Z3_get_datatype_sort_recognizer', FUNC_DECL, (_in(CONTEXT), _in(SORT), _in(UINT)))
+ */
+ Z3_func_decl Z3_API Z3_get_datatype_sort_recognizer(
+ Z3_context c, Z3_sort t, unsigned idx);
+
+ /**
+ \brief Return idx_a'th accessor for the idx_c'th constructor.
+
+ \pre Z3_get_sort_kind(t) == Z3_DATATYPE_SORT
+ \pre idx_c < Z3_get_datatype_sort_num_constructors(c, t)
+ \pre idx_a < Z3_get_domain_size(c, Z3_get_datatype_sort_constructor(c, idx_c))
+
+ \sa Z3_get_datatype_sort_num_constructors
+ \sa Z3_get_datatype_sort_constructor
+ \sa Z3_get_datatype_sort_recognizer
+
+ def_API('Z3_get_datatype_sort_constructor_accessor', FUNC_DECL, (_in(CONTEXT), _in(SORT), _in(UINT), _in(UINT)))
+ */
+ Z3_func_decl Z3_API Z3_get_datatype_sort_constructor_accessor(Z3_context c,
+ Z3_sort t,
+ unsigned idx_c,
+ unsigned idx_a);
+
+ /**
+ \brief Update record field with a value.
+
+ This corresponds to the 'with' construct in OCaml.
+ It has the effect of updating a record field with a given value.
+ The remaining fields are left unchanged. It is the record
+ equivalent of an array store (see \sa Z3_mk_store).
+ If the datatype has more than one constructor, then the update function
+ behaves as identity if there is a mismatch between the accessor and
+ constructor. For example ((_ update-field car) nil 1) is nil,
+ while ((_ update-field car) (cons 2 nil) 1) is (cons 1 nil).
+
+
+ \pre Z3_get_sort_kind(Z3_get_sort(c, t)) == Z3_get_domain(c, field_access, 1) == Z3_DATATYPE_SORT
+ \pre Z3_get_sort(c, value) == Z3_get_range(c, field_access)
+
+
+ def_API('Z3_datatype_update_field', AST, (_in(CONTEXT), _in(FUNC_DECL), _in(AST), _in(AST)))
+ */
+ Z3_ast Z3_API Z3_datatype_update_field(Z3_context c, Z3_func_decl field_access,
+ Z3_ast t, Z3_ast value);
+
+ /**
+ \brief Return arity of relation.
+
+ \pre Z3_get_sort_kind(s) == Z3_RELATION_SORT
+
+ \sa Z3_get_relation_column
+
+ def_API('Z3_get_relation_arity', UINT, (_in(CONTEXT), _in(SORT)))
+ */
+ unsigned Z3_API Z3_get_relation_arity(Z3_context c, Z3_sort s);
+
+ /**
+ \brief Return sort at i'th column of relation sort.
+
+ \pre Z3_get_sort_kind(c, s) == Z3_RELATION_SORT
+ \pre col < Z3_get_relation_arity(c, s)
+
+ \sa Z3_get_relation_arity
+
+ def_API('Z3_get_relation_column', SORT, (_in(CONTEXT), _in(SORT), _in(UINT)))
+ */
+ Z3_sort Z3_API Z3_get_relation_column(Z3_context c, Z3_sort s, unsigned col);
+
+ /**
+ \brief Pseudo-Boolean relations.
+
+ Encode p1 + p2 + ... + pn <= k
+
+ def_API('Z3_mk_atmost', AST, (_in(CONTEXT), _in(UINT), _in_array(1,AST), _in(UINT)))
+ */
+ Z3_ast Z3_API Z3_mk_atmost(Z3_context c, unsigned num_args,
+ Z3_ast const args[], unsigned k);
+
+ /**
+ \brief Pseudo-Boolean relations.
+
+ Encode p1 + p2 + ... + pn >= k
+
+ def_API('Z3_mk_atleast', AST, (_in(CONTEXT), _in(UINT), _in_array(1,AST), _in(UINT)))
+ */
+ Z3_ast Z3_API Z3_mk_atleast(Z3_context c, unsigned num_args,
+ Z3_ast const args[], unsigned k);
+
+ /**
+ \brief Pseudo-Boolean relations.
+
+ Encode k1*p1 + k2*p2 + ... + kn*pn <= k
+
+ def_API('Z3_mk_pble', AST, (_in(CONTEXT), _in(UINT), _in_array(1,AST), _in_array(1,INT), _in(INT)))
+ */
+ Z3_ast Z3_API Z3_mk_pble(Z3_context c, unsigned num_args,
+ Z3_ast const args[], int const coeffs[],
+ int k);
+
+ /**
+ \brief Pseudo-Boolean relations.
+
+ Encode k1*p1 + k2*p2 + ... + kn*pn >= k
+
+ def_API('Z3_mk_pbge', AST, (_in(CONTEXT), _in(UINT), _in_array(1,AST), _in_array(1,INT), _in(INT)))
+ */
+ Z3_ast Z3_API Z3_mk_pbge(Z3_context c, unsigned num_args,
+ Z3_ast const args[], int const coeffs[],
+ int k);
+
+ /**
+ \brief Pseudo-Boolean relations.
+
+ Encode k1*p1 + k2*p2 + ... + kn*pn = k
+
+ def_API('Z3_mk_pbeq', AST, (_in(CONTEXT), _in(UINT), _in_array(1,AST), _in_array(1,INT), _in(INT)))
+ */
+ Z3_ast Z3_API Z3_mk_pbeq(Z3_context c, unsigned num_args,
+ Z3_ast const args[], int const coeffs[],
+ int k);
+
+ /**
+ \brief Convert a \c Z3_func_decl into \c Z3_ast. This is just type casting.
+
+ def_API('Z3_func_decl_to_ast', AST, (_in(CONTEXT), _in(FUNC_DECL)))
+ */
+ Z3_ast Z3_API Z3_func_decl_to_ast(Z3_context c, Z3_func_decl f);
+
+ /**
+ \brief Compare terms.
+
+ def_API('Z3_is_eq_func_decl', BOOL, (_in(CONTEXT), _in(FUNC_DECL), _in(FUNC_DECL)))
+ */
+ bool Z3_API Z3_is_eq_func_decl(Z3_context c, Z3_func_decl f1, Z3_func_decl f2);
+
+ /**
+ \brief Return a unique identifier for \c f.
+
+ def_API('Z3_get_func_decl_id', UINT, (_in(CONTEXT), _in(FUNC_DECL)))
+ */
+ unsigned Z3_API Z3_get_func_decl_id(Z3_context c, Z3_func_decl f);
+
+ /**
+ \brief Return the constant declaration name as a symbol.
+
+ def_API('Z3_get_decl_name', SYMBOL, (_in(CONTEXT), _in(FUNC_DECL)))
+ */
+ Z3_symbol Z3_API Z3_get_decl_name(Z3_context c, Z3_func_decl d);
+
+ /**
+ \brief Return declaration kind corresponding to declaration.
+
+ def_API('Z3_get_decl_kind', UINT, (_in(CONTEXT), _in(FUNC_DECL)))
+ */
+ Z3_decl_kind Z3_API Z3_get_decl_kind(Z3_context c, Z3_func_decl d);
+
+ /**
+ \brief Return the number of parameters of the given declaration.
+
+ \sa Z3_get_arity
+
+ def_API('Z3_get_domain_size', UINT, (_in(CONTEXT), _in(FUNC_DECL)))
+ */
+ unsigned Z3_API Z3_get_domain_size(Z3_context c, Z3_func_decl d);
+
+ /**
+ \brief Alias for \c Z3_get_domain_size.
+
+ \sa Z3_get_domain_size
+
+ def_API('Z3_get_arity', UINT, (_in(CONTEXT), _in(FUNC_DECL)))
+ */
+ unsigned Z3_API Z3_get_arity(Z3_context c, Z3_func_decl d);
+
+ /**
+ \brief Return the sort of the i-th parameter of the given function declaration.
+
+ \pre i < Z3_get_domain_size(d)
+
+ \sa Z3_get_domain_size
+
+ def_API('Z3_get_domain', SORT, (_in(CONTEXT), _in(FUNC_DECL), _in(UINT)))
+ */
+ Z3_sort Z3_API Z3_get_domain(Z3_context c, Z3_func_decl d, unsigned i);
+
+ /**
+ \brief Return the range of the given declaration.
+
+ If \c d is a constant (i.e., has zero arguments), then this
+ function returns the sort of the constant.
+
+ def_API('Z3_get_range', SORT, (_in(CONTEXT), _in(FUNC_DECL)))
+ */
+ Z3_sort Z3_API Z3_get_range(Z3_context c, Z3_func_decl d);
+
+ /**
+ \brief Return the number of parameters associated with a declaration.
+
+ def_API('Z3_get_decl_num_parameters', UINT, (_in(CONTEXT), _in(FUNC_DECL)))
+ */
+ unsigned Z3_API Z3_get_decl_num_parameters(Z3_context c, Z3_func_decl d);
+
+ /**
+ \brief Return the parameter type associated with a declaration.
+
+ \param c the context
+ \param d the function declaration
+ \param idx is the index of the named parameter it should be between 0 and the number of parameters.
+
+ def_API('Z3_get_decl_parameter_kind', UINT, (_in(CONTEXT), _in(FUNC_DECL), _in(UINT)))
+ */
+ Z3_parameter_kind Z3_API Z3_get_decl_parameter_kind(Z3_context c, Z3_func_decl d, unsigned idx);
+
+ /**
+ \brief Return the integer value associated with an integer parameter.
+
+ \pre Z3_get_decl_parameter_kind(c, d, idx) == Z3_PARAMETER_INT
+
+ def_API('Z3_get_decl_int_parameter', INT, (_in(CONTEXT), _in(FUNC_DECL), _in(UINT)))
+ */
+ int Z3_API Z3_get_decl_int_parameter(Z3_context c, Z3_func_decl d, unsigned idx);
+
+ /**
+ \brief Return the double value associated with an double parameter.
+
+ \pre Z3_get_decl_parameter_kind(c, d, idx) == Z3_PARAMETER_DOUBLE
+
+ def_API('Z3_get_decl_double_parameter', DOUBLE, (_in(CONTEXT), _in(FUNC_DECL), _in(UINT)))
+ */
+ double Z3_API Z3_get_decl_double_parameter(Z3_context c, Z3_func_decl d, unsigned idx);
+
+ /**
+ \brief Return the double value associated with an double parameter.
+
+ \pre Z3_get_decl_parameter_kind(c, d, idx) == Z3_PARAMETER_SYMBOL
+
+ def_API('Z3_get_decl_symbol_parameter', SYMBOL, (_in(CONTEXT), _in(FUNC_DECL), _in(UINT)))
+ */
+ Z3_symbol Z3_API Z3_get_decl_symbol_parameter(Z3_context c, Z3_func_decl d, unsigned idx);
+
+ /**
+ \brief Return the sort value associated with a sort parameter.
+
+ \pre Z3_get_decl_parameter_kind(c, d, idx) == Z3_PARAMETER_SORT
+
+ def_API('Z3_get_decl_sort_parameter', SORT, (_in(CONTEXT), _in(FUNC_DECL), _in(UINT)))
+ */
+ Z3_sort Z3_API Z3_get_decl_sort_parameter(Z3_context c, Z3_func_decl d, unsigned idx);
+
+ /**
+ \brief Return the expression value associated with an expression parameter.
+
+ \pre Z3_get_decl_parameter_kind(c, d, idx) == Z3_PARAMETER_AST
+
+ def_API('Z3_get_decl_ast_parameter', AST, (_in(CONTEXT), _in(FUNC_DECL), _in(UINT)))
+ */
+ Z3_ast Z3_API Z3_get_decl_ast_parameter(Z3_context c, Z3_func_decl d, unsigned idx);
+
+ /**
+ \brief Return the expression value associated with an expression parameter.
+
+ \pre Z3_get_decl_parameter_kind(c, d, idx) == Z3_PARAMETER_FUNC_DECL
+
+ def_API('Z3_get_decl_func_decl_parameter', FUNC_DECL, (_in(CONTEXT), _in(FUNC_DECL), _in(UINT)))
+ */
+ Z3_func_decl Z3_API Z3_get_decl_func_decl_parameter(Z3_context c, Z3_func_decl d, unsigned idx);
+
+ /**
+ \brief Return the rational value, as a string, associated with a rational parameter.
+
+ \pre Z3_get_decl_parameter_kind(c, d, idx) == Z3_PARAMETER_RATIONAL
+
+ def_API('Z3_get_decl_rational_parameter', STRING, (_in(CONTEXT), _in(FUNC_DECL), _in(UINT)))
+ */
+ Z3_string Z3_API Z3_get_decl_rational_parameter(Z3_context c, Z3_func_decl d, unsigned idx);
+
+ /**
+ \brief Convert a \c Z3_app into \c Z3_ast. This is just type casting.
+
+ def_API('Z3_app_to_ast', AST, (_in(CONTEXT), _in(APP)))
+ */
+ Z3_ast Z3_API Z3_app_to_ast(Z3_context c, Z3_app a);
+
+ /**
+ \brief Return the declaration of a constant or function application.
+
+ def_API('Z3_get_app_decl', FUNC_DECL, (_in(CONTEXT), _in(APP)))
+ */
+ Z3_func_decl Z3_API Z3_get_app_decl(Z3_context c, Z3_app a);
+
+ /**
+ \brief Return the number of argument of an application. If \c t
+ is an constant, then the number of arguments is 0.
+
+ def_API('Z3_get_app_num_args', UINT, (_in(CONTEXT), _in(APP)))
+ */
+ unsigned Z3_API Z3_get_app_num_args(Z3_context c, Z3_app a);
+
+ /**
+ \brief Return the i-th argument of the given application.
+
+ \pre i < Z3_get_app_num_args(c, a)
+
+ def_API('Z3_get_app_arg', AST, (_in(CONTEXT), _in(APP), _in(UINT)))
+ */
+ Z3_ast Z3_API Z3_get_app_arg(Z3_context c, Z3_app a, unsigned i);
+
+ /**
+ \brief Compare terms.
+
+ def_API('Z3_is_eq_ast', BOOL, (_in(CONTEXT), _in(AST), _in(AST)))
+ */
+ bool Z3_API Z3_is_eq_ast(Z3_context c, Z3_ast t1, Z3_ast t2);
+
+ /**
+ \brief Return a unique identifier for \c t.
+ The identifier is unique up to structural equality. Thus, two ast nodes
+ created by the same context and having the same children and same function symbols
+ have the same identifiers. Ast nodes created in the same context, but having
+ different children or different functions have different identifiers.
+ Variables and quantifiers are also assigned different identifiers according to
+ their structure.
+
+ def_API('Z3_get_ast_id', UINT, (_in(CONTEXT), _in(AST)))
+ */
+ unsigned Z3_API Z3_get_ast_id(Z3_context c, Z3_ast t);
+
+ /**
+ \brief Return a hash code for the given AST.
+ The hash code is structural. You can use Z3_get_ast_id interchangeably with
+ this function.
+
+ def_API('Z3_get_ast_hash', UINT, (_in(CONTEXT), _in(AST)))
+ */
+ unsigned Z3_API Z3_get_ast_hash(Z3_context c, Z3_ast a);
+
+ /**
+ \brief Return the sort of an AST node.
+
+ The AST node must be a constant, application, numeral, bound variable, or quantifier.
+
+ def_API('Z3_get_sort', SORT, (_in(CONTEXT), _in(AST)))
+ */
+ Z3_sort Z3_API Z3_get_sort(Z3_context c, Z3_ast a);
+
+ /**
+ \brief Return \c true if the given expression \c t is well sorted.
+
+ def_API('Z3_is_well_sorted', BOOL, (_in(CONTEXT), _in(AST)))
+ */
+ bool Z3_API Z3_is_well_sorted(Z3_context c, Z3_ast t);
+
+ /**
+ \brief Return \c Z3_L_TRUE if \c a is true, \c Z3_L_FALSE if it is false, and \c Z3_L_UNDEF otherwise.
+
+ def_API('Z3_get_bool_value', INT, (_in(CONTEXT), _in(AST)))
+ */
+ Z3_lbool Z3_API Z3_get_bool_value(Z3_context c, Z3_ast a);
+
+ /**
+ \brief Return the kind of the given AST.
+
+ def_API('Z3_get_ast_kind', UINT, (_in(CONTEXT), _in(AST)))
+ */
+ Z3_ast_kind Z3_API Z3_get_ast_kind(Z3_context c, Z3_ast a);
+
+ /**
+ def_API('Z3_is_app', BOOL, (_in(CONTEXT), _in(AST)))
+ */
+ bool Z3_API Z3_is_app(Z3_context c, Z3_ast a);
+
+ /**
+ def_API('Z3_is_numeral_ast', BOOL, (_in(CONTEXT), _in(AST)))
+ */
+ bool Z3_API Z3_is_numeral_ast(Z3_context c, Z3_ast a);
+
+ /**
+ \brief Return \c true if the given AST is a real algebraic number.
+
+ def_API('Z3_is_algebraic_number', BOOL, (_in(CONTEXT), _in(AST)))
+ */
+ bool Z3_API Z3_is_algebraic_number(Z3_context c, Z3_ast a);
+
+ /**
+ \brief Convert an \c ast into an \c APP_AST. This is just type casting.
+
+ \pre \code Z3_get_ast_kind(c, a) == \c Z3_APP_AST \endcode
+
+ def_API('Z3_to_app', APP, (_in(CONTEXT), _in(AST)))
+ */
+ Z3_app Z3_API Z3_to_app(Z3_context c, Z3_ast a);
+
+ /**
+ \brief Convert an AST into a FUNC_DECL_AST. This is just type casting.
+
+ \pre \code Z3_get_ast_kind(c, a) == Z3_FUNC_DECL_AST \endcode
+
+ def_API('Z3_to_func_decl', FUNC_DECL, (_in(CONTEXT), _in(AST)))
+ */
+ Z3_func_decl Z3_API Z3_to_func_decl(Z3_context c, Z3_ast a);
+
+ /**
+ \brief Return numeral value, as a decimal string of a numeric constant term
+
+ \pre Z3_get_ast_kind(c, a) == Z3_NUMERAL_AST
+
+ def_API('Z3_get_numeral_string', STRING, (_in(CONTEXT), _in(AST)))
+ */
+ Z3_string Z3_API Z3_get_numeral_string(Z3_context c, Z3_ast a);
+
+ /**
+ \brief Return numeral value, as a binary string of a numeric constant term
+
+ \pre Z3_get_ast_kind(c, a) == Z3_NUMERAL_AST
+ \pre a represents a non-negative integer
+
+ def_API('Z3_get_numeral_binary_string', STRING, (_in(CONTEXT), _in(AST)))
+ */
+ Z3_string Z3_API Z3_get_numeral_binary_string(Z3_context c, Z3_ast a);
+
+ /**
+ \brief Return numeral as a string in decimal notation.
+ The result has at most \c precision decimal places.
+
+ \pre Z3_get_ast_kind(c, a) == Z3_NUMERAL_AST || Z3_is_algebraic_number(c, a)
+
+ def_API('Z3_get_numeral_decimal_string', STRING, (_in(CONTEXT), _in(AST), _in(UINT)))
+ */
+ Z3_string Z3_API Z3_get_numeral_decimal_string(Z3_context c, Z3_ast a, unsigned precision);
+
+ /**
+ \brief Return numeral as a double.
+
+ \pre Z3_get_ast_kind(c, a) == Z3_NUMERAL_AST || Z3_is_algebraic_number(c, a)
+
+ def_API('Z3_get_numeral_double', DOUBLE, (_in(CONTEXT), _in(AST)))
+ */
+ double Z3_API Z3_get_numeral_double(Z3_context c, Z3_ast a);
+
+ /**
+ \brief Return the numerator (as a numeral AST) of a numeral AST of sort Real.
+
+ \pre Z3_get_ast_kind(c, a) == Z3_NUMERAL_AST
+
+ def_API('Z3_get_numerator', AST, (_in(CONTEXT), _in(AST)))
+ */
+ Z3_ast Z3_API Z3_get_numerator(Z3_context c, Z3_ast a);
+
+ /**
+ \brief Return the denominator (as a numeral AST) of a numeral AST of sort Real.
+
+ \pre Z3_get_ast_kind(c, a) == Z3_NUMERAL_AST
+
+ def_API('Z3_get_denominator', AST, (_in(CONTEXT), _in(AST)))
+ */
+ Z3_ast Z3_API Z3_get_denominator(Z3_context c, Z3_ast a);
+
+ /**
+ \brief Return numeral value, as a pair of 64 bit numbers if the representation fits.
+
+ \param c logical context.
+ \param a term.
+ \param num numerator.
+ \param den denominator.
+
+ Return \c true if the numeral value fits in 64 bit numerals, \c false otherwise.
+
+ \pre Z3_get_ast_kind(a) == Z3_NUMERAL_AST
+
+ def_API('Z3_get_numeral_small', BOOL, (_in(CONTEXT), _in(AST), _out(INT64), _out(INT64)))
+ */
+ bool Z3_API Z3_get_numeral_small(Z3_context c, Z3_ast a, int64_t* num, int64_t* den);
+
+ /**
+ \brief Similar to #Z3_get_numeral_string, but only succeeds if
+ the value can fit in a machine int. Return \c true if the call succeeded.
+
+ \pre Z3_get_ast_kind(c, v) == Z3_NUMERAL_AST
+
+ \sa Z3_get_numeral_string
+
+ def_API('Z3_get_numeral_int', BOOL, (_in(CONTEXT), _in(AST), _out(INT)))
+ */
+ bool Z3_API Z3_get_numeral_int(Z3_context c, Z3_ast v, int* i);
+
+ /**
+ \brief Similar to #Z3_get_numeral_string, but only succeeds if
+ the value can fit in a machine unsigned int. Return \c true if the call succeeded.
+
+ \pre Z3_get_ast_kind(c, v) == Z3_NUMERAL_AST
+
+ \sa Z3_get_numeral_string
+
+ def_API('Z3_get_numeral_uint', BOOL, (_in(CONTEXT), _in(AST), _out(UINT)))
+ */
+ bool Z3_API Z3_get_numeral_uint(Z3_context c, Z3_ast v, unsigned* u);
+
+ /**
+ \brief Similar to #Z3_get_numeral_string, but only succeeds if
+ the value can fit in a machine \c uint64_t int. Return \c true if the call succeeded.
+
+ \pre Z3_get_ast_kind(c, v) == Z3_NUMERAL_AST
+
+ \sa Z3_get_numeral_string
+
+ def_API('Z3_get_numeral_uint64', BOOL, (_in(CONTEXT), _in(AST), _out(UINT64)))
+ */
+ bool Z3_API Z3_get_numeral_uint64(Z3_context c, Z3_ast v, uint64_t* u);
+
+ /**
+ \brief Similar to #Z3_get_numeral_string, but only succeeds if
+ the value can fit in a machine \c int64_t int. Return \c true if the call succeeded.
+
+ \pre Z3_get_ast_kind(c, v) == Z3_NUMERAL_AST
+
+ \sa Z3_get_numeral_string
+
+ def_API('Z3_get_numeral_int64', BOOL, (_in(CONTEXT), _in(AST), _out(INT64)))
+ */
+ bool Z3_API Z3_get_numeral_int64(Z3_context c, Z3_ast v, int64_t* i);
+
+ /**
+ \brief Similar to #Z3_get_numeral_string, but only succeeds if
+ the value can fit as a rational number as machine \c int64_t int. Return \c true if the call succeeded.
+
+ \pre Z3_get_ast_kind(c, v) == Z3_NUMERAL_AST
+
+ \sa Z3_get_numeral_string
+
+ def_API('Z3_get_numeral_rational_int64', BOOL, (_in(CONTEXT), _in(AST), _out(INT64), _out(INT64)))
+ */
+ bool Z3_API Z3_get_numeral_rational_int64(Z3_context c, Z3_ast v, int64_t* num, int64_t* den);
+
+ /**
+ \brief Return a lower bound for the given real algebraic number.
+ The interval isolating the number is smaller than 1/10^precision.
+ The result is a numeral AST of sort Real.
+
+ \pre Z3_is_algebraic_number(c, a)
+
+ def_API('Z3_get_algebraic_number_lower', AST, (_in(CONTEXT), _in(AST), _in(UINT)))
+ */
+ Z3_ast Z3_API Z3_get_algebraic_number_lower(Z3_context c, Z3_ast a, unsigned precision);
+
+ /**
+ \brief Return a upper bound for the given real algebraic number.
+ The interval isolating the number is smaller than 1/10^precision.
+ The result is a numeral AST of sort Real.
+
+ \pre Z3_is_algebraic_number(c, a)
+
+ def_API('Z3_get_algebraic_number_upper', AST, (_in(CONTEXT), _in(AST), _in(UINT)))
+ */
+ Z3_ast Z3_API Z3_get_algebraic_number_upper(Z3_context c, Z3_ast a, unsigned precision);
+
+ /**
+ \brief Convert a Z3_pattern into Z3_ast. This is just type casting.
+
+ def_API('Z3_pattern_to_ast', AST, (_in(CONTEXT), _in(PATTERN)))
+ */
+ Z3_ast Z3_API Z3_pattern_to_ast(Z3_context c, Z3_pattern p);
+
+ /**
+ \brief Return number of terms in pattern.
+
+ def_API('Z3_get_pattern_num_terms', UINT, (_in(CONTEXT), _in(PATTERN)))
+ */
+ unsigned Z3_API Z3_get_pattern_num_terms(Z3_context c, Z3_pattern p);
+
+ /**
+ \brief Return i'th ast in pattern.
+
+ def_API('Z3_get_pattern', AST, (_in(CONTEXT), _in(PATTERN), _in(UINT)))
+ */
+ Z3_ast Z3_API Z3_get_pattern(Z3_context c, Z3_pattern p, unsigned idx);
+
+ /**
+ \brief Return index of de-Bruijn bound variable.
+
+ \pre Z3_get_ast_kind(a) == Z3_VAR_AST
+
+ def_API('Z3_get_index_value', UINT, (_in(CONTEXT), _in(AST)))
+ */
+ unsigned Z3_API Z3_get_index_value(Z3_context c, Z3_ast a);
+
+ /**
+ \brief Determine if an ast is a universal quantifier.
+
+ def_API('Z3_is_quantifier_forall', BOOL, (_in(CONTEXT), _in(AST)))
+ */
+ bool Z3_API Z3_is_quantifier_forall(Z3_context c, Z3_ast a);
+
+ /**
+ \brief Determine if ast is an existential quantifier.
+
+
+ def_API('Z3_is_quantifier_exists', BOOL, (_in(CONTEXT), _in(AST)))
+ */
+ bool Z3_API Z3_is_quantifier_exists(Z3_context c, Z3_ast a);
+
+ /**
+ \brief Determine if ast is a lambda expression.
+
+ \pre Z3_get_ast_kind(a) == Z3_QUANTIFIER_AST
+
+ def_API('Z3_is_lambda', BOOL, (_in(CONTEXT), _in(AST)))
+ */
+ bool Z3_API Z3_is_lambda(Z3_context c, Z3_ast a);
+
+ /**
+ \brief Obtain weight of quantifier.
+
+ \pre Z3_get_ast_kind(a) == Z3_QUANTIFIER_AST
+
+ def_API('Z3_get_quantifier_weight', UINT, (_in(CONTEXT), _in(AST)))
+ */
+ unsigned Z3_API Z3_get_quantifier_weight(Z3_context c, Z3_ast a);
+
+ /**
+ \brief Return number of patterns used in quantifier.
+
+ \pre Z3_get_ast_kind(a) == Z3_QUANTIFIER_AST
+
+ def_API('Z3_get_quantifier_num_patterns', UINT, (_in(CONTEXT), _in(AST)))
+ */
+ unsigned Z3_API Z3_get_quantifier_num_patterns(Z3_context c, Z3_ast a);
+
+ /**
+ \brief Return i'th pattern.
+
+ \pre Z3_get_ast_kind(a) == Z3_QUANTIFIER_AST
+
+ def_API('Z3_get_quantifier_pattern_ast', PATTERN, (_in(CONTEXT), _in(AST), _in(UINT)))
+ */
+ Z3_pattern Z3_API Z3_get_quantifier_pattern_ast(Z3_context c, Z3_ast a, unsigned i);
+
+ /**
+ \brief Return number of no_patterns used in quantifier.
+
+ \pre Z3_get_ast_kind(a) == Z3_QUANTIFIER_AST
+
+ def_API('Z3_get_quantifier_num_no_patterns', UINT, (_in(CONTEXT), _in(AST)))
+ */
+ unsigned Z3_API Z3_get_quantifier_num_no_patterns(Z3_context c, Z3_ast a);
+
+ /**
+ \brief Return i'th no_pattern.
+
+ \pre Z3_get_ast_kind(a) == Z3_QUANTIFIER_AST
+
+ def_API('Z3_get_quantifier_no_pattern_ast', AST, (_in(CONTEXT), _in(AST), _in(UINT)))
+ */
+ Z3_ast Z3_API Z3_get_quantifier_no_pattern_ast(Z3_context c, Z3_ast a, unsigned i);
+
+ /**
+ \brief Return number of bound variables of quantifier.
+
+ \pre Z3_get_ast_kind(a) == Z3_QUANTIFIER_AST
+
+ def_API('Z3_get_quantifier_num_bound', UINT, (_in(CONTEXT), _in(AST)))
+ */
+ unsigned Z3_API Z3_get_quantifier_num_bound(Z3_context c, Z3_ast a);
+
+ /**
+ \brief Return symbol of the i'th bound variable.
+
+ \pre Z3_get_ast_kind(a) == Z3_QUANTIFIER_AST
+
+ def_API('Z3_get_quantifier_bound_name', SYMBOL, (_in(CONTEXT), _in(AST), _in(UINT)))
+ */
+ Z3_symbol Z3_API Z3_get_quantifier_bound_name(Z3_context c, Z3_ast a, unsigned i);
+
+ /**
+ \brief Return sort of the i'th bound variable.
+
+ \pre Z3_get_ast_kind(a) == Z3_QUANTIFIER_AST
+
+ def_API('Z3_get_quantifier_bound_sort', SORT, (_in(CONTEXT), _in(AST), _in(UINT)))
+ */
+ Z3_sort Z3_API Z3_get_quantifier_bound_sort(Z3_context c, Z3_ast a, unsigned i);
+
+ /**
+ \brief Return body of quantifier.
+
+ \pre Z3_get_ast_kind(a) == Z3_QUANTIFIER_AST
+
+ def_API('Z3_get_quantifier_body', AST, (_in(CONTEXT), _in(AST)))
+ */
+ Z3_ast Z3_API Z3_get_quantifier_body(Z3_context c, Z3_ast a);
+
+ /**
+ \brief Interface to simplifier.
+
+ Provides an interface to the AST simplifier used by Z3.
+ It returns an AST object which is equal to the argument.
+ The returned AST is simplified using algebraic simplification rules,
+ such as constant propagation (propagating true/false over logical connectives).
+
+ \sa Z3_simplify_ex
+
+ def_API('Z3_simplify', AST, (_in(CONTEXT), _in(AST)))
+ */
+ Z3_ast Z3_API Z3_simplify(Z3_context c, Z3_ast a);
+
+ /**
+ \brief Interface to simplifier.
+
+ Provides an interface to the AST simplifier used by Z3.
+ This procedure is similar to #Z3_simplify, but the behavior of the simplifier
+ can be configured using the given parameter set.
+
+ \sa Z3_simplify
+ \sa Z3_simplify_get_help
+ \sa Z3_simplify_get_param_descrs
+
+ def_API('Z3_simplify_ex', AST, (_in(CONTEXT), _in(AST), _in(PARAMS)))
+ */
+ Z3_ast Z3_API Z3_simplify_ex(Z3_context c, Z3_ast a, Z3_params p);
+
+ /**
+ \brief Return a string describing all available parameters.
+
+ \sa Z3_simplify_ex
+ \sa Z3_simplify_get_param_descrs
+
+ def_API('Z3_simplify_get_help', STRING, (_in(CONTEXT),))
+ */
+ Z3_string Z3_API Z3_simplify_get_help(Z3_context c);
+
+ /**
+ \brief Return the parameter description set for the simplify procedure.
+
+ \sa Z3_simplify_ex
+ \sa Z3_simplify_get_help
+
+ def_API('Z3_simplify_get_param_descrs', PARAM_DESCRS, (_in(CONTEXT),))
+ */
+ Z3_param_descrs Z3_API Z3_simplify_get_param_descrs(Z3_context c);
+ /*@}*/
+
+ /** @name Modifiers */
+ /*@{*/
+ /**
+ \brief Update the arguments of term \c a using the arguments \c args.
+ The number of arguments \c num_args should coincide
+ with the number of arguments to \c a.
+ If \c a is a quantifier, then num_args has to be 1.
+
+ def_API('Z3_update_term', AST, (_in(CONTEXT), _in(AST), _in(UINT), _in_array(2, AST)))
+ */
+ Z3_ast Z3_API Z3_update_term(Z3_context c, Z3_ast a, unsigned num_args, Z3_ast const args[]);
+
+ /**
+ \brief Substitute every occurrence of \ccode{from[i]} in \c a with \ccode{to[i]}, for \c i smaller than \c num_exprs.
+ The result is the new AST. The arrays \c from and \c to must have size \c num_exprs.
+ For every \c i smaller than \c num_exprs, we must have that sort of \ccode{from[i]} must be equal to sort of \ccode{to[i]}.
+
+ def_API('Z3_substitute', AST, (_in(CONTEXT), _in(AST), _in(UINT), _in_array(2, AST), _in_array(2, AST)))
+ */
+ Z3_ast Z3_API Z3_substitute(Z3_context c,
+ Z3_ast a,
+ unsigned num_exprs,
+ Z3_ast const from[],
+ Z3_ast const to[]);
+
+ /**
+ \brief Substitute the free variables in \c a with the expressions in \c to.
+ For every \c i smaller than \c num_exprs, the variable with de-Bruijn index \c i is replaced with term \ccode{to[i]}.
+
+ def_API('Z3_substitute_vars', AST, (_in(CONTEXT), _in(AST), _in(UINT), _in_array(2, AST)))
+ */
+ Z3_ast Z3_API Z3_substitute_vars(Z3_context c,
+ Z3_ast a,
+ unsigned num_exprs,
+ Z3_ast const to[]);
+
+ /**
+ \brief Translate/Copy the AST \c a from context \c source to context \c target.
+ AST \c a must have been created using context \c source.
+ \pre source != target
+
+ def_API('Z3_translate', AST, (_in(CONTEXT), _in(AST), _in(CONTEXT)))
+ */
+ Z3_ast Z3_API Z3_translate(Z3_context source, Z3_ast a, Z3_context target);
+ /*@}*/
+
+ /** @name Models */
+ /*@{*/
+
+ /**
+ \brief Create a fresh model object. It has reference count 0.
+
+ def_API('Z3_mk_model', MODEL, (_in(CONTEXT),))
+ */
+ Z3_model Z3_API Z3_mk_model(Z3_context c);
+
+ /**
+ \brief Increment the reference counter of the given model.
+
+ def_API('Z3_model_inc_ref', VOID, (_in(CONTEXT), _in(MODEL)))
+ */
+ void Z3_API Z3_model_inc_ref(Z3_context c, Z3_model m);
+
+ /**
+ \brief Decrement the reference counter of the given model.
+
+ def_API('Z3_model_dec_ref', VOID, (_in(CONTEXT), _in(MODEL)))
+ */
+ void Z3_API Z3_model_dec_ref(Z3_context c, Z3_model m);
+
+ /**
+ \brief Evaluate the AST node \c t in the given model.
+ Return \c true if succeeded, and store the result in \c v.
+
+ If \c model_completion is \c true, then Z3 will assign an interpretation for any constant or function that does
+ not have an interpretation in \c m. These constants and functions were essentially don't cares.
+
+ If \c model_completion is \c false, then Z3 will not assign interpretations to constants for functions that do
+ not have interpretations in \c m. Evaluation behaves as the identify function in this case.
+
+ The evaluation may fail for the following reasons:
+
+ - \c t contains a quantifier.
+
+ - the model \c m is partial, that is, it doesn't have a complete interpretation for uninterpreted functions.
+ That is, the option \ccode{MODEL_PARTIAL=true} was used.
+
+ - \c t is type incorrect.
+
+ - \c Z3_interrupt was invoked during evaluation.
+
+ def_API('Z3_model_eval', BOOL, (_in(CONTEXT), _in(MODEL), _in(AST), _in(BOOL), _out(AST)))
+ */
+ Z3_bool_opt Z3_API Z3_model_eval(Z3_context c, Z3_model m, Z3_ast t, bool model_completion, Z3_ast * v);
+
+ /**
+ \brief Return the interpretation (i.e., assignment) of constant \c a in the model \c m.
+ Return \c NULL, if the model does not assign an interpretation for \c a.
+ That should be interpreted as: the value of \c a does not matter.
+
+ \pre Z3_get_arity(c, a) == 0
+
+ def_API('Z3_model_get_const_interp', AST, (_in(CONTEXT), _in(MODEL), _in(FUNC_DECL)))
+ */
+ Z3_ast_opt Z3_API Z3_model_get_const_interp(Z3_context c, Z3_model m, Z3_func_decl a);
+
+ /**
+ \brief Test if there exists an interpretation (i.e., assignment) for \c a in the model \c m.
+
+ def_API('Z3_model_has_interp', BOOL, (_in(CONTEXT), _in(MODEL), _in(FUNC_DECL)))
+ */
+ bool Z3_API Z3_model_has_interp(Z3_context c, Z3_model m, Z3_func_decl a);
+
+ /**
+ \brief Return the interpretation of the function \c f in the model \c m.
+ Return \c NULL, if the model does not assign an interpretation for \c f.
+ That should be interpreted as: the \c f does not matter.
+
+ \pre Z3_get_arity(c, f) > 0
+
+ \remark Reference counting must be used to manage Z3_func_interp objects, even when the Z3_context was
+ created using #Z3_mk_context instead of #Z3_mk_context_rc.
+
+ def_API('Z3_model_get_func_interp', FUNC_INTERP, (_in(CONTEXT), _in(MODEL), _in(FUNC_DECL)))
+ */
+ Z3_func_interp_opt Z3_API Z3_model_get_func_interp(Z3_context c, Z3_model m, Z3_func_decl f);
+
+ /**
+ \brief Return the number of constants assigned by the given model.
+
+ \sa Z3_model_get_const_decl
+
+ def_API('Z3_model_get_num_consts', UINT, (_in(CONTEXT), _in(MODEL)))
+ */
+ unsigned Z3_API Z3_model_get_num_consts(Z3_context c, Z3_model m);
+
+ /**
+ \brief Return the i-th constant in the given model.
+
+ \pre i < Z3_model_get_num_consts(c, m)
+
+ \sa Z3_model_eval
+
+ def_API('Z3_model_get_const_decl', FUNC_DECL, (_in(CONTEXT), _in(MODEL), _in(UINT)))
+ */
+ Z3_func_decl Z3_API Z3_model_get_const_decl(Z3_context c, Z3_model m, unsigned i);
+
+ /**
+ \brief Return the number of function interpretations in the given model.
+
+ A function interpretation is represented as a finite map and an 'else' value.
+ Each entry in the finite map represents the value of a function given a set of arguments.
+
+ def_API('Z3_model_get_num_funcs', UINT, (_in(CONTEXT), _in(MODEL)))
+ */
+ unsigned Z3_API Z3_model_get_num_funcs(Z3_context c, Z3_model m);
+
+ /**
+ \brief Return the declaration of the i-th function in the given model.
+
+ \pre i < Z3_model_get_num_funcs(c, m)
+
+ \sa Z3_model_get_num_funcs
+
+ def_API('Z3_model_get_func_decl', FUNC_DECL, (_in(CONTEXT), _in(MODEL), _in(UINT)))
+ */
+ Z3_func_decl Z3_API Z3_model_get_func_decl(Z3_context c, Z3_model m, unsigned i);
+
+ /**
+ \brief Return the number of uninterpreted sorts that \c m assigns an interpretation to.
+
+ Z3 also provides an interpretation for uninterpreted sorts used in a formula.
+ The interpretation for a sort \c s is a finite set of distinct values. We say this finite set is
+ the "universe" of \c s.
+
+ \sa Z3_model_get_sort
+ \sa Z3_model_get_sort_universe
+
+ def_API('Z3_model_get_num_sorts', UINT, (_in(CONTEXT), _in(MODEL)))
+ */
+ unsigned Z3_API Z3_model_get_num_sorts(Z3_context c, Z3_model m);
+
+ /**
+ \brief Return a uninterpreted sort that \c m assigns an interpretation.
+
+ \pre i < Z3_model_get_num_sorts(c, m)
+
+ \sa Z3_model_get_num_sorts
+ \sa Z3_model_get_sort_universe
+
+ def_API('Z3_model_get_sort', SORT, (_in(CONTEXT), _in(MODEL), _in(UINT)))
+ */
+ Z3_sort Z3_API Z3_model_get_sort(Z3_context c, Z3_model m, unsigned i);
+
+ /**
+ \brief Return the finite set of distinct values that represent the interpretation for sort \c s.
+
+ \sa Z3_model_get_num_sorts
+ \sa Z3_model_get_sort
+
+ def_API('Z3_model_get_sort_universe', AST_VECTOR, (_in(CONTEXT), _in(MODEL), _in(SORT)))
+ */
+ Z3_ast_vector Z3_API Z3_model_get_sort_universe(Z3_context c, Z3_model m, Z3_sort s);
+
+ /**
+ \brief translate model from context \c c to context \c dst.
+
+ def_API('Z3_model_translate', MODEL, (_in(CONTEXT), _in(MODEL), _in(CONTEXT)))
+ */
+ Z3_model Z3_API Z3_model_translate(Z3_context c, Z3_model m, Z3_context dst);
+
+ /**
+ \brief The \ccode{(_ as-array f)} AST node is a construct for assigning interpretations for arrays in Z3.
+ It is the array such that forall indices \c i we have that \ccode{(select (_ as-array f) i)} is equal to \ccode{(f i)}.
+ This procedure returns \c true if the \c a is an \c as-array AST node.
+
+ Z3 current solvers have minimal support for \c as_array nodes.
+
+ \sa Z3_get_as_array_func_decl
+
+ def_API('Z3_is_as_array', BOOL, (_in(CONTEXT), _in(AST)))
+ */
+ bool Z3_API Z3_is_as_array(Z3_context c, Z3_ast a);
+
+ /**
+ \brief Return the function declaration \c f associated with a \ccode{(_ as_array f)} node.
+
+ \sa Z3_is_as_array
+
+ def_API('Z3_get_as_array_func_decl', FUNC_DECL, (_in(CONTEXT), _in(AST)))
+ */
+ Z3_func_decl Z3_API Z3_get_as_array_func_decl(Z3_context c, Z3_ast a);
+
+ /**
+ \brief Create a fresh func_interp object, add it to a model for a specified function.
+ It has reference count 0.
+
+ \param c context
+ \param m model
+ \param f function declaration
+ \param default_value default value for function interpretation
+
+ def_API('Z3_add_func_interp', FUNC_INTERP, (_in(CONTEXT), _in(MODEL), _in(FUNC_DECL), _in(AST)))
+ */
+ Z3_func_interp Z3_API Z3_add_func_interp(Z3_context c, Z3_model m, Z3_func_decl f, Z3_ast default_value);
+
+ /**
+ \brief Add a constant interpretation.
+
+ def_API('Z3_add_const_interp', VOID, (_in(CONTEXT), _in(MODEL), _in(FUNC_DECL), _in(AST)))
+ */
+ void Z3_API Z3_add_const_interp(Z3_context c, Z3_model m, Z3_func_decl f, Z3_ast a);
+
+ /**
+ \brief Increment the reference counter of the given Z3_func_interp object.
+
+ def_API('Z3_func_interp_inc_ref', VOID, (_in(CONTEXT), _in(FUNC_INTERP)))
+ */
+ void Z3_API Z3_func_interp_inc_ref(Z3_context c, Z3_func_interp f);
+
+ /**
+ \brief Decrement the reference counter of the given Z3_func_interp object.
+
+ def_API('Z3_func_interp_dec_ref', VOID, (_in(CONTEXT), _in(FUNC_INTERP)))
+ */
+ void Z3_API Z3_func_interp_dec_ref(Z3_context c, Z3_func_interp f);
+
+ /**
+ \brief Return the number of entries in the given function interpretation.
+
+ A function interpretation is represented as a finite map and an 'else' value.
+ Each entry in the finite map represents the value of a function given a set of arguments.
+ This procedure return the number of element in the finite map of \c f.
+
+ def_API('Z3_func_interp_get_num_entries', UINT, (_in(CONTEXT), _in(FUNC_INTERP)))
+ */
+ unsigned Z3_API Z3_func_interp_get_num_entries(Z3_context c, Z3_func_interp f);
+
+ /**
+ \brief Return a "point" of the given function interpretation. It represents the
+ value of \c f in a particular point.
+
+ \pre i < Z3_func_interp_get_num_entries(c, f)
+
+ \sa Z3_func_interp_get_num_entries
+
+ def_API('Z3_func_interp_get_entry', FUNC_ENTRY, (_in(CONTEXT), _in(FUNC_INTERP), _in(UINT)))
+ */
+ Z3_func_entry Z3_API Z3_func_interp_get_entry(Z3_context c, Z3_func_interp f, unsigned i);
+
+ /**
+ \brief Return the 'else' value of the given function interpretation.
+
+ A function interpretation is represented as a finite map and an 'else' value.
+ This procedure returns the 'else' value.
+
+ def_API('Z3_func_interp_get_else', AST, (_in(CONTEXT), _in(FUNC_INTERP)))
+ */
+ Z3_ast Z3_API Z3_func_interp_get_else(Z3_context c, Z3_func_interp f);
+
+ /**
+ \brief Return the 'else' value of the given function interpretation.
+
+ A function interpretation is represented as a finite map and an 'else' value.
+ This procedure can be used to update the 'else' value.
+
+ def_API('Z3_func_interp_set_else', VOID, (_in(CONTEXT), _in(FUNC_INTERP), _in(AST)))
+ */
+ void Z3_API Z3_func_interp_set_else(Z3_context c, Z3_func_interp f, Z3_ast else_value);
+
+ /**
+ \brief Return the arity (number of arguments) of the given function interpretation.
+
+ def_API('Z3_func_interp_get_arity', UINT, (_in(CONTEXT), _in(FUNC_INTERP)))
+ */
+ unsigned Z3_API Z3_func_interp_get_arity(Z3_context c, Z3_func_interp f);
+
+ /**
+ \brief add a function entry to a function interpretation.
+
+ \param c logical context
+ \param fi a function interpretation to be updated.
+ \param args list of arguments. They should be constant values (such as integers) and be of the same types as the domain of the function.
+ \param value value of the function when the parameters match args.
+
+ It is assumed that entries added to a function cover disjoint arguments.
+ If an two entries are added with the same arguments, only the second insertion survives and the
+ first inserted entry is removed.
+
+ def_API('Z3_func_interp_add_entry', VOID, (_in(CONTEXT), _in(FUNC_INTERP), _in(AST_VECTOR), _in(AST)))
+ */
+ void Z3_API Z3_func_interp_add_entry(Z3_context c, Z3_func_interp fi, Z3_ast_vector args, Z3_ast value);
+
+ /**
+ \brief Increment the reference counter of the given \c Z3_func_entry object.
+
+ def_API('Z3_func_entry_inc_ref', VOID, (_in(CONTEXT), _in(FUNC_ENTRY)))
+ */
+ void Z3_API Z3_func_entry_inc_ref(Z3_context c, Z3_func_entry e);
+
+ /**
+ \brief Decrement the reference counter of the given \c Z3_func_entry object.
+
+ def_API('Z3_func_entry_dec_ref', VOID, (_in(CONTEXT), _in(FUNC_ENTRY)))
+ */
+ void Z3_API Z3_func_entry_dec_ref(Z3_context c, Z3_func_entry e);
+
+ /**
+ \brief Return the value of this point.
+
+ A \c Z3_func_entry object represents an element in the finite map used to encode
+ a function interpretation.
+
+ \sa Z3_func_interp_get_entry
+
+ def_API('Z3_func_entry_get_value', AST, (_in(CONTEXT), _in(FUNC_ENTRY)))
+ */
+ Z3_ast Z3_API Z3_func_entry_get_value(Z3_context c, Z3_func_entry e);
+
+ /**
+ \brief Return the number of arguments in a \c Z3_func_entry object.
+
+ \sa Z3_func_interp_get_entry
+
+ def_API('Z3_func_entry_get_num_args', UINT, (_in(CONTEXT), _in(FUNC_ENTRY)))
+ */
+ unsigned Z3_API Z3_func_entry_get_num_args(Z3_context c, Z3_func_entry e);
+
+ /**
+ \brief Return an argument of a \c Z3_func_entry object.
+
+ \pre i < Z3_func_entry_get_num_args(c, e)
+
+ \sa Z3_func_interp_get_entry
+
+ def_API('Z3_func_entry_get_arg', AST, (_in(CONTEXT), _in(FUNC_ENTRY), _in(UINT)))
+ */
+ Z3_ast Z3_API Z3_func_entry_get_arg(Z3_context c, Z3_func_entry e, unsigned i);
+ /*@}*/
+
+ /** @name Interaction logging */
+ /*@{*/
+ /**
+ \brief Log interaction to a file.
+
+ extra_API('Z3_open_log', INT, (_in(STRING),))
+ */
+ bool Z3_API Z3_open_log(Z3_string filename);
+
+ /**
+ \brief Append user-defined string to interaction log.
+
+ The interaction log is opened using Z3_open_log.
+ It contains the formulas that are checked using Z3.
+ You can use this command to append comments, for instance.
+
+ extra_API('Z3_append_log', VOID, (_in(STRING),))
+ */
+ void Z3_API Z3_append_log(Z3_string string);
+
+ /**
+ \brief Close interaction log.
+
+ extra_API('Z3_close_log', VOID, ())
+ */
+ void Z3_API Z3_close_log(void);
+
+ /**
+ \brief Enable/disable printing warning messages to the console.
+
+ Warnings are printed after passing \c true, warning messages are
+ suppressed after calling this method with \c false.
+
+ def_API('Z3_toggle_warning_messages', VOID, (_in(BOOL),))
+ */
+ void Z3_API Z3_toggle_warning_messages(bool enabled);
+ /*@}*/
+
+ /** @name String conversion */
+ /*@{*/
+ /**
+ \brief Select mode for the format used for pretty-printing AST nodes.
+
+ The default mode for pretty printing AST nodes is to produce
+ SMT-LIB style output where common subexpressions are printed
+ at each occurrence. The mode is called \c Z3_PRINT_SMTLIB_FULL.
+ To print shared common subexpressions only once,
+ use the \c Z3_PRINT_LOW_LEVEL mode.
+ To print in way that conforms to SMT-LIB standards and uses let
+ expressions to share common sub-expressions use \c Z3_PRINT_SMTLIB2_COMPLIANT.
+
+ \sa Z3_ast_to_string
+ \sa Z3_pattern_to_string
+ \sa Z3_func_decl_to_string
+
+ def_API('Z3_set_ast_print_mode', VOID, (_in(CONTEXT), _in(PRINT_MODE)))
+ */
+ void Z3_API Z3_set_ast_print_mode(Z3_context c, Z3_ast_print_mode mode);
+
+ /**
+ \brief Convert the given AST node into a string.
+
+ \warning The result buffer is statically allocated by Z3. It will
+ be automatically deallocated when #Z3_del_context is invoked.
+ So, the buffer is invalidated in the next call to \c Z3_ast_to_string.
+
+ \sa Z3_pattern_to_string
+ \sa Z3_sort_to_string
+
+ def_API('Z3_ast_to_string', STRING, (_in(CONTEXT), _in(AST)))
+ */
+ Z3_string Z3_API Z3_ast_to_string(Z3_context c, Z3_ast a);
+
+ /**
+ def_API('Z3_pattern_to_string', STRING, (_in(CONTEXT), _in(PATTERN)))
+ */
+ Z3_string Z3_API Z3_pattern_to_string(Z3_context c, Z3_pattern p);
+
+ /**
+ def_API('Z3_sort_to_string', STRING, (_in(CONTEXT), _in(SORT)))
+ */
+ Z3_string Z3_API Z3_sort_to_string(Z3_context c, Z3_sort s);
+
+ /**
+ def_API('Z3_func_decl_to_string', STRING, (_in(CONTEXT), _in(FUNC_DECL)))
+ */
+ Z3_string Z3_API Z3_func_decl_to_string(Z3_context c, Z3_func_decl d);
+
+ /**
+ \brief Convert the given model into a string.
+
+ \warning The result buffer is statically allocated by Z3. It will
+ be automatically deallocated when #Z3_del_context is invoked.
+ So, the buffer is invalidated in the next call to \c Z3_model_to_string.
+
+ def_API('Z3_model_to_string', STRING, (_in(CONTEXT), _in(MODEL)))
+ */
+ Z3_string Z3_API Z3_model_to_string(Z3_context c, Z3_model m);
+
+ /**
+ \brief Convert the given benchmark into SMT-LIB formatted string.
+
+ \warning The result buffer is statically allocated by Z3. It will
+ be automatically deallocated when #Z3_del_context is invoked.
+ So, the buffer is invalidated in the next call to \c Z3_benchmark_to_smtlib_string.
+
+ \param c - context.
+ \param name - name of benchmark. The argument is optional.
+ \param logic - the benchmark logic.
+ \param status - the status string (sat, unsat, or unknown)
+ \param attributes - other attributes, such as source, difficulty or category.
+ \param num_assumptions - number of assumptions.
+ \param assumptions - auxiliary assumptions.
+ \param formula - formula to be checked for consistency in conjunction with assumptions.
+
+ def_API('Z3_benchmark_to_smtlib_string', STRING, (_in(CONTEXT), _in(STRING), _in(STRING), _in(STRING), _in(STRING), _in(UINT), _in_array(5, AST), _in(AST)))
+ */
+ Z3_string Z3_API Z3_benchmark_to_smtlib_string(Z3_context c,
+ Z3_string name,
+ Z3_string logic,
+ Z3_string status,
+ Z3_string attributes,
+ unsigned num_assumptions,
+ Z3_ast const assumptions[],
+ Z3_ast formula);
+
+ /*@}*/
+
+ /** @name Parser interface */
+ /*@{*/
+ /**
+ \brief Parse the given string using the SMT-LIB2 parser.
+
+ It returns a formula comprising of the conjunction of assertions in the scope
+ (up to push/pop) at the end of the string.
+
+ def_API('Z3_parse_smtlib2_string', AST_VECTOR, (_in(CONTEXT), _in(STRING), _in(UINT), _in_array(2, SYMBOL), _in_array(2, SORT), _in(UINT), _in_array(5, SYMBOL), _in_array(5, FUNC_DECL)))
+ */
+ Z3_ast_vector Z3_API Z3_parse_smtlib2_string(Z3_context c,
+ Z3_string str,
+ unsigned num_sorts,
+ Z3_symbol const sort_names[],
+ Z3_sort const sorts[],
+ unsigned num_decls,
+ Z3_symbol const decl_names[],
+ Z3_func_decl const decls[]);
+
+ /**
+ \brief Similar to #Z3_parse_smtlib2_string, but reads the benchmark from a file.
+
+ def_API('Z3_parse_smtlib2_file', AST_VECTOR, (_in(CONTEXT), _in(STRING), _in(UINT), _in_array(2, SYMBOL), _in_array(2, SORT), _in(UINT), _in_array(5, SYMBOL), _in_array(5, FUNC_DECL)))
+ */
+ Z3_ast_vector Z3_API Z3_parse_smtlib2_file(Z3_context c,
+ Z3_string file_name,
+ unsigned num_sorts,
+ Z3_symbol const sort_names[],
+ Z3_sort const sorts[],
+ unsigned num_decls,
+ Z3_symbol const decl_names[],
+ Z3_func_decl const decls[]);
+
+
+ /**
+ \brief Parse and evaluate and SMT-LIB2 command sequence. The state from a previous call is saved so the next
+ evaluation builds on top of the previous call.
+
+ \returns output generated from processing commands.
+
+ def_API('Z3_eval_smtlib2_string', STRING, (_in(CONTEXT), _in(STRING),))
+ */
+
+ Z3_string Z3_API Z3_eval_smtlib2_string(Z3_context, Z3_string str);
+
+ /*@}*/
+
+ /** @name Error Handling */
+ /*@{*/
+#ifndef SAFE_ERRORS
+ /**
+ \brief Return the error code for the last API call.
+
+ A call to a Z3 function may return a non Z3_OK error code,
+ when it is not used correctly.
+
+ \sa Z3_set_error_handler
+
+ def_API('Z3_get_error_code', UINT, (_in(CONTEXT), ))
+ */
+ Z3_error_code Z3_API Z3_get_error_code(Z3_context c);
+
+ /**
+ \brief Register a Z3 error handler.
+
+ A call to a Z3 function may return a non \c Z3_OK error code, when
+ it is not used correctly. An error handler can be registered
+ and will be called in this case. To disable the use of the
+ error handler, simply register with \c h=NULL.
+
+ \warning Log files, created using #Z3_open_log, may be potentially incomplete/incorrect if error handlers are used.
+
+ \sa Z3_get_error_code
+ */
+ void Z3_API Z3_set_error_handler(Z3_context c, Z3_error_handler h);
+#endif
+
+ /**
+ \brief Set an error.
+
+ def_API('Z3_set_error', VOID, (_in(CONTEXT), _in(ERROR_CODE)))
+ */
+ void Z3_API Z3_set_error(Z3_context c, Z3_error_code e);
+
+ /**
+ \brief Return a string describing the given error code.
+
+ def_API('Z3_get_error_msg', STRING, (_in(CONTEXT), _in(ERROR_CODE)))
+ */
+ Z3_string Z3_API Z3_get_error_msg(Z3_context c, Z3_error_code err);
+
+ /*@}*/
+
+ /** @name Miscellaneous */
+ /*@{*/
+
+ /**
+ \brief Return Z3 version number information.
+
+ \sa Z3_get_full_version
+
+ def_API('Z3_get_version', VOID, (_out(UINT), _out(UINT), _out(UINT), _out(UINT)))
+ */
+ void Z3_API Z3_get_version(unsigned * major, unsigned * minor, unsigned * build_number, unsigned * revision_number);
+
+ /**
+ \brief Return a string that fully describes the version of Z3 in use.
+
+ \sa Z3_get_version
+
+ def_API('Z3_get_full_version', STRING, ())
+ */
+ Z3_string Z3_API Z3_get_full_version(void);
+
+ /**
+ \brief Enable tracing messages tagged as \c tag when Z3 is compiled in debug mode.
+ It is a NOOP otherwise
+
+ \sa Z3_disable_trace
+
+ def_API('Z3_enable_trace', VOID, (_in(STRING),))
+ */
+ void Z3_API Z3_enable_trace(Z3_string tag);
+
+ /**
+ \brief Disable tracing messages tagged as \c tag when Z3 is compiled in debug mode.
+ It is a NOOP otherwise
+
+ \sa Z3_enable_trace
+
+ def_API('Z3_disable_trace', VOID, (_in(STRING),))
+ */
+ void Z3_API Z3_disable_trace(Z3_string tag);
+
+ /**
+ \brief Reset all allocated resources.
+
+ Use this facility on out-of memory errors.
+ It allows discharging the previous state and resuming afresh.
+ Any pointers previously returned by the API
+ become invalid.
+
+ def_API('Z3_reset_memory', VOID, ())
+ */
+ void Z3_API Z3_reset_memory(void);
+
+ /**
+ \brief Destroy all allocated resources.
+
+ Any pointers previously returned by the API become invalid.
+ Can be used for memory leak detection.
+
+ def_API('Z3_finalize_memory', VOID, ())
+ */
+ void Z3_API Z3_finalize_memory(void);
+ /*@}*/
+
+ /** @name Goals */
+ /*@{*/
+ /**
+ \brief Create a goal (aka problem). A goal is essentially a set
+ of formulas, that can be solved and/or transformed using
+ tactics and solvers.
+
+ If \c models is \c true, then model generation is enabled for the new goal.
+
+ If \c unsat_cores is \c true, then unsat core generation is enabled for the new goal.
+
+ If \c proofs is \c true, then proof generation is enabled for the new goal. Remark, the
+ Z3 context \c c must have been created with proof generation support.
+
+ \remark Reference counting must be used to manage goals, even when the \c Z3_context was
+ created using #Z3_mk_context instead of #Z3_mk_context_rc.
+
+ def_API('Z3_mk_goal', GOAL, (_in(CONTEXT), _in(BOOL), _in(BOOL), _in(BOOL)))
+ */
+ Z3_goal Z3_API Z3_mk_goal(Z3_context c, bool models, bool unsat_cores, bool proofs);
+
+ /**
+ \brief Increment the reference counter of the given goal.
+
+ def_API('Z3_goal_inc_ref', VOID, (_in(CONTEXT), _in(GOAL)))
+ */
+ void Z3_API Z3_goal_inc_ref(Z3_context c, Z3_goal g);
+
+ /**
+ \brief Decrement the reference counter of the given goal.
+
+ def_API('Z3_goal_dec_ref', VOID, (_in(CONTEXT), _in(GOAL)))
+ */
+ void Z3_API Z3_goal_dec_ref(Z3_context c, Z3_goal g);
+
+ /**
+ \brief Return the "precision" of the given goal. Goals can be transformed using over and under approximations.
+ A under approximation is applied when the objective is to find a model for a given goal.
+ An over approximation is applied when the objective is to find a proof for a given goal.
+
+ def_API('Z3_goal_precision', UINT, (_in(CONTEXT), _in(GOAL)))
+ */
+ Z3_goal_prec Z3_API Z3_goal_precision(Z3_context c, Z3_goal g);
+
+ /**
+ \brief Add a new formula \c a to the given goal.
+ The formula is split according to the following procedure that is applied
+ until a fixed-point:
+ Conjunctions are split into separate formulas.
+ Negations are distributed over disjunctions, resulting in separate formulas.
+ If the goal is \c false, adding new formulas is a no-op.
+ If the formula \c a is \c true, then nothing is added.
+ If the formula \c a is \c false, then the entire goal is replaced by the formula \c false.
+
+ def_API('Z3_goal_assert', VOID, (_in(CONTEXT), _in(GOAL), _in(AST)))
+ */
+ void Z3_API Z3_goal_assert(Z3_context c, Z3_goal g, Z3_ast a);
+
+ /**
+ \brief Return \c true if the given goal contains the formula \c false.
+
+ def_API('Z3_goal_inconsistent', BOOL, (_in(CONTEXT), _in(GOAL)))
+ */
+ bool Z3_API Z3_goal_inconsistent(Z3_context c, Z3_goal g);
+
+ /**
+ \brief Return the depth of the given goal. It tracks how many transformations were applied to it.
+
+ def_API('Z3_goal_depth', UINT, (_in(CONTEXT), _in(GOAL)))
+ */
+ unsigned Z3_API Z3_goal_depth(Z3_context c, Z3_goal g);
+
+ /**
+ \brief Erase all formulas from the given goal.
+
+ def_API('Z3_goal_reset', VOID, (_in(CONTEXT), _in(GOAL)))
+ */
+ void Z3_API Z3_goal_reset(Z3_context c, Z3_goal g);
+
+ /**
+ \brief Return the number of formulas in the given goal.
+
+ def_API('Z3_goal_size', UINT, (_in(CONTEXT), _in(GOAL)))
+ */
+ unsigned Z3_API Z3_goal_size(Z3_context c, Z3_goal g);
+
+ /**
+ \brief Return a formula from the given goal.
+
+ \pre idx < Z3_goal_size(c, g)
+
+ def_API('Z3_goal_formula', AST, (_in(CONTEXT), _in(GOAL), _in(UINT)))
+ */
+ Z3_ast Z3_API Z3_goal_formula(Z3_context c, Z3_goal g, unsigned idx);
+
+ /**
+ \brief Return the number of formulas, subformulas and terms in the given goal.
+
+ def_API('Z3_goal_num_exprs', UINT, (_in(CONTEXT), _in(GOAL)))
+ */
+ unsigned Z3_API Z3_goal_num_exprs(Z3_context c, Z3_goal g);
+
+ /**
+ \brief Return \c true if the goal is empty, and it is precise or the product of a under approximation.
+
+ def_API('Z3_goal_is_decided_sat', BOOL, (_in(CONTEXT), _in(GOAL)))
+ */
+ bool Z3_API Z3_goal_is_decided_sat(Z3_context c, Z3_goal g);
+
+ /**
+ \brief Return \c true if the goal contains false, and it is precise or the product of an over approximation.
+
+ def_API('Z3_goal_is_decided_unsat', BOOL, (_in(CONTEXT), _in(GOAL)))
+ */
+ bool Z3_API Z3_goal_is_decided_unsat(Z3_context c, Z3_goal g);
+
+ /**
+ \brief Copy a goal \c g from the context \c source to the context \c target.
+
+ def_API('Z3_goal_translate', GOAL, (_in(CONTEXT), _in(GOAL), _in(CONTEXT)))
+ */
+ Z3_goal Z3_API Z3_goal_translate(Z3_context source, Z3_goal g, Z3_context target);
+
+ /**
+ \brief Convert a model of the formulas of a goal to a model of an original goal.
+ The model may be null, in which case the returned model is valid if the goal was
+ established satisfiable.
+
+ def_API('Z3_goal_convert_model', MODEL, (_in(CONTEXT), _in(GOAL), _in(MODEL)))
+ */
+ Z3_model Z3_API Z3_goal_convert_model(Z3_context c, Z3_goal g, Z3_model m);
+
+ /**
+ \brief Convert a goal into a string.
+
+ def_API('Z3_goal_to_string', STRING, (_in(CONTEXT), _in(GOAL)))
+ */
+ Z3_string Z3_API Z3_goal_to_string(Z3_context c, Z3_goal g);
+
+ /**
+ \brief Convert a goal into a DIMACS formatted string.
+ The goal must be in CNF. You can convert a goal to CNF
+ by applying the tseitin-cnf tactic. Bit-vectors are not automatically
+ converted to Booleans either, so if the caller intends to
+ preserve satisfiability, it should apply bit-blasting tactics.
+ Quantifiers and theory atoms will not be encoded.
+
+ def_API('Z3_goal_to_dimacs_string', STRING, (_in(CONTEXT), _in(GOAL), _in(BOOL)))
+ */
+ Z3_string Z3_API Z3_goal_to_dimacs_string(Z3_context c, Z3_goal g, bool include_names);
+
+ /*@}*/
+
+ /** @name Tactics and Probes */
+ /*@{*/
+ /**
+ \brief Return a tactic associated with the given name.
+ The complete list of tactics may be obtained using the procedures #Z3_get_num_tactics and #Z3_get_tactic_name.
+ It may also be obtained using the command \ccode{(help-tactic)} in the SMT 2.0 front-end.
+
+ Tactics are the basic building block for creating custom solvers for specific problem domains.
+
+ def_API('Z3_mk_tactic', TACTIC, (_in(CONTEXT), _in(STRING)))
+ */
+ Z3_tactic Z3_API Z3_mk_tactic(Z3_context c, Z3_string name);
+
+ /**
+ \brief Increment the reference counter of the given tactic.
+
+ def_API('Z3_tactic_inc_ref', VOID, (_in(CONTEXT), _in(TACTIC)))
+ */
+ void Z3_API Z3_tactic_inc_ref(Z3_context c, Z3_tactic t);
+
+ /**
+ \brief Decrement the reference counter of the given tactic.
+
+ def_API('Z3_tactic_dec_ref', VOID, (_in(CONTEXT), _in(TACTIC)))
+ */
+ void Z3_API Z3_tactic_dec_ref(Z3_context c, Z3_tactic g);
+
+ /**
+ \brief Return a probe associated with the given name.
+ The complete list of probes may be obtained using the procedures #Z3_get_num_probes and #Z3_get_probe_name.
+ It may also be obtained using the command \ccode{(help-tactic)} in the SMT 2.0 front-end.
+
+ Probes are used to inspect a goal (aka problem) and collect information that may be used to decide
+ which solver and/or preprocessing step will be used.
+
+ def_API('Z3_mk_probe', PROBE, (_in(CONTEXT), _in(STRING)))
+ */
+ Z3_probe Z3_API Z3_mk_probe(Z3_context c, Z3_string name);
+
+ /**
+ \brief Increment the reference counter of the given probe.
+
+ def_API('Z3_probe_inc_ref', VOID, (_in(CONTEXT), _in(PROBE)))
+ */
+ void Z3_API Z3_probe_inc_ref(Z3_context c, Z3_probe p);
+
+ /**
+ \brief Decrement the reference counter of the given probe.
+
+ def_API('Z3_probe_dec_ref', VOID, (_in(CONTEXT), _in(PROBE)))
+ */
+ void Z3_API Z3_probe_dec_ref(Z3_context c, Z3_probe p);
+
+ /**
+ \brief Return a tactic that applies \c t1 to a given goal and \c t2
+ to every subgoal produced by \c t1.
+
+ def_API('Z3_tactic_and_then', TACTIC, (_in(CONTEXT), _in(TACTIC), _in(TACTIC)))
+ */
+ Z3_tactic Z3_API Z3_tactic_and_then(Z3_context c, Z3_tactic t1, Z3_tactic t2);
+
+ /**
+ \brief Return a tactic that first applies \c t1 to a given goal,
+ if it fails then returns the result of \c t2 applied to the given goal.
+
+ def_API('Z3_tactic_or_else', TACTIC, (_in(CONTEXT), _in(TACTIC), _in(TACTIC)))
+ */
+ Z3_tactic Z3_API Z3_tactic_or_else(Z3_context c, Z3_tactic t1, Z3_tactic t2);
+
+ /**
+ \brief Return a tactic that applies the given tactics in parallel.
+
+ def_API('Z3_tactic_par_or', TACTIC, (_in(CONTEXT), _in(UINT), _in_array(1, TACTIC)))
+ */
+ Z3_tactic Z3_API Z3_tactic_par_or(Z3_context c, unsigned num, Z3_tactic const ts[]);
+
+ /**
+ \brief Return a tactic that applies \c t1 to a given goal and then \c t2
+ to every subgoal produced by \c t1. The subgoals are processed in parallel.
+
+ def_API('Z3_tactic_par_and_then', TACTIC, (_in(CONTEXT), _in(TACTIC), _in(TACTIC)))
+ */
+ Z3_tactic Z3_API Z3_tactic_par_and_then(Z3_context c, Z3_tactic t1, Z3_tactic t2);
+
+ /**
+ \brief Return a tactic that applies \c t to a given goal for \c ms milliseconds.
+ If \c t does not terminate in \c ms milliseconds, then it fails.
+
+ def_API('Z3_tactic_try_for', TACTIC, (_in(CONTEXT), _in(TACTIC), _in(UINT)))
+ */
+ Z3_tactic Z3_API Z3_tactic_try_for(Z3_context c, Z3_tactic t, unsigned ms);
+
+ /**
+ \brief Return a tactic that applies \c t to a given goal is the probe \c p evaluates to true.
+ If \c p evaluates to false, then the new tactic behaves like the skip tactic.
+
+ def_API('Z3_tactic_when', TACTIC, (_in(CONTEXT), _in(PROBE), _in(TACTIC)))
+ */
+ Z3_tactic Z3_API Z3_tactic_when(Z3_context c, Z3_probe p, Z3_tactic t);
+
+ /**
+ \brief Return a tactic that applies \c t1 to a given goal if the probe \c p evaluates to true,
+ and \c t2 if \c p evaluates to false.
+
+ def_API('Z3_tactic_cond', TACTIC, (_in(CONTEXT), _in(PROBE), _in(TACTIC), _in(TACTIC)))
+ */
+ Z3_tactic Z3_API Z3_tactic_cond(Z3_context c, Z3_probe p, Z3_tactic t1, Z3_tactic t2);
+
+ /**
+ \brief Return a tactic that keeps applying \c t until the goal is not modified anymore or the maximum
+ number of iterations \c max is reached.
+
+ def_API('Z3_tactic_repeat', TACTIC, (_in(CONTEXT), _in(TACTIC), _in(UINT)))
+ */
+ Z3_tactic Z3_API Z3_tactic_repeat(Z3_context c, Z3_tactic t, unsigned max);
+
+ /**
+ \brief Return a tactic that just return the given goal.
+
+ def_API('Z3_tactic_skip', TACTIC, (_in(CONTEXT),))
+ */
+ Z3_tactic Z3_API Z3_tactic_skip(Z3_context c);
+
+ /**
+ \brief Return a tactic that always fails.
+
+ def_API('Z3_tactic_fail', TACTIC, (_in(CONTEXT),))
+ */
+ Z3_tactic Z3_API Z3_tactic_fail(Z3_context c);
+
+ /**
+ \brief Return a tactic that fails if the probe \c p evaluates to false.
+
+ def_API('Z3_tactic_fail_if', TACTIC, (_in(CONTEXT), _in(PROBE)))
+ */
+ Z3_tactic Z3_API Z3_tactic_fail_if(Z3_context c, Z3_probe p);
+
+ /**
+ \brief Return a tactic that fails if the goal is not trivially satisfiable (i.e., empty) or
+ trivially unsatisfiable (i.e., contains false).
+
+ def_API('Z3_tactic_fail_if_not_decided', TACTIC, (_in(CONTEXT),))
+ */
+ Z3_tactic Z3_API Z3_tactic_fail_if_not_decided(Z3_context c);
+
+ /**
+ \brief Return a tactic that applies \c t using the given set of parameters.
+
+ def_API('Z3_tactic_using_params', TACTIC, (_in(CONTEXT), _in(TACTIC), _in(PARAMS)))
+ */
+ Z3_tactic Z3_API Z3_tactic_using_params(Z3_context c, Z3_tactic t, Z3_params p);
+
+ /**
+ \brief Return a probe that always evaluates to val.
+
+ def_API('Z3_probe_const', PROBE, (_in(CONTEXT), _in(DOUBLE)))
+ */
+ Z3_probe Z3_API Z3_probe_const(Z3_context x, double val);
+
+ /**
+ \brief Return a probe that evaluates to "true" when the value returned by \c p1 is less than the value returned by \c p2.
+
+ \remark For probes, "true" is any value different from 0.0.
+
+ def_API('Z3_probe_lt', PROBE, (_in(CONTEXT), _in(PROBE), _in(PROBE)))
+ */
+ Z3_probe Z3_API Z3_probe_lt(Z3_context x, Z3_probe p1, Z3_probe p2);
+
+ /**
+ \brief Return a probe that evaluates to "true" when the value returned by \c p1 is greater than the value returned by \c p2.
+
+ \remark For probes, "true" is any value different from 0.0.
+
+ def_API('Z3_probe_gt', PROBE, (_in(CONTEXT), _in(PROBE), _in(PROBE)))
+ */
+ Z3_probe Z3_API Z3_probe_gt(Z3_context x, Z3_probe p1, Z3_probe p2);
+
+ /**
+ \brief Return a probe that evaluates to "true" when the value returned by \c p1 is less than or equal to the value returned by \c p2.
+
+ \remark For probes, "true" is any value different from 0.0.
+
+ def_API('Z3_probe_le', PROBE, (_in(CONTEXT), _in(PROBE), _in(PROBE)))
+ */
+ Z3_probe Z3_API Z3_probe_le(Z3_context x, Z3_probe p1, Z3_probe p2);
+
+ /**
+ \brief Return a probe that evaluates to "true" when the value returned by \c p1 is greater than or equal to the value returned by \c p2.
+
+ \remark For probes, "true" is any value different from 0.0.
+
+ def_API('Z3_probe_ge', PROBE, (_in(CONTEXT), _in(PROBE), _in(PROBE)))
+ */
+ Z3_probe Z3_API Z3_probe_ge(Z3_context x, Z3_probe p1, Z3_probe p2);
+
+ /**
+ \brief Return a probe that evaluates to "true" when the value returned by \c p1 is equal to the value returned by \c p2.
+
+ \remark For probes, "true" is any value different from 0.0.
+
+ def_API('Z3_probe_eq', PROBE, (_in(CONTEXT), _in(PROBE), _in(PROBE)))
+ */
+ Z3_probe Z3_API Z3_probe_eq(Z3_context x, Z3_probe p1, Z3_probe p2);
+
+ /**
+ \brief Return a probe that evaluates to "true" when \c p1 and \c p2 evaluates to true.
+
+ \remark For probes, "true" is any value different from 0.0.
+
+ def_API('Z3_probe_and', PROBE, (_in(CONTEXT), _in(PROBE), _in(PROBE)))
+ */
+ Z3_probe Z3_API Z3_probe_and(Z3_context x, Z3_probe p1, Z3_probe p2);
+
+ /**
+ \brief Return a probe that evaluates to "true" when \c p1 or \c p2 evaluates to true.
+
+ \remark For probes, "true" is any value different from 0.0.
+
+ def_API('Z3_probe_or', PROBE, (_in(CONTEXT), _in(PROBE), _in(PROBE)))
+ */
+ Z3_probe Z3_API Z3_probe_or(Z3_context x, Z3_probe p1, Z3_probe p2);
+
+ /**
+ \brief Return a probe that evaluates to "true" when \c p does not evaluate to true.
+
+ \remark For probes, "true" is any value different from 0.0.
+
+ def_API('Z3_probe_not', PROBE, (_in(CONTEXT), _in(PROBE)))
+ */
+ Z3_probe Z3_API Z3_probe_not(Z3_context x, Z3_probe p);
+
+ /**
+ \brief Return the number of builtin tactics available in Z3.
+
+ def_API('Z3_get_num_tactics', UINT, (_in(CONTEXT),))
+ */
+ unsigned Z3_API Z3_get_num_tactics(Z3_context c);
+
+ /**
+ \brief Return the name of the idx tactic.
+
+ \pre i < Z3_get_num_tactics(c)
+
+ def_API('Z3_get_tactic_name', STRING, (_in(CONTEXT), _in(UINT)))
+ */
+ Z3_string Z3_API Z3_get_tactic_name(Z3_context c, unsigned i);
+
+ /**
+ \brief Return the number of builtin probes available in Z3.
+
+ def_API('Z3_get_num_probes', UINT, (_in(CONTEXT),))
+ */
+ unsigned Z3_API Z3_get_num_probes(Z3_context c);
+
+ /**
+ \brief Return the name of the \c i probe.
+
+ \pre i < Z3_get_num_probes(c)
+
+ def_API('Z3_get_probe_name', STRING, (_in(CONTEXT), _in(UINT)))
+ */
+ Z3_string Z3_API Z3_get_probe_name(Z3_context c, unsigned i);
+
+ /**
+ \brief Return a string containing a description of parameters accepted by the given tactic.
+
+ def_API('Z3_tactic_get_help', STRING, (_in(CONTEXT), _in(TACTIC)))
+ */
+ Z3_string Z3_API Z3_tactic_get_help(Z3_context c, Z3_tactic t);
+
+ /**
+ \brief Return the parameter description set for the given tactic object.
+
+ def_API('Z3_tactic_get_param_descrs', PARAM_DESCRS, (_in(CONTEXT), _in(TACTIC)))
+ */
+ Z3_param_descrs Z3_API Z3_tactic_get_param_descrs(Z3_context c, Z3_tactic t);
+
+ /**
+ \brief Return a string containing a description of the tactic with the given name.
+
+ def_API('Z3_tactic_get_descr', STRING, (_in(CONTEXT), _in(STRING)))
+ */
+ Z3_string Z3_API Z3_tactic_get_descr(Z3_context c, Z3_string name);
+
+ /**
+ \brief Return a string containing a description of the probe with the given name.
+
+ def_API('Z3_probe_get_descr', STRING, (_in(CONTEXT), _in(STRING)))
+ */
+ Z3_string Z3_API Z3_probe_get_descr(Z3_context c, Z3_string name);
+
+ /**
+ \brief Execute the probe over the goal. The probe always produce a double value.
+ "Boolean" probes return 0.0 for false, and a value different from 0.0 for true.
+
+ def_API('Z3_probe_apply', DOUBLE, (_in(CONTEXT), _in(PROBE), _in(GOAL)))
+ */
+ double Z3_API Z3_probe_apply(Z3_context c, Z3_probe p, Z3_goal g);
+
+ /**
+ \brief Apply tactic \c t to the goal \c g.
+
+ def_API('Z3_tactic_apply', APPLY_RESULT, (_in(CONTEXT), _in(TACTIC), _in(GOAL)))
+ */
+ Z3_apply_result Z3_API Z3_tactic_apply(Z3_context c, Z3_tactic t, Z3_goal g);
+
+ /**
+ \brief Apply tactic \c t to the goal \c g using the parameter set \c p.
+
+ def_API('Z3_tactic_apply_ex', APPLY_RESULT, (_in(CONTEXT), _in(TACTIC), _in(GOAL), _in(PARAMS)))
+ */
+ Z3_apply_result Z3_API Z3_tactic_apply_ex(Z3_context c, Z3_tactic t, Z3_goal g, Z3_params p);
+
+ /**
+ \brief Increment the reference counter of the given \c Z3_apply_result object.
+
+ def_API('Z3_apply_result_inc_ref', VOID, (_in(CONTEXT), _in(APPLY_RESULT)))
+ */
+ void Z3_API Z3_apply_result_inc_ref(Z3_context c, Z3_apply_result r);
+
+ /**
+ \brief Decrement the reference counter of the given \c Z3_apply_result object.
+
+ def_API('Z3_apply_result_dec_ref', VOID, (_in(CONTEXT), _in(APPLY_RESULT)))
+ */
+ void Z3_API Z3_apply_result_dec_ref(Z3_context c, Z3_apply_result r);
+
+ /**
+ \brief Convert the \c Z3_apply_result object returned by #Z3_tactic_apply into a string.
+
+ def_API('Z3_apply_result_to_string', STRING, (_in(CONTEXT), _in(APPLY_RESULT)))
+ */
+ Z3_string Z3_API Z3_apply_result_to_string(Z3_context c, Z3_apply_result r);
+
+ /**
+ \brief Return the number of subgoals in the \c Z3_apply_result object returned by #Z3_tactic_apply.
+
+ def_API('Z3_apply_result_get_num_subgoals', UINT, (_in(CONTEXT), _in(APPLY_RESULT)))
+ */
+ unsigned Z3_API Z3_apply_result_get_num_subgoals(Z3_context c, Z3_apply_result r);
+
+ /**
+ \brief Return one of the subgoals in the \c Z3_apply_result object returned by #Z3_tactic_apply.
+
+ \pre i < Z3_apply_result_get_num_subgoals(c, r)
+
+ def_API('Z3_apply_result_get_subgoal', GOAL, (_in(CONTEXT), _in(APPLY_RESULT), _in(UINT)))
+ */
+ Z3_goal Z3_API Z3_apply_result_get_subgoal(Z3_context c, Z3_apply_result r, unsigned i);
+
+ /*@}*/
+
+ /** @name Solvers*/
+ /*@{*/
+ /**
+ \brief Create a new solver. This solver is a "combined solver" (see
+ combined_solver module) that internally uses a non-incremental (solver1) and an
+ incremental solver (solver2). This combined solver changes its behaviour based
+ on how it is used and how its parameters are set.
+
+ If the solver is used in a non incremental way (i.e. no calls to
+ #Z3_solver_push() or #Z3_solver_pop(), and no calls to
+ #Z3_solver_assert() or #Z3_solver_assert_and_track() after checking
+ satisfiability without an intervening #Z3_solver_reset()) then solver1
+ will be used. This solver will apply Z3's "default" tactic.
+
+ The "default" tactic will attempt to probe the logic used by the
+ assertions and will apply a specialized tactic if one is supported.
+ Otherwise the general `(and-then simplify smt)` tactic will be used.
+
+ If the solver is used in an incremental way then the combined solver
+ will switch to using solver2 (which behaves similarly to the general
+ "smt" tactic).
+
+ Note however it is possible to set the `solver2_timeout`,
+ `solver2_unknown`, and `ignore_solver1` parameters of the combined
+ solver to change its behaviour.
+
+ The function #Z3_solver_get_model retrieves a model if the
+ assertions is satisfiable (i.e., the result is \c
+ Z3_L_TRUE) and model construction is enabled.
+ The function #Z3_solver_get_model can also be used even
+ if the result is \c Z3_L_UNDEF, but the returned model
+ is not guaranteed to satisfy quantified assertions.
+
+ \remark User must use #Z3_solver_inc_ref and #Z3_solver_dec_ref to manage solver objects.
+ Even if the context was created using #Z3_mk_context instead of #Z3_mk_context_rc.
+
+ def_API('Z3_mk_solver', SOLVER, (_in(CONTEXT),))
+ */
+ Z3_solver Z3_API Z3_mk_solver(Z3_context c);
+
+ /**
+ \brief Create a new incremental solver.
+
+ This is equivalent to applying the "smt" tactic.
+
+ Unlike #Z3_mk_solver() this solver
+ - Does not attempt to apply any logic specific tactics.
+ - Does not change its behaviour based on whether it used
+ incrementally/non-incrementally.
+
+ Note that these differences can result in very different performance
+ compared to #Z3_mk_solver().
+
+ The function #Z3_solver_get_model retrieves a model if the
+ assertions is satisfiable (i.e., the result is \c
+ Z3_L_TRUE) and model construction is enabled.
+ The function #Z3_solver_get_model can also be used even
+ if the result is \c Z3_L_UNDEF, but the returned model
+ is not guaranteed to satisfy quantified assertions.
+
+ \remark User must use #Z3_solver_inc_ref and #Z3_solver_dec_ref to manage solver objects.
+ Even if the context was created using #Z3_mk_context instead of #Z3_mk_context_rc.
+
+ def_API('Z3_mk_simple_solver', SOLVER, (_in(CONTEXT),))
+ */
+ Z3_solver Z3_API Z3_mk_simple_solver(Z3_context c);
+
+ /**
+ \brief Create a new solver customized for the given logic.
+ It behaves like #Z3_mk_solver if the logic is unknown or unsupported.
+
+ \remark User must use #Z3_solver_inc_ref and #Z3_solver_dec_ref to manage solver objects.
+ Even if the context was created using #Z3_mk_context instead of #Z3_mk_context_rc.
+
+ def_API('Z3_mk_solver_for_logic', SOLVER, (_in(CONTEXT), _in(SYMBOL)))
+ */
+ Z3_solver Z3_API Z3_mk_solver_for_logic(Z3_context c, Z3_symbol logic);
+
+ /**
+ \brief Create a new solver that is implemented using the given tactic.
+ The solver supports the commands #Z3_solver_push and #Z3_solver_pop, but it
+ will always solve each #Z3_solver_check from scratch.
+
+ \remark User must use #Z3_solver_inc_ref and #Z3_solver_dec_ref to manage solver objects.
+ Even if the context was created using #Z3_mk_context instead of #Z3_mk_context_rc.
+
+ def_API('Z3_mk_solver_from_tactic', SOLVER, (_in(CONTEXT), _in(TACTIC)))
+ */
+ Z3_solver Z3_API Z3_mk_solver_from_tactic(Z3_context c, Z3_tactic t);
+
+ /**
+ \brief Copy a solver \c s from the context \c source to the context \c target.
+
+ def_API('Z3_solver_translate', SOLVER, (_in(CONTEXT), _in(SOLVER), _in(CONTEXT)))
+ */
+ Z3_solver Z3_API Z3_solver_translate(Z3_context source, Z3_solver s, Z3_context target);
+
+ /**
+ \brief Ad-hoc method for importing model conversion from solver.
+
+ This method is used for scenarios where \c src has been used to solve a set
+ of formulas and was interrupted. The \c dst solver may be a strengthening of \c src
+ obtained from cubing (assigning a subset of literals or adding constraints over the
+ assertions available in \c src). If \c dst ends up being satisfiable, the model for \c dst
+ may not correspond to a model of the original formula due to inprocessing in \c src.
+ This method is used to take the side-effect of inprocessing into account when returning
+ a model for \c dst.
+
+ def_API('Z3_solver_import_model_converter', VOID, (_in(CONTEXT), _in(SOLVER), _in(SOLVER)))
+ */
+ void Z3_API Z3_solver_import_model_converter(Z3_context ctx, Z3_solver src, Z3_solver dst);
+
+ /**
+ \brief Return a string describing all solver available parameters.
+
+ \sa Z3_solver_get_param_descrs
+ \sa Z3_solver_set_params
+
+ def_API('Z3_solver_get_help', STRING, (_in(CONTEXT), _in(SOLVER)))
+ */
+ Z3_string Z3_API Z3_solver_get_help(Z3_context c, Z3_solver s);
+
+ /**
+ \brief Return the parameter description set for the given solver object.
+
+ \sa Z3_solver_get_help
+ \sa Z3_solver_set_params
+
+ def_API('Z3_solver_get_param_descrs', PARAM_DESCRS, (_in(CONTEXT), _in(SOLVER)))
+ */
+ Z3_param_descrs Z3_API Z3_solver_get_param_descrs(Z3_context c, Z3_solver s);
+
+ /**
+ \brief Set the given solver using the given parameters.
+
+ \sa Z3_solver_get_help
+ \sa Z3_solver_get_param_descrs
+
+ def_API('Z3_solver_set_params', VOID, (_in(CONTEXT), _in(SOLVER), _in(PARAMS)))
+ */
+ void Z3_API Z3_solver_set_params(Z3_context c, Z3_solver s, Z3_params p);
+
+ /**
+ \brief Increment the reference counter of the given solver.
+
+ def_API('Z3_solver_inc_ref', VOID, (_in(CONTEXT), _in(SOLVER)))
+ */
+ void Z3_API Z3_solver_inc_ref(Z3_context c, Z3_solver s);
+
+ /**
+ \brief Decrement the reference counter of the given solver.
+
+ def_API('Z3_solver_dec_ref', VOID, (_in(CONTEXT), _in(SOLVER)))
+ */
+ void Z3_API Z3_solver_dec_ref(Z3_context c, Z3_solver s);
+
+ /**
+ \brief Solver local interrupt.
+ Normally you should use Z3_interrupt to cancel solvers because only
+ one solver is enabled concurrently per context.
+ However, per GitHub issue #1006, there are use cases where
+ it is more convenient to cancel a specific solver. Solvers
+ that are not selected for interrupts are left alone.
+
+ def_API('Z3_solver_interrupt', VOID, (_in(CONTEXT), _in(SOLVER)))
+ */
+ void Z3_API Z3_solver_interrupt(Z3_context c, Z3_solver s);
+
+ /**
+ \brief Create a backtracking point.
+
+ The solver contains a stack of assertions.
+
+ \sa Z3_solver_get_num_scopes
+ \sa Z3_solver_pop
+
+ def_API('Z3_solver_push', VOID, (_in(CONTEXT), _in(SOLVER)))
+ */
+ void Z3_API Z3_solver_push(Z3_context c, Z3_solver s);
+
+ /**
+ \brief Backtrack \c n backtracking points.
+
+ \sa Z3_solver_get_num_scopes
+ \sa Z3_solver_push
+
+ \pre n <= Z3_solver_get_num_scopes(c, s)
+
+ def_API('Z3_solver_pop', VOID, (_in(CONTEXT), _in(SOLVER), _in(UINT)))
+ */
+ void Z3_API Z3_solver_pop(Z3_context c, Z3_solver s, unsigned n);
+
+ /**
+ \brief Remove all assertions from the solver.
+
+ \sa Z3_solver_assert
+ \sa Z3_solver_assert_and_track
+
+ def_API('Z3_solver_reset', VOID, (_in(CONTEXT), _in(SOLVER)))
+ */
+ void Z3_API Z3_solver_reset(Z3_context c, Z3_solver s);
+
+ /**
+ \brief Return the number of backtracking points.
+
+ \sa Z3_solver_push
+ \sa Z3_solver_pop
+
+ def_API('Z3_solver_get_num_scopes', UINT, (_in(CONTEXT), _in(SOLVER)))
+ */
+ unsigned Z3_API Z3_solver_get_num_scopes(Z3_context c, Z3_solver s);
+
+ /**
+ \brief Assert a constraint into the solver.
+
+ The functions #Z3_solver_check and #Z3_solver_check_assumptions should be
+ used to check whether the logical context is consistent or not.
+
+ \sa Z3_solver_assert_and_track
+ \sa Z3_solver_reset
+
+ def_API('Z3_solver_assert', VOID, (_in(CONTEXT), _in(SOLVER), _in(AST)))
+ */
+ void Z3_API Z3_solver_assert(Z3_context c, Z3_solver s, Z3_ast a);
+
+ /**
+ \brief Assert a constraint \c a into the solver, and track it (in the unsat) core using
+ the Boolean constant \c p.
+
+ This API is an alternative to #Z3_solver_check_assumptions for extracting unsat cores.
+ Both APIs can be used in the same solver. The unsat core will contain a combination
+ of the Boolean variables provided using Z3_solver_assert_and_track and the Boolean literals
+ provided using #Z3_solver_check_assumptions.
+
+ \pre \c a must be a Boolean expression
+ \pre \c p must be a Boolean constant (aka variable).
+
+ \sa Z3_solver_assert
+ \sa Z3_solver_reset
+
+ def_API('Z3_solver_assert_and_track', VOID, (_in(CONTEXT), _in(SOLVER), _in(AST), _in(AST)))
+ */
+ void Z3_API Z3_solver_assert_and_track(Z3_context c, Z3_solver s, Z3_ast a, Z3_ast p);
+
+ /**
+ \brief load solver assertions from a file.
+
+ \sa Z3_solver_from_string
+ \sa Z3_solver_to_string
+
+ def_API('Z3_solver_from_file', VOID, (_in(CONTEXT), _in(SOLVER), _in(STRING)))
+ */
+ void Z3_API Z3_solver_from_file(Z3_context c, Z3_solver s, Z3_string file_name);
+
+ /**
+ \brief load solver assertions from a string.
+
+ \sa Z3_solver_from_file
+ \sa Z3_solver_to_string
+
+ def_API('Z3_solver_from_string', VOID, (_in(CONTEXT), _in(SOLVER), _in(STRING)))
+ */
+ void Z3_API Z3_solver_from_string(Z3_context c, Z3_solver s, Z3_string file_name);
+
+ /**
+ \brief Return the set of asserted formulas on the solver.
+
+ def_API('Z3_solver_get_assertions', AST_VECTOR, (_in(CONTEXT), _in(SOLVER)))
+ */
+ Z3_ast_vector Z3_API Z3_solver_get_assertions(Z3_context c, Z3_solver s);
+
+ /**
+ \brief Return the set of units modulo model conversion.
+
+ def_API('Z3_solver_get_units', AST_VECTOR, (_in(CONTEXT), _in(SOLVER)))
+ */
+ Z3_ast_vector Z3_API Z3_solver_get_units(Z3_context c, Z3_solver s);
+
+ /**
+ \brief Return the trail modulo model conversion, in order of decision level
+ The decision level can be retrieved using \c Z3_solver_get_level based on the trail.
+
+ def_API('Z3_solver_get_trail', AST_VECTOR, (_in(CONTEXT), _in(SOLVER)))
+ */
+ Z3_ast_vector Z3_API Z3_solver_get_trail(Z3_context c, Z3_solver s);
+
+ /**
+ \brief Return the set of non units in the solver state.
+
+ def_API('Z3_solver_get_non_units', AST_VECTOR, (_in(CONTEXT), _in(SOLVER)))
+ */
+ Z3_ast_vector Z3_API Z3_solver_get_non_units(Z3_context c, Z3_solver s);
+
+ /**
+ \brief retrieve the decision depth of Boolean literals (variables or their negations).
+ Assumes a check-sat call and no other calls (to extract models) have been invoked.
+
+ def_API('Z3_solver_get_levels', VOID, (_in(CONTEXT), _in(SOLVER), _in(AST_VECTOR), _in(UINT), _in_array(3, UINT)))
+ */
+ void Z3_API Z3_solver_get_levels(Z3_context c, Z3_solver s, Z3_ast_vector literals, unsigned sz, unsigned levels[]);
+
+ /**
+ \brief retrieve implied value for expression, if any is implied by solver at search level.
+ The method works for expressions that are known to the solver state, such as Boolean and
+ arithmetical variables.
+
+ def_API('Z3_solver_get_implied_value', AST, (_in(CONTEXT), _in(SOLVER), _in(AST)))
+ */
+ Z3_ast Z3_API Z3_solver_get_implied_value(Z3_context c, Z3_solver s, Z3_ast e);
+
+ /**
+ \brief retrieve implied lower bound value for arithmetic expression.
+ If a lower bound is implied at search level, the arithmetic expression returned
+ is a constant representing the bound.
+
+ def_API('Z3_solver_get_implied_lower', AST, (_in(CONTEXT), _in(SOLVER), _in(AST)))
+ */
+ Z3_ast Z3_API Z3_solver_get_implied_lower(Z3_context c, Z3_solver s, Z3_ast e);
+
+ /**
+ \brief retrieve implied upper bound value for arithmetic expression.
+ If an upper bound is implied at search level, the arithmetic expression returned
+ is a constant representing the bound.
+
+ def_API('Z3_solver_get_implied_upper', AST, (_in(CONTEXT), _in(SOLVER), _in(AST)))
+ */
+
+ Z3_ast Z3_API Z3_solver_get_implied_upper(Z3_context c, Z3_solver s, Z3_ast e);
+
+
+
+ /**
+ \brief register a user-properator with the solver.
+ */
+
+ void Z3_API Z3_solver_propagate_init(
+ Z3_context c,
+ Z3_solver s,
+ void* user_context,
+ Z3_push_eh push_eh,
+ Z3_pop_eh pop_eh,
+ Z3_fresh_eh fresh_eh);
+
+ /**
+ \brief register a callback for when an expression is bound to a fixed value.
+ The supported expression types are
+ - Booleans
+ - Bit-vectors
+ */
+
+ void Z3_API Z3_solver_propagate_fixed(Z3_context c, Z3_solver s, Z3_fixed_eh fixed_eh);
+
+ /**
+ \brief register a callback on final check.
+ This provides freedom to the propagator to delay actions or implement a branch-and bound solver.
+
+ The final_eh callback takes as argument the original user_context that was used
+ when calling \c Z3_solver_propagate_init, and it takes a callback context for propagations.
+ If may use the callback context to invoke the \c Z3_solver_propagate_consequence function.
+ If the callback context gets used, the solver continues.
+ */
+ void Z3_API Z3_solver_propagate_final(Z3_context c, Z3_solver s, Z3_final_eh final_eh);
+
+ /**
+ \brief register a callback on expression equalities.
+ */
+ void Z3_API Z3_solver_propagate_eq(Z3_context c, Z3_solver s, Z3_eq_eh eq_eh);
+
+ /**
+ \brief register a callback on expression dis-equalities.
+ */
+ void Z3_API Z3_solver_propagate_diseq(Z3_context c, Z3_solver s, Z3_eq_eh eq_eh);
+
+ /**
+ \brief register an expression to propagate on with the solver.
+ Only expressions of type Bool and type Bit-Vector can be registered for propagation.
+
+ def_API('Z3_solver_propagate_register', UINT, (_in(CONTEXT), _in(SOLVER), _in(AST)))
+ */
+
+ unsigned Z3_API Z3_solver_propagate_register(Z3_context c, Z3_solver s, Z3_ast e);
+
+ /**
+ \brief propagate a consequence based on fixed values.
+ This is a callback a client may invoke during the fixed_eh callback.
+ The callback adds a propagation consequence based on the fixed values of the
+ \c ids.
+
+ def_API('Z3_solver_propagate_consequence', VOID, (_in(CONTEXT), _in(SOLVER_CALLBACK), _in(UINT), _in_array(2, UINT), _in(UINT), _in_array(4, UINT), _in_array(4, UINT), _in(AST)))
+ */
+
+ void Z3_API Z3_solver_propagate_consequence(Z3_context c, Z3_solver_callback, unsigned num_fixed, unsigned const* fixed_ids, unsigned num_eqs, unsigned const* eq_lhs, unsigned const* eq_rhs, Z3_ast conseq);
+
+ /**
+ \brief Check whether the assertions in a given solver are consistent or not.
+
+ The function #Z3_solver_get_model retrieves a model if the
+ assertions is satisfiable (i.e., the result is \c
+ Z3_L_TRUE) and model construction is enabled.
+ Note that if the call returns \c Z3_L_UNDEF, Z3 does not
+ ensure that calls to #Z3_solver_get_model succeed and any models
+ produced in this case are not guaranteed to satisfy the assertions.
+
+ The function #Z3_solver_get_proof retrieves a proof if proof
+ generation was enabled when the context was created, and the
+ assertions are unsatisfiable (i.e., the result is \c Z3_L_FALSE).
+
+ \sa Z3_solver_check_assumptions
+
+ def_API('Z3_solver_check', INT, (_in(CONTEXT), _in(SOLVER)))
+ */
+ Z3_lbool Z3_API Z3_solver_check(Z3_context c, Z3_solver s);
+
+ /**
+ \brief Check whether the assertions in the given solver and
+ optional assumptions are consistent or not.
+
+ The function #Z3_solver_get_unsat_core retrieves the subset of the
+ assumptions used in the unsatisfiability proof produced by Z3.
+
+ \sa Z3_solver_check
+
+ def_API('Z3_solver_check_assumptions', INT, (_in(CONTEXT), _in(SOLVER), _in(UINT), _in_array(2, AST)))
+ */
+ Z3_lbool Z3_API Z3_solver_check_assumptions(Z3_context c, Z3_solver s,
+ unsigned num_assumptions, Z3_ast const assumptions[]);
+
+ /**
+ \brief Retrieve congruence class representatives for terms.
+
+ The function can be used for relying on Z3 to identify equal terms under the current
+ set of assumptions. The array of terms and array of class identifiers should have
+ the same length. The class identifiers are numerals that are assigned to the same
+ value for their corresponding terms if the current context forces the terms to be
+ equal. You cannot deduce that terms corresponding to different numerals must be all different,
+ (especially when using non-convex theories).
+ All implied equalities are returned by this call.
+ This means that two terms map to the same class identifier if and only if
+ the current context implies that they are equal.
+
+ A side-effect of the function is a satisfiability check on the assertions on the solver that is passed in.
+ The function return \c Z3_L_FALSE if the current assertions are not satisfiable.
+
+ def_API('Z3_get_implied_equalities', INT, (_in(CONTEXT), _in(SOLVER), _in(UINT), _in_array(2, AST), _out_array(2, UINT)))
+ */
+ Z3_lbool Z3_API Z3_get_implied_equalities(Z3_context c,
+ Z3_solver s,
+ unsigned num_terms,
+ Z3_ast const terms[],
+ unsigned class_ids[]);
+
+ /**
+ \brief retrieve consequences from solver that determine values of the supplied function symbols.
+
+ def_API('Z3_solver_get_consequences', INT, (_in(CONTEXT), _in(SOLVER), _in(AST_VECTOR), _in(AST_VECTOR), _in(AST_VECTOR)))
+ */
+
+ Z3_lbool Z3_API Z3_solver_get_consequences(Z3_context c,
+ Z3_solver s,
+ Z3_ast_vector assumptions,
+ Z3_ast_vector variables,
+ Z3_ast_vector consequences);
+
+
+ /**
+ \brief extract a next cube for a solver. The last cube is the constant \c true or \c false.
+ The number of (non-constant) cubes is by default 1. For the sat solver cubing is controlled
+ using parameters sat.lookahead.cube.cutoff and sat.lookahead.cube.fraction.
+
+ The third argument is a vector of variables that may be used for cubing.
+ The contents of the vector is only used in the first call. The initial list of variables
+ is used in subsequent calls until it returns the unsatisfiable cube.
+ The vector is modified to contain a set of Autarky variables that occur in clauses that
+ are affected by the (last literal in the) cube. These variables could be used by a different
+ cuber (on a different solver object) for further recursive cubing.
+
+ The last argument is a backtracking level. It instructs the cube process to backtrack below
+ the indicated level for the next cube.
+
+ def_API('Z3_solver_cube', AST_VECTOR, (_in(CONTEXT), _in(SOLVER), _in(AST_VECTOR), _in(UINT)))
+ */
+
+ Z3_ast_vector Z3_API Z3_solver_cube(Z3_context c, Z3_solver s, Z3_ast_vector vars, unsigned backtrack_level);
+
+ /**
+ \brief Retrieve the model for the last #Z3_solver_check or #Z3_solver_check_assumptions
+
+ The error handler is invoked if a model is not available because
+ the commands above were not invoked for the given solver, or if the result was \c Z3_L_FALSE.
+
+ def_API('Z3_solver_get_model', MODEL, (_in(CONTEXT), _in(SOLVER)))
+ */
+ Z3_model Z3_API Z3_solver_get_model(Z3_context c, Z3_solver s);
+
+ /**
+ \brief Retrieve the proof for the last #Z3_solver_check or #Z3_solver_check_assumptions
+
+ The error handler is invoked if proof generation is not enabled,
+ or if the commands above were not invoked for the given solver,
+ or if the result was different from \c Z3_L_FALSE.
+
+ def_API('Z3_solver_get_proof', AST, (_in(CONTEXT), _in(SOLVER)))
+ */
+ Z3_ast Z3_API Z3_solver_get_proof(Z3_context c, Z3_solver s);
+
+ /**
+ \brief Retrieve the unsat core for the last #Z3_solver_check_assumptions
+ The unsat core is a subset of the assumptions \c a.
+
+ By default, the unsat core will not be minimized. Generation of a minimized
+ unsat core can be enabled via the `"sat.core.minimize"` and `"smt.core.minimize"`
+ settings for SAT and SMT cores respectively. Generation of minimized unsat cores
+ will be more expensive.
+
+ def_API('Z3_solver_get_unsat_core', AST_VECTOR, (_in(CONTEXT), _in(SOLVER)))
+ */
+ Z3_ast_vector Z3_API Z3_solver_get_unsat_core(Z3_context c, Z3_solver s);
+
+ /**
+ \brief Return a brief justification for an "unknown" result (i.e., \c Z3_L_UNDEF) for
+ the commands #Z3_solver_check and #Z3_solver_check_assumptions
+
+ def_API('Z3_solver_get_reason_unknown', STRING, (_in(CONTEXT), _in(SOLVER)))
+ */
+ Z3_string Z3_API Z3_solver_get_reason_unknown(Z3_context c, Z3_solver s);
+
+ /**
+ \brief Return statistics for the given solver.
+
+ \remark User must use #Z3_stats_inc_ref and #Z3_stats_dec_ref to manage Z3_stats objects.
+
+ def_API('Z3_solver_get_statistics', STATS, (_in(CONTEXT), _in(SOLVER)))
+ */
+ Z3_stats Z3_API Z3_solver_get_statistics(Z3_context c, Z3_solver s);
+
+ /**
+ \brief Convert a solver into a string.
+
+ \sa Z3_solver_from_file
+ \sa Z3_solver_from_string
+
+ def_API('Z3_solver_to_string', STRING, (_in(CONTEXT), _in(SOLVER)))
+ */
+ Z3_string Z3_API Z3_solver_to_string(Z3_context c, Z3_solver s);
+
+ /**
+ \brief Convert a solver into a DIMACS formatted string.
+ \sa Z3_goal_to_diamcs_string for requirements.
+
+ def_API('Z3_solver_to_dimacs_string', STRING, (_in(CONTEXT), _in(SOLVER), _in(BOOL)))
+ */
+ Z3_string Z3_API Z3_solver_to_dimacs_string(Z3_context c, Z3_solver s, bool include_names);
+
+ /*@}*/
+
+ /** @name Statistics */
+ /*@{*/
+
+ /**
+ \brief Convert a statistics into a string.
+
+ def_API('Z3_stats_to_string', STRING, (_in(CONTEXT), _in(STATS)))
+ */
+ Z3_string Z3_API Z3_stats_to_string(Z3_context c, Z3_stats s);
+
+ /**
+ \brief Increment the reference counter of the given statistics object.
+
+ def_API('Z3_stats_inc_ref', VOID, (_in(CONTEXT), _in(STATS)))
+ */
+ void Z3_API Z3_stats_inc_ref(Z3_context c, Z3_stats s);
+
+ /**
+ \brief Decrement the reference counter of the given statistics object.
+
+ def_API('Z3_stats_dec_ref', VOID, (_in(CONTEXT), _in(STATS)))
+ */
+ void Z3_API Z3_stats_dec_ref(Z3_context c, Z3_stats s);
+
+ /**
+ \brief Return the number of statistical data in \c s.
+
+ def_API('Z3_stats_size', UINT, (_in(CONTEXT), _in(STATS)))
+ */
+ unsigned Z3_API Z3_stats_size(Z3_context c, Z3_stats s);
+
+ /**
+ \brief Return the key (a string) for a particular statistical data.
+
+ \pre idx < Z3_stats_size(c, s)
+
+ def_API('Z3_stats_get_key', STRING, (_in(CONTEXT), _in(STATS), _in(UINT)))
+ */
+ Z3_string Z3_API Z3_stats_get_key(Z3_context c, Z3_stats s, unsigned idx);
+
+ /**
+ \brief Return \c true if the given statistical data is a unsigned integer.
+
+ \pre idx < Z3_stats_size(c, s)
+
+ def_API('Z3_stats_is_uint', BOOL, (_in(CONTEXT), _in(STATS), _in(UINT)))
+ */
+ bool Z3_API Z3_stats_is_uint(Z3_context c, Z3_stats s, unsigned idx);
+
+ /**
+ \brief Return \c true if the given statistical data is a double.
+
+ \pre idx < Z3_stats_size(c, s)
+
+ def_API('Z3_stats_is_double', BOOL, (_in(CONTEXT), _in(STATS), _in(UINT)))
+ */
+ bool Z3_API Z3_stats_is_double(Z3_context c, Z3_stats s, unsigned idx);
+
+ /**
+ \brief Return the unsigned value of the given statistical data.
+
+ \pre idx < Z3_stats_size(c, s) && Z3_stats_is_uint(c, s)
+
+ def_API('Z3_stats_get_uint_value', UINT, (_in(CONTEXT), _in(STATS), _in(UINT)))
+ */
+ unsigned Z3_API Z3_stats_get_uint_value(Z3_context c, Z3_stats s, unsigned idx);
+
+ /**
+ \brief Return the double value of the given statistical data.
+
+ \pre idx < Z3_stats_size(c, s) && Z3_stats_is_double(c, s)
+
+ def_API('Z3_stats_get_double_value', DOUBLE, (_in(CONTEXT), _in(STATS), _in(UINT)))
+ */
+ double Z3_API Z3_stats_get_double_value(Z3_context c, Z3_stats s, unsigned idx);
+
+ /**
+ \brief Return the estimated allocated memory in bytes.
+
+ def_API('Z3_get_estimated_alloc_size', UINT64, ())
+ */
+ uint64_t Z3_API Z3_get_estimated_alloc_size(void);
+
+ /*@}*/
+
+#ifdef __cplusplus
+}
+#endif // __cplusplus
+
+/*@}*/
+
diff --git a/z3-4.8.9-x64-ubuntu-16.04/include/z3_ast_containers.h b/z3-4.8.9-x64-ubuntu-16.04/include/z3_ast_containers.h
new file mode 100644
index 0000000..e317460
--- /dev/null
+++ b/z3-4.8.9-x64-ubuntu-16.04/include/z3_ast_containers.h
@@ -0,0 +1,198 @@
+/*++
+Copyright (c) 2015 Microsoft Corporation
+
+Module Name:
+
+ z3_ast_containers.h
+
+Abstract:
+
+ AST Containers
+
+Author:
+
+ Christoph M. Wintersteiger (cwinter) 2015-12-03
+
+Notes:
+
+--*/
+#pragma once
+
+#ifdef __cplusplus
+extern "C" {
+#endif // __cplusplus
+
+ /** \defgroup capi C API */
+ /*@{*/
+
+ /** @name AST vectors */
+ /*@{*/
+ /**
+ \brief Return an empty AST vector.
+
+ \remark Reference counting must be used to manage AST vectors, even when the Z3_context was
+ created using #Z3_mk_context instead of #Z3_mk_context_rc.
+
+ def_API('Z3_mk_ast_vector', AST_VECTOR, (_in(CONTEXT),))
+ */
+ Z3_ast_vector Z3_API Z3_mk_ast_vector(Z3_context c);
+
+ /**
+ \brief Increment the reference counter of the given AST vector.
+
+ def_API('Z3_ast_vector_inc_ref', VOID, (_in(CONTEXT), _in(AST_VECTOR)))
+ */
+ void Z3_API Z3_ast_vector_inc_ref(Z3_context c, Z3_ast_vector v);
+
+ /**
+ \brief Decrement the reference counter of the given AST vector.
+
+ def_API('Z3_ast_vector_dec_ref', VOID, (_in(CONTEXT), _in(AST_VECTOR)))
+ */
+ void Z3_API Z3_ast_vector_dec_ref(Z3_context c, Z3_ast_vector v);
+
+ /**
+ \brief Return the size of the given AST vector.
+
+ def_API('Z3_ast_vector_size', UINT, (_in(CONTEXT), _in(AST_VECTOR)))
+ */
+ unsigned Z3_API Z3_ast_vector_size(Z3_context c, Z3_ast_vector v);
+
+ /**
+ \brief Return the AST at position \c i in the AST vector \c v.
+
+ \pre i < Z3_ast_vector_size(c, v)
+
+ def_API('Z3_ast_vector_get', AST, (_in(CONTEXT), _in(AST_VECTOR), _in(UINT)))
+ */
+ Z3_ast Z3_API Z3_ast_vector_get(Z3_context c, Z3_ast_vector v, unsigned i);
+
+ /**
+ \brief Update position \c i of the AST vector \c v with the AST \c a.
+
+ \pre i < Z3_ast_vector_size(c, v)
+
+ def_API('Z3_ast_vector_set', VOID, (_in(CONTEXT), _in(AST_VECTOR), _in(UINT), _in(AST)))
+ */
+ void Z3_API Z3_ast_vector_set(Z3_context c, Z3_ast_vector v, unsigned i, Z3_ast a);
+
+ /**
+ \brief Resize the AST vector \c v.
+
+ def_API('Z3_ast_vector_resize', VOID, (_in(CONTEXT), _in(AST_VECTOR), _in(UINT)))
+ */
+ void Z3_API Z3_ast_vector_resize(Z3_context c, Z3_ast_vector v, unsigned n);
+
+ /**
+ \brief Add the AST \c a in the end of the AST vector \c v. The size of \c v is increased by one.
+
+ def_API('Z3_ast_vector_push', VOID, (_in(CONTEXT), _in(AST_VECTOR), _in(AST)))
+ */
+ void Z3_API Z3_ast_vector_push(Z3_context c, Z3_ast_vector v, Z3_ast a);
+
+ /**
+ \brief Translate the AST vector \c v from context \c s into an AST vector in context \c t.
+
+ def_API('Z3_ast_vector_translate', AST_VECTOR, (_in(CONTEXT), _in(AST_VECTOR), _in(CONTEXT)))
+ */
+ Z3_ast_vector Z3_API Z3_ast_vector_translate(Z3_context s, Z3_ast_vector v, Z3_context t);
+
+ /**
+ \brief Convert AST vector into a string.
+
+ def_API('Z3_ast_vector_to_string', STRING, (_in(CONTEXT), _in(AST_VECTOR)))
+ */
+ Z3_string Z3_API Z3_ast_vector_to_string(Z3_context c, Z3_ast_vector v);
+
+ /*@}*/
+
+ /** @name AST maps */
+ /*@{*/
+ /**
+ \brief Return an empty mapping from AST to AST
+
+ \remark Reference counting must be used to manage AST maps, even when the Z3_context was
+ created using #Z3_mk_context instead of #Z3_mk_context_rc.
+
+ def_API('Z3_mk_ast_map', AST_MAP, (_in(CONTEXT),) )
+ */
+ Z3_ast_map Z3_API Z3_mk_ast_map(Z3_context c);
+
+ /**
+ \brief Increment the reference counter of the given AST map.
+
+ def_API('Z3_ast_map_inc_ref', VOID, (_in(CONTEXT), _in(AST_MAP)))
+ */
+ void Z3_API Z3_ast_map_inc_ref(Z3_context c, Z3_ast_map m);
+
+ /**
+ \brief Decrement the reference counter of the given AST map.
+
+ def_API('Z3_ast_map_dec_ref', VOID, (_in(CONTEXT), _in(AST_MAP)))
+ */
+ void Z3_API Z3_ast_map_dec_ref(Z3_context c, Z3_ast_map m);
+
+ /**
+ \brief Return true if the map \c m contains the AST key \c k.
+
+ def_API('Z3_ast_map_contains', BOOL, (_in(CONTEXT), _in(AST_MAP), _in(AST)))
+ */
+ bool Z3_API Z3_ast_map_contains(Z3_context c, Z3_ast_map m, Z3_ast k);
+
+ /**
+ \brief Return the value associated with the key \c k.
+
+ The procedure invokes the error handler if \c k is not in the map.
+
+ def_API('Z3_ast_map_find', AST, (_in(CONTEXT), _in(AST_MAP), _in(AST)))
+ */
+ Z3_ast Z3_API Z3_ast_map_find(Z3_context c, Z3_ast_map m, Z3_ast k);
+
+ /**
+ \brief Store/Replace a new key, value pair in the given map.
+
+ def_API('Z3_ast_map_insert', VOID, (_in(CONTEXT), _in(AST_MAP), _in(AST), _in(AST)))
+ */
+ void Z3_API Z3_ast_map_insert(Z3_context c, Z3_ast_map m, Z3_ast k, Z3_ast v);
+
+ /**
+ \brief Erase a key from the map.
+
+ def_API('Z3_ast_map_erase', VOID, (_in(CONTEXT), _in(AST_MAP), _in(AST)))
+ */
+ void Z3_API Z3_ast_map_erase(Z3_context c, Z3_ast_map m, Z3_ast k);
+
+ /**
+ \brief Remove all keys from the given map.
+
+ def_API('Z3_ast_map_reset', VOID, (_in(CONTEXT), _in(AST_MAP)))
+ */
+ void Z3_API Z3_ast_map_reset(Z3_context c, Z3_ast_map m);
+
+ /**
+ \brief Return the size of the given map.
+
+ def_API('Z3_ast_map_size', UINT, (_in(CONTEXT), _in(AST_MAP)))
+ */
+ unsigned Z3_API Z3_ast_map_size(Z3_context c, Z3_ast_map m);
+
+ /**
+ \brief Return the keys stored in the given map.
+
+ def_API('Z3_ast_map_keys', AST_VECTOR, (_in(CONTEXT), _in(AST_MAP)))
+ */
+ Z3_ast_vector Z3_API Z3_ast_map_keys(Z3_context c, Z3_ast_map m);
+
+ /**
+ \brief Convert the given map into a string.
+
+ def_API('Z3_ast_map_to_string', STRING, (_in(CONTEXT), _in(AST_MAP)))
+ */
+ Z3_string Z3_API Z3_ast_map_to_string(Z3_context c, Z3_ast_map m);
+ /*@}*/
+ /*@}*/
+
+#ifdef __cplusplus
+}
+#endif // __cplusplus
+
diff --git a/z3-4.8.9-x64-ubuntu-16.04/include/z3_fixedpoint.h b/z3-4.8.9-x64-ubuntu-16.04/include/z3_fixedpoint.h
new file mode 100644
index 0000000..b9fada5
--- /dev/null
+++ b/z3-4.8.9-x64-ubuntu-16.04/include/z3_fixedpoint.h
@@ -0,0 +1,382 @@
+/*++
+Copyright (c) 2015 Microsoft Corporation
+
+Module Name:
+
+ z3_fixedpoint.h
+
+Abstract:
+
+ Fixedpoint API
+
+Author:
+
+ Christoph M. Wintersteiger (cwinter) 2015-12-03
+
+Notes:
+
+--*/
+#pragma once
+
+#ifdef __cplusplus
+extern "C" {
+#endif // __cplusplus
+
+ /** \defgroup capi C API */
+ /*@{*/
+
+ /** @name Fixedpoint facilities */
+ /*@{*/
+ /**
+ \brief Create a new fixedpoint context.
+
+ \remark User must use #Z3_fixedpoint_inc_ref and #Z3_fixedpoint_dec_ref to manage fixedpoint objects.
+ Even if the context was created using #Z3_mk_context instead of #Z3_mk_context_rc.
+
+ def_API('Z3_mk_fixedpoint', FIXEDPOINT, (_in(CONTEXT), ))
+ */
+ Z3_fixedpoint Z3_API Z3_mk_fixedpoint(Z3_context c);
+
+ /**
+ \brief Increment the reference counter of the given fixedpoint context
+
+ def_API('Z3_fixedpoint_inc_ref', VOID, (_in(CONTEXT), _in(FIXEDPOINT)))
+ */
+ void Z3_API Z3_fixedpoint_inc_ref(Z3_context c, Z3_fixedpoint d);
+
+ /**
+ \brief Decrement the reference counter of the given fixedpoint context.
+
+ def_API('Z3_fixedpoint_dec_ref', VOID, (_in(CONTEXT), _in(FIXEDPOINT)))
+ */
+ void Z3_API Z3_fixedpoint_dec_ref(Z3_context c, Z3_fixedpoint d);
+
+ /**
+ \brief Add a universal Horn clause as a named rule.
+ The \c horn_rule should be of the form:
+
+ \code
+ horn_rule ::= (forall (bound-vars) horn_rule)
+ | (=> atoms horn_rule)
+ | atom
+ \endcode
+
+ def_API('Z3_fixedpoint_add_rule', VOID, (_in(CONTEXT), _in(FIXEDPOINT), _in(AST), _in(SYMBOL)))
+ */
+ void Z3_API Z3_fixedpoint_add_rule(Z3_context c, Z3_fixedpoint d, Z3_ast rule, Z3_symbol name);
+
+ /**
+ \brief Add a Database fact.
+
+ \param c - context
+ \param d - fixed point context
+ \param r - relation signature for the row.
+ \param num_args - number of columns for the given row.
+ \param args - array of the row elements.
+
+ The number of arguments \c num_args should be equal to the number
+ of sorts in the domain of \c r. Each sort in the domain should be an integral
+ (bit-vector, Boolean or or finite domain sort).
+
+ The call has the same effect as adding a rule where \c r is applied to the arguments.
+
+ def_API('Z3_fixedpoint_add_fact', VOID, (_in(CONTEXT), _in(FIXEDPOINT), _in(FUNC_DECL), _in(UINT), _in_array(3, UINT)))
+ */
+ void Z3_API Z3_fixedpoint_add_fact(Z3_context c, Z3_fixedpoint d,
+ Z3_func_decl r,
+ unsigned num_args, unsigned args[]);
+
+ /**
+ \brief Assert a constraint to the fixedpoint context.
+
+ The constraints are used as background axioms when the fixedpoint engine uses the PDR mode.
+ They are ignored for standard Datalog mode.
+
+ def_API('Z3_fixedpoint_assert', VOID, (_in(CONTEXT), _in(FIXEDPOINT), _in(AST)))
+ */
+ void Z3_API Z3_fixedpoint_assert(Z3_context c, Z3_fixedpoint d, Z3_ast axiom);
+
+ /**
+ \brief Pose a query against the asserted rules.
+
+ \code
+ query ::= (exists (bound-vars) query)
+ | literals
+ \endcode
+
+ query returns
+ - \c Z3_L_FALSE if the query is unsatisfiable.
+ - \c Z3_L_TRUE if the query is satisfiable. Obtain the answer by calling #Z3_fixedpoint_get_answer.
+ - \c Z3_L_UNDEF if the query was interrupted, timed out or otherwise failed.
+
+ def_API('Z3_fixedpoint_query', INT, (_in(CONTEXT), _in(FIXEDPOINT), _in(AST)))
+ */
+ Z3_lbool Z3_API Z3_fixedpoint_query(Z3_context c, Z3_fixedpoint d, Z3_ast query);
+
+ /**
+ \brief Pose multiple queries against the asserted rules.
+
+ The queries are encoded as relations (function declarations).
+
+ query returns
+ - \c Z3_L_FALSE if the query is unsatisfiable.
+ - \c Z3_L_TRUE if the query is satisfiable. Obtain the answer by calling #Z3_fixedpoint_get_answer.
+ - \c Z3_L_UNDEF if the query was interrupted, timed out or otherwise failed.
+
+ def_API('Z3_fixedpoint_query_relations', INT, (_in(CONTEXT), _in(FIXEDPOINT), _in(UINT), _in_array(2, FUNC_DECL)))
+ */
+ Z3_lbool Z3_API Z3_fixedpoint_query_relations(
+ Z3_context c, Z3_fixedpoint d,
+ unsigned num_relations, Z3_func_decl const relations[]);
+
+ /**
+ \brief Retrieve a formula that encodes satisfying answers to the query.
+
+
+ When used in Datalog mode, the returned answer is a disjunction of conjuncts.
+ Each conjunct encodes values of the bound variables of the query that are satisfied.
+ In PDR mode, the returned answer is a single conjunction.
+
+ When used in Datalog mode the previous call to #Z3_fixedpoint_query must have returned \c Z3_L_TRUE.
+ When used with the PDR engine, the previous call must have been either \c Z3_L_TRUE or \c Z3_L_FALSE.
+
+ def_API('Z3_fixedpoint_get_answer', AST, (_in(CONTEXT), _in(FIXEDPOINT)))
+ */
+ Z3_ast Z3_API Z3_fixedpoint_get_answer(Z3_context c, Z3_fixedpoint d);
+
+ /**
+ \brief Retrieve a string that describes the last status returned by #Z3_fixedpoint_query.
+
+ Use this method when #Z3_fixedpoint_query returns \c Z3_L_UNDEF.
+
+ def_API('Z3_fixedpoint_get_reason_unknown', STRING, (_in(CONTEXT), _in(FIXEDPOINT) ))
+ */
+ Z3_string Z3_API Z3_fixedpoint_get_reason_unknown(Z3_context c, Z3_fixedpoint d);
+
+ /**
+ \brief Update a named rule.
+ A rule with the same name must have been previously created.
+
+ def_API('Z3_fixedpoint_update_rule', VOID, (_in(CONTEXT), _in(FIXEDPOINT), _in(AST), _in(SYMBOL)))
+ */
+ void Z3_API Z3_fixedpoint_update_rule(Z3_context c, Z3_fixedpoint d, Z3_ast a, Z3_symbol name);
+
+ /**
+ \brief Query the PDR engine for the maximal levels properties are known about predicate.
+
+ This call retrieves the maximal number of relevant unfoldings
+ of \c pred with respect to the current exploration state.
+ Note: this functionality is PDR specific.
+
+ def_API('Z3_fixedpoint_get_num_levels', UINT, (_in(CONTEXT), _in(FIXEDPOINT), _in(FUNC_DECL)))
+ */
+ unsigned Z3_API Z3_fixedpoint_get_num_levels(Z3_context c, Z3_fixedpoint d, Z3_func_decl pred);
+
+ /**
+ Retrieve the current cover of \c pred up to \c level unfoldings.
+ Return just the delta that is known at \c level. To
+ obtain the full set of properties of \c pred one should query
+ at \c level+1 , \c level+2 etc, and include \c level=-1.
+
+ Note: this functionality is PDR specific.
+
+ def_API('Z3_fixedpoint_get_cover_delta', AST, (_in(CONTEXT), _in(FIXEDPOINT), _in(INT), _in(FUNC_DECL)))
+ */
+ Z3_ast Z3_API Z3_fixedpoint_get_cover_delta(Z3_context c, Z3_fixedpoint d, int level, Z3_func_decl pred);
+
+ /**
+ \brief Add property about the predicate \c pred.
+ Add a property of predicate \c pred at \c level.
+ It gets pushed forward when possible.
+
+ Note: level = -1 is treated as the fixedpoint. So passing -1 for the \c level
+ means that the property is true of the fixed-point unfolding with respect to \c pred.
+
+ Note: this functionality is PDR specific.
+
+ def_API('Z3_fixedpoint_add_cover', VOID, (_in(CONTEXT), _in(FIXEDPOINT), _in(INT), _in(FUNC_DECL), _in(AST)))
+ */
+ void Z3_API Z3_fixedpoint_add_cover(Z3_context c, Z3_fixedpoint d, int level, Z3_func_decl pred, Z3_ast property);
+
+ /**
+ \brief Retrieve statistics information from the last call to #Z3_fixedpoint_query.
+
+ def_API('Z3_fixedpoint_get_statistics', STATS, (_in(CONTEXT), _in(FIXEDPOINT)))
+ */
+ Z3_stats Z3_API Z3_fixedpoint_get_statistics(Z3_context c, Z3_fixedpoint d);
+
+ /**
+ \brief Register relation as Fixedpoint defined.
+ Fixedpoint defined relations have least-fixedpoint semantics.
+ For example, the relation is empty if it does not occur
+ in a head or a fact.
+
+ def_API('Z3_fixedpoint_register_relation', VOID, (_in(CONTEXT), _in(FIXEDPOINT), _in(FUNC_DECL)))
+ */
+ void Z3_API Z3_fixedpoint_register_relation(Z3_context c, Z3_fixedpoint d, Z3_func_decl f);
+
+ /**
+ \brief Configure the predicate representation.
+
+ It sets the predicate to use a set of domains given by the list of symbols.
+ The domains given by the list of symbols must belong to a set
+ of built-in domains.
+
+ def_API('Z3_fixedpoint_set_predicate_representation', VOID, (_in(CONTEXT), _in(FIXEDPOINT), _in(FUNC_DECL), _in(UINT), _in_array(3, SYMBOL)))
+ */
+ void Z3_API Z3_fixedpoint_set_predicate_representation(
+ Z3_context c,
+ Z3_fixedpoint d,
+ Z3_func_decl f,
+ unsigned num_relations,
+ Z3_symbol const relation_kinds[]);
+
+ /**
+ \brief Retrieve set of rules from fixedpoint context.
+
+ def_API('Z3_fixedpoint_get_rules', AST_VECTOR, (_in(CONTEXT),_in(FIXEDPOINT)))
+ */
+ Z3_ast_vector Z3_API Z3_fixedpoint_get_rules(
+ Z3_context c,
+ Z3_fixedpoint f);
+
+ /**
+ \brief Retrieve set of background assertions from fixedpoint context.
+
+ def_API('Z3_fixedpoint_get_assertions', AST_VECTOR, (_in(CONTEXT),_in(FIXEDPOINT)))
+ */
+ Z3_ast_vector Z3_API Z3_fixedpoint_get_assertions(
+ Z3_context c,
+ Z3_fixedpoint f);
+
+ /**
+ \brief Set parameters on fixedpoint context.
+
+ \sa Z3_fixedpoint_get_help
+ \sa Z3_fixedpoint_get_param_descrs
+
+ def_API('Z3_fixedpoint_set_params', VOID, (_in(CONTEXT), _in(FIXEDPOINT), _in(PARAMS)))
+ */
+ void Z3_API Z3_fixedpoint_set_params(Z3_context c, Z3_fixedpoint f, Z3_params p);
+
+ /**
+ \brief Return a string describing all fixedpoint available parameters.
+
+ \sa Z3_fixedpoint_get_param_descrs
+ \sa Z3_fixedpoint_set_params
+
+ def_API('Z3_fixedpoint_get_help', STRING, (_in(CONTEXT), _in(FIXEDPOINT)))
+ */
+ Z3_string Z3_API Z3_fixedpoint_get_help(Z3_context c, Z3_fixedpoint f);
+
+ /**
+ \brief Return the parameter description set for the given fixedpoint object.
+
+ \sa Z3_fixedpoint_get_help
+ \sa Z3_fixedpoint_set_params
+
+ def_API('Z3_fixedpoint_get_param_descrs', PARAM_DESCRS, (_in(CONTEXT), _in(FIXEDPOINT)))
+ */
+ Z3_param_descrs Z3_API Z3_fixedpoint_get_param_descrs(Z3_context c, Z3_fixedpoint f);
+
+ /**
+ \brief Print the current rules and background axioms as a string.
+ \param c - context.
+ \param f - fixedpoint context.
+ \param num_queries - number of additional queries to print.
+ \param queries - additional queries.
+
+ \sa Z3_fixedpoint_from_file
+ \sa Z3_fixedpoint_from_string
+
+ def_API('Z3_fixedpoint_to_string', STRING, (_in(CONTEXT), _in(FIXEDPOINT), _in(UINT), _in_array(2, AST)))
+ */
+ Z3_string Z3_API Z3_fixedpoint_to_string(
+ Z3_context c,
+ Z3_fixedpoint f,
+ unsigned num_queries,
+ Z3_ast queries[]);
+
+ /**
+ \brief Parse an SMT-LIB2 string with fixedpoint rules.
+ Add the rules to the current fixedpoint context.
+ Return the set of queries in the string.
+
+ \param c - context.
+ \param f - fixedpoint context.
+ \param s - string containing SMT2 specification.
+
+ \sa Z3_fixedpoint_from_file
+ \sa Z3_fixedpoint_to_string
+
+ def_API('Z3_fixedpoint_from_string', AST_VECTOR, (_in(CONTEXT), _in(FIXEDPOINT), _in(STRING)))
+ */
+ Z3_ast_vector Z3_API Z3_fixedpoint_from_string(Z3_context c,
+ Z3_fixedpoint f,
+ Z3_string s);
+
+ /**
+ \brief Parse an SMT-LIB2 file with fixedpoint rules.
+ Add the rules to the current fixedpoint context.
+ Return the set of queries in the file.
+
+ \param c - context.
+ \param f - fixedpoint context.
+ \param s - path to file containing SMT2 specification.
+
+ \sa Z3_fixedpoint_from_string
+ \sa Z3_fixedpoint_to_string
+
+ def_API('Z3_fixedpoint_from_file', AST_VECTOR, (_in(CONTEXT), _in(FIXEDPOINT), _in(STRING)))
+ */
+ Z3_ast_vector Z3_API Z3_fixedpoint_from_file(Z3_context c,
+ Z3_fixedpoint f,
+ Z3_string s);
+
+ /** \brief The following utilities allows adding user-defined domains. */
+
+ typedef void Z3_fixedpoint_reduce_assign_callback_fptr(
+ void*, Z3_func_decl,
+ unsigned, Z3_ast const [],
+ unsigned, Z3_ast const []);
+
+ typedef void Z3_fixedpoint_reduce_app_callback_fptr(
+ void*, Z3_func_decl,
+ unsigned, Z3_ast const [],
+ Z3_ast*);
+
+
+ /** \brief Initialize the context with a user-defined state. */
+ void Z3_API Z3_fixedpoint_init(Z3_context c, Z3_fixedpoint d, void* state);
+
+ /**
+ \brief Register a callback to destructive updates.
+
+ Registers are identified with terms encoded as fresh constants,
+ */
+ void Z3_API Z3_fixedpoint_set_reduce_assign_callback(
+ Z3_context c ,Z3_fixedpoint d, Z3_fixedpoint_reduce_assign_callback_fptr cb);
+
+ /** \brief Register a callback for building terms based on the relational operators. */
+ void Z3_API Z3_fixedpoint_set_reduce_app_callback(
+ Z3_context c, Z3_fixedpoint d, Z3_fixedpoint_reduce_app_callback_fptr cb);
+
+ typedef void (*Z3_fixedpoint_new_lemma_eh)(void *state, Z3_ast lemma, unsigned level);
+ typedef void (*Z3_fixedpoint_predecessor_eh)(void *state);
+ typedef void (*Z3_fixedpoint_unfold_eh)(void *state);
+
+ /** \brief set export callback for lemmas */
+ void Z3_API Z3_fixedpoint_add_callback(Z3_context ctx, Z3_fixedpoint f, void *state,
+ Z3_fixedpoint_new_lemma_eh new_lemma_eh,
+ Z3_fixedpoint_predecessor_eh predecessor_eh,
+ Z3_fixedpoint_unfold_eh unfold_eh);
+
+ void Z3_API Z3_fixedpoint_add_constraint (Z3_context c, Z3_fixedpoint d, Z3_ast e, unsigned lvl);
+
+ /*@}*/
+ /*@}*/
+
+#ifdef __cplusplus
+}
+#endif // __cplusplus
+
diff --git a/z3-4.8.9-x64-ubuntu-16.04/include/z3_fpa.h b/z3-4.8.9-x64-ubuntu-16.04/include/z3_fpa.h
new file mode 100644
index 0000000..ddf0fb1
--- /dev/null
+++ b/z3-4.8.9-x64-ubuntu-16.04/include/z3_fpa.h
@@ -0,0 +1,1086 @@
+/*++
+Copyright (c) 2013 Microsoft Corporation
+
+Module Name:
+
+ z3_fpa.h
+
+Abstract:
+
+ Additional APIs for floating-point arithmetic (FP).
+
+Author:
+
+ Christoph M. Wintersteiger (cwinter) 2013-06-05
+
+Notes:
+
+--*/
+#pragma once
+
+#ifdef __cplusplus
+extern "C" {
+#endif // __cplusplus
+
+ /** \defgroup capi C API */
+ /*@{*/
+
+ /** @name Floating-Point Arithmetic */
+ /*@{*/
+ /**
+ \brief Create the RoundingMode sort.
+
+ \param c logical context
+
+ def_API('Z3_mk_fpa_rounding_mode_sort', SORT, (_in(CONTEXT),))
+ */
+ Z3_sort Z3_API Z3_mk_fpa_rounding_mode_sort(Z3_context c);
+
+ /**
+ \brief Create a numeral of RoundingMode sort which represents the NearestTiesToEven rounding mode.
+
+ \param c logical context
+
+ def_API('Z3_mk_fpa_round_nearest_ties_to_even', AST, (_in(CONTEXT),))
+ */
+ Z3_ast Z3_API Z3_mk_fpa_round_nearest_ties_to_even(Z3_context c);
+
+ /**
+ \brief Create a numeral of RoundingMode sort which represents the NearestTiesToEven rounding mode.
+
+ \param c logical context
+
+ def_API('Z3_mk_fpa_rne', AST, (_in(CONTEXT),))
+ */
+ Z3_ast Z3_API Z3_mk_fpa_rne(Z3_context c);
+
+ /**
+ \brief Create a numeral of RoundingMode sort which represents the NearestTiesToAway rounding mode.
+
+ \param c logical context
+
+ def_API('Z3_mk_fpa_round_nearest_ties_to_away', AST, (_in(CONTEXT),))
+ */
+ Z3_ast Z3_API Z3_mk_fpa_round_nearest_ties_to_away(Z3_context c);
+
+ /**
+ \brief Create a numeral of RoundingMode sort which represents the NearestTiesToAway rounding mode.
+
+ \param c logical context
+
+ def_API('Z3_mk_fpa_rna', AST, (_in(CONTEXT),))
+ */
+ Z3_ast Z3_API Z3_mk_fpa_rna(Z3_context c);
+
+ /**
+ \brief Create a numeral of RoundingMode sort which represents the TowardPositive rounding mode.
+
+ \param c logical context
+
+ def_API('Z3_mk_fpa_round_toward_positive', AST, (_in(CONTEXT),))
+ */
+ Z3_ast Z3_API Z3_mk_fpa_round_toward_positive(Z3_context c);
+
+ /**
+ \brief Create a numeral of RoundingMode sort which represents the TowardPositive rounding mode.
+
+ \param c logical context
+
+ def_API('Z3_mk_fpa_rtp', AST, (_in(CONTEXT),))
+ */
+ Z3_ast Z3_API Z3_mk_fpa_rtp(Z3_context c);
+
+ /**
+ \brief Create a numeral of RoundingMode sort which represents the TowardNegative rounding mode.
+
+ \param c logical context
+
+ def_API('Z3_mk_fpa_round_toward_negative', AST, (_in(CONTEXT),))
+ */
+ Z3_ast Z3_API Z3_mk_fpa_round_toward_negative(Z3_context c);
+
+ /**
+ \brief Create a numeral of RoundingMode sort which represents the TowardNegative rounding mode.
+
+ \param c logical context
+
+ def_API('Z3_mk_fpa_rtn', AST, (_in(CONTEXT),))
+ */
+ Z3_ast Z3_API Z3_mk_fpa_rtn(Z3_context c);
+
+ /**
+ \brief Create a numeral of RoundingMode sort which represents the TowardZero rounding mode.
+
+ \param c logical context
+
+ def_API('Z3_mk_fpa_round_toward_zero', AST, (_in(CONTEXT),))
+ */
+ Z3_ast Z3_API Z3_mk_fpa_round_toward_zero(Z3_context c);
+
+ /**
+ \brief Create a numeral of RoundingMode sort which represents the TowardZero rounding mode.
+
+ \param c logical context
+
+ def_API('Z3_mk_fpa_rtz', AST, (_in(CONTEXT),))
+ */
+ Z3_ast Z3_API Z3_mk_fpa_rtz(Z3_context c);
+
+ /**
+ \brief Create a FloatingPoint sort.
+
+ \param c logical context
+ \param ebits number of exponent bits
+ \param sbits number of significand bits
+
+ \remark \c ebits must be larger than 1 and \c sbits must be larger than 2.
+
+ def_API('Z3_mk_fpa_sort', SORT, (_in(CONTEXT), _in(UINT), _in(UINT)))
+ */
+ Z3_sort Z3_API Z3_mk_fpa_sort(Z3_context c, unsigned ebits, unsigned sbits);
+
+ /**
+ \brief Create the half-precision (16-bit) FloatingPoint sort.
+
+ \param c logical context
+
+ def_API('Z3_mk_fpa_sort_half', SORT, (_in(CONTEXT),))
+ */
+ Z3_sort Z3_API Z3_mk_fpa_sort_half(Z3_context c);
+
+ /**
+ \brief Create the half-precision (16-bit) FloatingPoint sort.
+
+ \param c logical context
+
+ def_API('Z3_mk_fpa_sort_16', SORT, (_in(CONTEXT),))
+ */
+ Z3_sort Z3_API Z3_mk_fpa_sort_16(Z3_context c);
+
+ /**
+ \brief Create the single-precision (32-bit) FloatingPoint sort.
+
+ \param c logical context.
+
+ def_API('Z3_mk_fpa_sort_single', SORT, (_in(CONTEXT),))
+ */
+ Z3_sort Z3_API Z3_mk_fpa_sort_single(Z3_context c);
+
+ /**
+ \brief Create the single-precision (32-bit) FloatingPoint sort.
+
+ \param c logical context
+
+ def_API('Z3_mk_fpa_sort_32', SORT, (_in(CONTEXT),))
+ */
+ Z3_sort Z3_API Z3_mk_fpa_sort_32(Z3_context c);
+
+ /**
+ \brief Create the double-precision (64-bit) FloatingPoint sort.
+
+ \param c logical context
+
+ def_API('Z3_mk_fpa_sort_double', SORT, (_in(CONTEXT),))
+ */
+ Z3_sort Z3_API Z3_mk_fpa_sort_double(Z3_context c);
+
+ /**
+ \brief Create the double-precision (64-bit) FloatingPoint sort.
+
+ \param c logical context
+
+ def_API('Z3_mk_fpa_sort_64', SORT, (_in(CONTEXT),))
+ */
+ Z3_sort Z3_API Z3_mk_fpa_sort_64(Z3_context c);
+
+ /**
+ \brief Create the quadruple-precision (128-bit) FloatingPoint sort.
+
+ \param c logical context
+
+ def_API('Z3_mk_fpa_sort_quadruple', SORT, (_in(CONTEXT),))
+ */
+ Z3_sort Z3_API Z3_mk_fpa_sort_quadruple(Z3_context c);
+
+ /**
+ \brief Create the quadruple-precision (128-bit) FloatingPoint sort.
+
+ \param c logical context
+
+ def_API('Z3_mk_fpa_sort_128', SORT, (_in(CONTEXT),))
+ */
+ Z3_sort Z3_API Z3_mk_fpa_sort_128(Z3_context c);
+
+ /**
+ \brief Create a floating-point NaN of sort \c s.
+
+ \param c logical context
+ \param s target sort
+
+ \sa Z3_mk_fpa_inf
+ \sa Z3_mk_fpa_zero
+
+ def_API('Z3_mk_fpa_nan', AST, (_in(CONTEXT),_in(SORT)))
+ */
+ Z3_ast Z3_API Z3_mk_fpa_nan(Z3_context c, Z3_sort s);
+
+ /**
+ \brief Create a floating-point infinity of sort \c s.
+
+ \param c logical context
+ \param s target sort
+ \param negative indicates whether the result should be negative
+
+ When \c negative is \c true, -oo will be generated instead of +oo.
+
+ \sa Z3_mk_fpa_nan
+ \sa Z3_mk_fpa_zero
+
+ def_API('Z3_mk_fpa_inf', AST, (_in(CONTEXT),_in(SORT),_in(BOOL)))
+ */
+ Z3_ast Z3_API Z3_mk_fpa_inf(Z3_context c, Z3_sort s, bool negative);
+
+ /**
+ \brief Create a floating-point zero of sort \c s.
+
+ \param c logical context
+ \param s target sort
+ \param negative indicates whether the result should be negative
+
+ When \c negative is \c true, -zero will be generated instead of +zero.
+
+ \sa Z3_mk_fpa_inf
+ \sa Z3_mk_fpa_nan
+
+ def_API('Z3_mk_fpa_zero', AST, (_in(CONTEXT),_in(SORT),_in(BOOL)))
+ */
+ Z3_ast Z3_API Z3_mk_fpa_zero(Z3_context c, Z3_sort s, bool negative);
+
+ /**
+ \brief Create an expression of FloatingPoint sort from three bit-vector expressions.
+
+ This is the operator named `fp' in the SMT FP theory definition.
+ Note that \c sgn is required to be a bit-vector of size 1. Significand and exponent
+ are required to be longer than 1 and 2 respectively. The FloatingPoint sort
+ of the resulting expression is automatically determined from the bit-vector sizes
+ of the arguments. The exponent is assumed to be in IEEE-754 biased representation.
+
+ \param c logical context
+ \param sgn sign
+ \param exp exponent
+ \param sig significand
+
+ \sa Z3_mk_fpa_numeral_double
+ \sa Z3_mk_fpa_numeral_float
+ \sa Z3_mk_fpa_numeral_int
+ \sa Z3_mk_fpa_numeral_int_uint
+ \sa Z3_mk_fpa_numeral_int64_uint64
+ \sa Z3_mk_numeral
+
+ def_API('Z3_mk_fpa_fp', AST, (_in(CONTEXT), _in(AST), _in(AST), _in(AST)))
+ */
+ Z3_ast Z3_API Z3_mk_fpa_fp(Z3_context c, Z3_ast sgn, Z3_ast exp, Z3_ast sig);
+
+ /**
+ \brief Create a numeral of FloatingPoint sort from a float.
+
+ This function is used to create numerals that fit in a float value.
+ It is slightly faster than #Z3_mk_numeral since it is not necessary to parse a string.
+
+ \param c logical context
+ \param v value
+ \param ty sort
+
+ \c ty must be a FloatingPoint sort
+
+ \sa Z3_mk_fpa_fp
+ \sa Z3_mk_fpa_numeral_double
+ \sa Z3_mk_fpa_numeral_int
+ \sa Z3_mk_fpa_numeral_int_uint
+ \sa Z3_mk_fpa_numeral_int64_uint64
+ \sa Z3_mk_numeral
+
+ def_API('Z3_mk_fpa_numeral_float', AST, (_in(CONTEXT), _in(FLOAT), _in(SORT)))
+ */
+ Z3_ast Z3_API Z3_mk_fpa_numeral_float(Z3_context c, float v, Z3_sort ty);
+
+ /**
+ \brief Create a numeral of FloatingPoint sort from a double.
+
+ This function is used to create numerals that fit in a double value.
+ It is slightly faster than #Z3_mk_numeral since it is not necessary to parse a string.
+
+ \param c logical context
+ \param v value
+ \param ty sort
+
+ \c ty must be a FloatingPoint sort
+
+ \sa Z3_mk_fpa_fp
+ \sa Z3_mk_fpa_numeral_float
+ \sa Z3_mk_fpa_numeral_int
+ \sa Z3_mk_fpa_numeral_int_uint
+ \sa Z3_mk_fpa_numeral_int64_uint64
+ \sa Z3_mk_numeral
+
+ def_API('Z3_mk_fpa_numeral_double', AST, (_in(CONTEXT), _in(DOUBLE), _in(SORT)))
+ */
+ Z3_ast Z3_API Z3_mk_fpa_numeral_double(Z3_context c, double v, Z3_sort ty);
+
+ /**
+ \brief Create a numeral of FloatingPoint sort from a signed integer.
+
+ \param c logical context
+ \param v value
+ \param ty result sort
+
+ \c ty must be a FloatingPoint sort
+
+ \sa Z3_mk_fpa_fp
+ \sa Z3_mk_fpa_numeral_double
+ \sa Z3_mk_fpa_numeral_float
+ \sa Z3_mk_fpa_numeral_int_uint
+ \sa Z3_mk_fpa_numeral_int64_uint64
+ \sa Z3_mk_numeral
+
+ def_API('Z3_mk_fpa_numeral_int', AST, (_in(CONTEXT), _in(INT), _in(SORT)))
+ */
+ Z3_ast Z3_API Z3_mk_fpa_numeral_int(Z3_context c, signed v, Z3_sort ty);
+
+ /**
+ \brief Create a numeral of FloatingPoint sort from a sign bit and two integers.
+
+ \param c logical context
+ \param sgn sign bit (true == negative)
+ \param sig significand
+ \param exp exponent
+ \param ty result sort
+
+ \c ty must be a FloatingPoint sort
+
+ \sa Z3_mk_fpa_fp
+ \sa Z3_mk_fpa_numeral_double
+ \sa Z3_mk_fpa_numeral_float
+ \sa Z3_mk_fpa_numeral_int
+ \sa Z3_mk_fpa_numeral_int64_uint64
+ \sa Z3_mk_numeral
+
+ def_API('Z3_mk_fpa_numeral_int_uint', AST, (_in(CONTEXT), _in(BOOL), _in(INT), _in(UINT), _in(SORT)))
+ */
+ Z3_ast Z3_API Z3_mk_fpa_numeral_int_uint(Z3_context c, bool sgn, signed exp, unsigned sig, Z3_sort ty);
+
+ /**
+ \brief Create a numeral of FloatingPoint sort from a sign bit and two 64-bit integers.
+
+ \param c logical context
+ \param sgn sign bit (true == negative)
+ \param sig significand
+ \param exp exponent
+ \param ty result sort
+
+ \c ty must be a FloatingPoint sort
+
+ \sa Z3_mk_fpa_fp
+ \sa Z3_mk_fpa_numeral_double
+ \sa Z3_mk_fpa_numeral_float
+ \sa Z3_mk_fpa_numeral_int
+ \sa Z3_mk_fpa_numeral_int_uint
+ \sa Z3_mk_numeral
+
+ def_API('Z3_mk_fpa_numeral_int64_uint64', AST, (_in(CONTEXT), _in(BOOL), _in(INT64), _in(UINT64), _in(SORT)))
+ */
+ Z3_ast Z3_API Z3_mk_fpa_numeral_int64_uint64(Z3_context c, bool sgn, int64_t exp, uint64_t sig, Z3_sort ty);
+
+ /**
+ \brief Floating-point absolute value
+
+ \param c logical context
+ \param t term of FloatingPoint sort
+
+ def_API('Z3_mk_fpa_abs', AST, (_in(CONTEXT),_in(AST)))
+ */
+ Z3_ast Z3_API Z3_mk_fpa_abs(Z3_context c, Z3_ast t);
+
+ /**
+ \brief Floating-point negation
+
+ \param c logical context
+ \param t term of FloatingPoint sort
+
+ def_API('Z3_mk_fpa_neg', AST, (_in(CONTEXT),_in(AST)))
+ */
+ Z3_ast Z3_API Z3_mk_fpa_neg(Z3_context c, Z3_ast t);
+
+ /**
+ \brief Floating-point addition
+
+ \param c logical context
+ \param rm term of RoundingMode sort
+ \param t1 term of FloatingPoint sort
+ \param t2 term of FloatingPoint sort
+
+ \c rm must be of RoundingMode sort, \c t1 and \c t2 must have the same FloatingPoint sort.
+
+ def_API('Z3_mk_fpa_add', AST, (_in(CONTEXT),_in(AST),_in(AST),_in(AST)))
+ */
+ Z3_ast Z3_API Z3_mk_fpa_add(Z3_context c, Z3_ast rm, Z3_ast t1, Z3_ast t2);
+
+ /**
+ \brief Floating-point subtraction
+
+ \param c logical context
+ \param rm term of RoundingMode sort
+ \param t1 term of FloatingPoint sort
+ \param t2 term of FloatingPoint sort
+
+ \c rm must be of RoundingMode sort, \c t1 and \c t2 must have the same FloatingPoint sort.
+
+ def_API('Z3_mk_fpa_sub', AST, (_in(CONTEXT),_in(AST),_in(AST),_in(AST)))
+ */
+ Z3_ast Z3_API Z3_mk_fpa_sub(Z3_context c, Z3_ast rm, Z3_ast t1, Z3_ast t2);
+
+ /**
+ \brief Floating-point multiplication
+
+ \param c logical context
+ \param rm term of RoundingMode sort
+ \param t1 term of FloatingPoint sort
+ \param t2 term of FloatingPoint sort
+
+ \c rm must be of RoundingMode sort, \c t1 and \c t2 must have the same FloatingPoint sort.
+
+ def_API('Z3_mk_fpa_mul', AST, (_in(CONTEXT),_in(AST),_in(AST),_in(AST)))
+ */
+ Z3_ast Z3_API Z3_mk_fpa_mul(Z3_context c, Z3_ast rm, Z3_ast t1, Z3_ast t2);
+
+ /**
+ \brief Floating-point division
+
+ \param c logical context
+ \param rm term of RoundingMode sort
+ \param t1 term of FloatingPoint sort.
+ \param t2 term of FloatingPoint sort
+
+ The nodes \c rm must be of RoundingMode sort, \c t1 and \c t2 must have the same FloatingPoint sort.
+
+ def_API('Z3_mk_fpa_div', AST, (_in(CONTEXT),_in(AST),_in(AST),_in(AST)))
+ */
+ Z3_ast Z3_API Z3_mk_fpa_div(Z3_context c, Z3_ast rm, Z3_ast t1, Z3_ast t2);
+
+ /**
+ \brief Floating-point fused multiply-add.
+
+ \param c logical context
+ \param rm term of RoundingMode sort
+ \param t1 term of FloatingPoint sort
+ \param t2 term of FloatingPoint sort
+ \param t3 term of FloatingPoint sort
+
+ The result is \ccode{round((t1 * t2) + t3)}.
+
+ \c rm must be of RoundingMode sort, \c t1, \c t2, and \c t3 must have the same FloatingPoint sort.
+
+ def_API('Z3_mk_fpa_fma', AST, (_in(CONTEXT),_in(AST),_in(AST),_in(AST),_in(AST)))
+ */
+ Z3_ast Z3_API Z3_mk_fpa_fma(Z3_context c, Z3_ast rm, Z3_ast t1, Z3_ast t2, Z3_ast t3);
+
+ /**
+ \brief Floating-point square root
+
+ \param c logical context
+ \param rm term of RoundingMode sort
+ \param t term of FloatingPoint sort
+
+ \c rm must be of RoundingMode sort, \c t must have FloatingPoint sort.
+
+ def_API('Z3_mk_fpa_sqrt', AST, (_in(CONTEXT),_in(AST),_in(AST)))
+ */
+ Z3_ast Z3_API Z3_mk_fpa_sqrt(Z3_context c, Z3_ast rm, Z3_ast t);
+
+ /**
+ \brief Floating-point remainder
+
+ \param c logical context
+ \param t1 term of FloatingPoint sort
+ \param t2 term of FloatingPoint sort
+
+ \c t1 and \c t2 must have the same FloatingPoint sort.
+
+ def_API('Z3_mk_fpa_rem', AST, (_in(CONTEXT),_in(AST),_in(AST)))
+ */
+ Z3_ast Z3_API Z3_mk_fpa_rem(Z3_context c, Z3_ast t1, Z3_ast t2);
+
+ /**
+ \brief Floating-point roundToIntegral. Rounds a floating-point number to
+ the closest integer, again represented as a floating-point number.
+
+ \param c logical context
+ \param rm term of RoundingMode sort
+ \param t term of FloatingPoint sort
+
+ \c t must be of FloatingPoint sort.
+
+ def_API('Z3_mk_fpa_round_to_integral', AST, (_in(CONTEXT),_in(AST),_in(AST)))
+ */
+ Z3_ast Z3_API Z3_mk_fpa_round_to_integral(Z3_context c, Z3_ast rm, Z3_ast t);
+
+ /**
+ \brief Minimum of floating-point numbers.
+
+ \param c logical context
+ \param t1 term of FloatingPoint sort
+ \param t2 term of FloatingPoint sort
+
+ \c t1, \c t2 must have the same FloatingPoint sort.
+
+ def_API('Z3_mk_fpa_min', AST, (_in(CONTEXT),_in(AST),_in(AST)))
+ */
+ Z3_ast Z3_API Z3_mk_fpa_min(Z3_context c, Z3_ast t1, Z3_ast t2);
+
+ /**
+ \brief Maximum of floating-point numbers.
+
+ \param c logical context
+ \param t1 term of FloatingPoint sort
+ \param t2 term of FloatingPoint sort
+
+ \c t1, \c t2 must have the same FloatingPoint sort.
+
+ def_API('Z3_mk_fpa_max', AST, (_in(CONTEXT),_in(AST),_in(AST)))
+ */
+ Z3_ast Z3_API Z3_mk_fpa_max(Z3_context c, Z3_ast t1, Z3_ast t2);
+
+ /**
+ \brief Floating-point less than or equal.
+
+ \param c logical context
+ \param t1 term of FloatingPoint sort
+ \param t2 term of FloatingPoint sort
+
+ \c t1 and \c t2 must have the same FloatingPoint sort.
+
+ def_API('Z3_mk_fpa_leq', AST, (_in(CONTEXT),_in(AST),_in(AST)))
+ */
+ Z3_ast Z3_API Z3_mk_fpa_leq(Z3_context c, Z3_ast t1, Z3_ast t2);
+
+ /**
+ \brief Floating-point less than.
+
+ \param c logical context
+ \param t1 term of FloatingPoint sort
+ \param t2 term of FloatingPoint sort
+
+ \c t1 and \c t2 must have the same FloatingPoint sort.
+
+ def_API('Z3_mk_fpa_lt', AST, (_in(CONTEXT),_in(AST),_in(AST)))
+ */
+ Z3_ast Z3_API Z3_mk_fpa_lt(Z3_context c, Z3_ast t1, Z3_ast t2);
+
+ /**
+ \brief Floating-point greater than or equal.
+
+ \param c logical context
+ \param t1 term of FloatingPoint sort
+ \param t2 term of FloatingPoint sort
+
+ \c t1 and \c t2 must have the same FloatingPoint sort.
+
+ def_API('Z3_mk_fpa_geq', AST, (_in(CONTEXT),_in(AST),_in(AST)))
+ */
+ Z3_ast Z3_API Z3_mk_fpa_geq(Z3_context c, Z3_ast t1, Z3_ast t2);
+
+ /**
+ \brief Floating-point greater than.
+
+ \param c logical context
+ \param t1 term of FloatingPoint sort
+ \param t2 term of FloatingPoint sort
+
+ \c t1 and \c t2 must have the same FloatingPoint sort.
+
+ def_API('Z3_mk_fpa_gt', AST, (_in(CONTEXT),_in(AST),_in(AST)))
+ */
+ Z3_ast Z3_API Z3_mk_fpa_gt(Z3_context c, Z3_ast t1, Z3_ast t2);
+
+ /**
+ \brief Floating-point equality.
+
+ \param c logical context
+ \param t1 term of FloatingPoint sort
+ \param t2 term of FloatingPoint sort
+
+ Note that this is IEEE 754 equality (as opposed to SMT-LIB \ccode{=}).
+
+ \c t1 and \c t2 must have the same FloatingPoint sort.
+
+ def_API('Z3_mk_fpa_eq', AST, (_in(CONTEXT),_in(AST),_in(AST)))
+ */
+ Z3_ast Z3_API Z3_mk_fpa_eq(Z3_context c, Z3_ast t1, Z3_ast t2);
+
+ /**
+ \brief Predicate indicating whether \c t is a normal floating-point number.
+
+ \param c logical context
+ \param t term of FloatingPoint sort
+
+ \c t must have FloatingPoint sort.
+
+ def_API('Z3_mk_fpa_is_normal', AST, (_in(CONTEXT),_in(AST)))
+ */
+ Z3_ast Z3_API Z3_mk_fpa_is_normal(Z3_context c, Z3_ast t);
+
+ /**
+ \brief Predicate indicating whether \c t is a subnormal floating-point number.
+
+ \param c logical context
+ \param t term of FloatingPoint sort
+
+ \c t must have FloatingPoint sort.
+
+ def_API('Z3_mk_fpa_is_subnormal', AST, (_in(CONTEXT),_in(AST)))
+ */
+ Z3_ast Z3_API Z3_mk_fpa_is_subnormal(Z3_context c, Z3_ast t);
+
+ /**
+ \brief Predicate indicating whether \c t is a floating-point number with zero value, i.e., +zero or -zero.
+
+ \param c logical context
+ \param t term of FloatingPoint sort
+
+ \c t must have FloatingPoint sort.
+
+ def_API('Z3_mk_fpa_is_zero', AST, (_in(CONTEXT),_in(AST)))
+ */
+ Z3_ast Z3_API Z3_mk_fpa_is_zero(Z3_context c, Z3_ast t);
+
+ /**
+ \brief Predicate indicating whether \c t is a floating-point number representing +oo or -oo.
+
+ \param c logical context
+ \param t term of FloatingPoint sort
+
+ \c t must have FloatingPoint sort.
+
+ def_API('Z3_mk_fpa_is_infinite', AST, (_in(CONTEXT),_in(AST)))
+ */
+ Z3_ast Z3_API Z3_mk_fpa_is_infinite(Z3_context c, Z3_ast t);
+
+ /**
+ \brief Predicate indicating whether \c t is a NaN.
+
+ \param c logical context
+ \param t term of FloatingPoint sort
+
+ \c t must have FloatingPoint sort.
+
+ def_API('Z3_mk_fpa_is_nan', AST, (_in(CONTEXT),_in(AST)))
+ */
+ Z3_ast Z3_API Z3_mk_fpa_is_nan(Z3_context c, Z3_ast t);
+
+ /**
+ \brief Predicate indicating whether \c t is a negative floating-point number.
+
+ \param c logical context
+ \param t term of FloatingPoint sort
+
+ \c t must have FloatingPoint sort.
+
+ def_API('Z3_mk_fpa_is_negative', AST, (_in(CONTEXT),_in(AST)))
+ */
+ Z3_ast Z3_API Z3_mk_fpa_is_negative(Z3_context c, Z3_ast t);
+
+ /**
+ \brief Predicate indicating whether \c t is a positive floating-point number.
+
+ \param c logical context
+ \param t term of FloatingPoint sort
+
+ \c t must have FloatingPoint sort.
+
+ def_API('Z3_mk_fpa_is_positive', AST, (_in(CONTEXT),_in(AST)))
+ */
+ Z3_ast Z3_API Z3_mk_fpa_is_positive(Z3_context c, Z3_ast t);
+
+ /**
+ \brief Conversion of a single IEEE 754-2008 bit-vector into a floating-point number.
+
+ Produces a term that represents the conversion of a bit-vector term \c bv to a
+ floating-point term of sort \c s.
+
+ \param c logical context
+ \param bv a bit-vector term
+ \param s floating-point sort
+
+ \c s must be a FloatingPoint sort, \c t must be of bit-vector sort, and the bit-vector
+ size of \c bv must be equal to \ccode{ebits+sbits} of \c s. The format of the bit-vector is
+ as defined by the IEEE 754-2008 interchange format.
+
+ def_API('Z3_mk_fpa_to_fp_bv', AST, (_in(CONTEXT),_in(AST),_in(SORT)))
+ */
+ Z3_ast Z3_API Z3_mk_fpa_to_fp_bv(Z3_context c, Z3_ast bv, Z3_sort s);
+
+ /**
+ \brief Conversion of a FloatingPoint term into another term of different FloatingPoint sort.
+
+ Produces a term that represents the conversion of a floating-point term \c t to a
+ floating-point term of sort \c s. If necessary, the result will be rounded according
+ to rounding mode \c rm.
+
+ \param c logical context
+ \param rm term of RoundingMode sort
+ \param t term of FloatingPoint sort
+ \param s floating-point sort
+
+ \c s must be a FloatingPoint sort, \c rm must be of RoundingMode sort, \c t must be of floating-point sort.
+
+ def_API('Z3_mk_fpa_to_fp_float', AST, (_in(CONTEXT),_in(AST),_in(AST),_in(SORT)))
+ */
+ Z3_ast Z3_API Z3_mk_fpa_to_fp_float(Z3_context c, Z3_ast rm, Z3_ast t, Z3_sort s);
+
+ /**
+ \brief Conversion of a term of real sort into a term of FloatingPoint sort.
+
+ Produces a term that represents the conversion of term \c t of real sort into a
+ floating-point term of sort \c s. If necessary, the result will be rounded according
+ to rounding mode \c rm.
+
+ \param c logical context
+ \param rm term of RoundingMode sort
+ \param t term of Real sort
+ \param s floating-point sort
+
+ \c s must be a FloatingPoint sort, \c rm must be of RoundingMode sort, \c t must be of real sort.
+
+ def_API('Z3_mk_fpa_to_fp_real', AST, (_in(CONTEXT),_in(AST),_in(AST),_in(SORT)))
+ */
+ Z3_ast Z3_API Z3_mk_fpa_to_fp_real(Z3_context c, Z3_ast rm, Z3_ast t, Z3_sort s);
+
+ /**
+ \brief Conversion of a 2's complement signed bit-vector term into a term of FloatingPoint sort.
+
+ Produces a term that represents the conversion of the bit-vector term \c t into a
+ floating-point term of sort \c s. The bit-vector \c t is taken to be in signed
+ 2's complement format. If necessary, the result will be rounded according
+ to rounding mode \c rm.
+
+ \param c logical context
+ \param rm term of RoundingMode sort
+ \param t term of bit-vector sort
+ \param s floating-point sort
+
+ \c s must be a FloatingPoint sort, \c rm must be of RoundingMode sort, \c t must be of bit-vector sort.
+
+ def_API('Z3_mk_fpa_to_fp_signed', AST, (_in(CONTEXT),_in(AST),_in(AST),_in(SORT)))
+ */
+ Z3_ast Z3_API Z3_mk_fpa_to_fp_signed(Z3_context c, Z3_ast rm, Z3_ast t, Z3_sort s);
+
+ /**
+ \brief Conversion of a 2's complement unsigned bit-vector term into a term of FloatingPoint sort.
+
+ Produces a term that represents the conversion of the bit-vector term \c t into a
+ floating-point term of sort \c s. The bit-vector \c t is taken to be in unsigned
+ 2's complement format. If necessary, the result will be rounded according
+ to rounding mode \c rm.
+
+ \param c logical context
+ \param rm term of RoundingMode sort
+ \param t term of bit-vector sort
+ \param s floating-point sort
+
+ \c s must be a FloatingPoint sort, \c rm must be of RoundingMode sort, \c t must be of bit-vector sort.
+
+ def_API('Z3_mk_fpa_to_fp_unsigned', AST, (_in(CONTEXT),_in(AST),_in(AST),_in(SORT)))
+ */
+ Z3_ast Z3_API Z3_mk_fpa_to_fp_unsigned(Z3_context c, Z3_ast rm, Z3_ast t, Z3_sort s);
+
+ /**
+ \brief Conversion of a floating-point term into an unsigned bit-vector.
+
+ Produces a term that represents the conversion of the floating-point term \c t into a
+ bit-vector term of size \c sz in unsigned 2's complement format. If necessary, the result
+ will be rounded according to rounding mode \c rm.
+
+ \param c logical context
+ \param rm term of RoundingMode sort
+ \param t term of FloatingPoint sort
+ \param sz size of the resulting bit-vector
+
+ def_API('Z3_mk_fpa_to_ubv', AST, (_in(CONTEXT),_in(AST),_in(AST),_in(UINT)))
+ */
+ Z3_ast Z3_API Z3_mk_fpa_to_ubv(Z3_context c, Z3_ast rm, Z3_ast t, unsigned sz);
+
+ /**
+ \brief Conversion of a floating-point term into a signed bit-vector.
+
+ Produces a term that represents the conversion of the floating-point term \c t into a
+ bit-vector term of size \c sz in signed 2's complement format. If necessary, the result
+ will be rounded according to rounding mode \c rm.
+
+ \param c logical context
+ \param rm term of RoundingMode sort
+ \param t term of FloatingPoint sort
+ \param sz size of the resulting bit-vector
+
+ def_API('Z3_mk_fpa_to_sbv', AST, (_in(CONTEXT),_in(AST),_in(AST),_in(UINT)))
+ */
+ Z3_ast Z3_API Z3_mk_fpa_to_sbv(Z3_context c, Z3_ast rm, Z3_ast t, unsigned sz);
+
+ /**
+ \brief Conversion of a floating-point term into a real-numbered term.
+
+ Produces a term that represents the conversion of the floating-point term \c t into a
+ real number. Note that this type of conversion will often result in non-linear
+ constraints over real terms.
+
+ \param c logical context
+ \param t term of FloatingPoint sort
+
+ def_API('Z3_mk_fpa_to_real', AST, (_in(CONTEXT),_in(AST)))
+ */
+ Z3_ast Z3_API Z3_mk_fpa_to_real(Z3_context c, Z3_ast t);
+
+
+ /** @name Z3-specific floating-point extensions */
+ /*@{*/
+ /**
+ \brief Retrieves the number of bits reserved for the exponent in a FloatingPoint sort.
+
+ \param c logical context
+ \param s FloatingPoint sort
+
+ def_API('Z3_fpa_get_ebits', UINT, (_in(CONTEXT),_in(SORT)))
+ */
+ unsigned Z3_API Z3_fpa_get_ebits(Z3_context c, Z3_sort s);
+
+ /**
+ \brief Retrieves the number of bits reserved for the significand in a FloatingPoint sort.
+
+ \param c logical context
+ \param s FloatingPoint sort
+
+ def_API('Z3_fpa_get_sbits', UINT, (_in(CONTEXT),_in(SORT)))
+ */
+ unsigned Z3_API Z3_fpa_get_sbits(Z3_context c, Z3_sort s);
+
+ /**
+ \brief Checks whether a given floating-point numeral is a NaN.
+
+ \param c logical context
+ \param t a floating-point numeral
+
+ def_API('Z3_fpa_is_numeral_nan', BOOL, (_in(CONTEXT), _in(AST)))
+ */
+ bool Z3_API Z3_fpa_is_numeral_nan(Z3_context c, Z3_ast t);
+
+ /**
+ \brief Checks whether a given floating-point numeral is a +oo or -oo.
+
+ \param c logical context
+ \param t a floating-point numeral
+
+ def_API('Z3_fpa_is_numeral_inf', BOOL, (_in(CONTEXT), _in(AST)))
+ */
+ bool Z3_API Z3_fpa_is_numeral_inf(Z3_context c, Z3_ast t);
+
+ /**
+ \brief Checks whether a given floating-point numeral is +zero or -zero.
+
+ \param c logical context
+ \param t a floating-point numeral
+
+ def_API('Z3_fpa_is_numeral_zero', BOOL, (_in(CONTEXT), _in(AST)))
+ */
+ bool Z3_API Z3_fpa_is_numeral_zero(Z3_context c, Z3_ast t);
+
+ /**
+ \brief Checks whether a given floating-point numeral is normal.
+
+ \param c logical context
+ \param t a floating-point numeral
+
+ def_API('Z3_fpa_is_numeral_normal', BOOL, (_in(CONTEXT), _in(AST)))
+ */
+ bool Z3_API Z3_fpa_is_numeral_normal(Z3_context c, Z3_ast t);
+
+ /**
+ \brief Checks whether a given floating-point numeral is subnormal.
+
+ \param c logical context
+ \param t a floating-point numeral
+
+ def_API('Z3_fpa_is_numeral_subnormal', BOOL, (_in(CONTEXT), _in(AST)))
+ */
+ bool Z3_API Z3_fpa_is_numeral_subnormal(Z3_context c, Z3_ast t);
+
+ /**
+ \brief Checks whether a given floating-point numeral is positive.
+
+ \param c logical context
+ \param t a floating-point numeral
+
+ def_API('Z3_fpa_is_numeral_positive', BOOL, (_in(CONTEXT), _in(AST)))
+ */
+ bool Z3_API Z3_fpa_is_numeral_positive(Z3_context c, Z3_ast t);
+
+ /**
+ \brief Checks whether a given floating-point numeral is negative.
+
+ \param c logical context
+ \param t a floating-point numeral
+
+ def_API('Z3_fpa_is_numeral_negative', BOOL, (_in(CONTEXT), _in(AST)))
+ */
+ bool Z3_API Z3_fpa_is_numeral_negative(Z3_context c, Z3_ast t);
+
+ /**
+ \brief Retrieves the sign of a floating-point literal as a bit-vector expression.
+
+ \param c logical context
+ \param t a floating-point numeral
+
+ Remarks: NaN is an invalid argument.
+
+ def_API('Z3_fpa_get_numeral_sign_bv', AST, (_in(CONTEXT), _in(AST)))
+ */
+ Z3_ast Z3_API Z3_fpa_get_numeral_sign_bv(Z3_context c, Z3_ast t);
+
+ /**
+ \brief Retrieves the significand of a floating-point literal as a bit-vector expression.
+
+ \param c logical context
+ \param t a floating-point numeral
+
+ Remarks: NaN is an invalid argument.
+
+ def_API('Z3_fpa_get_numeral_significand_bv', AST, (_in(CONTEXT), _in(AST)))
+ */
+ Z3_ast Z3_API Z3_fpa_get_numeral_significand_bv(Z3_context c, Z3_ast t);
+
+ /**
+ \brief Retrieves the sign of a floating-point literal.
+
+ \param c logical context
+ \param t a floating-point numeral
+ \param sgn sign
+
+ Remarks: sets \c sgn to 0 if `t' is positive and to 1 otherwise, except for
+ NaN, which is an invalid argument.
+
+ def_API('Z3_fpa_get_numeral_sign', BOOL, (_in(CONTEXT), _in(AST), _out(INT)))
+ */
+ bool Z3_API Z3_fpa_get_numeral_sign(Z3_context c, Z3_ast t, int * sgn);
+
+ /**
+ \brief Return the significand value of a floating-point numeral as a string.
+
+ \param c logical context
+ \param t a floating-point numeral
+
+ Remarks: The significand \c s is always \ccode{0.0 <= s < 2.0}; the resulting string is long
+ enough to represent the real significand precisely.
+
+ def_API('Z3_fpa_get_numeral_significand_string', STRING, (_in(CONTEXT), _in(AST)))
+ */
+ Z3_string Z3_API Z3_fpa_get_numeral_significand_string(Z3_context c, Z3_ast t);
+
+ /**
+ \brief Return the significand value of a floating-point numeral as a uint64.
+
+ \param c logical context
+ \param t a floating-point numeral
+ \param n pointer to output uint64
+
+ Remarks: This function extracts the significand bits in `t`, without the
+ hidden bit or normalization. Sets the \c Z3_INVALID_ARG error code if the
+ significand does not fit into a \c uint64. NaN is an invalid argument.
+
+ def_API('Z3_fpa_get_numeral_significand_uint64', BOOL, (_in(CONTEXT), _in(AST), _out(UINT64)))
+ */
+ bool Z3_API Z3_fpa_get_numeral_significand_uint64(Z3_context c, Z3_ast t, uint64_t * n);
+
+ /**
+ \brief Return the exponent value of a floating-point numeral as a string.
+
+ \param c logical context
+ \param t a floating-point numeral
+ \param biased flag to indicate whether the result is in biased representation
+
+ Remarks: This function extracts the exponent in `t`, without normalization.
+ NaN is an invalid argument.
+
+ def_API('Z3_fpa_get_numeral_exponent_string', STRING, (_in(CONTEXT), _in(AST), _in(BOOL)))
+ */
+ Z3_string Z3_API Z3_fpa_get_numeral_exponent_string(Z3_context c, Z3_ast t, bool biased);
+
+ /**
+ \brief Return the exponent value of a floating-point numeral as a signed 64-bit integer
+
+ \param c logical context
+ \param t a floating-point numeral
+ \param n exponent
+ \param biased flag to indicate whether the result is in biased representation
+
+ Remarks: This function extracts the exponent in `t`, without normalization.
+ NaN is an invalid argument.
+
+ def_API('Z3_fpa_get_numeral_exponent_int64', BOOL, (_in(CONTEXT), _in(AST), _out(INT64), _in(BOOL)))
+ */
+ bool Z3_API Z3_fpa_get_numeral_exponent_int64(Z3_context c, Z3_ast t, int64_t * n, bool biased);
+
+ /**
+ \brief Retrieves the exponent of a floating-point literal as a bit-vector expression.
+
+ \param c logical context
+ \param t a floating-point numeral
+ \param biased flag to indicate whether the result is in biased representation
+
+ Remarks: This function extracts the exponent in `t`, without normalization.
+ NaN is an invalid arguments.
+
+ def_API('Z3_fpa_get_numeral_exponent_bv', AST, (_in(CONTEXT), _in(AST), _in(BOOL)))
+ */
+ Z3_ast Z3_API Z3_fpa_get_numeral_exponent_bv(Z3_context c, Z3_ast t, bool biased);
+
+ /**
+ \brief Conversion of a floating-point term into a bit-vector term in IEEE 754-2008 format.
+
+ \param c logical context
+ \param t term of FloatingPoint sort
+
+ \c t must have FloatingPoint sort. The size of the resulting bit-vector is automatically
+ determined.
+
+ Note that IEEE 754-2008 allows multiple different representations of NaN. This conversion
+ knows only one NaN and it will always produce the same bit-vector representation of
+ that NaN.
+
+ def_API('Z3_mk_fpa_to_ieee_bv', AST, (_in(CONTEXT),_in(AST)))
+ */
+ Z3_ast Z3_API Z3_mk_fpa_to_ieee_bv(Z3_context c, Z3_ast t);
+
+ /**
+ \brief Conversion of a real-sorted significand and an integer-sorted exponent into a term of FloatingPoint sort.
+
+ Produces a term that represents the conversion of \ccode{sig * 2^exp} into a
+ floating-point term of sort \c s. If necessary, the result will be rounded
+ according to rounding mode \c rm.
+
+ \param c logical context
+ \param rm term of RoundingMode sort
+ \param exp exponent term of Int sort
+ \param sig significand term of Real sort
+ \param s FloatingPoint sort
+
+ \c s must be a FloatingPoint sort, \c rm must be of RoundingMode sort, \c exp must be of int sort, \c sig must be of real sort.
+
+ def_API('Z3_mk_fpa_to_fp_int_real', AST, (_in(CONTEXT),_in(AST),_in(AST),_in(AST),_in(SORT)))
+ */
+ Z3_ast Z3_API Z3_mk_fpa_to_fp_int_real(Z3_context c, Z3_ast rm, Z3_ast exp, Z3_ast sig, Z3_sort s);
+ /*@}*/
+ /*@}*/
+ /*@}*/
+
+#ifdef __cplusplus
+}
+#endif // __cplusplus
+
diff --git a/z3-4.8.9-x64-ubuntu-16.04/include/z3_macros.h b/z3-4.8.9-x64-ubuntu-16.04/include/z3_macros.h
new file mode 100644
index 0000000..d1ac188
--- /dev/null
+++ b/z3-4.8.9-x64-ubuntu-16.04/include/z3_macros.h
@@ -0,0 +1,21 @@
+
+/*++
+Copyright (c) 2015 Microsoft Corporation
+
+--*/
+
+#ifndef Z3_bool_opt
+#define Z3_bool_opt Z3_bool
+#endif
+
+#ifndef Z3_API
+# ifdef __GNUC__
+# define Z3_API __attribute__ ((visibility ("default")))
+# else
+# define Z3_API
+# endif
+#endif
+
+#ifndef DEFINE_TYPE
+#define DEFINE_TYPE(T) typedef struct _ ## T *T
+#endif
diff --git a/z3-4.8.9-x64-ubuntu-16.04/include/z3_optimization.h b/z3-4.8.9-x64-ubuntu-16.04/include/z3_optimization.h
new file mode 100644
index 0000000..140d318
--- /dev/null
+++ b/z3-4.8.9-x64-ubuntu-16.04/include/z3_optimization.h
@@ -0,0 +1,360 @@
+/*++
+Copyright (c) 2015 Microsoft Corporation
+
+Module Name:
+
+ z3_optimization.h
+
+Abstract:
+
+ Optimization facilities
+
+Author:
+
+ Christoph M. Wintersteiger (cwinter) 2015-12-03
+
+Notes:
+
+--*/
+#pragma once
+
+#ifdef __cplusplus
+extern "C" {
+#endif // __cplusplus
+
+ /** \defgroup capi C API */
+ /*@{*/
+
+ /** @name Optimization facilities */
+ /*@{*/
+ /**
+ \brief Create a new optimize context.
+
+ \remark User must use #Z3_optimize_inc_ref and #Z3_optimize_dec_ref to manage optimize objects.
+ Even if the context was created using #Z3_mk_context instead of #Z3_mk_context_rc.
+
+ def_API('Z3_mk_optimize', OPTIMIZE, (_in(CONTEXT), ))
+ */
+ Z3_optimize Z3_API Z3_mk_optimize(Z3_context c);
+
+ /**
+ \brief Increment the reference counter of the given optimize context
+
+ def_API('Z3_optimize_inc_ref', VOID, (_in(CONTEXT), _in(OPTIMIZE)))
+ */
+ void Z3_API Z3_optimize_inc_ref(Z3_context c, Z3_optimize d);
+
+ /**
+ \brief Decrement the reference counter of the given optimize context.
+
+ def_API('Z3_optimize_dec_ref', VOID, (_in(CONTEXT), _in(OPTIMIZE)))
+ */
+ void Z3_API Z3_optimize_dec_ref(Z3_context c, Z3_optimize d);
+
+ /**
+ \brief Assert hard constraint to the optimization context.
+
+ \sa Z3_optimize_assert_soft
+ \sa Z3_optimize_assert_and_track
+
+ def_API('Z3_optimize_assert', VOID, (_in(CONTEXT), _in(OPTIMIZE), _in(AST)))
+ */
+ void Z3_API Z3_optimize_assert(Z3_context c, Z3_optimize o, Z3_ast a);
+
+
+ /**
+ \brief Assert tracked hard constraint to the optimization context.
+
+ \sa Z3_optimize_assert
+ \sa Z3_optimize_assert_soft
+
+ def_API('Z3_optimize_assert_and_track', VOID, (_in(CONTEXT), _in(OPTIMIZE), _in(AST), _in(AST)))
+ */
+ void Z3_API Z3_optimize_assert_and_track(Z3_context c, Z3_optimize o, Z3_ast a, Z3_ast t);
+
+ /**
+ \brief Assert soft constraint to the optimization context.
+ \param c - context
+ \param o - optimization context
+ \param a - formula
+ \param weight - a positive weight, penalty for violating soft constraint
+ \param id - optional identifier to group soft constraints
+
+ \sa Z3_optimize_assert
+ \sa Z3_optimize_assert_and_track
+
+ def_API('Z3_optimize_assert_soft', UINT, (_in(CONTEXT), _in(OPTIMIZE), _in(AST), _in(STRING), _in(SYMBOL)))
+ */
+ unsigned Z3_API Z3_optimize_assert_soft(Z3_context c, Z3_optimize o, Z3_ast a, Z3_string weight, Z3_symbol id);
+
+ /**
+ \brief Add a maximization constraint.
+ \param c - context
+ \param o - optimization context
+ \param t - arithmetical term
+
+ \sa Z3_optimize_minimize
+
+ def_API('Z3_optimize_maximize', UINT, (_in(CONTEXT), _in(OPTIMIZE), _in(AST)))
+ */
+ unsigned Z3_API Z3_optimize_maximize(Z3_context c, Z3_optimize o, Z3_ast t);
+
+ /**
+ \brief Add a minimization constraint.
+ \param c - context
+ \param o - optimization context
+ \param t - arithmetical term
+
+ \sa Z3_optimize_maximize
+
+ def_API('Z3_optimize_minimize', UINT, (_in(CONTEXT), _in(OPTIMIZE), _in(AST)))
+ */
+ unsigned Z3_API Z3_optimize_minimize(Z3_context c, Z3_optimize o, Z3_ast t);
+
+ /**
+ \brief Create a backtracking point.
+
+ The optimize solver contains a set of rules, added facts and assertions.
+ The set of rules, facts and assertions are restored upon calling #Z3_optimize_pop.
+
+ \sa Z3_optimize_pop
+
+ def_API('Z3_optimize_push', VOID, (_in(CONTEXT), _in(OPTIMIZE)))
+ */
+ void Z3_API Z3_optimize_push(Z3_context c, Z3_optimize d);
+
+ /**
+ \brief Backtrack one level.
+
+ \sa Z3_optimize_push
+
+ \pre The number of calls to pop cannot exceed calls to push.
+
+ def_API('Z3_optimize_pop', VOID, (_in(CONTEXT), _in(OPTIMIZE)))
+ */
+ void Z3_API Z3_optimize_pop(Z3_context c, Z3_optimize d);
+
+ /**
+ \brief Check consistency and produce optimal values.
+ \param c - context
+ \param o - optimization context
+ \param num_assumptions - number of additional assumptions
+ \param assumptions - the additional assumptions
+
+ \sa Z3_optimize_get_reason_unknown
+ \sa Z3_optimize_get_model
+ \sa Z3_optimize_get_statistics
+ \sa Z3_optimize_get_unsat_core
+
+ def_API('Z3_optimize_check', INT, (_in(CONTEXT), _in(OPTIMIZE), _in(UINT), _in_array(2, AST)))
+ */
+ Z3_lbool Z3_API Z3_optimize_check(Z3_context c, Z3_optimize o, unsigned num_assumptions, Z3_ast const assumptions[]);
+
+
+ /**
+ \brief Retrieve a string that describes the last status returned by #Z3_optimize_check.
+
+ Use this method when #Z3_optimize_check returns \c Z3_L_UNDEF.
+
+ def_API('Z3_optimize_get_reason_unknown', STRING, (_in(CONTEXT), _in(OPTIMIZE) ))
+ */
+ Z3_string Z3_API Z3_optimize_get_reason_unknown(Z3_context c, Z3_optimize d);
+
+ /**
+ \brief Retrieve the model for the last #Z3_optimize_check
+
+ The error handler is invoked if a model is not available because
+ the commands above were not invoked for the given optimization
+ solver, or if the result was \c Z3_L_FALSE.
+
+ def_API('Z3_optimize_get_model', MODEL, (_in(CONTEXT), _in(OPTIMIZE)))
+ */
+ Z3_model Z3_API Z3_optimize_get_model(Z3_context c, Z3_optimize o);
+
+ /**
+ \brief Retrieve the unsat core for the last #Z3_optimize_check
+ The unsat core is a subset of the assumptions \c a.
+
+ def_API('Z3_optimize_get_unsat_core', AST_VECTOR, (_in(CONTEXT), _in(OPTIMIZE)))
+ */
+ Z3_ast_vector Z3_API Z3_optimize_get_unsat_core(Z3_context c, Z3_optimize o);
+
+ /**
+ \brief Set parameters on optimization context.
+
+ \param c - context
+ \param o - optimization context
+ \param p - parameters
+
+ \sa Z3_optimize_get_help
+ \sa Z3_optimize_get_param_descrs
+
+ def_API('Z3_optimize_set_params', VOID, (_in(CONTEXT), _in(OPTIMIZE), _in(PARAMS)))
+ */
+ void Z3_API Z3_optimize_set_params(Z3_context c, Z3_optimize o, Z3_params p);
+
+ /**
+ \brief Return the parameter description set for the given optimize object.
+
+ \param c - context
+ \param o - optimization context
+
+ \sa Z3_optimize_get_help
+ \sa Z3_optimize_set_params
+
+ def_API('Z3_optimize_get_param_descrs', PARAM_DESCRS, (_in(CONTEXT), _in(OPTIMIZE)))
+ */
+ Z3_param_descrs Z3_API Z3_optimize_get_param_descrs(Z3_context c, Z3_optimize o);
+
+ /**
+ \brief Retrieve lower bound value or approximation for the i'th optimization objective.
+
+ \param c - context
+ \param o - optimization context
+ \param idx - index of optimization objective
+
+ \sa Z3_optimize_get_upper
+ \sa Z3_optimize_get_lower_as_vector
+ \sa Z3_optimize_get_upper_as_vector
+
+ def_API('Z3_optimize_get_lower', AST, (_in(CONTEXT), _in(OPTIMIZE), _in(UINT)))
+ */
+ Z3_ast Z3_API Z3_optimize_get_lower(Z3_context c, Z3_optimize o, unsigned idx);
+
+ /**
+ \brief Retrieve upper bound value or approximation for the i'th optimization objective.
+
+ \param c - context
+ \param o - optimization context
+ \param idx - index of optimization objective
+
+ \sa Z3_optimize_get_lower
+ \sa Z3_optimize_get_lower_as_vector
+ \sa Z3_optimize_get_upper_as_vector
+
+ def_API('Z3_optimize_get_upper', AST, (_in(CONTEXT), _in(OPTIMIZE), _in(UINT)))
+ */
+ Z3_ast Z3_API Z3_optimize_get_upper(Z3_context c, Z3_optimize o, unsigned idx);
+
+
+ /**
+ \brief Retrieve lower bound value or approximation for the i'th optimization objective.
+ The returned vector is of length 3. It always contains numerals.
+ The three numerals are coefficients \c a, \c b, \c c and encode the result of
+ #Z3_optimize_get_lower \ccode{a * infinity + b + c * epsilon}.
+
+ \param c - context
+ \param o - optimization context
+ \param idx - index of optimization objective
+
+ \sa Z3_optimize_get_lower
+ \sa Z3_optimize_get_upper
+ \sa Z3_optimize_get_upper_as_vector
+
+ def_API('Z3_optimize_get_lower_as_vector', AST_VECTOR, (_in(CONTEXT), _in(OPTIMIZE), _in(UINT)))
+ */
+ Z3_ast_vector Z3_API Z3_optimize_get_lower_as_vector(Z3_context c, Z3_optimize o, unsigned idx);
+
+ /**
+ \brief Retrieve upper bound value or approximation for the i'th optimization objective.
+
+ \param c - context
+ \param o - optimization context
+ \param idx - index of optimization objective
+
+ \sa Z3_optimize_get_lower
+ \sa Z3_optimize_get_upper
+ \sa Z3_optimize_get_lower_as_vector
+
+ def_API('Z3_optimize_get_upper_as_vector', AST_VECTOR, (_in(CONTEXT), _in(OPTIMIZE), _in(UINT)))
+ */
+ Z3_ast_vector Z3_API Z3_optimize_get_upper_as_vector(Z3_context c, Z3_optimize o, unsigned idx);
+
+
+ /**
+ \brief Print the current context as a string.
+ \param c - context.
+ \param o - optimization context.
+
+ \sa Z3_optimize_from_file
+ \sa Z3_optimize_from_string
+
+ def_API('Z3_optimize_to_string', STRING, (_in(CONTEXT), _in(OPTIMIZE)))
+ */
+ Z3_string Z3_API Z3_optimize_to_string(Z3_context c, Z3_optimize o);
+
+ /**
+ \brief Parse an SMT-LIB2 string with assertions,
+ soft constraints and optimization objectives.
+ Add the parsed constraints and objectives to the optimization context.
+
+ \param c - context.
+ \param o - optimize context.
+ \param s - string containing SMT2 specification.
+
+ \sa Z3_optimize_from_file
+ \sa Z3_optimize_to_string
+
+ def_API('Z3_optimize_from_string', VOID, (_in(CONTEXT), _in(OPTIMIZE), _in(STRING)))
+ */
+ void Z3_API Z3_optimize_from_string(Z3_context c, Z3_optimize o, Z3_string s);
+
+ /**
+ \brief Parse an SMT-LIB2 file with assertions,
+ soft constraints and optimization objectives.
+ Add the parsed constraints and objectives to the optimization context.
+
+ \param c - context.
+ \param o - optimize context.
+ \param s - path to file containing SMT2 specification.
+
+ \sa Z3_optimize_from_string
+ \sa Z3_optimize_to_string
+
+ def_API('Z3_optimize_from_file', VOID, (_in(CONTEXT), _in(OPTIMIZE), _in(STRING)))
+ */
+ void Z3_API Z3_optimize_from_file(Z3_context c, Z3_optimize o, Z3_string s);
+
+ /**
+ \brief Return a string containing a description of parameters accepted by optimize.
+
+ \sa Z3_optimize_get_param_descrs
+ \sa Z3_optimize_set_params
+
+ def_API('Z3_optimize_get_help', STRING, (_in(CONTEXT), _in(OPTIMIZE)))
+ */
+ Z3_string Z3_API Z3_optimize_get_help(Z3_context c, Z3_optimize t);
+
+ /**
+ \brief Retrieve statistics information from the last call to #Z3_optimize_check
+
+ def_API('Z3_optimize_get_statistics', STATS, (_in(CONTEXT), _in(OPTIMIZE)))
+ */
+ Z3_stats Z3_API Z3_optimize_get_statistics(Z3_context c, Z3_optimize d);
+
+ /**
+ \brief Return the set of asserted formulas on the optimization context.
+
+ def_API('Z3_optimize_get_assertions', AST_VECTOR, (_in(CONTEXT), _in(OPTIMIZE)))
+ */
+ Z3_ast_vector Z3_API Z3_optimize_get_assertions(Z3_context c, Z3_optimize o);
+
+ /**
+ \brief Return objectives on the optimization context.
+ If the objective function is a max-sat objective it is returned
+ as a Pseudo-Boolean (minimization) sum of the form \ccode{(+ (if f1 w1 0) (if f2 w2 0) ...)}
+ If the objective function is entered as a maximization objective, then return
+ the corresponding minimization objective. In this way the resulting objective
+ function is always returned as a minimization objective.
+
+ def_API('Z3_optimize_get_objectives', AST_VECTOR, (_in(CONTEXT), _in(OPTIMIZE)))
+ */
+ Z3_ast_vector Z3_API Z3_optimize_get_objectives(Z3_context c, Z3_optimize o);
+
+ /*@}*/
+ /*@}*/
+
+#ifdef __cplusplus
+}
+#endif // __cplusplus
+
diff --git a/z3-4.8.9-x64-ubuntu-16.04/include/z3_polynomial.h b/z3-4.8.9-x64-ubuntu-16.04/include/z3_polynomial.h
new file mode 100644
index 0000000..47979fc
--- /dev/null
+++ b/z3-4.8.9-x64-ubuntu-16.04/include/z3_polynomial.h
@@ -0,0 +1,52 @@
+/*++
+Copyright (c) 2012 Microsoft Corporation
+
+Module Name:
+
+ z3_polynomial.h
+
+Abstract:
+
+ Additional APIs for polynomials.
+
+Author:
+
+ Leonardo de Moura (leonardo) 2012-12-09
+
+Notes:
+
+--*/
+
+#pragma once
+
+#ifdef __cplusplus
+extern "C" {
+#endif // __cplusplus
+
+ /** \defgroup capi C API */
+ /*@{*/
+
+
+ /** @name Polynomials */
+ /*@{*/
+
+ /**
+ \brief Return the nonzero subresultants of \c p and \c q with respect to the "variable" \c x.
+
+ \pre \c p, \c q and \c x are Z3 expressions where \c p and \c q are arithmetic terms.
+ Note that, any subterm that cannot be viewed as a polynomial is assumed to be a variable.
+ Example: \ccode{f(a)} is a considered to be a variable in the polynomial \ccode{
+ f(a)*f(a) + 2*f(a) + 1}
+
+ def_API('Z3_polynomial_subresultants', AST_VECTOR, (_in(CONTEXT), _in(AST), _in(AST), _in(AST)))
+ */
+ Z3_ast_vector Z3_API Z3_polynomial_subresultants(Z3_context c, Z3_ast p, Z3_ast q, Z3_ast x);
+
+
+ /*@}*/
+ /*@}*/
+
+#ifdef __cplusplus
+}
+#endif // __cplusplus
+
diff --git a/z3-4.8.9-x64-ubuntu-16.04/include/z3_rcf.h b/z3-4.8.9-x64-ubuntu-16.04/include/z3_rcf.h
new file mode 100644
index 0000000..f61da20
--- /dev/null
+++ b/z3-4.8.9-x64-ubuntu-16.04/include/z3_rcf.h
@@ -0,0 +1,205 @@
+/*++
+Copyright (c) 2013 Microsoft Corporation
+
+Module Name:
+
+ z3_rcf.h
+
+Abstract:
+
+ Additional APIs for handling elements of the Z3 real closed field that contains:
+ - transcendental extensions
+ - infinitesimal extensions
+ - algebraic extensions
+
+Author:
+
+ Leonardo de Moura (leonardo) 2012-01-05
+
+Notes:
+
+--*/
+#pragma once
+
+#ifdef __cplusplus
+extern "C" {
+#endif // __cplusplus
+
+ /** \defgroup capi C API */
+ /*@{*/
+
+ /** @name Real Closed Fields */
+ /*@{*/
+ /**
+ \brief Delete a RCF numeral created using the RCF API.
+
+ def_API('Z3_rcf_del', VOID, (_in(CONTEXT), _in(RCF_NUM)))
+ */
+ void Z3_API Z3_rcf_del(Z3_context c, Z3_rcf_num a);
+
+ /**
+ \brief Return a RCF rational using the given string.
+
+ def_API('Z3_rcf_mk_rational', RCF_NUM, (_in(CONTEXT), _in(STRING)))
+ */
+ Z3_rcf_num Z3_API Z3_rcf_mk_rational(Z3_context c, Z3_string val);
+
+ /**
+ \brief Return a RCF small integer.
+
+ def_API('Z3_rcf_mk_small_int', RCF_NUM, (_in(CONTEXT), _in(INT)))
+ */
+ Z3_rcf_num Z3_API Z3_rcf_mk_small_int(Z3_context c, int val);
+
+ /**
+ \brief Return Pi
+
+ def_API('Z3_rcf_mk_pi', RCF_NUM, (_in(CONTEXT),))
+ */
+ Z3_rcf_num Z3_API Z3_rcf_mk_pi(Z3_context c);
+
+ /**
+ \brief Return e (Euler's constant)
+
+ def_API('Z3_rcf_mk_e', RCF_NUM, (_in(CONTEXT),))
+ */
+ Z3_rcf_num Z3_API Z3_rcf_mk_e(Z3_context c);
+
+ /**
+ \brief Return a new infinitesimal that is smaller than all elements in the Z3 field.
+
+ def_API('Z3_rcf_mk_infinitesimal', RCF_NUM, (_in(CONTEXT),))
+ */
+ Z3_rcf_num Z3_API Z3_rcf_mk_infinitesimal(Z3_context c);
+
+ /**
+ \brief Store in roots the roots of the polynomial \ccode{a[n-1]*x^{n-1} + ... + a[0]}.
+ The output vector \c roots must have size \c n.
+ It returns the number of roots of the polynomial.
+
+ \pre The input polynomial is not the zero polynomial.
+
+ def_API('Z3_rcf_mk_roots', UINT, (_in(CONTEXT), _in(UINT), _in_array(1, RCF_NUM), _out_array(1, RCF_NUM)))
+ */
+ unsigned Z3_API Z3_rcf_mk_roots(Z3_context c, unsigned n, Z3_rcf_num const a[], Z3_rcf_num roots[]);
+
+ /**
+ \brief Return the value \ccode{a + b}.
+
+ def_API('Z3_rcf_add', RCF_NUM, (_in(CONTEXT), _in(RCF_NUM), _in(RCF_NUM)))
+ */
+ Z3_rcf_num Z3_API Z3_rcf_add(Z3_context c, Z3_rcf_num a, Z3_rcf_num b);
+
+ /**
+ \brief Return the value \ccode{a - b}.
+
+ def_API('Z3_rcf_sub', RCF_NUM, (_in(CONTEXT), _in(RCF_NUM), _in(RCF_NUM)))
+ */
+ Z3_rcf_num Z3_API Z3_rcf_sub(Z3_context c, Z3_rcf_num a, Z3_rcf_num b);
+
+ /**
+ \brief Return the value \ccode{a * b}.
+
+ def_API('Z3_rcf_mul', RCF_NUM, (_in(CONTEXT), _in(RCF_NUM), _in(RCF_NUM)))
+ */
+ Z3_rcf_num Z3_API Z3_rcf_mul(Z3_context c, Z3_rcf_num a, Z3_rcf_num b);
+
+ /**
+ \brief Return the value \ccode{a / b}.
+
+ def_API('Z3_rcf_div', RCF_NUM, (_in(CONTEXT), _in(RCF_NUM), _in(RCF_NUM)))
+ */
+ Z3_rcf_num Z3_API Z3_rcf_div(Z3_context c, Z3_rcf_num a, Z3_rcf_num b);
+
+ /**
+ \brief Return the value \ccode{-a}.
+
+ def_API('Z3_rcf_neg', RCF_NUM, (_in(CONTEXT), _in(RCF_NUM)))
+ */
+ Z3_rcf_num Z3_API Z3_rcf_neg(Z3_context c, Z3_rcf_num a);
+
+ /**
+ \brief Return the value \ccode{1/a}.
+
+ def_API('Z3_rcf_inv', RCF_NUM, (_in(CONTEXT), _in(RCF_NUM)))
+ */
+ Z3_rcf_num Z3_API Z3_rcf_inv(Z3_context c, Z3_rcf_num a);
+
+ /**
+ \brief Return the value \ccode{a^k}.
+
+ def_API('Z3_rcf_power', RCF_NUM, (_in(CONTEXT), _in(RCF_NUM), _in(UINT)))
+ */
+ Z3_rcf_num Z3_API Z3_rcf_power(Z3_context c, Z3_rcf_num a, unsigned k);
+
+ /**
+ \brief Return \c true if \ccode{a < b}.
+
+ def_API('Z3_rcf_lt', BOOL, (_in(CONTEXT), _in(RCF_NUM), _in(RCF_NUM)))
+ */
+ bool Z3_API Z3_rcf_lt(Z3_context c, Z3_rcf_num a, Z3_rcf_num b);
+
+ /**
+ \brief Return \c true if \ccode{a > b}.
+
+ def_API('Z3_rcf_gt', BOOL, (_in(CONTEXT), _in(RCF_NUM), _in(RCF_NUM)))
+ */
+ bool Z3_API Z3_rcf_gt(Z3_context c, Z3_rcf_num a, Z3_rcf_num b);
+
+ /**
+ \brief Return \c true if \ccode{a <= b}.
+
+ def_API('Z3_rcf_le', BOOL, (_in(CONTEXT), _in(RCF_NUM), _in(RCF_NUM)))
+ */
+ bool Z3_API Z3_rcf_le(Z3_context c, Z3_rcf_num a, Z3_rcf_num b);
+
+ /**
+ \brief Return \c true if \ccode{a >= b}.
+
+ def_API('Z3_rcf_ge', BOOL, (_in(CONTEXT), _in(RCF_NUM), _in(RCF_NUM)))
+ */
+ bool Z3_API Z3_rcf_ge(Z3_context c, Z3_rcf_num a, Z3_rcf_num b);
+
+ /**
+ \brief Return \c true if \ccode{a == b}.
+
+ def_API('Z3_rcf_eq', BOOL, (_in(CONTEXT), _in(RCF_NUM), _in(RCF_NUM)))
+ */
+ bool Z3_API Z3_rcf_eq(Z3_context c, Z3_rcf_num a, Z3_rcf_num b);
+
+ /**
+ \brief Return \c true if \ccode{a != b}.
+
+ def_API('Z3_rcf_neq', BOOL, (_in(CONTEXT), _in(RCF_NUM), _in(RCF_NUM)))
+ */
+ bool Z3_API Z3_rcf_neq(Z3_context c, Z3_rcf_num a, Z3_rcf_num b);
+
+ /**
+ \brief Convert the RCF numeral into a string.
+
+ def_API('Z3_rcf_num_to_string', STRING, (_in(CONTEXT), _in(RCF_NUM), _in(BOOL), _in(BOOL)))
+ */
+ Z3_string Z3_API Z3_rcf_num_to_string(Z3_context c, Z3_rcf_num a, bool compact, bool html);
+
+ /**
+ \brief Convert the RCF numeral into a string in decimal notation.
+
+ def_API('Z3_rcf_num_to_decimal_string', STRING, (_in(CONTEXT), _in(RCF_NUM), _in(UINT)))
+ */
+ Z3_string Z3_API Z3_rcf_num_to_decimal_string(Z3_context c, Z3_rcf_num a, unsigned prec);
+
+ /**
+ \brief Extract the "numerator" and "denominator" of the given RCF numeral.
+ We have that \ccode{a = n/d}, moreover \c n and \c d are not represented using rational functions.
+
+ def_API('Z3_rcf_get_numerator_denominator', VOID, (_in(CONTEXT), _in(RCF_NUM), _out(RCF_NUM), _out(RCF_NUM)))
+ */
+ void Z3_API Z3_rcf_get_numerator_denominator(Z3_context c, Z3_rcf_num a, Z3_rcf_num * n, Z3_rcf_num * d);
+
+ /*@}*/
+ /*@}*/
+
+#ifdef __cplusplus
+}
+#endif // __cplusplus
+
diff --git a/z3-4.8.9-x64-ubuntu-16.04/include/z3_spacer.h b/z3-4.8.9-x64-ubuntu-16.04/include/z3_spacer.h
new file mode 100644
index 0000000..fe4086e
--- /dev/null
+++ b/z3-4.8.9-x64-ubuntu-16.04/include/z3_spacer.h
@@ -0,0 +1,141 @@
+/*++
+Copyright (c) 2017 Arie Gurfinkel
+
+Module Name:
+
+ z3_spacer.h
+
+Abstract:
+
+ Spacer API
+
+Author:
+
+ Arie Gurfinkel (arie)
+
+Notes:
+
+--*/
+#pragma once
+
+#ifdef __cplusplus
+extern "C" {
+#endif // __cplusplus
+
+ /** \defgroup capi C API */
+ /*@{*/
+
+ /** @name Spacer facilities */
+ /*@{*/
+ /**
+ \brief Pose a query against the asserted rules at the given level.
+
+ \code
+ query ::= (exists (bound-vars) query)
+ | literals
+ \endcode
+
+ query returns
+ - \c Z3_L_FALSE if the query is unsatisfiable.
+ - \c Z3_L_TRUE if the query is satisfiable. Obtain the answer by calling #Z3_fixedpoint_get_answer.
+ - \c Z3_L_UNDEF if the query was interrupted, timed out or otherwise failed.
+
+ def_API('Z3_fixedpoint_query_from_lvl', INT, (_in(CONTEXT), _in(FIXEDPOINT), _in(AST), _in(UINT)))
+ */
+ Z3_lbool Z3_API Z3_fixedpoint_query_from_lvl (Z3_context c,Z3_fixedpoint d, Z3_ast query, unsigned lvl);
+
+ /**
+ \brief Retrieve a bottom-up (from query) sequence of ground facts
+
+ The previous call to #Z3_fixedpoint_query must have returned \c Z3_L_TRUE.
+
+ def_API('Z3_fixedpoint_get_ground_sat_answer', AST, (_in(CONTEXT), _in(FIXEDPOINT)))
+ */
+ Z3_ast Z3_API Z3_fixedpoint_get_ground_sat_answer(Z3_context c,Z3_fixedpoint d);
+
+ /**
+ \brief Obtain the list of rules along the counterexample trace.
+
+ def_API('Z3_fixedpoint_get_rules_along_trace', AST_VECTOR, (_in(CONTEXT), _in(FIXEDPOINT)))
+ */
+ Z3_ast_vector Z3_API Z3_fixedpoint_get_rules_along_trace(Z3_context c,Z3_fixedpoint d);
+
+ /**
+ \brief Obtain the list of rules along the counterexample trace.
+
+ def_API('Z3_fixedpoint_get_rule_names_along_trace', SYMBOL, (_in(CONTEXT), _in(FIXEDPOINT)))
+ */
+ Z3_symbol Z3_API Z3_fixedpoint_get_rule_names_along_trace(Z3_context c,Z3_fixedpoint d);
+
+ /**
+ \brief Add an invariant for the predicate \c pred.
+ Add an assumed invariant of predicate \c pred.
+
+ Note: this functionality is Spacer specific.
+
+ def_API('Z3_fixedpoint_add_invariant', VOID, (_in(CONTEXT), _in(FIXEDPOINT), _in(FUNC_DECL), _in(AST)))
+ */
+ void Z3_API Z3_fixedpoint_add_invariant(Z3_context c, Z3_fixedpoint d, Z3_func_decl pred, Z3_ast property);
+
+
+ /**
+ Retrieve reachable states of a predicate.
+ Note: this functionality is Spacer specific.
+
+ def_API('Z3_fixedpoint_get_reachable', AST, (_in(CONTEXT), _in(FIXEDPOINT), _in(FUNC_DECL)))
+ */
+ Z3_ast Z3_API Z3_fixedpoint_get_reachable(Z3_context c, Z3_fixedpoint d, Z3_func_decl pred);
+
+ /**
+ \brief Project variables given a model
+
+ def_API('Z3_qe_model_project', AST, (_in(CONTEXT), _in(MODEL), _in(UINT), _in_array(2, APP), _in(AST)))
+ */
+ Z3_ast Z3_API Z3_qe_model_project
+ (Z3_context c,
+ Z3_model m,
+ unsigned num_bounds,
+ Z3_app const bound[],
+ Z3_ast body);
+
+
+ /**
+ \brief Project variables given a model
+
+ def_API('Z3_qe_model_project_skolem', AST, (_in(CONTEXT), _in(MODEL), _in(UINT), _in_array(2, APP), _in(AST), _in(AST_MAP)))
+ */
+ Z3_ast Z3_API Z3_qe_model_project_skolem
+ (Z3_context c,
+ Z3_model m,
+ unsigned num_bounds,
+ Z3_app const bound[],
+ Z3_ast body,
+ Z3_ast_map map);
+
+ /**
+ \brief Extrapolates a model of a formula
+
+ def_API('Z3_model_extrapolate', AST, (_in(CONTEXT), _in(MODEL), _in(AST)))
+ */
+ Z3_ast Z3_API Z3_model_extrapolate
+ (Z3_context c,
+ Z3_model m,
+ Z3_ast fml);
+
+ /**
+ \brief Best-effort quantifier elimination
+
+ def_API ('Z3_qe_lite', AST, (_in(CONTEXT), _in(AST_VECTOR), _in(AST)))
+ */
+ Z3_ast Z3_API Z3_qe_lite
+ (Z3_context c,
+ Z3_ast_vector vars,
+ Z3_ast body);
+
+ /*@}*/
+ /*@}*/
+
+#ifdef __cplusplus
+}
+#endif // __cplusplus
+
diff --git a/z3-4.8.9-x64-ubuntu-16.04/include/z3_v1.h b/z3-4.8.9-x64-ubuntu-16.04/include/z3_v1.h
new file mode 100644
index 0000000..c003d6f
--- /dev/null
+++ b/z3-4.8.9-x64-ubuntu-16.04/include/z3_v1.h
@@ -0,0 +1,62 @@
+/*++
+Copyright (c) 2011 Microsoft Corporation
+
+Module Name:
+
+ z3_v1.h
+
+Abstract:
+
+ Z3 1.x backwards compatibility macros.
+ These macros are used to simulate the Z3 API using in the 1.x versions.
+ This file should only be used by users still using the Z3 1.x API.
+
+Author:
+
+ Leonardo de Moura (leonardo) 2011-09-22
+
+Notes:
+
+--*/
+#pragma once
+
+#include "api/z3.h"
+
+// Backwards compatibility
+#define Z3_type_ast Z3_sort
+#define Z3_const_decl_ast Z3_func_decl
+#define Z3_const Z3_app
+#define Z3_pattern_ast Z3_pattern
+#define Z3_UNINTERPRETED_TYPE Z3_UNINTERPRETED_SORT
+#define Z3_BOOL_TYPE Z3_BOOL_SORT
+#define Z3_INT_TYPE Z3_INT_SORT
+#define Z3_REAL_TYPE Z3_REAL_SORT
+#define Z3_BV_TYPE Z3_BV_SORT
+#define Z3_ARRAY_TYPE Z3_ARRAY_SORT
+#define Z3_TUPLE_TYPE Z3_DATATYPE_SORT
+#define Z3_UNKNOWN_TYPE Z3_UNKNOWN_SORT
+#define Z3_CONST_DECL_AST Z3_FUNC_DECL_AST
+#define Z3_TYPE_AST Z3_SORT_AST
+#define Z3_SORT_ERROR Z3_TYPE_ERROR
+#define Z3_mk_uninterpreted_type Z3_mk_uninterpreted_sort
+#define Z3_mk_bool_type Z3_mk_bool_sort
+#define Z3_mk_int_type Z3_mk_int_sort
+#define Z3_mk_real_type Z3_mk_real_sort
+#define Z3_mk_bv_type Z3_mk_bv_sort
+#define Z3_mk_array_type Z3_mk_array_sort
+#define Z3_mk_tuple_type Z3_mk_tuple_sort
+#define Z3_get_type Z3_get_sort
+#define Z3_get_pattern_ast Z3_get_pattern
+#define Z3_get_type_kind Z3_get_sort_kind
+#define Z3_get_type_name Z3_get_sort_name
+#define Z3_get_bv_type_size Z3_get_bv_sort_size
+#define Z3_get_array_type_domain Z3_get_array_sort_domain
+#define Z3_get_array_type_range Z3_get_array_sort_range
+#define Z3_get_tuple_type_num_fields Z3_get_tuple_sort_num_fields
+#define Z3_get_tuple_type_field_decl Z3_get_tuple_sort_field_decl
+#define Z3_get_tuple_type_mk_decl Z3_get_tuple_sort_mk_decl
+#define Z3_to_const_ast Z3_to_app
+#define Z3_get_numeral_value_string Z3_get_numeral_string
+#define Z3_get_const_ast_decl Z3_get_app_decl
+#define Z3_get_value Z3_eval_func_decl
+
diff --git a/z3-4.8.9-x64-ubuntu-16.04/include/z3_version.h b/z3-4.8.9-x64-ubuntu-16.04/include/z3_version.h
new file mode 100644
index 0000000..7b55847
--- /dev/null
+++ b/z3-4.8.9-x64-ubuntu-16.04/include/z3_version.h
@@ -0,0 +1,7 @@
+// automatically generated file.
+#define Z3_MAJOR_VERSION 4
+#define Z3_MINOR_VERSION 8
+#define Z3_BUILD_NUMBER 9
+#define Z3_REVISION_NUMBER 0
+
+#define Z3_FULL_VERSION "Z3 4.8.9.0"
diff --git a/z3-ubuntu-14.04-bin/libz3java.so b/z3-ubuntu-14.04-bin/libz3java.so
deleted file mode 100755
index 21da288..0000000
Binary files a/z3-ubuntu-14.04-bin/libz3java.so and /dev/null differ