-
Notifications
You must be signed in to change notification settings - Fork 0
/
slides.tex
214 lines (176 loc) · 6.75 KB
/
slides.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
\documentclass{beamer}
\usetheme{metropolis}
\title{Course Allocation and Modified CEEI}
\author{Gideon Moore}
\date{Fall 2019}
\usepackage{microtype}
\usepackage[backend=biber, style=authoryear, maxbibnames=99]{biblatex}
\addbibresource{coursematch.bib}
\setbeamertemplate{section in toc}[sections numbered]
\begin{document}
\begin{frame}
\maketitle
\end{frame}
\begin{frame}{Outline}
\tableofcontents
\end{frame}
\section{The Course Allocation Problem}
\begin{frame}{Problem Outline}
\begin{itemize}
\item University needs to decide how to allocate students to courses
\item Students enroll in multiple courses, and courses contain multiple students
\item Students have preferences over \emph{bundles} of courses
\item Courses are indivisible
\end{itemize}
\end{frame}
\begin{frame}{Desirable Properties}
\begin{itemize}
\item Incentive Compatible
\pause
\item Uncongested
\pause
\item Efficient
\pause
\item Fair
\pause
\item \textbf{Two-Sided}
\end{itemize}
\end{frame}
\begin{frame}{Existing Solutions}
\begin{itemize}
\item Free-For-All
\pause
\item Lottery
\pause
\item Serial Dictatorship \parencite{klaus2002}
\pause
\item Draft \parencite{budish2012}
\pause
\item Point Auction \parencite{sonmez2010}
\end{itemize}
\end{frame}
\section{Competitive Equilibrium from Equal Incomes}
\begin{frame}{\textcite{budish2011}}
\begin{itemize}
\item Students endowed with ``approximately'' equal incomes
\item Course bundles are ranked \parencite{budish2016b}
\item \textcite{othman2010} algorithm finds prices
\end{itemize}
\end{frame}
\begin{frame}{A-CEEI Properties}
\begin{itemize}
\item Pareto efficient
\pause
\item Uncongested
\pause
\item \emph{Approximately} incentive compatible
\pause
\item \emph{Approximately} fair
\pause
\item Single sided
\end{itemize}
\end{frame}
\begin{frame}{Two-Sidedness and Externalities}
Suppose each student-course matching imposed some externality $s_{ij}$ on students and faculty.
Let $\vec{x}_i$ be a vector of booleans indicating student $i$'s enrollment status in each of $M$ courses.
\pause
Budish's A-CEEI maximizes $$\sum_{i \in \mathcal{S}} \mathcal{U}_i(\vec{x}_i)$$
\pause
However, a social planner would maximize $$\sum_{i \in \mathcal{S}}\left( \mathcal{U}_i(\vec{x}_i) + \vec{x}_i^T \vec{s}_i \right)$$
\end{frame}
\begin{frame}{Proposed Mechanism}
Administrators can correct externalities by imposing taxes on the course market.
Each student-course pair is assigned some tax rate $k_{ij}$ such that student $i$ faces price $k_{ij} \cdot p_j$ when attempting to purchase course $j$.
\end{frame}
\begin{frame}{Properties of Modified CEEI}
\begin{itemize}
\item Incentive Compatible
\pause
\item Uncongested
\pause
\item Envy-bounded within a bracket
\pause
\item Pareto efficient within a bracket
\pause
\item Two-sided
\end{itemize}
\end{frame}
\begin{frame}{Optimal Taxation}
Economics 1 tells us to tax each student's enrollment at a rate equal to $s_{ij}$
\pause
This doesn't work here due to \emph{lack of an outside good}
\pause
Severing of price from marginal utility makes optimal taxation a case-by-case question
\end{frame}
\begin{frame}{Types of Tax Schema}
Let each student face a vector of tax rates $\vec{k}_i$
\begin{itemize}
\item All students face identical constant tax rate
\pause
\item Tax vectors all same direction, varying magnitudes \parencite{miralles2014}
\pause
\begin{itemize}
\item Serial dictatorship: $k_i \in \left((1 + \mbox{largest permissible bundle size})^{-i}\right)_{i = 1}^N$
\end{itemize}
\pause
\item Tax vectors vary in direction
\end{itemize}
\end{frame}
\section{Market Clearing Error}
\begin{frame}{\textcite{othman2010}}
Given a course preference and endowment for each student, can generate market clearing prices \pause (kinda)
\pause
Each student has at most $M$ budget constraints
\pause
Income dispersion means that in base version, at most $M$ constraints intersect at a single point
\pause
Therefore, there are at most $2^M$ demands adjacent to a single point
\pause
Demand across a budget constraint shifts by at most $\sqrt{\sigma} = \sqrt{\min(M, 2 \cdot \mbox{max schedule size})}$
\end{frame}
\begin{frame}{\textcite{othman2010} Illustration}
\centering
\includegraphics[width=.6\textwidth]{"Price Discontinuity"}
\end{frame}
\begin{frame}{Error and the Convex Hull}
We know there is some ideal demand within the convex hull of the feasible demands
Thus, the worst-case market clearing error is the maximum distance from a feasible demand to a point in the convex hull
Given there are $2^M$ possible points, the worst case is a hypercube with ideal demand equidistant from all vertices. Half the diagonal is $\frac{\sqrt{M\sigma}}{2}$, which is our market clearing error.
\end{frame}
\begin{frame}{Generalizing with Tax Rates}
Within a given tax rate, we can apply the basic proof to show at most $M$ constraints intersect
\pause
However, we know nothing about constraints under \emph{other} tax rates
\pause
Thus, the maximum size of an intersection scales with the maximum number of tax brackets which apply to a single course $h$, with a maximum of $hM$ intersecting planes. In the worst case, each plane is duplicated in each other tax bracket, in which case there exist $2^M$ demands around $p$, but each discontinuity is of magnitude $h\sqrt{\sigma}$.
This again yields a hypercube, now with side length $h\sqrt{\sigma}$, and therefore a diagonal measurement of $h\frac{\sqrt{M\sigma}}{2}$
\end{frame}
\begin{frame}{Empiric Results}
When implemented at Wharton, true market clearing demand was significantly less than the bound.
On average across the four semesters studied, fewer than six seats total were misallocated.
\end{frame}
\begin{frame}{Next Steps}
\begin{itemize}
\item Continuous setting--move to continuous mass of students of each type. Has some advantages:
\begin{itemize}
\item No need to fuss with error bounds
\item Results are more likely to be analytically tractable
\item Students are \emph{definitionally} price takers
\item Equilibrium guaranteed to exist
\end{itemize}
\pause
\item Tax setting--do these "tax rates" have \emph{any} sort of external meaning?
\pause
\item What if we want a heterogeneous class?
\pause
\item Can this handle quotas as well as taxes?
\pause
\item Is there a clean way to handle the ``eccentric student'' problem?
\pause
\item For an empirical approach, find one \emph{specific, meaningful} externality to address
\end{itemize}
\end{frame}
\begin{frame}[allowframebreaks]{Bibliography}
\printbibliography
\end{frame}
\end{document}