forked from dkoes/rdkit-scripts
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathclustermatches.py
executable file
·177 lines (157 loc) · 5.59 KB
/
clustermatches.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
#!/usr/bin/python
#given a smarts rxn file, a core scaffold smarts file (with name containing connecting atoms)
# and an sdf file, extract the matching scaffolds from of the sdf file and cluster
#them greedily to identify a set of scaffold conformations
import sys,gzip,argparse
from rdkit.Chem import AllChem
def subMol(mol, match):
#not sure why this functionality isn't implemented natively
#but get the interconnected bonds for the match
atoms = set(match)
bonds = set()
for a in atoms:
atom = mol.GetAtomWithIdx(a)
for b in atom.GetBonds():
if b.GetOtherAtomIdx(a) in atoms:
bonds.add(b.GetIdx())
return AllChem.PathToSubmol(mol,list(bonds))
#compute the distances between the matching connecting atoms
#and return true if all distance are small enough
def checkConnect(center, cmatch, mol, match, connectIndices, connect):
cconf = center.GetConformer(0)
mconf = mol.GetConformer(0)
for i in connectIndices:
cidx = cmatch[i]
midx = match[i]
cpt = cconf.GetAtomPosition(cidx)
mpt = mconf.GetAtomPosition(midx)
dist = cpt.Distance(mpt)
if dist > connect:
return False
return True
#find all the scaffolds in mols that are within rmsd of center and where the connecting
#atoms are within connect, return new cluster and new mols
def createCluster(center,cmatch, mols, pattern, core, rmsd, connectIndices, connect):
cluster = list()
newmols = list()
for (mol,match) in mols:
r = AllChem.GetBestRMS(mol,center,maps=[zip(cmatch,match)])
if r < rmsd and checkConnect(center, cmatch, mol,match,connectIndices, connect):
cluster.append((mol,match,r))
else:
newmols.append((mol,match))
cluster.sort(key = lambda (m,mtch,r): r )
return (cluster, newmols)
#find the mol in mols that has the maximum minimum distance between the first
#mol in each cluster
#ACTUALLY, for the tight tolerances we need, this really doesn't make a difference
#and just slows things down, so just pick the first available conformer
def computeNext(clusters,mols):
if len(mols) > 0:
return mols[0]
else:
return (None,None)
max = 0
best = (None,None)
for (mol,match) in mols:
min = float('inf')
for cl in clusters:
cmol = cl[0][0]
cmatch = cl[0][1]
r = AllChem.GetBestRMS(cmol,mol,maps=[zip(match,cmatch)])
if r < min:
min = r
if min > max:
max = min
best = (mol,match)
return best
#MAIN
if len(sys.argv) < 5:
print "Need reaction file, core scaffold file, sdf input file and sdf output"
sys.exit(1)
parser = argparse.ArgumentParser()
parser.add_argument('-r','--rxn', help="Reaction file")
parser.add_argument('-c','--core',help="Core scaffold with connecting atoms in name")
parser.add_argument('-i','--input',help="Input conformers")
parser.add_argument('-o','--output',help="Clustered core scaffold output")
parser.add_argument("--rmsd",type=float,default=0.5,help="Maximum RMSD for cluster membership")
parser.add_argument("--connect",type=float,default=0.1,help="Maximum allowed deviation of connecting atoms for cluster membership")
parser.add_argument("--sample",type=int,default=1,help="Amount to sample conformations")
args = parser.parse_args()
rxnf = open(args.rxn)
rxnsm = rxnf.readline().split()[0] #ignore any name
rxn = AllChem.ReactionFromSmarts(rxnsm)
rxn.Initialize()
if rxn.GetNumProductTemplates() == 1:
product = rxn.GetProductTemplate(0)
reactants = list()
for i in xrange(rxn.GetNumReactantTemplates()):
reactants.append(rxn.GetReactantTemplate(i))
elif rxn.GetNumReactantTemplates() == 1:
product = rxn.GetReactantTemplate(0)
reactants = list()
for i in xrange(rxn.GetNumProductTemplates()):
reactants.append(rxn.GetProductTemplate(i))
else:
print "Can have only one product"
sys.exit(1)
coref = open(args.core)
corel = coref.readline()
coreconnects = corel.split()[1:]
core = AllChem.MolFromSmarts(corel.split()[0])
inmols = AllChem.SDMolSupplier(args.input)
if inmols is None:
print "Could not open ",args.input
sys.exit(-1)
sdwriter = AllChem.SDWriter(args.output)
if sdwriter is None:
print "Could not open ",args.output
sys.exit(-1)
smart = AllChem.MolToSmarts(product)
pattern = AllChem.MolFromSmarts(smart)
#figure out the indices of connected atoms in the smart core pattern
connectIndices = list()
for c in coreconnects:
cm = AllChem.MolFromSmarts(c)
a = cm.GetAtoms()[0]
if a.HasProp('molAtomMapNumber'):
mapnum = a.GetProp('molAtomMapNumber')
for sma in core.GetAtoms():
if sma.HasProp('molAtomMapNumber') and sma.GetProp('molAtomMapNumber') == mapnum:
connectIndices.append(sma.GetIdx())
#read all core scaffold molecules into memory
mols = list()
cnt = 0
for mol in inmols:
if cnt % args.sample == 0 and mol is not None:
try:
mol = AllChem.AddHs(mol)
match = mol.GetSubstructMatch(pattern) #just one? why not, we're only sampling
if match:
sub = subMol(mol, match)
cmatch = sub.GetSubstructMatch(core)
if cmatch:
sub = subMol(sub,cmatch)
mols.append((sub,sub.GetSubstructMatch(core)))
except (KeyboardInterrupt, SystemExit):
raise
except Exception as e:
print "Exception occurred",mol.GetProp('_Name'),e
cnt += 1
if len(mols) == 0:
print "No molecules!"
sys.exit(-1)
print "Done reading"
clusters = list() #these are just defined by a list of all the scffolds assigned to the cluster
(center, cmatch) = mols[0]
while len(mols) > 0:
(cluster, mols) = createCluster(center,cmatch,mols, pattern, core, args.rmsd, connectIndices, args.connect)
clusters.append(cluster)
(center, cmatch) = computeNext(clusters,mols)
print len(clusters)
for cl in clusters:
cmol = cl[0][0]
cmol.SetProp("ClusterSize",str(len(cl)))
AllChem.GetBestRMS(clusters[0][0][0],cmol) #align to very first
sdwriter.write(cmol)
sdwriter.close()