-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrotmap.py
143 lines (120 loc) · 3.97 KB
/
rotmap.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import numpy as np
import scipy
import torch
import random
import time
import os
from torch._C import dtype
torchpi = torch.acos(torch.zeros(1)).item() * 2
import scipy.sparse.linalg
# original implementation from Chatterjee's ICCV13 paper: CompareRotationGraph.m
def R2w(R):
w = torch.stack((R[2, 1] - R[1, 2], R[0, 2] -
R[2, 0], R[1, 0] - R[0, 1])) / 2
s = torch.norm(w)
if s:
w = w / s * torch.atan2(s, (torch.trace(R) - 1) / 2)
return w
def w2R(w):
omega = torch.norm(w)
if omega:
n = w / omega
s = torch.sin(omega)
c = torch.cos(omega)
cc = 1 - c
n1 = n[0]
n2 = n[1]
n3 = n[2]
n12cc = n1*n2*cc
n23cc = n2*n3*cc
n31cc = n3*n1*cc
n1s = n1*s
n2s = n2*s
n3s = n3*s
R = torch.zeros(3, 3)
R[0, 0] = c+n1*n1*cc
R[0, 1] = n12cc-n3s
R[0, 2] = n31cc+n2s
R[1, 0] = n12cc+n3s
R[1, 1] = c+n2*n2*cc
R[1, 2] = n23cc-n1s
R[2, 0] = n31cc-n2s
R[2, 1] = n23cc+n1s
R[2, 2] = c+n3*n3*cc
else:
R = torch.eye(3)
R = R.to(torch.float64)
return R
def compare_rot_graph(R1, R2,method="median"):
sigma2 = (5 * torchpi / 180) * (5 * torchpi / 180)
N = R1.shape[0]
Emeanbest = float("Inf")
E = torch.zeros(3)
Ebest = E.clone()
e = torch.zeros(N, 1)
ebest = e
l = [39, 38, 1, 93]
for i in range(4):
j = random.randint(0, N-1)
# print(j)
#j = i *2
# j = l[i]
R = R1[j, :, :].clone().t()
for k in range(N):
R1[k, :, :] = torch.mm(R1[k, :, :], R)
R = R2[j, :, :].clone().t()
for k in range(N):
R2[k, :, :] = torch.mm(R2[k, :, :], R)
W = torch.zeros(N, 3)
d = float("Inf")
count = 1
while(d > 1e-5 and count < 20):
for k in range(N):
W[k, :] = R2w(torch.mm(R2[k, :, :].t(), R1[k, :, :]))
if method == "mean":
w = torch.mean(W, 0)
d = torch.norm(w)
R = w2R(w)
elif method == "median":
w = torch.median(W, 0).values
d = torch.norm(w)
R = w2R(w)
elif method == "robustmean":
w = 1 / torch.sqrt(torch.sum(W * W, 1) + sigma2)
w = w/torch.sum(w)
w = torch.mean(w.repeat(1, 3) * W)
d = torch.norm(w)
R = w2R(w)
for k in range(N):
R2[k, :, :] = torch.mm(R2[k, :, :], R)
count = count + 1
for k in range(N):
# e[k,0] = torch.acos(torch.max(torch.min((torch.sum(R1[k,0,:]*R2[k,0,:].t())
# + torch.sum(R1[k,1,:]*R2[k,1,:].t())+ torch.sum(R1[k,2,:]*R2[k,2,:].t())-1)/2,1),-1))
now = (torch.sum(R1[k, 0, :]*R2[k, 0, :].t()) + torch.sum(R1[k, 1, :]
* R2[k, 1, :].t()) + torch.sum(R1[k, 2, :]*R2[k, 2, :].t())-1)/2
if now > 1:
now = torch.tensor(1, dtype=torch.float32)
if now < -1:
now = torch.tensor(-1, dtype=torch.float32)
e[k, 0] = torch.acos(now)
e = e * 180 / torchpi
E = torch.stack([torch.mean(e), torch.median(
e), torch.sqrt(torch.mm(e.t(), e)/len(e))[0, 0]])
if E[0] < Emeanbest:
Ebest = E
Emeanbest = E[0]
E_mean, E_median, E_var = Ebest[0].item(), Ebest[1].item(), Ebest[2].item()
return E_mean, E_median, E_var
def convert_mat(mat, ncams):
A = np.ones((ncams, ncams))
D = np.kron(np.diag(1.0/np.sum(A, 1)), np.eye(3))
M = scipy.sparse.linalg.eigsh(np.matmul(D, mat), k=3)[1]
M[:, [0, 2]] = M[:, [2, 0]]
R = np.zeros((3, 3, ncams))
for i in range(ncams):
U, s, V = np.linalg.svd(M[3*i:3*i + 3, :])
R[:, :, i] = np.matmul(U, V)
if (np.linalg.det(R[:, :, i]) < 0):
R[:, :, i] = - np.matmul(U, V)
return R