-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathtest_td.py
136 lines (102 loc) · 3.2 KB
/
test_td.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
#!/usr/bin/python
import math
import numpy as np
import scipy
import scipy.linalg
inv = scipy.linalg.inv
import pyscf
import pyscf.gto as gto
import pyscf.scf as scf
import pyscf.cc.ccsd as ccsd
import pyscf.cc.eom_rccsd as eom_rccsd
import pyscf.ao2mo as ao2mo
import greens_function
import numint_
import matplotlib.pyplot as plt
def _get_linear_freqs(wl, wh, nw):
freqs = np.linspace(wl, wh, nw)
wts = np.ones([nw]) * (wh - wl) / (nw - 1.)
return freqs, wts
def _tb(n):
"""
Tight-binding Hamiltonian
"""
h=np.zeros([n,n])
for i in range(n):
for j in range(n):
if abs(i-j)==1:
h[i,j]=1.
h[0,-1]=1.
h[-1,0]=1.
return h
def cc_td_gf(ti, tf, times, cc_eom, mo_coeff):
n = mo_coeff.shape[0]
nt = len(times)
gip = np.zeros((n,n,nt), np.complex128)
gea = np.zeros((n,n,nt), np.complex128)
gf = greens_function.greens_function()
# Calculate full (p,q) GF matrix in MO basis
g_ip = gf.td_ip(cc_eom, range(n), range(n), \
ti, tf, times)
g_ea = gf.td_ea(cc_eom, range(n), range(n), \
ti, tf, times)
# Change basis from MO to AO
# Compute retarded GF
# Defn. Eqn. A.5b, pg. 141 https://edoc.ub.uni-muenchen.de/18937/1/Wolf_Fabian_A.pdf
gf_ret_ao = np.zeros([n, n, nt], np.complex128)
for i in range(nt):
g_ip_ao = np.dot(mo_coeff, np.dot(g_ip[:,:,i], mo_coeff.T))
g_ea_ao = np.dot(mo_coeff, np.dot(g_ea[:,:,i], mo_coeff.T))
gf_ret_ao[:,:,i] = -1j*(g_ip_ao+g_ea_ao) # note theta fn is unnecessary if evolve for +ve time
return gf_ret_ao
def test_td():
nao = 2
U = 0.
htb = -1*_tb(nao)
htb[0,0]=0.0
eri = np.zeros([nao,nao,nao,nao])
for k in range(nao):
eri[k,k,k,k] = U
delta = 0.01
mol = gto.M()
mol.build()
mol.nelectron = 2 #nao
mf = scf.RHF(mol)
mf.verbose = 0
mf.max_memory = 1000
mf.get_hcore = lambda *args: htb
mf.get_ovlp = lambda *args: np.eye(nao)
mf._eri = ao2mo.restore(8, eri, nao)
mf.init_guess = '1e'
mf.scf()
print 'MF energy = %20.12f' % (mf.e_tot)
print 'MO energies :'
print mf.mo_energy
print '----\n'
cc = ccsd.CCSD(mf)
ecc = cc.ccsd()[0]
print "CCSD corr = %20.12f" % (ecc)
print "Solving lambda equations..."
cc.solve_lambda()
ti=0
tf=400
nquad=12
times=np.linspace(ti, tf, 2**nquad+1)
gf_ret = cc_td_gf (ti, tf, times, cc, mf.mo_coeff)
freqs_ = _get_linear_freqs(-6, 6, 512)[0]
gf_ret_w = np.zeros([gf_ret.shape[0],gf_ret.shape[1],len(freqs_)],dtype=np.complex128)
halftime=(2**(nquad-1)+1)
inttimes = times[:halftime]
delta=0.1
for iw, w in enumerate(freqs_):
ftwts = 1./(tf-ti)*np.array([np.exp(1j*(w*t))*np.exp(-delta**2*t) for t in times[:halftime]], dtype=np.complex128)
for p in range(gf_ret.shape[0]):
for q in range(gf_ret.shape[1]):
gfft = gf_ret[p,q,:halftime] * ftwts
gf_ret_w[p,q,iw]=scipy.integrate.romb(gfft)
print gf_ret_w
dos = np.zeros([freqs_.shape[0]])
for k in range(nao):
dos[:] += 1./np.pi * np.imag(gf_ret_w[k,k,:])
plt.plot(freqs_, dos)
plt.show()