-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathdmft.py
1084 lines (919 loc) · 34.3 KB
/
dmft.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#!/usr/bin/python
from sys import stdout
import numpy as np
import numpy.polynomial.legendre
import scipy
import scipy.linalg
import scipy.optimize
inv = scipy.linalg.inv
import h5py
import pyscf
import pyscf.gto as gto
#import pyscf.scf as scf
import scf_mu as scf
import pyscf.cc.ccsd as ccsd
import pyscf.cc.eom_rccsd as eom_rccsd
import pyscf.ao2mo as ao2mo
import greens_function
import numint_
import tools
from matplotlib import pyplot as plt
fci_ = False
try:
import PyCheMPS2
import ctypes
fci_ = True
except:
pass
def _get_delta(eigs):
"""
Rough estimate of broadening from spectrum of h
"""
n = eigs.shape[0]
# the factor of 2. is just an empirical estimate
return 2. * (max(eigs) - min(eigs)) / (n-1.)
def _get_scaled_legendre_roots(wl, wh, nw):
"""
Scale nw Legendre roots, which lie in the
interval [-1, 1], so that they lie in [wl, wh]
Returns:
freqs : 1D ndarray
wts : 1D ndarray
"""
freqs, wts = numpy.polynomial.legendre.leggauss(nw)
freqs += 1
freqs *= (wh - wl) / 2.
freqs += wl
wts *= (wh - wl) / 2.
return freqs, wts
def _get_linear_freqs(wl, wh, nw):
freqs = np.linspace(wl, wh, nw)
wts = np.ones([nw]) * (wh - wl) / (nw - 1.)
return freqs, wts
def get_sigma (mf_gf, corr_gf):
nw = mf_gf.shape[2]
sigma = np.zeros_like(mf_gf)
for iw in range(nw):
sigma[:,:,iw] = inv(mf_gf[:,:,iw]) - inv(corr_gf[:,:,iw])
return sigma
def mf_kernel (himp, eri_imp, mu):
n = himp.shape[0]
mol = gto.M()
mol.build()
#mol.nelectron = n # only half-filling
mf = scf.RHF(mol, mu)
mf.verbose = 0
# mf.verbose = 4
mf.max_memory = 1000
mf.mo_energy = np.zeros([n])
mf.mo_energy[:n/2] = mf.mu-0.01
mf.mo_energy[n/2:] = mf.mu+0.01
mf.get_hcore = lambda *args: himp
mf.get_ovlp = lambda *args: np.eye(n)
mf._eri = ao2mo.restore(8, eri_imp, n)
mf.init_guess = '1e' # currently needed
print "MF H"
print mf.get_hcore()
_ = mf.scf()
print 'MF energy = %20.12f\n' % (mf.e_tot)
print 'MO energies :\n'
print mf.mo_energy
print '----\n'
return mf
def cc_kernel (mf_):
CISD = False
print "Solving CCSD equations..."
cc = ccsd.RCCSD(mf_)
ecc = cc.ccsd()[0]
print "CCSD corr = %20.12f" % (ecc)
print "Solving lambda equations..."
cc.solve_lambda()
# print "Solving EOM CCSD"
# cc_eom = eom_rccsd.RCCSD(mf_)
# def ao2mofn_ (mol, bas, compact):
# return ao2mo.incore.general(mf_._eri, bas, compact=compact)
# eri_eom = eom_rccsd._ERIS(cc_eom, ao2mofn=ao2mofn_)
# ecc_eom = cc_eom.ccsd(eris=eri_eom)[0]
# print "EOM-CCSD corr = %20.12f" % (ecc_eom)
print '====\n'
#cc_eom.t1 = cc.t1
#cc_eom.t2 = cc.t2
#cc_eom.l1 = cc.l1
#cc_eom.l2 = cc.l2
# if CISD == True:
# cc_eom.t1 *= 1e-5
# cc_eom.t2 *= 1e-5
# cc_eom.l1 *= 1e-5
# cc_eom.l2 *= 1e-5
return cc #cc_eom
class FCIsol:
def __init__ (self, HamCheMPS2, theFCI, GSvector, GSenergy):
assert (fci_)
assert (isinstance(HamCheMPS2, PyCheMPS2.PyHamiltonian))
self.HamCheMPS2 = HamCheMPS2
assert (isinstance(theFCI, PyCheMPS2.PyFCI))
self.FCI = theFCI
self.GSvector = GSvector
self.GSenergy = GSenergy
def fci_kernel (mf_):
norb = mf_.mo_coeff.shape[0]
h0 = 0.
h1t = np.dot(mf_.mo_coeff.T, \
np.dot(mf_.get_hcore(), mf_.mo_coeff))
erit = ao2mo.incore.full(mf_._eri, mf_.mo_coeff, compact=False)
erit = erit.reshape([norb,norb,norb,norb])
Initializer = PyCheMPS2.PyInitialize()
Initializer.Init()
# Setting up the Hamiltonian
Group = 0
orbirreps = np.zeros((norb,), dtype=ctypes.c_int)
HamCheMPS2 = PyCheMPS2.PyHamiltonian(norb, Group, orbirreps)
HamCheMPS2.setEconst( h0 )
for cnt1 in range(norb):
for cnt2 in range(norb):
HamCheMPS2.setTmat(cnt1, cnt2, h1t[cnt1,cnt2])
for cnt3 in range(norb):
for cnt4 in range(norb):
HamCheMPS2.setVmat(cnt1, cnt2, cnt3, cnt4, \
erit[cnt1,cnt3,cnt2,cnt4])
nel = np.count_nonzero(mf_.mo_occ)*2
assert( nel % 2 == 0 )
Nel_up = nel / 2
Nel_down = nel / 2
Irrep = 0
maxMemWorkMB = 100.0
FCIverbose = 0
theFCI = PyCheMPS2.PyFCI( HamCheMPS2, Nel_up, Nel_down, \
Irrep, maxMemWorkMB, FCIverbose )
GSvector = np.zeros( [ theFCI.getVecLength() ], \
dtype=ctypes.c_double )
GSvector[ theFCI.LowestEnergyDeterminant() ] = 1
EnergyCheMPS2 = theFCI.GSDavidson( GSvector )
print "FCI corr = %20.12f" % (EnergyCheMPS2-mf_.e_tot)
print '====\n'
fcisol = FCIsol(HamCheMPS2, theFCI, GSvector, EnergyCheMPS2)
return fcisol
def mf_gf (freqs, delta, mo_coeff, mo_energy):
nw = len(freqs)
n = mo_coeff.shape[0]
gf = np.zeros([n, n, nw], np.complex128)
for iw, w in enumerate(freqs):
g = np.diag(1./((w+1j*delta) * \
np.ones([n], np.complex128) - mo_energy))
gf[:,:,iw] = np.dot(mo_coeff, np.dot(g, mo_coeff.T))
return gf
def tdcc_gf(freqs, delta, cc, mo_coeff, ti=0, tf=40, nobs=800, tmax0=10000, tol=1.e-5):
"""
I think tf should something like ~2pi * energy width. For example
if U=8, then tf=40 works well.
tf/nobs defines the smallest frequency. Usually I choose nobs = ~10*tf
tmax0 should be left as a large number, I think 10000 must be large enough
"""
n = mo_coeff.shape[0]
times = np.linspace(ti,tf,nobs)
deltat = float(tf - ti) / nobs
# predict out to long times
# note ntotal must be 2**n+1 since
# we use romberg integration to do fourier transform integral
ntotal0 = tmax0 / deltat
nbase2 = np.int(np.log(ntotal0)/np.log(2))
ntotal = 2**nbase2+1
gf = greens_function.greens_function()
gip = -gf.td_ip(cc, range(n), range(n),
times, re_im="re", tol=tol)
gea = -gf.td_ea(cc, range(n), range(n),
times, re_im="re", tol=tol)
PREDICT = True
if PREDICT:
# 2*pi/tmax gives a minimum oscillation frequency, so
# graph will wiggle at least on this scale
print "Total propagation time: ", ntotal * deltat
predicted_gf_ip = tools.predict_gf(gip, ntotal)
predicted_gf_ea = tools.predict_gf(gea, ntotal)
gret = -1j * (predicted_gf_ip + predicted_gf_ea)
gret_ao = np.einsum("pi,ijt,jq->pqt", mo_coeff, gret, mo_coeff.T)
extrapolated_times = np.array([deltat*i for i in range(ntotal)])
tmax = extrapolated_times[-1]
gf_w = tools.get_gfw(gret_ao, extrapolated_times,
freqs, delta)
else:
gret = -1j * (gip + gea)
gret_ao = np.einsum("pi,ijt,jq->pqt", mo_coeff, gret, mo_coeff.T)
gf_w = tools.get_gfw(gret_ao, times,
freqs, delta)
return gf_w
def cc_gf (freqs, delta, cc, mo_coeff):
n = mo_coeff.shape[0]
nw = len(freqs)
#gip = np.zeros((n,n,nw), np.complex128)
#gea = np.zeros((n,n,nw), np.complex128)
gf = greens_function.greens_function()
# Calculate full (p,q) GF matrix in MO basis
g_ip = gf.solve_ip(cc, range(n), range(n), \
freqs.conj(), delta).conj()
g_ea = gf.solve_ea(cc, range(n), range(n), \
freqs, delta)
# Change basis from MO to AO
gf = np.zeros([n, n, nw], np.complex128)
for iw, w in enumerate(freqs):
g_ip_ = np.dot(mo_coeff, np.dot(g_ip[:,:,iw], mo_coeff.T))
g_ea_ = np.dot(mo_coeff, np.dot(g_ea[:,:,iw], mo_coeff.T))
gf[:,:,iw] = g_ip_+g_ea_
return gf
def fci_gf (freqs, delta, fcisol, mo_coeff):
n = mo_coeff.shape[0]
nw = len(freqs)
gf = np.zeros([n, n, nw], np.complex128)
orbsLeft = np.arange(n, dtype=ctypes.c_int)
orbsRight = np.arange(n, dtype=ctypes.c_int)
theFCI = fcisol.FCI
energy_gs = fcisol.GSenergy
gs_vector = fcisol.GSvector
HamCheMPS2 = fcisol.HamCheMPS2
for iw, w in enumerate(freqs):
if np.iscomplex(w):
wr = w.real
wi = w.imag
else:
wr = w
wi = 0.
ReGF, ImGF = theFCI.GFmatrix_rem (wr-energy_gs, 1.0, wi+delta, \
orbsLeft, orbsRight, 1, gs_vector, HamCheMPS2)
gf_ = (ReGF.reshape((n,n), order='F') + \
1j*ImGF.reshape((n,n), order='F')).T
ReGF, ImGF = theFCI.GFmatrix_add (wr+energy_gs, -1.0, wi+delta, \
orbsLeft, orbsRight, 1, gs_vector, HamCheMPS2)
gf_ += ReGF.reshape((n,n), order='F') + \
1j*ImGF.reshape((n,n), order='F')
gf[:,:,iw] = np.dot(mo_coeff, np.dot(gf_, mo_coeff.T))
return gf
def get_gf(hcore, sigma, freqs, delta):
"""
Green's function at a set of frequencies
Args:
hcore : (nao, nao) ndarray
sigma : (nao, nao) ndarray
freqs : (nw) ndarray
delta : float
Returns:
gf : (nao, nao) ndarray
"""
nw = len(freqs)
nao = hcore.shape[0]
gf = np.zeros([nao, nao, nw], np.complex128)
for iw, w in enumerate(freqs):
gf[:,:,iw] = inv((w+1j*delta)*np.eye(nao)-hcore-sigma[:,:,iw])
return gf
def imp_ham (hcore_cell, eri_cell, bath_v, bath_e):
nao = hcore_cell.shape[0]
nbath = len(bath_e)
himp = np.zeros([nao+nbath, nao+nbath])
himp[:nao,:nao] = hcore_cell
himp[:nao,nao:] = bath_v
himp[nao:,:nao] = bath_v.T
himp[nao:,nao:] = np.diag(bath_e)
eri_imp = np.zeros([nao+nbath, nao+nbath, nao+nbath, nao+nbath])
eri_imp[:nao,:nao,:nao,:nao] = eri_cell
return himp, eri_imp
def kernel (dmft, hcore_kpts, eri_cell, freqs, wts, delta, \
max_cycle, conv_tol=1.e-6, dmpf=0.5, chkpt=True):
"""
DMFT self-consistency
Modeled after PySCF HF kernel
"""
dmft_conv = False
cycle = 0
nkpts, nao, nao = hcore_kpts.shape
hcore_cell = 1./nkpts * np.sum(hcore_kpts, axis=0)
if np.iscomplexobj(hcore_cell):
assert (np.allclose(np.zeros((nao,nao,)), hcore_cell.imag))
hcore_cell = hcore_cell.real
# get initial guess
nw = len(freqs)
if dmft.sigma is None:
sigma = np.zeros([nao, nao, nw])
else:
assert (dmft.sigma.shape == (nao,nao,nw))
sigma = dmft.sigma.copy()
gf0_cell = get_gf(hcore_cell, sigma, freqs, delta)
gf_cell = np.zeros([nao, nao, nw], np.complex128)
for k in range(nkpts):
gf_cell += 1./nkpts * \
get_gf(hcore_kpts[k,:,:], sigma, freqs, delta)
hyb = get_sigma(gf0_cell, gf_cell)
dmft.delta = delta
dmft.freqs = freqs
dmft.wts = wts
def _gf_imp (freqs, delta, mf_, corr_=None):
if dmft.solver_type != 'scf':
assert (corr_ is not None)
if dmft.solver_type == 'scf':
return mf_gf (freqs, delta, mf_.mo_coeff, mf_.mo_energy)
elif dmft.solver_type == 'cc':
return cc_gf (freqs, delta, corr_, mf_.mo_coeff)
elif dmft.solver_type == 'tdcc':
return tdcc_gf (freqs, delta, corr_, mf_.mo_coeff)
elif dmft.solver_type == 'fci':
assert (fci_)
return fci_gf (freqs, delta, corr_, mf_.mo_coeff)
while not dmft_conv and cycle < max(1, max_cycle):
hyb_last = hyb
bath_v, bath_e = get_bath(hyb, freqs, wts)
himp, eri_imp = imp_ham(hcore_cell, eri_cell, bath_v, bath_e)
dmft.mf_ = mf_kernel (himp, eri_imp, dmft.mu)
if dmft.solver_type == 'cc':
dmft.corr_ = cc_kernel (dmft.mf_)
elif dmft.solver_type == 'tdcc':
dmft.corr_ = cc_kernel (dmft.mf_)
elif dmft.solver_type == 'fci':
assert (fci_)
dmft.corr_ = fci_kernel (dmft.mf_)
if dmft.solver_type == 'scf':
gf_imp = _gf_imp (freqs, delta, dmft.mf_)
elif dmft.solver_type in ('cc', 'tdcc', 'fci'):
gf_imp = _gf_imp (freqs, delta, dmft.mf_, dmft.corr_)
gf_imp = gf_imp[:nao,:nao,:]
print freqs
print gf_imp[0,0]
ddd
#plt.plot(freqs, -1./np.pi*gf_imp[0,0].imag)
#plt.show()
nb = bath_e.shape[0]
sgdum = np.zeros((nb+nao,nb+nao,nw))
gf0_imp = get_gf(himp, sgdum, freqs, delta)
gf0_imp = gf0_imp[:nao,:nao,:]
sigma = get_sigma(gf0_imp, gf_imp)
gf0_cell = get_gf(hcore_cell, sigma, freqs, delta)
gf_cell = np.zeros([nao, nao, nw], np.complex128)
for k in range(nkpts):
gf_cell += 1./nkpts * \
get_gf(hcore_kpts[k,:,:], sigma, freqs, delta)
hyb_new = get_sigma(gf0_cell, gf_cell)
# damping
hyb = dmpf*hyb_new + (1-dmpf)*hyb
dmft.hyb = hyb
dmft.sigma = sigma
if chkpt:
dmft.chkpt()
norm_hyb = np.linalg.norm(hyb-hyb_last)
print 'cycle = ', cycle+1
print 'norm_hyb = ', norm_hyb
print '****'
stdout.flush()
if (norm_hyb < conv_tol):
dmft_conv = True
cycle +=1
dmft.conv_ = dmft_conv
def get_bath(hyb, freqs, wts):
"""
Convert hybridization function
to bath couplings and energies
Args:
hyb : (nimp, nimp, nw) ndarray
freqs : (nw) ndarray
wts : (nw) ndarray, Gaussian wts at freq pts
Returns:
bath_v : (nimp, nimp*nw) ndarray
bath_e : (nimp*nw) ndarray
"""
nw = len(freqs)
wh = max(freqs)
wl = min(freqs)
dw = (wh - wl) / (nw - 1)
# Eq. (6), arxiv:1507.07468
v2 = -1./np.pi * np.imag(hyb)
# simple discretization of bath, Eq. (9), arxiv:1507.07468
v = np.empty_like(v2)
for iw in range(nw):
eig, vec = scipy.linalg.eigh(v2[:,:,iw])
# although eigs should be positive, there
# could be numerical-zero negative eigs: check this
neg_eig = [e for e in eig if e < 0]
assert np.allclose(neg_eig, 0)
v[:,:,iw] = np.dot(vec, np.diag(np.sqrt(np.abs(eig)))) * \
np.sqrt(wts[iw])
nimp = hyb.shape[0]
bath_v = np.reshape(v, [nimp, -1])
bath_e = np.zeros([nimp * nw])
# bath_e is [nimp * nw] array, with entries
# w1, w2 ... wn, w1, w2 ... wn, ...
for ip in range(nimp):
for iw in range(nw):
bath_e[ip*nw + iw] = freqs[iw]
return bath_v, bath_e
class DMFT:
def __init__(self, hcore_k, eri_cell, solver_type='scf'):
self.nkpts, self.nao = hcore_k.shape[:2]
assert (hcore_k.shape == (self.nkpts, self.nao, self.nao,))
assert (eri_cell.shape == (self.nao,)*4)
self.hcore_k = hcore_k
self.eri_cell = eri_cell
self.solver_type = solver_type
self.chkfile = None
# do not touch
self.mu = None
self.mf_ = None
self.corr_ = None
self.conv_ = False
self.hyb = None
self.sigma = None
self.freqs = None
self.wts = None
def chkpt (self):
if self.chkfile is not None:
with h5py.File(self.chkfile, 'w') as fh5:
fh5['dmft/hyb'] = self.hyb
fh5['dmft/sigma'] = self.sigma
fh5['dmft/solver_type'] = self.solver_type
fh5['dmft/mu'] = self.mu
fh5['dmft/delta'] = self.delta
fh5['dmft/freqs'] = self.freqs
fh5['dmft/wts'] = self.wts
fh5['dmft/hcore_k'] = self.hcore_k
fh5['dmft/eri_cell'] = self.eri_cell
def kernel (self, mu, freqs, wts, delta, \
max_cycle=256, conv_tol=1.e-6, dmpf=0.5):
self.mu = mu
kernel (self, self.hcore_k, self.eri_cell, \
freqs, wts, delta, max_cycle, conv_tol, dmpf)
def kernel_nopt (self, n0, mu0, freqs, wts, delta, \
max_cycle=256, conv_tol=1.e-6, dmpf=0.5, \
tol=1.e-4):
def n_eval (mu):
self.kernel (mu, freqs, wts, delta, \
max_cycle, conv_tol, dmpf)
n_ = self.n_int (delta, epsrel=0.1*tol)
print 'mu = ', mu
print 'nint_n [imag] = ', n_
return n0-n_
mu = mu0
mu = scipy.optimize.newton (n_eval, mu, tol=tol)
self.mu = mu
def _gf (self, freqs, delta):
assert (self.conv_)
if self.solver_type != 'scf':
assert (self.corr_ is not None)
if self.solver_type == 'scf':
gf = mf_gf (freqs, delta, \
self.mf_.mo_coeff, self.mf_.mo_energy)
elif self.solver_type == 'cc':
gf = cc_gf (freqs, delta, self.corr_, self.mf_.mo_coeff)
elif self.solver_type == 'tdcc':
gf = tdcc_gf (freqs, delta, self.corr_, self.mf_.mo_coeff)
elif self.solver_type == 'fci':
assert (fci_)
gf = fci_gf (freqs, delta, self.corr_, self.mf_.mo_coeff)
return gf[:self.nao,:self.nao,:]
def _gf0 (self, freqs, delta):
himp = self.mf_.get_hcore()
nb = himp.shape[0]
nw = len(freqs)
sig_dum = np.zeros((nb,nb,nw,))
gf = get_gf(himp, sig_dum, freqs, delta)
return gf[:self.nao,:self.nao,:]
def _local_sigma (self, freqs, delta):
gf0_ = self._gf0 (freqs, delta)
gf1_ = self._gf (freqs, delta)
return get_sigma(gf0_, gf1_)
def get_lspectral (self, freqs, delta, sigma=None):
nw = len(freqs)
nao = self.nao
nkpts = self.nkpts
if sigma is None:
sigma = self._local_sigma (freqs, delta)
spec = np.zeros([nkpts, nao, nw])
for k in range(nkpts):
gf = get_gf(self.hcore_k[k,:,:], sigma, \
freqs, delta)
for l in range(nao):
spec[k,l,:] = -1./np.pi * np.imag(gf[l,l,:])
return spec
def get_lspectral_ni (self, freqs, delta):
nw = len(freqs)
nao = self.nao
sigma = np.zeros([nao, nao, nw])
return self.get_lspectral (freqs, delta, sigma)
def get_ldos (self, freqs, delta, sigma=None):
nw = len(freqs)
nao = self.nao
nkpts = self.nkpts
if sigma is None:
sigma = self._local_sigma (freqs, delta)
gf = np.zeros([nao, nao, nw], np.complex128)
for k in range(nkpts):
gf += 1./nkpts * get_gf(self.hcore_k[k,:,:], sigma, \
freqs, delta)
dos = np.zeros([nao, nw])
for k in range(nao):
dos[k,:] += -1./np.pi * np.imag(gf[k,k,:])
return dos
def get_ldos_ni (self, freqs, delta):
nw = len(freqs)
nao = self.nao
sigma = np.zeros([nao, nao, nw])
return self.get_ldos (freqs, delta, sigma)
def rdm_freq (self, freqs, delta):
nao = self.nao
nkpts = self.nkpts
if isinstance(freqs, (float, np.float, complex, np.complex)):
_freqs = np.array([freqs])
else:
_freqs = freqs
nw = len(_freqs)
sigma = self._local_sigma (_freqs, delta)
p = np.zeros([nao, nao, nw], np.complex128)
for k in range(nkpts):
p += 1./nkpts * get_gf(self.hcore_k[k,:,:], sigma, \
_freqs, delta)
return p
def rdm_int (self, delta, axis='imag', \
x0=None, epsrel=1.0e-4):
assert (axis in ('real', 'imag'))
if axis == 'real':
assert (x0 is not None)
p_int = np.zeros([self.nao, self.nao])
for k in range(self.nao):
for l in range(self.nao):
def _p_freq (w, delta):
return self.rdm_freq (w, delta)[k,l,0]
if axis == 'imag':
p_int[k,l] = numint_.int_quad_imag (_p_freq, \
self.mu, epsrel=epsrel, delta=delta)
else:
assert (x0 is not None)
p_int[k,l] = numint_.int_quad_real (_p_freq, \
self.mu, x0=x0, \
epsrel=epsrel, delta=delta)
if axis == 'imag':
return 2*0.5*(np.eye(self.nao)-p_int)
else:
return 2*p_int
def n_freq (self, freqs, delta):
if isinstance(freqs, (float, np.float, complex, np.complex)):
_freqs = np.array([freqs])
else:
_freqs = freqs
nw = len(_freqs)
n = np.zeros([nw], np.complex128)
for iw, w in enumerate(_freqs):
n[iw] = np.trace(self.rdm_freq(np.array([w]), \
delta)[:,:,0])
return n
def n_int (self, delta, axis='imag', \
x0=None, epsrel=1.0e-4):
assert (axis in ('real', 'imag'))
if axis == 'real':
assert (x0 is not None)
def _n_freq (w, delta):
return self.n_freq (w, delta)[0]
if axis == 'imag':
# NL = # poles left of mu, NR = # poles right of mu
# nao = NL + NR
# integration gives NR - NL (factor of 2 in imag_fn)
nint_n = numint_.int_quad_imag (_n_freq, self.mu, \
epsrel=epsrel, delta=delta)
return 2*0.5*(self.nao-nint_n)
else:
nint_n = numint_.int_quad_real (_n_freq, self.mu, \
x0=x0, epsrel=epsrel, delta=delta)
return 2*nint_n
def energy (self, delta, axis='imag', \
x0=None, epsrel=1.0e-4):
assert (axis in ('real', 'imag'))
if axis == 'real':
assert (x0 is not None)
nkpts = self.nkpts
inf_ = np.array([100000.])
if axis == 'imag':
sinf = self._local_sigma(1j*inf_+self.mu, delta)[:,:,0]
else:
sinf = self._local_sigma(inf_, delta)[:,:,0]
def _eval_en0 (w, delta):
sigma = self._local_sigma (np.array([w]), delta)
en = np.complex(0.)
for k in range(nkpts):
gf_ = get_gf(self.hcore_k[k,:,:], sigma, \
np.array([w]), delta)[:,:,0]
en += 1./nkpts * \
np.trace(np.dot(self.hcore_k[k,:,:], gf_))
return en
def _eval_en1(w, delta):
sigma = self._local_sigma (np.array([w]), delta)
en = np.complex(0.)
for k in range(nkpts):
gf_ = get_gf(self.hcore_k[k,:,:], sigma, \
np.array([w]), delta)[:,:,0]
en += 1./nkpts * \
np.trace(np.dot(sinf, gf_))
return en
def _eval_en2(w, delta):
sigma = self._local_sigma (np.array([w]), delta)
en = np.complex(0.)
for k in range(nkpts):
gf_ = get_gf(self.hcore_k[k,:,:], sigma, \
np.array([w]), delta)[:,:,0]
en += 1./nkpts * \
np.trace(np.dot(sigma[:,:,0]-sinf, gf_))
return en
if axis == 'imag':
# trace of h with GF
nint_e0 = numint_.int_quad_imag (_eval_en0, self.mu, \
epsrel=epsrel, delta=delta)
print 'nint H_c [imag] = ', -nint_e0
# energy due to 1/w self-energy
nint_e2 = numint_.int_quad_imag (_eval_en2, self.mu, \
epsrel=epsrel, delta=delta)
print 'nint S[w] [imag] = ', -nint_e2/2.
# energy due to a constant self-energy
nint_e1 = numint_.int_quad_imag (_eval_en1, self.mu, \
epsrel=epsrel, delta=delta)
e1 = (np.real(np.trace(sinf)) - nint_e1)
print 'nint S[inf] [imag] = ', e1/2
return -nint_e0 + e1/2. -nint_e2/2.
else:
# trace of h with GF
nint_e0 = numint_.int_quad_real (_eval_en0, self.mu, \
x0=x0, epsrel=epsrel, delta=delta)
print 'nint H_c [real] = ', 2*nint_e0
# energy due to 1/w self-energy
nint_e2 = numint_.int_quad_real (_eval_en2, self.mu, \
x0=x0, epsrel=epsrel, delta=delta)
print 'nint S[w] [real] = ', nint_e2
# energy due to a constant self-energy
nint_e1 = numint_.int_quad_real (_eval_en1, self.mu, \
x0=x0, epsrel=epsrel, delta=delta)
print 'nint S[inf] [real] = ', nint_e1
return 2*nint_e0 + nint_e1 + nint_e2
def hub_1d (nx, U, nw, fill=1., chkf=None, \
mu0=None, sigma=None, conv_tol=1.e-6, \
max_cycle=256, solver_type='scf'):
kx = np.arange(-nx/2+1, nx/2+1, dtype=float)
hcore_k_ = -2*np.cos(2.*np.pi*kx/nx)
hcore_k = hcore_k_.reshape([nx,1,1])
eri = np.zeros([1,1,1,1])
eri[0,0,0,0] = U
if mu0 is None:
mu0 = U/2.
# print np.sort(hcore_k_)
# assert(False)
dmft = DMFT (hcore_k, eri, solver_type=solver_type)
dmft.chkfile = chkf
if sigma is None:
dmft.sigma = U/2.*np.ones([1,1,nw])
else:
assert (sigma.shape == (1,1,nw,))
dmft.sigma = sigma.copy()
wl, wh = -5.+U/2., 5.+U/2.
delta = 0.1
#delta = _get_delta(hcore_k_)
#print "DELTA IS", delta
#freqs, wts = _get_linear_freqs(wl, wh, nw)
freqs, wts = _get_scaled_legendre_roots(wl, wh, nw)
dmft.kernel_nopt (fill, mu0, freqs, wts, delta, \
max_cycle, conv_tol, dmpf=0.75)
return dmft, freqs, delta
def hub_2d (nx, ny, U, nw, fill=1., chkf=None, \
mu0=None, sigma=None, conv_tol=1.e-6, \
max_cycle=256, solver_type='scf'):
kx = np.arange(-nx/2+1, nx/2+1, dtype=float)
ky = np.arange(-ny/2+1, ny/2+1, dtype=float)
kx_, ky_ = np.meshgrid(kx,ky)
hcore_k_ = -2*np.cos(2.*np.pi*kx_.flatten(order='C')/nx) \
-2*np.cos(2.*np.pi*ky_.flatten(order='C')/ny)
hcore_k = hcore_k_.reshape([nx*ny,1,1])
eri = np.zeros([1,1,1,1])
eri[0,0,0,0] = U
if mu0 is None:
mu0 = U/2.
# print np.sort(hcore_k_)
# assert(False)
dmft = DMFT (hcore_k, eri, solver_type=solver_type)
dmft.chkfile = chkf
if sigma is None:
dmft.sigma = U/2.*np.ones([1,1,nw])
else:
assert (sigma.shape == (1,1,nw,))
dmft.sigma = sigma.copy()
wl, wh = -7.+U/2., +7.+U/2.
delta = _get_delta(hcore_k_)
#freqs, wts = _get_linear_freqs(wl, wh, nw)
freqs, wts = _get_scaled_legendre_roots(wl, wh, nw)
dmft.kernel_nopt (fill, mu0, freqs, wts, delta, \
max_cycle, conv_tol, dmpf=0.75)
return dmft, freqs, delta
def hub_cell_1d (nx, isx, U, nw, bas=None, fill=1., chkf=None, \
mu0=None, sigma=None, conv_tol=1.e-5, \
max_cycle=256, solver_type='scf'):
assert (nx % isx == 0)
if bas is not None:
assert (np.iscomplexobj(bas) == False)
assert (bas.shape == (isx,isx))
def nn_hopping (ns):
t = np.zeros((ns,ns,), dtype=float)
for ist in range(ns-1):
t[ist,ist+1] = -1.0
t[ist+1,ist] = -1.0
t[0,-1] += -1.0
t[-1,0] += -1.0
return t
def planewave (ns):
U = np.zeros((ns,ns,), dtype=complex)
scr = np.arange(ns, dtype=float)
for k in range(ns):
kk = (2.0*np.pi/ns)*k
U[:,k] = np.exp(1j*kk*scr)
U *= (1.0/np.sqrt(ns))
return U
nx_ = nx/isx
T = nn_hopping (nx)
Ut = planewave (nx_)
hcore_k = np.zeros((nx_,isx,isx,), dtype=complex)
for i1 in range(isx):
for i2 in range(isx):
for k in range(nx_):
T_ = T[i1::isx,i2::isx].\
reshape((nx_,nx_,), order='F')
hcore_k[k,i1,i2] = \
np.dot(Ut[:,k].T, np.dot(T_, Ut[:,k].conj()))
hcore_k_ = np.zeros((nx_,isx))
for k in range(nx_):
hcore_k_[k,:] = scipy.linalg.eigh(hcore_k[k,:,:], \
eigvals_only=True)
# print np.sort(hcore_k_.flatten())
# assert (False)
if bas is not None:
for k in range(nx_):
hcore_k[k,:,:] = np.dot(bas.T, \
np.dot(hcore_k[k,:,:], bas))
eri = np.zeros([isx,isx,isx,isx])
for k in range(isx):
eri[k,k,k,k] = U
if bas is not None:
eri_ = ao2mo.restore(4, eri, isx)
erix = ao2mo.incore.full(eri_, bas, compact=False)
eri = ao2mo.restore(1, erix, isx)
del eri_, erix
if mu0 is None:
mu0 = U/2.
dmft = DMFT (hcore_k, eri, solver_type=solver_type)
dmft.chkfile = chkf
if sigma is None:
dmft.sigma = np.empty([isx,isx,nw])
for iw in range(nw):
dmft.sigma[:,:,iw] = U/2.*np.eye(isx)
else:
assert (sigma.shape == (isx,isx,nw,))
dmft.sigma = sigma.copy()
wl, wh = -5.+U/2., 5.+U/2.
delta = _get_delta(hcore_k_.flatten())
#freqs, wts = _get_linear_freqs(wl, wh, nw)
freqs, wts = _get_scaled_legendre_roots(wl, wh, nw)
dmft.kernel_nopt (fill*isx, mu0, freqs, wts, delta, \
max_cycle, conv_tol, dmpf=0.5)
return dmft, freqs, delta
def hub_cell_2d (nx, ny, isx, isy, U, nw, bas=None, fill=1., chkf=None, \
mu0=None, sigma=None, conv_tol=1.e-5, \
max_cycle=256, solver_type='scf'):
assert (nx % isx == 0)
assert (ny % isy == 0)
if bas is not None:
assert (np.iscomplexobj(bas) == False)
assert (bas.shape == (isy*isx,isy*isx))
def nn_hopping (nx, ny):
ns = nx*ny
t = np.zeros((ny,nx,ny,nx,), dtype=float)
for istx in range(nx):
for isty in range(ny-1):
t[isty,istx,isty+1,istx] = -1.0
t[isty+1,istx,isty,istx] = -1.0
t[0,istx,-1,istx] += -1.0
t[-1,istx,0,istx] += -1.0
for isty in range(ny):
for istx in range(nx-1):
t[isty,istx,isty,istx+1] = -1.0
t[isty,istx+1,isty,istx] = -1.0
t[isty,0,isty,-1] += -1.0
t[isty,-1,isty,0] += -1.0
return t
def planewave (nx, ny):
ns = nx*ny
U = np.zeros((ns,ns,), dtype=complex)
sx = np.arange(nx, dtype=float)
sy = np.arange(ny, dtype=float)
scrx, scry = np.meshgrid(sx,sy, indexing='ij')
scrx = scrx.reshape((ns,))
scry = scry.reshape((ns,))
k = 0
for kx in range(nx):
kkx = (2.0*np.pi/nx)*kx
for ky in range(ny):
kky = (2.0*np.pi/ny)*ky
U[:,k] = np.exp(1j*(kkx*scrx+kky*scry))
k += 1
U *= (1.0/np.sqrt(ns))
return U
nx_ = nx/isx
ny_ = ny/isy
ns_ = nx_*ny_
T = nn_hopping (nx, ny)
Ut = planewave (nx_, ny_)
hcore_k = np.zeros((ns_,isy,isx,isy,isx,), dtype=complex)
for i1y in range(isy):
for i1x in range(isx):
for i2y in range(isy):
for i2x in range(isx):
T_ = T[i1y::isy,i1x::isx,i2y::isy,i2x::isx].\
reshape((ns_,ns_,), order='F')
for k in range(ns_):
hcore_k[k,i1y,i1x,i2y,i2x] = \
np.dot(Ut[:,k].T, np.dot(T_, Ut[:,k].conj()))
hcore_k = hcore_k.reshape((ns_,isy*isx,isy*isx,), order='F')
hcore_k_ = np.zeros((ns_,isx*isy))
for k in range(ns_):
hcore_k_[k,:] = scipy.linalg.eigh(hcore_k[k,:,:], \
eigvals_only=True)
# print np.sort(hcore_k_.flatten())
# assert (False)
if bas is not None:
for k in range(ns_):
hcore_k[k,:,:] = np.dot(bas.T, \
np.dot(hcore_k[k,:,:], bas))
eri = np.zeros([isx*isy,isx*isy,isx*isy,isx*isy])
for k in range(isx*isy):
eri[k,k,k,k] = U
if bas is not None:
eri_ = ao2mo.restore(4, eri, isx*isy)
erix = ao2mo.incore.full(eri_, bas, compact=False)
eri = ao2mo.restore(1, erix, isx*isy)
del eri_, erix
if mu0 is None: