-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutils.py
172 lines (133 loc) · 5.61 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import streamlit as st
import pandas as pd
import matplotlib.pyplot as plt
import os
import plotly.express as px
import numpy as np
import os
import requests
import zipfile
import os
import requests
import zipfile
from plotly.subplots import make_subplots
import plotly.graph_objects as go
import plotly.graph_objs as go
from plotly.subplots import make_subplots
def add_histograms_generic(df, variables, grid_size):
# Calculating number of subplots needed
num_plots = len(variables)
# Creating subplots for histograms
figs = []
for var in variables:
fig = go.Histogram(x = df[var])
figs.append(fig)
# Creating a subplot grid
rows, cols = grid_size
fig_subplots = make_subplots(rows=rows, cols=cols, subplot_titles=variables)
row = 1
col = 1
for i, fig in enumerate(figs):
# fig_subplots.add_trace(fig['data'][0], row=row, col=col)
fig_subplots.add_trace(fig, row=row, col=col)
if col < cols:
col += 1
else:
col = 1
row += 1
# Update layout for better presentation
fig_subplots.update_layout(height=300 * rows, width=400 * cols, title_text='Histograms of Variables')
return fig_subplots
def add_scatter_plot(df, x_axis, y_axis):
# Create an interactive scatter plot with Plotly based on the selected variables
fig = px.scatter(df, x=x_axis, y=y_axis,
title=f"Scatter Plot between {x_axis} and {y_axis}",
width=800,
height=600)
# Update x-axis tick properties for fine-grained ticks
# Set limits on the x-axis values (change the range as needed)
x_min_value = df[x_axis].min()
x_max_value = df[x_axis].max()
fig.update_xaxes(range=[x_min_value, x_max_value], tickmode='auto', nticks=50) # Set the range of x-axis values
return fig
def get_filename_without_extension(file_path):
return os.path.splitext(os.path.basename(file_path))[0]
def get_house_data(root_dir, house_name, sampling_frequency):
# Read the CSV file into a Pandas DataFrame
precon_house = pd.read_csv(os.path.join(root_dir, house_name+'.csv'))
precon_house['Date_Time'] = pd.to_datetime(precon_house['Date_Time'])
# Create a new DataFrame by resampling based on the specified interval
sampled_precon_house = precon_house.resample(sampling_frequency, on='Date_Time').mean().reset_index()
return sampled_precon_house, precon_house
def check_and_download_data():
metadata_url = 'http://web.lums.edu.pk/~eig/precon_files/Metadata.csv'
precon_url = 'http://web.lums.edu.pk/~eig/precon_files/PRECON.zip'
data_directory = './data'
precon_directory = os.path.join(data_directory, 'PRECON')
if not os.path.exists(precon_directory):
os.mkdir(precon_directory)
# Check if Metadata.csv and PRECON directory exist
metadata_path = os.path.join(data_directory, 'Metadata.csv')
precon_exists = os.path.exists(precon_directory)
if not (os.path.exists(metadata_path) and precon_exists):
print ('Metadata.csv and PRECON directory do not exist. Downloading files...')
# Download Metadata.csv
response_metadata = requests.get(metadata_url)
with open(metadata_path, 'wb') as metadata_file:
metadata_file.write(response_metadata.content)
# Download PRECON.zip
response_precon = requests.get(precon_url)
precon_zip_path = os.path.join(data_directory, 'PRECON.zip')
with open(precon_zip_path, 'wb') as precon_zip_file:
precon_zip_file.write(response_precon.content)
# Extract PRECON.zip
with zipfile.ZipFile(precon_zip_path, 'r') as zip_ref:
zip_ref.extractall(precon_directory)
# Delete the PRECON.zip file
os.remove(precon_zip_path)
print("Files downloaded, PRECON directory extracted, and zip file deleted.")
else:
print("Metadata.csv and PRECON directory already exist.")
def get_month_wise_stats(precon_house):
df_variables = precon_house.columns[2:] if len(precon_house.columns) > 2 else precon_house.columns[1:]
# print (f'df_variables: {df_variables}')
figs = []
energies = []
for variable in df_variables:
# print (f'variable: {str(variable)}')
power_curve = precon_house[str(variable)]
power_curve = power_curve.to_numpy()
total_energy = np.trapz(power_curve)/60
# print (total_energy)
energies.append(total_energy)
fig = px.pie(values=energies, names=df_variables, title='Energy Consumption by Appliances through out the year (kWh)')
figs.append(fig)
months = [1,2,3,4,5,6,7,8,9,10,11,12]
months_dict = {
1: "January",
2: "February",
3: "March",
4: "April",
5: "May",
6: "June",
7: "July",
8: "August",
9: "September",
10: "October",
11: "November",
12: "December"
}
for desired_month in months:
filtered_df = precon_house[precon_house['Date_Time'].dt.month == desired_month]
# print (df_variables)
energies = []
for variable in df_variables:
# print (f'variable: {str(variable)}')
power_curve = filtered_df[str(variable)]
power_curve = power_curve.to_numpy()
total_energy = (np.trapz(power_curve))/60 #the resulting energy will be ub kW-minutes. to get energy in kWh, we divide by 60
# print (total_energy)
energies.append(total_energy)
fig = px.pie(values=energies, names=df_variables, title=f'Energy Consumption by Appliances through {months_dict[desired_month]} (kWh)')
figs.append(fig)
return figs