BilSTM crf explanation
sentence is tensor([ 11, 12, 13, 14, 15, 16, 11]) # Encoded sentence (Tokenized)
Features is tensor([[ 0.5097, -0.0811, 0.3995, -0.1383, 0.3875], [ 0.4825, -0.0873, 0.4140, -0.1281, 0.4278], [ 0.4511, 0.0929, 0.1660, -0.2906, 0.4013], [ 0.5103, -0.0333, 0.2920, -0.2044, 0.3373], [ 0.4635, -0.0438, 0.2888, -0.2380, 0.3425], [ 0.2789, -0.0071, 0.2396, -0.3721, 0.4266], [ 0.3305, 0.1088, 0.0476, -0.3885, 0.4252]])
Initial alpha = tensor([[-10000., -10000., -10000., -10000., -10000.]]) Forward_var = tensor([[-10000., -10000., -10000., 0., -10000.]])
Forward var beginning is tensor([[-10000., -10000., -10000., 0., -10000.]])
forward tensors aplhas_t []
probabilities are found by adding "emission score","transmission score" . "transmission score" is a matrix of (#tags,#tags) with elements showing transition scores from each other. Notation is a little different .
**** Entry i,j is the score of # transitioning to i from j. **
feat is 1 For tag 0 Before addition scores are :
1.forward_var: tensor([[-10000., -10000., -10000., 0., -10000.]]) 2.trans_score: tensor([[ -1.7072, -0.8968, -0.2316, -0.6008, -9999.9902]]) # transmission_score[0] gives score of # transitioning to i from all states. 3.Emit score : tensor([[ 0.5097, 0.5097, 0.5097, 0.5097, 0.5097]]) # We take emission scores[ith word,0th tag]
Summation is tensor([[-1.0001e+04, -1.0000e+04, -9.9997e+03, -9.1082e-02, -1.9999e+04]])
forward tensors aplhas_t [tensor(1.00000e-02 *[-9.1082])] ## This is simply doing log_sum(Summation)
For tag 1 Before addition scores are :
1.forward_var: tensor([[-10000., -10000., -10000., 0., -10000.]]) 2.trans_score: tensor([[ -0.6801, 1.2532, 0.6238, 1.5398, -9999.9902]]) 3.Emit score : tensor(1.00000e-02 * [[-8.1111, -8.1111, -8.1111, -8.1111, -8.1111]]) Summation is tensor([[-10000.7607, -9998.8281, -9999.4570, 1.4587, -20000.0723]]) forward tensors aplhas_t [tensor(1.00000e-02 *[-9.1082]), tensor([ 1.4587])]
So , now we have score of tag2 for word1 . You can see that "forward_var" score is same for the above one too. The only thing that changes is
emission score since Emit score=emission scores[ith word,1st tag].
For tag 2 forward tensors aplhas_t [tensor(1.00000e-02 *[-9.1082]), tensor([ 1.4587]), tensor([-1.1913])]
For tag 3 forward tensors aplhas_t [tensor(1.00000e-02 *[-9.1082]), tensor([ 1.4587]), tensor([-1.1913]), tensor([-10000.1289])]
For tag 4 forward tensors aplhas_t [tensor(1.00000e-02 *[-9.1082]), tensor([ 1.4587]), tensor([-1.1913]), tensor([-10000.1289]), tensor([-0.7333])]
Now , we update our "Forward var". We use this "Forward_var" for word2.
Forward var= aplhas_t Forward var now is tensor([[-9.1082e-02, 1.4587e+00, -1.1913e+00, -1.0000e+04, -7.3327e-01]])
forward tensors aplhas_t []
feat is 2 For tag 0 Before addition scores are :
1.forward_var: tensor([[-9.1082e-02, 1.4587e+00, -1.1913e+00, -1.0000e+04, -7.3327e-01]]) 2.trans_score: tensor([[ -1.7072, -0.8968, -0.2316, -0.6008, -9999.9902]]) 3.Emit score : tensor([[ 0.4825, 0.4825, 0.4825, 0.4825, 0.4825]]) Summation is tensor([[-1.3158e+00, 1.0443e+00, -9.4035e-01, -1.0000e+04, -1.0000e+04]]) forward tensors aplhas_t [tensor([ 1.2528])]
.. And so on
Forward var now is tensor([[ 10.6157, 10.3775, 11.8779, -9988.8350, 10.5265]])
Alpha (Our score is) tensor(11.9781) ## We do log_sum_exp
Golden score is calculated simply by adding emission and transition scores for the known path.
Loss function is Our score-Golden score
Backprop , you're done.
Will soon update regarding viterbi_decode (Inference).
For any doubts, contact me on [email protected], +91-9959440709