From f12cafbfc82fc97616a40a146efaed1e12143b12 Mon Sep 17 00:00:00 2001 From: Ghislain Vieilledent Date: Fri, 7 Jun 2024 12:06:33 +1100 Subject: [PATCH] Correcting benchmark to account for forest mask in vulnerability map forest_file parameter added to vulnerability_map.py --- riskmapjnr/benchmark/vulnerability_map.py | 22 ++++++++++++++++------ 1 file changed, 16 insertions(+), 6 deletions(-) diff --git a/riskmapjnr/benchmark/vulnerability_map.py b/riskmapjnr/benchmark/vulnerability_map.py index ff7871b..51e0feb 100644 --- a/riskmapjnr/benchmark/vulnerability_map.py +++ b/riskmapjnr/benchmark/vulnerability_map.py @@ -7,6 +7,7 @@ def vulnerability_map( + forest_file, dist_file, dist_bins, subj_file, @@ -20,6 +21,10 @@ def vulnerability_map( values indicate higher vulnerability. Raster type is UInt16 ([0, 65535]). NoData value is set to 0. + :param forest_file: Input forest cover file. Necessary to have + forest extent within country borders (info not provided by + dist_file). + :param dist_file: Input file of distance to forest edge. :param dist_bins: The distance bins used to convert distance to @@ -44,19 +49,23 @@ def vulnerability_map( # Input rasters # ============================================================== + # Forest cover + forest_ds = gdal.Open(forest_file) + forest_band = forest_ds.GetRasterBand(1) + # Raster size + xsize = forest_band.XSize + ysize = forest_band.YSize + # Distance to forest edge raster file dist_ds = gdal.Open(dist_file) dist_band = dist_ds.GetRasterBand(1) - # Raster size - xsize = dist_band.XSize - ysize = dist_band.YSize # Subjurisdictions raster file subj_ds = gdal.Open(subj_file) subj_band = subj_ds.GetRasterBand(1) # Make blocks - blockinfo = makeblock(dist_file, blk_rows=blk_rows) + blockinfo = makeblock(forest_file, blk_rows=blk_rows) nblock = blockinfo[0] nblock_x = blockinfo[1] x = blockinfo[3] @@ -96,6 +105,7 @@ def vulnerability_map( px = b % nblock_x py = b // nblock_x # Data + forest_data = forest_band.ReadAsArray(x[px], y[py], nx[px], ny[py]) dist_data = dist_band.ReadAsArray(x[px], y[py], nx[px], ny[py]) subj_data = subj_band.ReadAsArray(x[px], y[py], nx[px], ny[py]) # Categorize @@ -104,9 +114,9 @@ def vulnerability_map( right=True) cat_data = cat_data.reshape(dist_data.shape) cat_data = n_classes + 1 - cat_data - # Set classes 0 and 1 - cat_data[dist_data == 0] = 0 + # Set classes 1 beyond distance threshold cat_data[dist_data > dist_thresh] = 1 + cat_data[forest_data == 0] = 0 # Mask with forest # Adding subjurisdiction info cat_data = cat_data * 1000 + subj_data cat_data[cat_data <= 1000] = 0