-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmim_cmt_pretrain.py
511 lines (420 loc) · 20.6 KB
/
mim_cmt_pretrain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
import random
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint as checkpoint
import math
import logging
from functools import partial
from collections import OrderedDict
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
from timm.models.registry import register_model
from timm.models.vision_transformer import Block
from util.pos_embed import get_2d_sincos_pos_embed
from util.hog_layer import HOGLayerC
from einops import rearrange
_logger = logging.getLogger(__name__)
def _cfg(url='', **kwargs):
return {
'url': url,
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None,
'crop_pct': .9, 'interpolation': 'bicubic',
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
'first_conv': 'patch_embed.proj', 'classifier': 'head',
**kwargs
}
class SwishImplementation(torch.autograd.Function):
@staticmethod
def forward(ctx, i):
result = i * torch.sigmoid(i)
ctx.save_for_backward(i)
return result
@staticmethod
def backward(ctx, grad_output):
i = ctx.saved_tensors[0]
sigmoid_i = torch.sigmoid(i)
return grad_output * (sigmoid_i * (1 + i * (1 - sigmoid_i)))
class MemoryEfficientSwish(nn.Module):
def forward(self, x):
return SwishImplementation.apply(x)
class Mlp(nn.Module):
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.conv1 = nn.Sequential(
nn.Conv2d(in_features, hidden_features, 1, 1, 0, bias=True),
nn.GELU(),
nn.BatchNorm2d(hidden_features, eps=1e-5),
)
self.proj = nn.Conv2d(hidden_features, hidden_features, 3, 1, 1, groups=hidden_features)
self.proj_act = nn.GELU()
self.proj_bn = nn.BatchNorm2d(hidden_features, eps=1e-5)
self.conv2 = nn.Sequential(
nn.Conv2d(hidden_features, out_features, 1, 1, 0, bias=True),
nn.BatchNorm2d(out_features, eps=1e-5),
)
self.drop = nn.Dropout(drop)
def forward(self, x, H, W):
B, N, C = x.shape
x = x.permute(0, 2, 1).reshape(B, C, H, W)
x = self.conv1(x)
x = self.drop(x)
x = self.proj(x) + x
x = self.proj_act(x)
x = self.proj_bn(x)
x = self.conv2(x)
x = x.flatten(2).permute(0, 2, 1)
x = self.drop(x)
return x
class Attention(nn.Module):
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None,
attn_drop=0., proj_drop=0., qk_ratio=1, sr_ratio=1):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = qk_scale or head_dim ** -0.5
self.qk_dim = dim // qk_ratio
self.q = nn.Linear(dim, self.qk_dim, bias=qkv_bias)
self.k = nn.Linear(dim, self.qk_dim, bias=qkv_bias)
self.v = nn.Linear(dim, dim, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
self.sr_ratio = sr_ratio
# Exactly same as PVTv1
if self.sr_ratio > 1:
self.sr = nn.Sequential(
nn.Conv2d(dim, dim, kernel_size=sr_ratio, stride=sr_ratio, groups=dim, bias=True),
nn.BatchNorm2d(dim, eps=1e-5),
)
def forward(self, x, H, W, relative_pos):
B, N, C = x.shape
q = self.q(x).reshape(B, N, self.num_heads, self.qk_dim // self.num_heads).permute(0, 2, 1, 3)
if self.sr_ratio > 1:
x_ = x.permute(0, 2, 1).reshape(B, C, H, W)
x_ = self.sr(x_).reshape(B, C, -1).permute(0, 2, 1)
k = self.k(x_).reshape(B, -1, self.num_heads, self.qk_dim // self.num_heads).permute(0, 2, 1, 3)
v = self.v(x_).reshape(B, -1, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)
else:
k = self.k(x).reshape(B, N, self.num_heads, self.qk_dim // self.num_heads).permute(0, 2, 1, 3)
v = self.v(x).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)
attn = (q @ k.transpose(-2, -1)) * self.scale + relative_pos
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
class CMTBlock(nn.Module):
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, qk_ratio=1, sr_ratio=1):
super().__init__()
self.norm1 = norm_layer(dim)
self.attn = Attention(
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
attn_drop=attn_drop, proj_drop=drop, qk_ratio=qk_ratio, sr_ratio=sr_ratio)
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
self.proj = nn.Conv2d(dim, dim, 3, 1, 1, groups=dim)
def forward(self, x, H, W, relative_pos):
B, N, C = x.shape
cnn_feat = x.permute(0, 2, 1).reshape(B, C, H, W)
x = self.proj(cnn_feat) + cnn_feat
x = x.flatten(2).permute(0, 2, 1)
x = x + self.drop_path(self.attn(self.norm1(x), H, W, relative_pos))
x = x + self.drop_path(self.mlp(self.norm2(x), H, W))
return x
class PatchEmbed(nn.Module):
""" Image to Patch Embedding
"""
def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768):
super().__init__()
img_size = to_2tuple(img_size)
patch_size = to_2tuple(patch_size)
num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0])
assert img_size[0] % patch_size[0] == 0 and img_size[1] % patch_size[1] == 0, \
f"img_size {img_size} should be divided by patch_size {patch_size}."
self.img_size = img_size
self.patch_size = patch_size
self.num_patches = num_patches
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
self.norm = nn.LayerNorm(embed_dim)
def forward(self, x):
B, C, H, W = x.shape
# FIXME look at relaxing size constraints
assert H == self.img_size[0] and W == self.img_size[1], \
f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
x = self.proj(x).flatten(2).transpose(1, 2)
x = self.norm(x)
H, W = H // self.patch_size[0], W // self.patch_size[1]
return x, (H, W)
class CMT(nn.Module):
def __init__(self, img_size=224, in_chans=3, num_classes=1000, embed_dims=[46,92,184,368], stem_channel=16, fc_dim=1280,
num_heads=[1,2,4,8], mlp_ratios=[4, 4, 4, 4], qkv_bias=True, qk_scale=None, representation_size=None,
drop_rate=0., attn_drop_rate=0., drop_path_rate=0., norm_layer=None,
depths=[2,2,10,2], qk_ratio=1, sr_ratios=[8,4,2,1], dp=0.1, block_size=32, **kwargs):
super().__init__()
self.num_features = self.embed_dim = embed_dims[-1]
norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6)
self.img_size = img_size
self.block_size = block_size
self.center_rate = 0.
self.stem_conv1 = nn.Conv2d(3, stem_channel, kernel_size=3, stride=2, padding=1, bias=True)
self.stem_relu1 = nn.GELU()
self.stem_norm1 = nn.BatchNorm2d(stem_channel, eps=1e-5)
self.stem_conv2 = nn.Conv2d(stem_channel, stem_channel, kernel_size=3, stride=1, padding=1, bias=True)
self.stem_relu2 = nn.GELU()
self.stem_norm2 = nn.BatchNorm2d(stem_channel, eps=1e-5)
self.stem_conv3 = nn.Conv2d(stem_channel, stem_channel, kernel_size=3, stride=1, padding=1, bias=True)
self.stem_relu3 = nn.GELU()
self.stem_norm3 = nn.BatchNorm2d(stem_channel, eps=1e-5)
self.patch_embed_a = PatchEmbed(
img_size=img_size//2, patch_size=2, in_chans=stem_channel, embed_dim=embed_dims[0])
self.patch_embed_b = PatchEmbed(
img_size=img_size//4, patch_size=2, in_chans=embed_dims[0], embed_dim=embed_dims[1])
self.patch_embed_c = PatchEmbed(
img_size=img_size//8, patch_size=2, in_chans=embed_dims[1], embed_dim=embed_dims[2])
self.patch_embed_d = PatchEmbed(
img_size=img_size//16, patch_size=2, in_chans=embed_dims[2], embed_dim=embed_dims[3])
self.relative_pos_a = nn.Parameter(torch.randn(
num_heads[0], self.patch_embed_a.num_patches, self.patch_embed_a.num_patches//sr_ratios[0]//sr_ratios[0]))
self.relative_pos_b = nn.Parameter(torch.randn(
num_heads[1], self.patch_embed_b.num_patches, self.patch_embed_b.num_patches//sr_ratios[1]//sr_ratios[1]))
self.relative_pos_c = nn.Parameter(torch.randn(
num_heads[2], self.patch_embed_c.num_patches, self.patch_embed_c.num_patches//sr_ratios[2]//sr_ratios[2]))
self.relative_pos_d = nn.Parameter(torch.randn(
num_heads[3], self.patch_embed_d.num_patches, self.patch_embed_d.num_patches//sr_ratios[3]//sr_ratios[3]))
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule
cur = 0
self.blocks_a = nn.ModuleList([
CMTBlock(
dim=embed_dims[0], num_heads=num_heads[0], mlp_ratio=mlp_ratios[0], qkv_bias=qkv_bias,
qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur+i],
norm_layer=norm_layer, qk_ratio=qk_ratio, sr_ratio=sr_ratios[0])
for i in range(depths[0])])
cur += depths[0]
self.blocks_b = nn.ModuleList([
CMTBlock(
dim=embed_dims[1], num_heads=num_heads[1], mlp_ratio=mlp_ratios[1], qkv_bias=qkv_bias,
qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur+i],
norm_layer=norm_layer, qk_ratio=qk_ratio, sr_ratio=sr_ratios[1])
for i in range(depths[1])])
cur += depths[1]
self.blocks_c = nn.ModuleList([
CMTBlock(
dim=embed_dims[2], num_heads=num_heads[2], mlp_ratio=mlp_ratios[2], qkv_bias=qkv_bias,
qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur+i],
norm_layer=norm_layer, qk_ratio=qk_ratio, sr_ratio=sr_ratios[2])
for i in range(depths[2])])
cur += depths[2]
self.blocks_d = nn.ModuleList([
CMTBlock(
dim=embed_dims[3], num_heads=num_heads[3], mlp_ratio=mlp_ratios[3], qkv_bias=qkv_bias,
qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur+i],
norm_layer=norm_layer, qk_ratio=qk_ratio, sr_ratio=sr_ratios[3])
for i in range(depths[3])])
self.norm = norm_layer(embed_dims[-1])
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out')
if isinstance(m, nn.Conv2d) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
@torch.jit.ignore
def no_weight_decay(self):
return {'pos_embed', 'cls_token'}
# def forward_features(self, x, mask_ratio, mask_token):
def forward_features(self, x):
B = x.shape[0]
x = self.stem_conv1(x)
x = self.stem_relu1(x)
x = self.stem_norm1(x)
x = self.stem_conv2(x)
x = self.stem_relu2(x)
x = self.stem_norm2(x)
x = self.stem_conv3(x)
x = self.stem_relu3(x)
x = self.stem_norm3(x)
x, (H, W) = self.patch_embed_a(x)
for i, blk in enumerate(self.blocks_a):
x = blk(x, H, W, self.relative_pos_a)
x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
x, (H, W) = self.patch_embed_b(x)
for i, blk in enumerate(self.blocks_b):
x = blk(x, H, W, self.relative_pos_b)
x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
x, (H, W) = self.patch_embed_c(x)
for i, blk in enumerate(self.blocks_c):
x = blk(x, H, W, self.relative_pos_c)
x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
x, (H, W) = self.patch_embed_d(x)
for i, blk in enumerate(self.blocks_d):
x = blk(x, H, W, self.relative_pos_d)
return x
def mim_block_masking(self, x, mask_ratio, block_size=32):
batch, channel, height, width = x.shape
input_size = self.img_size
assert height == width, f"Input height and width doesn't match ({height} != {width})."
mask_size = input_size // block_size
bw_ratio = height // mask_size
len_keep = int(mask_size**2 * (1 - mask_ratio))
noise = torch.rand(batch, mask_size**2, device=x.device) # noise in [0, 1]
ids_shuffle = torch.argsort(noise, dim=1)
ids_restore = torch.argsort(ids_shuffle, dim=1)
loss_mask = torch.ones([batch, mask_size**2], device=x.device)
loss_mask[:, :len_keep] = 0
loss_mask = torch.gather(loss_mask, dim=1, index=ids_restore)
loss_mask = loss_mask.reshape(batch, 1, mask_size, mask_size).long()
mask = loss_mask.repeat(1, bw_ratio**2, 1, 1)
mask = mask.reshape(batch, bw_ratio, bw_ratio, mask_size, mask_size).permute(
0, 3, 1, 4, 2).reshape(batch, 1, height, width)
if self.block_size > 32:
loss_mask = torch.repeat_interleave(loss_mask, self.block_size//32, dim=2)
loss_mask = torch.repeat_interleave(loss_mask, self.block_size//32, dim=3)
return mask, loss_mask
def forward(self, x, mask_ratio, mask_token):
mask, loss_mask = self.mim_block_masking(x, mask_ratio, block_size=self.block_size)
B, C, H, W = x.shape
x = x * (1-mask) + (mask) * mask_token.repeat(B, 1, H, W)
x = self.forward_features(x)
x = self.norm(x)
return x, loss_mask
class PretrainCMT(nn.Module):
def __init__(self,
img_size=224, decoder_embed_dim=512, decoder_depth=8, block_size=32,
drop_rate=0., embed_dims=[46,92,184,368],
depths=(2,2,18,2), num_heads=(1,2,4,8), sr_ratios=[8,4,2,1],
drop_path_rate=0., norm_layer=nn.LayerNorm,
norm_pix_loss=False, mim_loss='HOG', **kwargs):
super().__init__()
self.img_size = img_size
self.mim_loss = mim_loss
self.block_size = block_size
self.patch_size = 32
self.norm_pix_loss = norm_pix_loss
self.hog_nbins = kwargs.get('hog_nbins', 9)
self.hog_pool = kwargs.get('hog_pool', 8)
decoder_num_heads = int(decoder_embed_dim / 32)
model_kwargs = dict(
img_size=img_size, block_size=block_size, embed_dims=embed_dims, norm_layer=norm_layer,
depths=depths, num_heads=num_heads, sr_ratios=sr_ratios, **kwargs
)
self.encoder = CMT(drop_path_rate=drop_path_rate, **model_kwargs)
self.decoder_embed = nn.Linear(
embed_dims[-1], decoder_embed_dim, bias=True) if decoder_depth > 0 else None
self.decoder_blocks = nn.ModuleList([
Block(decoder_embed_dim, decoder_num_heads, 4., qkv_bias=True, qk_scale=None, norm_layer=nn.LayerNorm)
for i in range(decoder_depth)])
self.decoder_norm = nn.LayerNorm(decoder_embed_dim)
if self.mim_loss == "HOG":
num_class = (32//8)**2 * 9 * 3
else:
num_class = block_size**2 * 3
self.decoder_pred = nn.Linear(decoder_embed_dim, num_class, bias=True) # encoder to decoder
self.apply(self._init_weights)
self.mask_token = nn.Parameter(torch.zeros(1, 3, 1, 1))
nn.init.normal_(self.mask_token, std=.02)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
nn.init.xavier_uniform_(m.weight)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
def get_num_layers(self):
return len(self.layers)
@torch.jit.ignore
def no_weight_decay(self):
return {'pos_embed', 'cls_token', 'mask_token'}
def patchify(self, imgs):
"""
imgs: (N, 3, H, W)
x: (N, L, patch_size**2 *3)
"""
p = self.patch_size
assert imgs.shape[2] == imgs.shape[3] and imgs.shape[2] % p == 0
h = w = imgs.shape[2] // p
x = imgs.reshape(shape=(imgs.shape[0], 3, h, p, w, p))
x = torch.einsum('nchpwq->npqchw', x)
x = x.reshape(shape=(imgs.shape[0], p**2 * 3, h, w))
return x
def forward_l2_loss(self, imgs, pred, mask):
B, N, C = pred.shape
H = W = int(N**0.5)
pred = pred.transpose(-1,-2).reshape(B, C, H, W)
target = self.patchify(imgs)
if self.norm_pix_loss:
mean = target.mean(dim=1, keepdim=True)
var = target.var(dim=1, keepdim=True)
target = (target - mean) / (var + 1.e-6)**.5
mask = mask.repeat(1, C, 1, 1).bool()
loss = (pred[mask] - target[mask]) ** 2
loss = loss.mean()
return loss
def forward_hog_loss(self, imgs, pred, mask):
"""
imgs: [N, 3, H, W]
pred: [N, L, p*p*3]
mask: [N, L], 0 is keep, 1 is remove,
"""
B, N, C = pred.shape
H = W = int(N**0.5)
mask_size = mask.shape[-1]
hogC = HOGLayerC(nbins=self.hog_nbins, pool=self.hog_pool, norm_pix_loss=self.norm_pix_loss).cuda()
target = hogC(imgs)
if mask_size > W:
target_size, target_channel = target.shape[3], target.shape[1]
target = target.permute(0, 2, 3, 1).flatten(1, 2)
mask = torch.repeat_interleave(mask, target_size//mask_size, dim=2)
mask = torch.repeat_interleave(mask, target_size//mask_size, dim=3)
mask = mask.flatten(1).bool()
pred = pred.reshape(B, H, W, -1, target_size//H, target_size//W).permute(0, 1, 4, 2, 5, 3).reshape(B, target_size**2, target_channel)
else:
unfold_size = target.shape[-1] // W
target = (
target.permute(0, 2, 3, 1)
.unfold(1, unfold_size, unfold_size)
.unfold(2, unfold_size, unfold_size)
.flatten(1, 2).flatten(2)
)
mask = mask.flatten(1).bool()
loss = (pred[mask] - target[mask]) ** 2
loss = loss.mean()
return loss
def forward(self, imgs, mask_ratio=0.25, mask_type=None):
x, mask = self.encoder(imgs, mask_ratio, self.mask_token)
if self.decoder_blocks:
x = self.decoder_embed(x)
for blk in self.decoder_blocks:
x = blk(x)
x = self.decoder_norm(x)
x = self.decoder_pred(x)
if self.mim_loss == 'l2':
loss = self.forward_l2_loss(imgs, x, mask)
elif self.mim_loss == 'HOG':
loss = self.forward_hog_loss(imgs, x, mask)
else:
raise NotImplementedError('Undefined MIM loss...')
return loss, x, imgs
@register_model
def mim_cmt_small(**kwargs):
model = PretrainCMT(
embed_dims=[64,128,256,512], stem_channel=32, num_heads=[1,2,4,8], depths=[3,3,16,3], sr_ratios=[8,4,2,1],
qkv_bias=True, norm_layer=None, drop_path_rate=0., **kwargs)
return model