Skip to content

Latest commit

 

History

History
88 lines (66 loc) · 2.58 KB

README.md

File metadata and controls

88 lines (66 loc) · 2.58 KB

Data generation

Preliminary

  1. pip install -r data_generation/requirements.txt
  2. Download the vqgan checkpoint from CowTransfer or Google Drive, and move it to ./weight/vqgan-f16-8192-laion.

Human keypoint

  1. You can generate the keypoint image refer to mmpose , and change the inference cmd like this

    python inferencer_demo.py data/path \
    coco/train2017/images \
    --pose2d configs/body_2d_keypoint/rtmo/coco/rtmo-l_16xb16-600e_coco-640x640.py \
    --pose2d-weights ./pth/rtmo-l_16xb16-600e_coco-640x640-516a421f_20231211.pth \
    --det-model demo/mmdetection_cfg/rtmdet_m_640-8xb32_coco-person.py \
    --black-background \
    --vis-out-dir coco/train2017/keypoints \
    --skeleton-style openpose \
    --disable-rebase-keypoint \
    --radius 8 \
    --thickness 4 \
  2. Generate vq codebook by VQ-GAN

    python generate/generate_coco-keypoint.py \
    --input_data coco/train2017/images \
    --target_data coco/train2017/keypoints \
    --output_path vq_token/coco-keypoints/train2017

Deblur

python generate/generate_GoPro.py \
--input_data GoPro_train/input \
--target_data GoPro_train/target \
--output_path vq_token/GoPro_train

Derain

Here we use Rain13K data in lmdb fromat.

python generate/generate_Rain13K.py \
--input_data Rain13K_lmdb/input.lmdb \
--target_data Rain13K_lmdb/target.lmdb \
--output_path vq_token/Rain13K

Video dataset

Here we use the HD-VILA-100M dataset.

  1. You should download the dataset refer hd-vila-100m, and use src/cut_videos.py to cut the videos to clips.

  2. Generate vq codebook by VQ-GAN

    python generate/generate_hdvila_100m.py \
    --video_info_json hdvila_100m/cut_video_results/cut_part0.jsonl \
    --data_root hdvila_100m/video_clips_imgs \
    --output_root vq_token/hdvila_100m

Segment mask

Here we use the SA-1B dataset.

  1. Download the SA-1B dataset.

  2. Generate vq codebook by VQ-GAN.

    python generate/generate_SA-1B.py \
    --tar_root SA-1B/tar \
    --img_json_root SA-1B/tmp/img_json \
    --mask_root SA-1B/tmp/mask \
    --output_path vq_token/SA-1B/token \
    --dp_mode