forked from ljynlp/W2NER
-
Notifications
You must be signed in to change notification settings - Fork 0
/
config.py
46 lines (34 loc) · 1.56 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import json
class Config:
def __init__(self, args):
with open(args.config, "r", encoding="utf-8") as f:
config = json.load(f)
self.dataset = config["dataset"]
self.save_path = config["save_path"]
self.predict_path = config["predict_path"]
self.dist_emb_size = config["dist_emb_size"]
self.type_emb_size = config["type_emb_size"]
self.lstm_hid_size = config["lstm_hid_size"]
self.conv_hid_size = config["conv_hid_size"]
self.bert_hid_size = config["bert_hid_size"]
self.biaffine_size = config["biaffine_size"]
self.ffnn_hid_size = config["ffnn_hid_size"]
self.dilation = config["dilation"]
self.emb_dropout = config["emb_dropout"]
self.conv_dropout = config["conv_dropout"]
self.out_dropout = config["out_dropout"]
self.epochs = config["epochs"]
self.batch_size = config["batch_size"]
self.learning_rate = config["learning_rate"]
self.weight_decay = config["weight_decay"]
self.clip_grad_norm = config["clip_grad_norm"]
self.bert_name = config["bert_name"]
self.bert_learning_rate = config["bert_learning_rate"]
self.warm_factor = config["warm_factor"]
self.use_bert_last_4_layers = config["use_bert_last_4_layers"]
self.seed = config["seed"]
for k, v in args.__dict__.items():
if v is not None:
self.__dict__[k] = v
def __repr__(self):
return "{}".format(self.__dict__.items())