forked from SayanoAI/RVC-Studio
-
Notifications
You must be signed in to change notification settings - Fork 0
/
pitch_extraction.py
313 lines (282 loc) · 11.6 KB
/
pitch_extraction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
from functools import partial
from multiprocessing.pool import ThreadPool
import os
import faiss
import numpy as np
from scipy import signal
import torch, torchcrepe, pyworld
from lib.rmvpe import RMVPE
from lib.audio import autotune_f0, pad_audio
from lib import BASE_MODELS_DIR
from lib.utils import gc_collect, get_merge_func, get_optimal_threads, get_optimal_torch_device
class FeatureExtractor:
def __init__(self, tgt_sr, config, onnx=False):
self.x_pad, self.x_query, self.x_center, self.x_max, self.is_half = (
config.x_pad,
config.x_query,
config.x_center,
config.x_max,
config.is_half,
)
self.sr = 16000 # hubert输入采样率
self.window = 160 # 每帧点数
self.t_pad = self.sr * self.x_pad # 每条前后pad时间
self.t_pad_tgt = tgt_sr * self.x_pad
self.t_pad2 = self.t_pad * 2
self.t_query = self.sr * self.x_query # 查询切点前后查询时间
self.t_center = self.sr * self.x_center # 查询切点位置
self.t_max = self.sr * self.x_max # 免查询时长阈值
self.device = config.device
self.onnx = onnx
self.f0_method_dict = {
"pm": self.get_pm,
"harvest": self.get_harvest,
"dio": self.get_dio,
"rmvpe": self.get_rmvpe,
"rmvpe_onnx": self.get_rmvpe,
"rmvpe+": self.get_pitch_dependant_rmvpe,
"crepe": self.get_f0_official_crepe_computation,
"crepe-tiny": partial(self.get_f0_official_crepe_computation, model='model'),
"mangio-crepe": self.get_f0_crepe_computation,
"mangio-crepe-tiny": partial(self.get_f0_crepe_computation, model='model'),
}
def __del__(self):
if hasattr(self,"model_rmvpe"):
del self.model_rmvpe
gc_collect()
def load_index(self, file_index):
try:
if not type(file_index)==str: # loading file index to save time
print("Using preloaded file index.")
index = file_index
big_npy = index.reconstruct_n(0, index.ntotal)
elif file_index == "":
print("File index was empty.")
index = None
big_npy = None
else:
if os.path.isfile(file_index):
print(f"Attempting to load {file_index}....")
else:
print(f"{file_index} was not found...")
index = faiss.read_index(file_index)
print(f"loaded index: {index}")
big_npy = index.reconstruct_n(0, index.ntotal)
except Exception as e:
print(f"Could not open Faiss index file for reading. {e}")
index = None
big_npy = None
return index, big_npy
# Fork Feature: Compute f0 with the crepe method
def get_f0_crepe_computation(
self,
x,
f0_min,
f0_max,
*args, # 512 before. Hop length changes the speed that the voice jumps to a different dramatic pitch. Lower hop lengths means more pitch accuracy but longer inference time.
**kwargs, # Either use crepe-tiny "tiny" or crepe "full". Default is full
):
x = x.astype(
np.float32
) # fixes the F.conv2D exception. We needed to convert double to float.
x /= np.quantile(np.abs(x), 0.999)
torch_device = get_optimal_torch_device()
audio = torch.from_numpy(x).to(torch_device, copy=True)
audio = torch.unsqueeze(audio, dim=0)
if audio.ndim == 2 and audio.shape[0] > 1:
audio = torch.mean(audio, dim=0, keepdim=True).detach()
audio = audio.detach()
hop_length = kwargs.get('crepe_hop_length', 160)
model = kwargs.get('model', 'full')
print("Initiating prediction with a crepe_hop_length of: " + str(hop_length))
pitch: torch.Tensor = torchcrepe.predict(
audio,
self.sr,
hop_length,
f0_min,
f0_max,
model,
batch_size=hop_length * 2,
device=torch_device,
pad=True,
)
p_len = x.shape[0] // hop_length
# Resize the pitch for final f0
source = np.array(pitch.squeeze(0).cpu().float().numpy())
source[source < 0.001] = np.nan
target = np.interp(
np.arange(0, len(source) * p_len, len(source)) / p_len,
np.arange(0, len(source)),
source,
)
f0 = np.nan_to_num(target)
return f0 # Resized f0
def get_f0_official_crepe_computation(
self,
x,
f0_min,
f0_max,
*args,
**kwargs
):
# Pick a batch size that doesn't cause memory errors on your gpu
batch_size = 512
# Compute pitch using first gpu
audio = torch.tensor(np.copy(x))[None].float()
model = kwargs.get('model', 'full')
f0, pd = torchcrepe.predict(
audio,
self.sr,
self.window,
f0_min,
f0_max,
model,
batch_size=batch_size,
device=self.device,
return_periodicity=True,
)
pd = torchcrepe.filter.median(pd, 3)
f0 = torchcrepe.filter.mean(f0, 3)
f0[pd < 0.1] = 0
f0 = f0[0].cpu().numpy()
return f0
def get_pm(self, x, *args, **kwargs):
import parselmouth
p_len = x.shape[0] // 160 + 1
f0 = parselmouth.Sound(x, self.sr).to_pitch_ac(
time_step=0.01,
voicing_threshold=0.6,
pitch_floor=kwargs.get('f0_min'),
pitch_ceiling=kwargs.get('f0_max'),
).selected_array["frequency"]
pad_size = (p_len - len(f0) + 1) // 2
if pad_size > 0 or p_len - len(f0) - pad_size > 0:
# print(pad_size, p_len - len(f0) - pad_size)
f0 = np.pad(f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant")
return f0
def get_harvest(self, x, *args, **kwargs):
f0_spectral = pyworld.harvest(
x.astype(np.double),
fs=self.sr,
f0_ceil=kwargs.get('f0_max'),
f0_floor=kwargs.get('f0_min'),
frame_period=1000 * kwargs.get('hop_length', 160) / self.sr,
)
return pyworld.stonemask(x.astype(np.double), *f0_spectral, self.sr)
def get_dio(self, x, *args, **kwargs):
f0_spectral = pyworld.dio(
x.astype(np.double),
fs=self.sr,
f0_ceil=kwargs.get('f0_max'),
f0_floor=kwargs.get('f0_min'),
frame_period=1000 * kwargs.get('hop_length', 160) / self.sr,
)
return pyworld.stonemask(x.astype(np.double), *f0_spectral, self.sr)
def get_rmvpe(self, x, *args, **kwargs):
if not hasattr(self,"model_rmvpe"):
self.model_rmvpe = RMVPE(os.path.join(BASE_MODELS_DIR,f"rmvpe.{'onnx' if self.onnx else 'pt'}"), is_half=self.is_half, device=self.device, onnx=self.onnx)
# if self.onnx == False:
return self.model_rmvpe.infer_from_audio(x, thred=0.03)
# else:
# f0 = self.model_rmvpe.infer_from_audio(x, thred=0.03)
# if "privateuseone" in str(self.device):
# del self.model_rmvpe.model
# del self.model_rmvpe
# print("cleaning ortruntime memory")
# return f0
def get_pitch_dependant_rmvpe(self, x, f0_min=1, f0_max=40000, *args, **kwargs):
if not hasattr(self,"model_rmvpe"):
self.model_rmvpe = RMVPE(os.path.join(BASE_MODELS_DIR,f"rmvpe.{'onnx' if self.onnx else 'pt'}"), is_half=self.is_half, device=self.device, onnx=self.onnx)
return self.model_rmvpe.infer_from_audio_with_pitch(x, thred=0.03, f0_min=f0_min, f0_max=f0_max)
# Fork Feature: Acquire median hybrid f0 estimation calculation
def get_f0_hybrid_computation(
self,
methods_list,
merge_type,
x,
f0_min,
f0_max,
filter_radius,
crepe_hop_length,
time_step,
**kwargs
):
# Get various f0 methods from input to use in the computation stack
params = {'x': x, 'f0_min': f0_min,
'f0_max': f0_max, 'time_step': time_step, 'filter_radius': filter_radius,
'crepe_hop_length': crepe_hop_length, 'model': "full"
}
f0_computation_stack = []
print(f"Calculating f0 pitch estimations for methods: {methods_list}")
x = x.astype(np.float32)
x /= np.quantile(np.abs(x), 0.999)
# Get f0 calculations for all methods specified
def _get_f0(method,params):
if method not in self.f0_method_dict:
raise Exception(f"Method {method} not found.")
f0 = self.f0_method_dict[method](**params)
if method == 'harvest' and filter_radius > 2:
f0 = signal.medfilt(f0, filter_radius)
f0 = f0[1:] # Get rid of first frame.
return f0
with ThreadPool(max(1,get_optimal_threads())) as pool:
f0_computation_stack = pool.starmap(_get_f0,[(method,params) for method in methods_list])
f0_computation_stack = pad_audio(*f0_computation_stack) # prevents uneven f0
print(f"Calculating hybrid median f0 from the stack of: {methods_list} using {merge_type} merge")
merge_func = get_merge_func(merge_type)
f0_median_hybrid = merge_func(f0_computation_stack, axis=0)
return f0_median_hybrid
def get_f0(
self,
x,
f0_up_key,
f0_method,
merge_type="median",
filter_radius=3,
crepe_hop_length=160,
f0_autotune=False,
rmvpe_onnx=False,
inp_f0=None,
f0_min=50,
f0_max=1100,
**kwargs
):
time_step = self.window / self.sr * 1000
f0_mel_min = 1127 * np.log(1 + f0_min / 700)
f0_mel_max = 1127 * np.log(1 + f0_max / 700)
params = {'x': x, 'f0_up_key': f0_up_key, 'f0_min': f0_min,
'f0_max': f0_max, 'time_step': time_step, 'filter_radius': filter_radius,
'crepe_hop_length': crepe_hop_length, 'model': "full", 'onnx': rmvpe_onnx
}
print(f"get_f0 {f0_method} unused params: {kwargs}")
if hasattr(f0_method,"pop") and len(f0_method)==1: f0_method = f0_method.pop()
if type(f0_method) == list:
# Perform hybrid median pitch estimation
f0 = self.get_f0_hybrid_computation(f0_method,merge_type,**params)
else:
f0 = self.f0_method_dict[f0_method](**params)
if f0_autotune:
f0 = autotune_f0(f0)
f0 *= pow(2, f0_up_key / 12)
# with open("test.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()]))
tf0 = self.sr // self.window # 每秒f0点数
if inp_f0 is not None:
delta_t = np.round(
(inp_f0[:, 0].max() - inp_f0[:, 0].min()) * tf0 + 1
).astype("int16")
replace_f0 = np.interp(
list(range(delta_t)), inp_f0[:, 0] * 100, inp_f0[:, 1]
)
shape = f0[self.x_pad * tf0 : self.x_pad * tf0 + len(replace_f0)].shape[0]
f0[self.x_pad * tf0 : self.x_pad * tf0 + len(replace_f0)] = replace_f0[
:shape
]
# f0bak = f0.copy()
f0_mel = 1127 * np.log(1 + f0 / 700)
f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * 254 / (
f0_mel_max - f0_mel_min
) + 1
f0_mel[f0_mel <= 1] = 1
f0_mel[f0_mel > 255] = 255
f0_coarse = np.rint(f0_mel).astype(np.int)
return f0_coarse, f0 # 1-0