-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathrick_fft_c.c
210 lines (183 loc) · 4.82 KB
/
rick_fft_c.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
#include "hc.h"
//
// fourier transform routines as used by rick_sh routines
// based on Rick O'Connell's subroutines, which are modified
// Numerical Recipes
//
// $Id: rick_fft_c.c,v 1.2 2006/01/22 02:46:15 becker Exp $
//
void rick_cs2ab(SH_RICK_PREC *rdata,int n)
{
//
// Transforms spectral coefficients from cos-sin series to
// complex discrete fourier series. Function is real, and
// transformed by realft(rdata,n/2,1). Number of data points
// is n. Does not recover real component for frequency n/2.
int i;
SH_RICK_PREC en;
en = (SH_RICK_PREC)n;
rdata[0] *= en;
en/=2.0;
for(i=2;i<n;i++)
rdata[i] *= en;
}
void
rick_ab2cs (rdata, n)
SH_RICK_PREC *rdata;
int n;
{
// Changes coefficients of complex spectrum of a real function
// transformed by realft.f to real coefficients of a series
// of C*cos(m*x)+S*sin(mx). Coefficients are ordered as
// C(0),S(0),C(1),S(1),C(2),...,C(n/2-1),S(n/2-1). This loses
// the real part of spectrum for frequency n/2.
// The number of data points is n, The call to realft is
// call realft(rdata,n/2,1)
//
int i;
SH_RICK_PREC en;
en = 1.0/(SH_RICK_PREC)n;
rdata[0] *= en;
rdata[1] = 0.0;
en *= 2.0;
for(i=2;i<n;i++)
rdata[i] *= en;
}
/*!
THIS ROUTINE TAKES NUMERICAL RECIPES 1...n,. SO CALL WITH (data-1)
! Calculates the fourier transform of 2*N real data points.
! Replaces data with the positive frequency half of the
! complex fourier transform. The real parts of the first
! and last frequency components are returned in data(1)
! and data(2) (i.e. for frequencies of zero and N/2). The
! other spectral components are given as complex pairs
! in data(3),data(4) etc. The inverse transform is obtained
! with ISIGN=-1, and dividing the data or result by N.
! Calls routine four1(data,n,isign) for FFT.
!
*/
void
rick_realft_nr (rdata, n, isign)
SH_RICK_PREC *rdata;
int n;
int isign;
{
SH_RICK_PREC c1,c2,h1r,h1i,h2r,h2i;
SH_RICK_HIGH_PREC theta,wi,wpi,wpr,wr,wtemp;
int i,n2p3,ilim,i1,i2,i3,i4,n2;
static int negunity = -1,unity = 1;
theta = RICK_PI/(SH_RICK_HIGH_PREC)(n);
wr = 1.0;
wi = 0.0;
c1 = 0.5;
/* offsets */
n2 = 2*n;
n2p3 = n2+3;
if (isign == 1) {
c2 = -0.5;
rick_four1_nr(rdata,n,unity); /*four1 also wants 1..n */
rdata[n2+1] = rdata[1];
rdata[n2+2] = rdata[2];
}
else {
c2 = 0.5;
theta = -theta;
rdata[n2+1] = rdata[2]; /* rdata indices changed */
rdata[n2+2] = 0.0;
rdata[2]=0.0;
}
wtemp = sin(0.5 * theta);
wpr = -2.0 * wtemp * wtemp;
wpi = sin(theta);
ilim = n/2 + 1;
for (i=1;i <= ilim;i++) {
i1 = 2*i-1;
i2 = i1+1;
i3 = n2p3 - i2;
i4 = i3+1;
h1r = c1*(rdata[i1] + rdata[i3]);
h1i = c1*(rdata[i2] - rdata[i4]);
h2r = -c2*(rdata[i2] + rdata[i4]);
h2i = c2*(rdata[i1] - rdata[i3]);
rdata[i1]= h1r+wr*h2r-wi*h2i;
rdata[i2]= h1i+wr*h2i+wi*h2r;
rdata[i3]= h1r-wr*h2r+wi*h2i;
rdata[i4]=-h1i+wr*h2i+wi*h2r; /*end of index changes */
wtemp=wr;
wr=wr*wpr-wi*wpi+wr;
wi=wi*wpr+wtemp*wpi+wi;
}
if (isign == 1) {
rdata[2]=rdata[n2+1];
}else {
rick_four1_nr(rdata,n,negunity); /*Again, sending the rdata[0..n] array to four1 (which works in [1..n+1]) requires passing rdata-1 */
}
}
/*
CALL THIS ROUTINE 1...N FASHION, IE. WITH (RDATA-1) FROM REGULAR
C
*/
void
rick_four1_nr (rdata, nn, isign)
SH_RICK_PREC *rdata;
int nn;
int isign;
{
//
// FFT routine from Numerical Recipes. Replaces data by
// its discrete fourier transform if isign=1, or by
// NN times its inverse transform if isign=-1. Array
// data is made up of NN complex numbers (2*NN pairs)
// and NN must be a power of 2. Spectral components
// are complex, and ordered from frequency zero to
// +-NN/2 to -1 in the standard fashion.
//
// local
SH_RICK_HIGH_PREC tempr,tempi;
// this should be SH_RICK_HIGH_PREC precision locally, regardless
SH_RICK_HIGH_PREC wr,wi,wpr,wpi,wtemp,theta,temp2;
int n,m,i,j,mmax,istep;
n=2*nn;
j=1;
for(i=1;i <= n;i += 2){
if(j > i){
tempr = rdata[j];
tempi = rdata[j+1];
rdata[j] = rdata[i];
rdata[j+1] = rdata[i+1];
rdata[i] = tempr;
rdata[i+1]=tempi;
}
m=n/2;
while((m >= 2) && (j > m)){
j=j-m;
m/=2;
}
j += m;
}
mmax=2;
while(n > mmax){
istep=2*mmax;
theta = 6.28318530717959/(isign*mmax);
temp2 = sin(0.5 * theta);
wpr = -2.0 * temp2 * temp2;
wpi = sin(theta);
wr = 1.0;
wi = 0.0;
for(m=1;m <= mmax;m += 2){
for(i=m;i <= n;i += istep){
j = i + mmax;
tempr=wr*rdata[j]-wi*rdata[j+1];
tempi=wr*rdata[j+1]+wi*rdata[j];
rdata[j]=rdata[i]-tempr;
rdata[j+1]=rdata[i+1]-tempi;
rdata[i]=rdata[i]+tempr;
rdata[i+1]=rdata[i+1]+tempi;
}
wtemp=wr;
wr=wr*wpr-wi*wpi+wr;
wi=wi*wpr+wtemp*wpi+wi;
}
mmax=istep;
}
}