-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathProcess_velocity.c
519 lines (407 loc) · 15 KB
/
Process_velocity.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
/*
Copyright (C) 2003 The GeoFramework Consortium
This file is part of Ellipsis3D.
Ellipsis3D is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License, version 2,
as published by the Free Software Foundation.
Ellipsis3D is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
Authors:
Louis Moresi <[email protected]>
Richard Albert <[email protected]>
*/
/* */
/* Here are the routines which process the results of each velocity solution, and call
the relevant output routines. At this point, the velocity and pressure fields have
been calculated and stored at the nodes. The only properties of the velocity field
which are already known are those required to check convergence of the iterative
scheme and so on. */
#include <math.h>
/* #include <stdlib.h> */ /* for "system" command */
#include "element_definitions.h"
#include "global_defs.h"
void process_new_velocity(
struct All_variables *E,
int ii
)
{
int i,j,k,el,node;
void surface_observables();
void calculate_stream_function();
void velocity_averages();
higher_precision cos_theta,sin_theta,cos_phi,sin_phi;
standard_precision CPU_time();
/* standard_precision *P1,*P2,*P3;*/
static int been_here=0;
const int vpts = vpoints[E->mesh.nsd];
const int dims = E->mesh.nsd ;
/* if spherical, convert VX to spherical coordinates */
#if 1
if(E->control.SPHERE ) {
for(i=1;i<=E->mesh.nox;i++) {
cos_phi=cos(E->sx[1][1+(i-1)*E->mesh.noz]);
sin_phi=sin(E->sx[1][1+(i-1)*E->mesh.noz]);
for(k=1;k<=E->mesh.noy;k++) {
cos_theta=cos(E->sx[3][1+(k-1)*E->mesh.noz*E->mesh.nox]);
sin_theta=sin(E->sx[3][1+(k-1)*E->mesh.noz*E->mesh.nox]);
for(j=1;j<=E->mesh.noz;j++) {
node = j + (i-1) * E->mesh.noz + (k-1) * E->mesh.noz * E->mesh.nox;
if(0 && E->node[node] & (BC1 | BC3 | BC2)) /* rtf already (temporarily) */ {
E->sv[1][node] = E->V[1][node];
E->sv[2][node] = E->V[2][node];
E->sv[3][node] = E->V[3][node];
}
else {
E->sv[1][node] =
cos_phi * E->V[1][node] +
-sin_phi * E->V[2][node];
E->sv[2][node] =
cos_theta*sin_phi * E->V[1][node] +
cos_theta*cos_phi * E->V[2][node] +
sin_theta * E->V[3][node];
E->sv[3][node] =
-sin_theta*sin_phi * E->V[1][node] +
-sin_theta*cos_phi * E->V[2][node] +
cos_theta * E->V[3][node];
}
}
}
}
velocities_conform_bcs_6(E,E->sv[1],E->sv[2],E->sv[3],0,0,0,E->mesh.levmax);
}
if(E->control.CYLINDER ) {
for(i=1;i<=E->mesh.nox;i++) {
cos_phi=cos(E->sx[1][1+(i-1)*E->mesh.noz]);
sin_phi=sin(E->sx[1][1+(i-1)*E->mesh.noz]);
for(j=1;j<=E->mesh.noz;j++) {
node = j + (i-1) * E->mesh.noz;
if(0 && E->node[node] & (BC1 | BC2)) /* rtf already (temporarily) */ {
E->sv[1][node] = E->V[1][node];
E->sv[2][node] = E->V[2][node];
}
else {
E->sv[1][node] =
cos_phi * E->V[1][node] +
-sin_phi * E->V[2][node];
E->sv[2][node] =
sin_phi * E->V[1][node] +
cos_phi * E->V[2][node];
}
}
}
velocities_conform_bcs_6(E,E->sv[1],E->sv[2],E->sv[3],0,0,0,E->mesh.levmax);
}
/* P1=(standard_precision *)Malloc0((1+E->mesh.nel)*vpoints[E->mesh.nsd]*sizeof(standard_precision));
P2=(standard_precision *)Malloc0((1+E->mesh.nel)*vpoints[E->mesh.nsd]*sizeof(standard_precision));
P3=(standard_precision *)Malloc0((1+E->mesh.nel)*vpoints[E->mesh.nsd]*sizeof(standard_precision));
*/
for(k=1;k<=E->mesh.noy;k++)
for(i=1;i<=E->mesh.nox;i++) {
E->slice.vxsurf[1][i+(k-1)*E->mesh.noy] = E->sv[1][1+(i-1)*E->mesh.noz+(k-1)*E->mesh.nox*E->mesh.noz];
E->slice.vxsurf[2][i+(k-1)*E->mesh.noy] = E->sv[2][1+(i-1)*E->mesh.noz+(k-1)*E->mesh.nox*E->mesh.noz];
if(3==dims)
E->slice.vxsurf[3][i+(k-1)*E->mesh.noy] = E->sv[3][1+(i-1)*E->mesh.noz+(k-1)*E->mesh.nox*E->mesh.noz];
}
/* free((void *)P1);
free((void *)P2);
free((void *)P3);*/
#endif
/*RAA: 29/3/01, surface observables needs to be corrected for 3D - do this later (some things done on 6/11/02)*/
if(2==dims) {
surface_observables(E,ii);
}
else {
report(E,"WARNING: surface observables for 3D are likely not completely updated/fixed");
surface_observables(E,ii);
report(E,"Done surface observables\n");
}
/* calculate new stream function if 2d */
if(!E->control.CYLINDER && E->mesh.nsd==2)
calculate_stream_function(E,E->Psi);
report(E,"Into velocity averages\n");
velocity_averages(E);
/*fprintf(stderr,"HERE IS TRACER.PT (3) %g \n",E->tracer.Pt[436]) ; */
report(E,"Calculated velocity averages\n");
return;
}
/* Obtain the various average properties of the velocity field (and
other fields based on this information */
void velocity_averages(
struct All_variables *E
)
{
int i,m,el,j,k,tr,sample,element;
standard_precision return_bulk_value();
standard_precision *v,vmax,vx,vz,vy;
standard_precision bulk_val;
standard_precision average;
standard_precision eta1,eta2,eta3;
standard_precision dudx[4][4];
standard_precision lN[ELNMAX+1];
standard_precision xx,zz/*,z1,z2,x1,x2*/; /*RAA: 2/1/02, N.B., x1,x2,z1,z2 not used*/
standard_precision yy; /*RAA: 2/1/02, added this for sampling*/
standard_precision phi;
standard_precision *sample_variable;
standard_precision max,min;
standard_precision maxsto,minsto;
standard_precision dXdash11,dXdash12,dXdash21,dXdash22;
standard_precision dXdash13,dXdash31,dXdash23,dXdash32,dXdash33; /*RAA: 7/12/01*/
standard_precision *Node,*Elt,*Elt1;
static int been_here = 0;
static int sample_element[MAX_SAMPLE_PTS];
const int dims = E->mesh.nsd;
/* fprintf(stderr,"HERE IS TRACER.PT (4) %g \n",E->tracer.Pt[436]) ; */
if(E->control.verbose)
fprintf(stderr,"Velocity processing\n");
if(been_here++ == 0) {
for(sample=0;sample<E->tracer.SAMPLE_PTS;sample++) {
sample_element[sample] = 1;
}
}
v = (standard_precision *)Malloc0((E->mesh.nno+2)*sizeof(standard_precision));
Node = (standard_precision *)Malloc0((E->mesh.nno+2)*sizeof(standard_precision));
vmax=0.0;
for(i=1;i<=E->mesh.nno;i++) {
v[i] = (E->V[1][i]*E->V[1][i] + E->V[2][i]*E->V[2][i] + ((3==dims) ? E->V[3][i]*E->V[3][i] : 0.0));
if(vmax < v[i])
vmax=v[i];
}
return_horiz_ave(E,v,E->Have.vrms);
for(i=1;i<=E->mesh.noz;i++)
E->Have.vrms[i] = sqrt(E->Have.vrms[i]);
E->monitor.Vmax=sqrt(vmax);
E->monitor.Vsrms=E->Have.vrms[1];
E->monitor.Vrms=sqrt(return_bulk_value(E,v,1));
E->monitor.Vrms_surface=E->Have.vrms[1];
E->monitor.Vrms_base=E->Have.vrms[E->mesh.noz];
if(3==dims) {
for(i=1;i<=E->mesh.nno;i++)
v[i] = E->V[3][i]*E->V[3][i];
E->monitor.Vyrms=sqrt(return_bulk_value(E,v,1));
}
return_horiz_rms(E,E->V[1],E->Have.V[1]);
return_horiz_rms(E,E->V[2],E->Have.V[2]);
if(3==dims)
return_horiz_rms(E,E->V[3],E->Have.V[3]);
/* Tracer strain measures */
/* I. Scalar, damage-like quantity */
for(m=1;m<=E->tracer.NUM_TRACERS;m++) {
E->tracer.edot_integrated[m] += E->tracer.edot[m] * E->advection.timestep;
if(E->viscosity.YIELD) {
/* Increasing plastic strain measure */
if (E->tracer.yielded[m] != 0.0)
E->tracer.edotp_integrated[m] += E->tracer.edot[m] * E->advection.timestep;
/* Decay of strain by healing over time */
if(E->tracer.visc[E->tracer.property_group[m]].yield_stress_E0dt != 0.0)
E->tracer.edotp_integrated[m] *=
max(0.0,1.0 - E->advection.timestep / E->tracer.visc[E->tracer.property_group[m]].yield_stress_E0dt);
/* Decay of strain by healing due to heating */
if(E->tracer.T[m] > E->tracer.visc[E->tracer.property_group[m]].yield_stress_ET)
E->tracer.edotp_integrated[m] = 0.0;
}
}
/* Obtain a continuous and smooth representation
of edot for plotting purposes */
#if 1
/* Nodal representation of strain-rate and deviatoric stress invariants
(RAA...and depletion)*/
gs_tracers_to_nodes(E,E->edot,NULL,NULL,NULL,E->tracer.edot,E->mesh.levmax,0);
gs_tracers_to_nodes(E,E->strs,NULL,NULL,NULL,E->tracer.strs,E->mesh.levmax,0);
gs_tracers_to_nodes(E,E->strd,NULL,NULL,NULL,E->tracer.strd,E->mesh.levmax,0);
gs_tracers_to_nodes(E,E->strd1,NULL,NULL,NULL,E->tracer.strd1,E->mesh.levmax,0);
gs_tracers_to_nodes(E,E->depl,NULL,NULL,NULL,E->tracer.depl,E->mesh.levmax,0);
/*RAA: 24/09/02, C. O'Neill - melting stuff */
#endif
/* Store data for profiles ... */
for(sample=0;sample<E->tracer.SAMPLE_PTS;sample++) {
/* Which variable are we going to plot ? */
switch(E->tracer.sample_type[sample]) {
case 1:
sample_variable=E->T;
break;
case 2:
sample_variable=E->V[1];
break;
case 3:
sample_variable=E->V[2];
break;
case 4:
sample_variable=E->nQ;
break;
case 5:
sample_variable=E->edot;
break;
case 6:
sample_variable=E->strd;
break;
case 7:
sample_variable=E->strs;
break;
case 8:
sample_variable=E->V[3];
break;
case 9:
sample_variable=E->V[4];
break;
case 10:
sample_variable=E->V[5];
break;
case 11:
sample_variable=E->V[6];
break;
case 12:
gs_tracers_to_nodes(E,Node,NULL,NULL,NULL,E->tracer.grain_size,E->mesh.levmax,0);
sample_variable=Node;
break;
case 13:
gs_tracers_to_nodes(E,Node,NULL,NULL,NULL,E->tracer.sigma_n,E->mesh.levmax,0);
sample_variable=Node;
break;
case 14: /*RAA: 24/09/02, C. O'Neill - melting stuff */
sample_variable=E->depl;
break;
case 15:
sample_variable=E->strd1;
break;
}
E->tracer.sampled_data[0][101] = E->tracer.sample_x[sample];
E->tracer.sampled_data[1][101] = E->tracer.sample_z[sample];
if(3==dims) /*RAA: 2/1/02, added this part for y */
E->tracer.sampled_data[2][101] = E->tracer.sample_y[sample];
if(E->tracer.sample_direction[sample] == 1) {
zz = E->tracer.sample_z[sample];
if(3==dims) /*RAA: 2/1/02, added this part for y, should be ok*/
yy = E->tracer.sample_y[sample];
max = -1.0e32;
min = 1.0e32;
for(i=0;i<=101;i++) {
/* fprintf(stderr,"Sample locn %d\n",i); */
xx = E->tracer.sampled_data[0][i];
/*printf("Processing velocity averages, calling general_tracers_element \n");*/
if(2==dims) /*RAA: 2/1/02, added this distinction.*/
element = sample_element[sample] =
general_tracers_element(E,sample_element[sample],xx,zz,0.0,&eta1,&eta2,&eta3,E->mesh.levmax);
else if(3==dims) /*RAA: 2/1/02, added this distinction.*/
element = sample_element[sample] =
general_tracers_element(E,sample_element[sample],xx,zz,yy,&eta1,&eta2,&eta3,E->mesh.levmax);
if(element == -1)
continue;
v_shape_fn(E,element,lN,eta1,eta2,eta3,E->mesh.levmax);
phi=0.0;
for(j=1;j<=enodes[E->mesh.nsd];j++) {
phi += sample_variable[E->ien[element].node[j]] * lN[j];
}
if(max < phi)
max = phi;
if(min > phi)
min = phi;
E->tracer.sampled_data[3+sample][i] = phi;
}
}
else if(E->tracer.sample_direction[sample] == 2) { /*RAA: 2/1/02, added this distinction for z-direction*/
xx = E->tracer.sample_x[sample];
if(3==dims) /*RAA: 2/1/02, added this part for y.*/
yy = E->tracer.sample_y[sample];
max = -1.0e32;
min = 1.0e32;
printf("2 processing velcoties: calling general_tracers_element \n");
/* fprintf(stderr,"HERE IS TRACER.PT (5) %g \n",E->tracer.Pt[436]) ; */
for(i=0;i<=101;i++) {
zz = E->tracer.sampled_data[1][i];
if(2==dims) /*RAA: 2/1/02, added this distinction.*/
element = sample_element[sample] =
general_tracers_element(E,sample_element[sample],xx,zz,0.0,&eta1,&eta2,&eta3,E->mesh.levmax);
else if(3==dims) /*RAA: 2/1/02, added this distinction. */
element = sample_element[sample] =
general_tracers_element(E,sample_element[sample],xx,zz,yy,&eta1,&eta2,&eta3,E->mesh.levmax);
if(element == -1)
continue;
v_shape_fn(E,element,lN,eta1,eta2,eta3,E->mesh.levmax);
phi=0.0;
for(j=1;j<=enodes[E->mesh.nsd];j++)
phi += sample_variable[E->ien[element].node[j]] * lN[j];
if(max < phi)
max = phi;
if(min > phi)
min = phi;
E->tracer.sampled_data[3+sample][i] = phi;
}
}
else if(3==dims && E->tracer.sample_direction[sample] == 3) { /*RAA: 2/1/02, added this section for y-direction*/
xx = E->tracer.sample_x[sample];
zz = E->tracer.sample_z[sample];
max = -1.0e32;
min = 1.0e32;
printf("2 processing velcoties: calling general_tracers_element \n");
/* fprintf(stderr,"HERE IS TRACER.PT (6) %g \n",E->tracer.Pt[436]) ; */
for(i=0;i<=101;i++) {
yy = E->tracer.sampled_data[2][i];
element = sample_element[sample] =
general_tracers_element(E,sample_element[sample],xx,zz,yy,&eta1,&eta2,&eta3,E->mesh.levmax);
if(element == -1)
continue;
v_shape_fn(E,element,lN,eta1,eta2,eta3,E->mesh.levmax);
phi=0.0;
for(j=1;j<=enodes[E->mesh.nsd];j++)
phi += sample_variable[E->ien[element].node[j]] * lN[j];
if(max < phi)
max = phi;
if(min > phi)
min = phi;
E->tracer.sampled_data[3+sample][i] = phi;
}
} /*RAA: end of else if for y-direction sampling*/
if(E->tracer.sample_normalize[sample]) {
E->tracer.sample_plotmax[sample] = max;
E->tracer.sample_plotmin[sample] = min;
}
E->tracer.sample_value[sample] = E->tracer.sampled_data[3+sample][101];
} /*RAA: end of 'for' w/ sample*/
free((void *) v);
free((void *) Node);
/* fprintf(stderr,"HERE IS TRACER.PT (7) \n") ; */
if(E->control.verbose)
fprintf(stderr,"Velocity processing ... done\n");
printf("Velocity processing ... done\n");
return;
}
/* PSI: only acceptable if 2d solutions */
void calculate_stream_function(
struct All_variables *E,
standard_precision *Psi
)
{
int i,j,that_node,this_node;
standard_precision x1,x2;
if (E->mesh.nsd != 2)
return;
Psi[E->mesh.noz] = 0.0 ; /* Define it so */
for(i=2;i<=E->mesh.nox;i++) /* work along lowest row */ {
that_node = (i-1) * E->mesh.noz;
this_node = i * E->mesh.noz;
x1 = x2 = 1.0;
if (E->control.AXI) {
x1 = E->x[1][this_node];
x2 = E->x[1][that_node];
}
Psi[this_node] = Psi[that_node]
+ (E->x[1][this_node] - E->x[1][that_node] )
* (x1 * E->V[2][this_node] + x2 * E->V[2][that_node]) /2.0;
}
for(i=1;i<=E->mesh.nox;i++)
for(j=E->mesh.noz;j>1;j--){
that_node = (i-1) * E->mesh.noz + j;
this_node = that_node - 1;
x1 = x2 = 1.0;
if (E->control.AXI) {
x1 = E->x[1][this_node];
x2 = E->x[1][that_node];
}
Psi[this_node] = Psi[that_node]-
(E->x[2][this_node] - E->x[2][that_node])*
(x1 * E->V[1][this_node]+ x2 * E->V[1][that_node])/2.0;
}
return;
}