-
Notifications
You must be signed in to change notification settings - Fork 6
/
Construct_mesh_arrays.c
544 lines (454 loc) · 18.7 KB
/
Construct_mesh_arrays.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
/*
Copyright (C) 2003 The GeoFramework Consortium
This file is part of Ellipsis3D.
Ellipsis3D is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License, version 2,
as published by the Free Software Foundation.
Ellipsis3D is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
Authors:
Louis Moresi <[email protected]>
Richard Albert <[email protected]>
*/
#include <math.h>
#include "element_definitions.h"
#include "global_defs.h"
/*========================================================
Function to make the IEN array for a mesh of given
dimension. IEN is an externally defined structure array
NOTE: this is not really general enough for new elements:
it should be done through a pre-calculated lookup table.
======================================================== */
void construct_ien(
struct All_variables *E
)
{
int lev,p,q,r,rr,e1,e2,i,a,node,node2,e;
int element,start,nel,nno;
int pmax,qmax,rmax;
int pnmax,qnmax,rnmax;
const int dims=E->mesh.nsd;
const int dofs=E->mesh.dof;
const int ends=enodes[dims];
for(lev=E->mesh.levmax;lev>=E->mesh.levmin;lev--) {
if(E->control.verbose) {
fprintf(stderr,"Constructing IEN arrays for level %d\n",lev);
}
pmax = E->mesh.ELZ[lev];
qmax = E->mesh.ELX[lev];
rmax = E->mesh.ELY[lev];
pnmax = E->mesh.NOZ[lev];
qnmax = E->mesh.NOX[lev];
rnmax = E->mesh.NOY[lev];
nel=E->mesh.NEL[lev];
nno=E->mesh.NNO[lev];
for(p=1;p<=pmax;p++)
for(q=1;q<=qmax;q++)
for(r=1;r<=rmax;r++) {
element = (r-1)*pmax*qmax + (q-1)*pmax + p;
start = (r-1)*pnmax*qnmax + (q-1)*pnmax + p; /*assumes 2 nodes per edge*/
for(rr=1;rr<=ends;rr++)
E->IEN[lev][element].node[rr]= start
+ offset[rr].vector[1]
+ offset[rr].vector[0]*pnmax
+ offset[rr].vector[2]*pnmax*qnmax;
}
for(element=1;element<=nel;element++)
for(node=1;node<=ends;node++) {
E->IENP[lev][element].node[node] = E->IEN[lev][element].node[node];
}
/*RAA: 26/10/01, added !per_y to line directly below to help in organizing*/
if(E->mesh.periodic_x && !E->mesh.periodic_y) /* make end nodes vanish */
for(p=1;p<=pmax;p++)
for(r=1;r<=rmax;r++) {
e1=p+(r-1)*E->mesh.ELX[lev]*E->mesh.ELZ[lev];
e2=e1+(E->mesh.ELX[lev]-1)*E->mesh.ELZ[lev];
E->NODE[lev][E->IEN[lev][e1].node[1]] = E->NODE[lev][E->IEN[lev][e1].node[1]] | PER_OFFSIDE;
E->NODE[lev][E->IEN[lev][e1].node[2]] = E->NODE[lev][E->IEN[lev][e1].node[2]] | PER_OFFSIDE;
E->IEN[lev][e2].node[4] = E->IEN[lev][e1].node[1];
E->IEN[lev][e2].node[3] = E->IEN[lev][e1].node[2];
if(3==E->mesh.nsd) { /*RAA: 31/5/01,26/10/01 next 4 lines added for proper PER_OFFSIDE-ing*/
E->IEN[lev][e2].node[4] = E->IEN[lev][e1].node[1];
E->IEN[lev][e2].node[3] = E->IEN[lev][e1].node[2];
E->NODE[lev][E->IEN[lev][e1].node[5]] = E->NODE[lev][E->IEN[lev][e1].node[5]] | PER_OFFSIDE;
E->NODE[lev][E->IEN[lev][e1].node[6]] = E->NODE[lev][E->IEN[lev][e1].node[6]] | PER_OFFSIDE;
E->IEN[lev][e2].node[8] = E->IEN[lev][e1].node[5];
E->IEN[lev][e2].node[7] = E->IEN[lev][e1].node[6];
}
}
if(3==dims) { /*RAA: 26/10/01, added !per_x to line directly below to help in organizing*/
if(E->mesh.periodic_y && !E->mesh.periodic_x) /* end nodes vanish */
for(p=1;p<=pmax;p++)
for(q=1;q<=qmax;q++) {
e1=p+(q-1)*E->mesh.ELZ[lev];
e2=e1+(E->mesh.ELY[lev]-1)*E->mesh.ELZ[lev]*E->mesh.ELX[lev];
E->NODE[lev][E->IEN[lev][e1].node[4]] = E->NODE[lev][E->IEN[lev][e1].node[4]] | PER_OFFSIDE;
E->NODE[lev][E->IEN[lev][e1].node[3]] = E->NODE[lev][E->IEN[lev][e1].node[3]] | PER_OFFSIDE;
E->NODE[lev][E->IEN[lev][e1].node[2]] = E->NODE[lev][E->IEN[lev][e1].node[2]] | PER_OFFSIDE;
E->NODE[lev][E->IEN[lev][e1].node[1]] = E->NODE[lev][E->IEN[lev][e1].node[1]] | PER_OFFSIDE;
E->IEN[lev][e2].node[5] = E->IEN[lev][e1].node[1];
E->IEN[lev][e2].node[6] = E->IEN[lev][e1].node[2];
E->IEN[lev][e2].node[7] = E->IEN[lev][e1].node[3];
E->IEN[lev][e2].node[8] = E->IEN[lev][e1].node[4];
}
}
/* & if both ... ? */
/*RAA: 26/10/01, let's try to get this right, in spite of the ambiguity*/
if(3==dims && E->mesh.periodic_y && E->mesh.periodic_x) {
/*periodic_x part*/
for(p=1;p<=pmax;p++)
for(r=1;r<=rmax;r++) {
e1=p+(r-1)*E->mesh.ELX[lev]*E->mesh.ELZ[lev];
e2=e1+(E->mesh.ELX[lev]-1)*E->mesh.ELZ[lev];
E->NODE[lev][E->IEN[lev][e1].node[1]] = E->NODE[lev][E->IEN[lev][e1].node[1]] | PER_OFFSIDE;
E->NODE[lev][E->IEN[lev][e1].node[2]] = E->NODE[lev][E->IEN[lev][e1].node[2]] | PER_OFFSIDE;
E->NODE[lev][E->IEN[lev][e1].node[5]] = E->NODE[lev][E->IEN[lev][e1].node[5]] | PER_OFFSIDE;
E->NODE[lev][E->IEN[lev][e1].node[6]] = E->NODE[lev][E->IEN[lev][e1].node[6]] | PER_OFFSIDE;
E->IEN[lev][e2].node[4] = E->IEN[lev][e1].node[1];
E->IEN[lev][e2].node[3] = E->IEN[lev][e1].node[2];
E->IEN[lev][e2].node[8] = E->IEN[lev][e1].node[5];
E->IEN[lev][e2].node[7] = E->IEN[lev][e1].node[6];
}
/*periodic_y part*/
for(p=1;p<=pmax;p++)
for(q=1;q<=qmax;q++) {
e1=p+(q-1)*E->mesh.ELZ[lev];
e2=e1+(E->mesh.ELY[lev]-1)*E->mesh.ELZ[lev]*E->mesh.ELX[lev];
E->NODE[lev][E->IEN[lev][e1].node[4]] = E->NODE[lev][E->IEN[lev][e1].node[4]] | PER_OFFSIDE;
E->NODE[lev][E->IEN[lev][e1].node[3]] = E->NODE[lev][E->IEN[lev][e1].node[3]] | PER_OFFSIDE;
E->NODE[lev][E->IEN[lev][e1].node[2]] = E->NODE[lev][E->IEN[lev][e1].node[2]] | PER_OFFSIDE;
E->NODE[lev][E->IEN[lev][e1].node[1]] = E->NODE[lev][E->IEN[lev][e1].node[1]] | PER_OFFSIDE;
E->IEN[lev][e2].node[5] = E->IEN[lev][e1].node[1];
E->IEN[lev][e2].node[6] = E->IEN[lev][e1].node[2];
E->IEN[lev][e2].node[7] = E->IEN[lev][e1].node[3];
E->IEN[lev][e2].node[8] = E->IEN[lev][e1].node[4];
}
/*RAA: Now at this point the back right edge nodes are not PER_OFFSIDE,
and to make them so has caused the program to continously loop.
So here I equate the front right edge nodes with those at the
back right edge without making those nodes PER_OFFSIDE. Is this ok?*/
for(p=1;p<=pmax;p++) {
e1=p+(E->mesh.ELX[lev]-1)*E->mesh.ELZ[lev];
e2=e1+(E->mesh.ELY[lev]-1)*E->mesh.ELZ[lev]*E->mesh.ELX[lev];
/* E->NODE[lev][E->IEN[lev][e1].node[3]] = E->NODE[lev][E->IEN[lev][e1].node[3]] | PER_OFFSIDE;
E->NODE[lev][E->IEN[lev][e1].node[4]] = E->NODE[lev][E->IEN[lev][e1].node[4]] | PER_OFFSIDE;
*/
E->IEN[lev][e2].node[7] = E->IEN[lev][e1].node[3] + (E->mesh.NOX[lev]-1)*(E->mesh.NOZ[lev]);
E->IEN[lev][e2].node[8] = E->IEN[lev][e1].node[4] + (E->mesh.NOX[lev]-1)*(E->mesh.NOZ[lev]);
}
} /*end of per_x and per_y*/
/*RAA: 31/5/01, check PER_OFFSIDE stuff*/
/* if(E->control.verbose) {
for(p=1;p<=E->mesh.nno;p++)
if(E->node[p] & (PER_OFFSIDE))
fprintf(stderr,"(construct_mesh_arrays.c)!! A PER_OFFSIDE NODE!!: %d\n",p);
}
*/
/*RAA: 31/5/01, check PER_OFFSIDE stuff*/
/* if(E->control.verbose) {
for(p=1;p<=E->mesh.nel;p++)
fprintf(stderr,"(construct_mesh_arrays.c)!! element #: %d, gn for ln7: %d , gn for ln8: %d\n",p,E->IEN[0][p].node[7],E->IEN[0][p].node[8]);
}
*/
for(i=1;i<=nno;i++)
E->NEI[lev].nels[i] = 0;
for(e=1;e<=nel;e++)
for(a=1;a<=ends;a++) {
node=E->IEN[lev][e].node[a];
E->NEI[lev].nels[node]++;
E->NEI[lev].element[(node-1)*ends+E->NEI[lev].nels[node]-1] = e;
E->NEI[lev].lnode[(node-1)*ends+E->NEI[lev].nels[node]-1] = a;
}
if(E->mesh.periodic_x) { /* this should be redundant, the offside nodes are not used */
for(p=1;p<=pnmax;p++)
for(r=1;r<=rnmax;r++) {
node=p+(r-1)*pnmax*qnmax;
node2=node+(qnmax-1)*pnmax;
E->NEI[lev].nels[node2]=E->NEI[lev].nels[node];
for(a=1;a<=E->NEI[lev].nels[node2];a++) {
E->NEI[lev].element[(node2-1)*ends+a] = E->NEI[lev].element[(node-1)*ends+a];
E->NEI[lev].lnode[(node2-1)*ends+a] = E->NEI[lev].lnode[(node-1)*ends+a];
}
}
}
if(E->control.verbose) {
fprintf(stderr,"Contructed IEN arrays for level %d\n",lev);
}
} /* next level */
return;
}
/*============================================
Function to make the ID array for above case
============================================ */
void construct_id(
struct All_variables *E
)
{
int i,j,k;
int eqn_count,node_count,eqn_countd;
unsigned int type,doff;
int lev;
int nox,noy,noz;
const int dims=E->mesh.nsd;
const int dofs=E->mesh.dof;
for(lev=E->mesh.levmax;lev>=E->mesh.levmin;lev--) {
eqn_count = 0;
nox=E->mesh.NOX[lev];
noz=E->mesh.NOZ[lev];
noy=E->mesh.NOY[lev];
for(k=1;k<=noy;k++)
for(i=1;i<=nox;i++)
for(j=1;j<=noz;j++)
for(doff=1;doff<=dofs;doff++) {
if(E->mesh.periodic_x && i==nox)
continue;
if(E->mesh.periodic_y && k==noy) /*RAA: 8/10/01, added these 2 lines */
continue;
/*RAA: needs correction for both periodic_x and periodic_y, too?, should be ok as is */
node_count = j+(i-1)*noz+(k-1)*nox*noz;
E->ID[lev][node_count].doff[doff] = eqn_count++;
}
if(E->mesh.periodic_x)
for(k=1;k<=noy;k++)
for(j=noz;j>=1;j--) {
E->ID[lev][j+(nox-1)*noz+(k-1)*nox*noz].doff[1] = E->ID[lev][j+(k-1)*nox*noz].doff[1];
E->ID[lev][j+(nox-1)*noz+(k-1)*nox*noz].doff[2] = E->ID[lev][j+(k-1)*nox*noz].doff[2];
if(3==dofs)
E->ID[lev][j+(nox-1)*noz+(k-1)*nox*noz].doff[3] = E->ID[lev][j+(k-1)*nox*noz].doff[3];
else if(6==dofs) {
E->ID[lev][j+(nox-1)*noz+(k-1)*nox*noz].doff[3] = E->ID[lev][j+(k-1)*nox*noz].doff[3];
E->ID[lev][j+(nox-1)*noz+(k-1)*nox*noz].doff[4] = E->ID[lev][j+(k-1)*nox*noz].doff[4];
E->ID[lev][j+(nox-1)*noz+(k-1)*nox*noz].doff[5] = E->ID[lev][j+(k-1)*nox*noz].doff[5];
E->ID[lev][j+(nox-1)*noz+(k-1)*nox*noz].doff[6] = E->ID[lev][j+(k-1)*nox*noz].doff[6];
}
}
if(E->mesh.periodic_y && 3==dofs) /*RAA: 8/10/01, added this periodic_y stuff */
for(i=1;i<=nox;i++)
for(j=noz;j>=1;j--) {
E->ID[lev][j+(i-1)*noz+(noy-1)*nox*noz].doff[1] = E->ID[lev][j+(i-1)*noz].doff[1];
E->ID[lev][j+(i-1)*noz+(noy-1)*nox*noz].doff[2] = E->ID[lev][j+(i-1)*noz].doff[2];
E->ID[lev][j+(i-1)*noz+(noy-1)*nox*noz].doff[3] = E->ID[lev][j+(i-1)*noz].doff[3];
if(6==dofs) {
E->ID[lev][j+(i-1)*noz+(noy-1)*nox*noz].doff[4] = E->ID[lev][j+(i-1)*noz].doff[4];
E->ID[lev][j+(i-1)*noz+(noy-1)*nox*noz].doff[5] = E->ID[lev][j+(i-1)*noz].doff[5];
E->ID[lev][j+(i-1)*noz+(noy-1)*nox*noz].doff[6] = E->ID[lev][j+(i-1)*noz].doff[6];
}
}
/*RAA: 22/10/01, probably needs a correction for both periodic_x and periodic_y,
so now we will RE-DO THE PERIODIC_X STEP, eg., see flogical_mesh_to_real( ) */
if(E->mesh.periodic_x && E->mesh.periodic_y && 3==dofs)
for(k=1;k<=noy;k++)
for(j=noz;j>=1;j--) {
E->ID[lev][j+(nox-1)*noz+(k-1)*nox*noz].doff[1] = E->ID[lev][j+(k-1)*nox*noz].doff[1];
E->ID[lev][j+(nox-1)*noz+(k-1)*nox*noz].doff[2] = E->ID[lev][j+(k-1)*nox*noz].doff[2];
E->ID[lev][j+(nox-1)*noz+(k-1)*nox*noz].doff[3] = E->ID[lev][j+(k-1)*nox*noz].doff[3];
if(6==dofs) {
E->ID[lev][j+(nox-1)*noz+(k-1)*nox*noz].doff[4] = E->ID[lev][j+(k-1)*nox*noz].doff[4];
E->ID[lev][j+(nox-1)*noz+(k-1)*nox*noz].doff[5] = E->ID[lev][j+(k-1)*nox*noz].doff[5];
E->ID[lev][j+(nox-1)*noz+(k-1)*nox*noz].doff[6] = E->ID[lev][j+(k-1)*nox*noz].doff[6];
}
}
E->mesh.NEQ[lev] = eqn_count;
}
E->mesh.neq = E->mesh.NEQ[E->mesh.levmax]; /* Total NUMBER of independent variables */
/* Now do the low level direct solver stuff */
eqn_countd = 0;
for(j=1;j<=E->mesh.NOZ[E->mesh.levmin];j++)
for(k=1;k<=E->mesh.NOY[E->mesh.levmin];k++)
for(i=1;i<=E->mesh.NOX[E->mesh.levmin];i++) {
if(E->mesh.periodic_x && i==E->mesh.NOX[E->mesh.levmin])
continue;
if(E->mesh.periodic_y && k==E->mesh.NOY[E->mesh.levmin]) /*RAA: 8/10/01, added these 2 lines */
continue;
/*RAA: needs correction for both periodic_x and periodic_y, too? should be ok as is.*/
node_count = j + (i-1)*E->mesh.NOZ[E->mesh.levmin]+
(k-1)*E->mesh.NOX[E->mesh.levmin] * E->mesh.NOZ[E->mesh.levmin];
if((E->NODE[E->mesh.levmin][node_count] & BC1) == 0)
E->idd[node_count].doff[1] = eqn_countd++;
else
E->idd[node_count].doff[1] = -1;
if((E->NODE[E->mesh.levmin][node_count] & BC2) == 0)
E->idd[node_count].doff[2] = eqn_countd++;
else
E->idd[node_count].doff[2] = -1;
if(3==E->mesh.dof) {
if((E->NODE[E->mesh.levmin][node_count] & BC3) == 0)
E->idd[node_count].doff[3] = eqn_countd++;
else
E->idd[node_count].doff[3] = -1;
}
}
E->mesh.neqd = eqn_countd;
return;
}
/*==========================================================
Function to construct the LM array from the ID and IEN arrays
========================================================== */
void construct_lm(
struct All_variables *E
)
{
return;
}
/* ============================================
Function to set up the boundary condition
masks and other indicators.
============================================ */
void construct_masks( /* Add lid/edge masks/nodal weightings */
struct All_variables *E
)
{
int i,j,k,l,node,elt,n1,n2;
int lev,elx,elz,ely;
for(lev=E->mesh.levmax;lev>=E->mesh.levmin;lev--){
elx = E->mesh.ELX[lev];
elz = E->mesh.ELZ[lev];
ely = E->mesh.ELY[lev];
if(E->mesh.periodic_x)
for(i=1;i<=E->mesh.NOZ[lev];i++)
for(j=1;j<=E->mesh.NOY[lev];j++) {
n1=i+(j-1)*E->mesh.NOX[lev]*E->mesh.NOZ[lev];
n2=n1+(E->mesh.NOX[lev]-1)*E->mesh.NOZ[lev];
E->NODE[lev][n2] = E->NODE[lev][n2] | OFFSIDE;
}
/*RAA: 5/10/01, added periodic_y stuff below to create proper OFFSIDE nodes on front face*/
if(E->mesh.periodic_y)
for(i=1;i<=E->mesh.NOX[lev];i++)
for(j=1;j<=E->mesh.NOZ[lev];j++) {
n1=j+(i-1)*E->mesh.NOZ[lev];
n2=n1+(E->mesh.NOY[lev]-1)*E->mesh.NOZ[lev]*E->mesh.NOX[lev];
E->NODE[lev][n2] = E->NODE[lev][n2] | OFFSIDE;
}
/*RAA: end of periodic_y insert*/
for(i=1;i<=E->mesh.NNO[lev];i++)
E->TW[lev][i] = 0.0;
for(i=1;i<=elz;i++)
for(j=1;j<=elx;j++)
for(k=1;k<=ely;k++)
for(l=1;l<=enodes[E->mesh.nsd];l++) {
elt = i + (j-1) * elz + (k-1) * elz * elx;
node = E->IEN[lev][elt].node[l];
E->TW[lev][node] += 1.0;
}
for(i=1;i<=E->mesh.NNO[lev];i++) {
if(E->NODE[lev][i] & ( OFFSIDE ))
continue;
if( E->TW[lev][i] == 0.0 )
fprintf(stderr,"Weightings broken at level %d, node %d\n",lev,i);
E->TW[lev][i] = 1.0/(E->TW[lev][i]);
}
}
/* Edge masks */
for(i=1;i<=E->mesh.nox;i++) /* Horizontal */
{ for(j=1;j<=E->mesh.noy;j++)
{ node = 1+(i-1)*E->mesh.noz+(j-1)*E->mesh.noz*E->mesh.nox;
E->node[node] = E->node[node] | TZEDGE;
E->node[node] = E->node[node] | VZEDGE;
node += E->mesh.noz-1;;
E->node[node] = E->node[node] | VZEDGE;
E->node[node] = E->node[node] | TZEDGE;
}
}
if (E->mesh.dof == 3) /* not appropriate otherwise */
for(i=1;i<=E->mesh.noz;i++) /* vertical edge, x normal */
{ for(j=1;j<=E->mesh.noy;j++)
{ node = i + (j-1) * E->mesh.nox * E->mesh.noz;
E->node[node] = E->node[node] | TXEDGE;
E->node[node] = E->node[node] | VXEDGE;
node = i+(E->mesh.nox-1)*E->mesh.noz + (j-1) * E->mesh.nox * E->mesh.noz;
E->node[node] = E->node[node] | TXEDGE;
E->node[node] = E->node[node] | VXEDGE; } }
for(i=1;i<=E->mesh.noz;i++) /* vertical edge, y normal */
{ for(j=1;j<=E->mesh.nox;j++)
{ node = i + (j-1) * E->mesh.noz;
E->node[node] = E->node[node] | TYEDGE;
E->node[node] = E->node[node] | VYEDGE;
node = i+(E->mesh.noy-1)*E->mesh.noz*E->mesh.nox + (j-1) * E->mesh.noz;
E->node[node] = E->node[node] | TYEDGE;
E->node[node] = E->node[node] | VYEDGE; } }
return; }
/* ==========================================
build the sub-element reference matrices
========================================== */
void construct_sub_element(
struct All_variables *E
)
{ int i,j,k,l;
int lev,elx,elz,ely,elzu,elxu,elt,eltu;
for(lev=E->mesh.levmax-1;lev>=E->mesh.levmin;lev--) {
if(E->control.verbose) {
fprintf(stderr,"Constructing Sub-element arrays for level %d\n",lev);
}
elx = E->mesh.ELX[lev];
elz = E->mesh.ELZ[lev];
ely = E->mesh.ELY[lev];
elzu = 2 * elz;
elxu = 2 * elx;
for(i=1;i<=elx;i++)
for(j=1;j<=elz;j++)
for(k=1;k<=ely;k++)
{ elt = j + (i-1)*elz +(k-1)*elz*elx;
eltu = (j*2-1) + elzu *2*(i-1) + elxu*elzu*2*(k-1);
for(l=1;l<=enodes[E->mesh.nsd];l++) {
E->EL[lev][elt].sub[l] = eltu
+ offset[l].vector[1]
+ offset[l].vector[0] * elzu
+ offset[l].vector[2] * elzu * elxu;
}
}
if(E->control.verbose) {
fprintf(stderr,"Contructed Sub-element arrays for level %d\n",lev);
}
}
return;
}
void construct_elem(
struct All_variables *E
)
{
int lev;
int nel;
int i;
const int dims = E->mesh.nsd;
/*--------------------------------------------------*/
/*RAA: 22/3/01, correction here for 3D with name_v, etc
N.B. a more elegant solution gave trouble with redefining name_v, p */
int name_v2=FOUR_NODES_QUAD;
int name_p2=ONE_NODE_QUAD;
int name_v3=EIGHT_NODES_CUBIC;
int name_p3=ONE_NODE_CUBIC;
if(E->control.verbose) {
if(2==dims)
fprintf(stderr,"***** ELEM type is --------> %d node 2D, hybrid\n",name_v2);
else
fprintf(stderr,"***** ELEM type is --------> %d node 3D, hybrid\n",name_v3);
}
/*--------------------------------------------------*/
if(2==dims) {
E->control.ELEMENT_TYPE = FOUR_NODES_QUAD;
E->control.ELEMENT_TYPE_P = ONE_NODE_QUAD;
}
else {
E->control.ELEMENT_TYPE = EIGHT_NODES_CUBIC;
E->control.ELEMENT_TYPE_P = ONE_NODE_CUBIC;
}
for(lev=E->mesh.levmax;lev>=E->mesh.levmin;lev--) {
if(E->control.verbose) {
fprintf(stderr,"Constructing ELEM arrays for level %d\n",lev);
}
nel=E->mesh.NEL[lev];
for(i=1;i<=nel;i++){
if(2==dims) {
E->ELEM[lev][i].type_v = name_v2;
E->ELEM[lev][i].type_p = name_p2;
}
else if(3==dims) {
E->ELEM[lev][i].type_v = name_v3;
E->ELEM[lev][i].type_p = name_p3;
}
}
}
return ;
}