-
Notifications
You must be signed in to change notification settings - Fork 1
/
opts.py
executable file
·106 lines (91 loc) · 5.99 KB
/
opts.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
# Code for "TSM: Temporal Shift Module for Efficient Video Understanding"
# arXiv:1811.08383
# Ji Lin*, Chuang Gan, Song Han
# {jilin, songhan}@mit.edu, [email protected]
import argparse
parser = argparse.ArgumentParser(description="PyTorch implementation of Temporal Segment Networks")
parser.add_argument('dataset', type=str)
parser.add_argument('modality', type=str, choices=['RGB', 'Flow'])
parser.add_argument('--train_list', type=str, default="")
parser.add_argument('--val_list', type=str, default="")
parser.add_argument('--root_path', type=str, default="")
parser.add_argument('--exp_name', type=str, default="")
parser.add_argument('--datapath', type=str, default='../data/')
parser.add_argument('--model', type=str, default='tsm')
parser.add_argument('--n_batch_multiplier', type=int, default=1)
parser.add_argument("--local_rank", type=int,
help='local rank for DistributedDataParallel')
parser.add_argument('--i3d', default=False, action="store_true")
parser.add_argument('--compute_gflops', default=False, action="store_true")
parser.add_argument('--patch_size', type=int, default=4)
# ========================= Model Configs ==========================
parser.add_argument('--arch', type=str, default="BNInception")
parser.add_argument('--num_segments', type=int, default=3)
parser.add_argument('--consensus_type', type=str, default='avg')
parser.add_argument('--k', type=int, default=3)
parser.add_argument('--dropout', '--do', default=0.5, type=float,
metavar='DO', help='dropout ratio (default: 0.5)')
parser.add_argument('--loss_type', type=str, default="nll",
choices=['nll'])
# **** ------ ****
parser.add_argument('--temporal_module', type=str, default="tsm")
parser.add_argument('--dropout_type', type=str, default="normal",
choices=['normal', 'embed'])
parser.add_argument('--use_tsm', default=False, action="store_true")
parser.add_argument('--multi_node', default=False, action="store_true")
parser.add_argument('--init_method', default='tcp://127.0.0.1:3456', type=str, help='')
parser.add_argument('--dist-backend', default='gloo', type=str, help='')
parser.add_argument('--world_size', default=1, type=int, help='')
parser.add_argument('--distributed', action='store_true', help='')
parser.add_argument('--num_tasks_per_node', default=1, type=int, help='')
parser.add_argument('--img_feature_dim', default=256, type=int, help="the feature dimension for each frame")
parser.add_argument('--suffix', type=str, default=None)
parser.add_argument('--pretrain', type=str, default='imagenet')
parser.add_argument('--tune_from', type=str, default=None, help='fine-tune from checkpoint')
# ========================= Learning Configs ==========================
parser.add_argument('--epochs', default=120, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('-b', '--batch-size', default=128, type=int,
metavar='N', help='mini-batch size (default: 256)')
parser.add_argument('--lr', '--learning-rate', default=0.001, type=float,
metavar='LR', help='initial learning rate')
parser.add_argument('--lr_type', default='step', type=str,
metavar='LRtype', help='learning rate type')
parser.add_argument('--lr_steps', default=[50, 100], type=float, nargs="+",
metavar='LRSteps', help='epochs to decay learning rate by 10')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum')
parser.add_argument('--weight-decay', '--wd', default=5e-4, type=float,
metavar='W', help='weight decay (default: 5e-4)')
parser.add_argument('--clip-gradient', '--gd', default=None, type=float,
metavar='W', help='gradient norm clipping (default: disabled)')
parser.add_argument('--no_partialbn', '--npb', default=False, action="store_true")
parser.add_argument('--trial_run', default=False, action="store_true")
parser.add_argument('--tpu', default=False, action="store_true")
# ========================= Monitor Configs ==========================
parser.add_argument('--print-freq', '-p', default=20, type=int,
metavar='N', help='print frequency (default: 10)')
parser.add_argument('--eval-freq', '-ef', default=5, type=int,
metavar='N', help='evaluation frequency (default: 5)')
# ========================= Runtime Configs ==========================
parser.add_argument('-j', '--workers', default=8, type=int, metavar='N',
help='number of data loading workers (default: 8)')
parser.add_argument('--resume', default='', type=str, metavar='PATH',
help='path to latest checkpoint (default: none)')
parser.add_argument('--lr_scheduler', type=str, default='step')
parser.add_argument('--start_epoch', type=int, default=0)
parser.add_argument('-e', '--evaluate', dest='evaluate', action='store_true',
help='evaluate model on validation set')
parser.add_argument('--snapshot_pref', type=str, default="")
parser.add_argument('--start-epoch', default=0, type=int, metavar='N',
help='manual epoch number (useful on restarts)')
parser.add_argument('--gpus', nargs='+', type=int, default=None)
parser.add_argument('--flow_prefix', default="", type=str)
parser.add_argument('--root_log',type=str, default='log')
parser.add_argument('--root_model', type=str, default='checkpoint')
parser.add_argument('--shift', default=False, action="store_true", help='use shift for models')
parser.add_argument('--shift_div', default=8, type=int, help='number of div for shift (default: 8)')
parser.add_argument('--shift_place', default='blockres', type=str, help='place for shift (default: stageres)')
parser.add_argument('--temporal_pool', default=False, action="store_true", help='add temporal pooling')
parser.add_argument('--non_local', default=False, action="store_true", help='add non local block')
parser.add_argument('--dense_sample', default=False, action="store_true", help='use dense sample for video dataset')