-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtraining.py
154 lines (114 loc) · 4.89 KB
/
training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
from fetch_data import DataLoader
from utils import mkdirs
import os
import image as img
from keras_preprocessing.image import ImageDataGenerator
import keras
from keras import layers
from keras import optimizers
from keras.models import Sequential
from keras.layers import Dense, Flatten, Conv3D, MaxPooling3D, Dropout, BatchNormalization
from keras.utils import to_categorical
import numpy as np
import matplotlib.pyplot as plt
from keras.optimizers import SGD
# path....
data_root = r"C:\Users\Bhanu Pandey\Desktop\Subset"
csv_label = r"C:\Users\Bhanu Pandey\Desktop\Subset\Label.csv"
csv_train = r"C:\Users\Bhanu Pandey\Desktop\Subset\Train.csv"
csv_test = r"C:\Users\Bhanu Pandey\Desktop\Subset\Test.csv"
csv_val = r"C:\Users\Bhanu Pandey\Desktop\Subset\Validation.csv"
data_vid = r"C:\Users\Bhanu Pandey\Desktop\Subset"
model_name = "3D_cnn_model"
model_path = r"C:\Users\Bhanu Pandey\Desktop\Subset\Model"
path_model = os.path.join(data_root,model_path,model_name)
path_vid = os.path.join(data_root,data_vid)
path_test = os.path.join(data_root,csv_test)
path_train = os.path.join(data_root,csv_train)
path_val = os.path.join(data_root,csv_val)
path_label = os.path.join(data_root,csv_label)
target_size = (64,64)
nb_frames = 16
skip = 1
batch_size = 16
data = DataLoader(data_vid,path_label,path_train,path_val)
mk(path_model,0o755)
mkdirs(os.path.join(path_model,"graph"),0o755)
dirs
def get_model(width=64, height=64 ,depth=16):
"""Build a 3D convolutional neural network model."""
inputs = keras.Input((depth,width, height, 3))
x = layers.Conv3D(filters=64, kernel_size=3, activation="relu",padding = 'same')(inputs)
x = layers.MaxPool3D(pool_size=2)(x)
x = layers.BatchNormalization()(x)
x = layers.Conv3D(filters=64, kernel_size=3, activation="relu",padding = 'same')(x)
x = layers.MaxPool3D(pool_size=2)(x)
x = layers.BatchNormalization()(x)
x = layers.Conv3D(filters=128, kernel_size=3, activation="relu",padding = 'same')(x)
x = layers.MaxPool3D(pool_size=2)(x)
x = layers.BatchNormalization()(x)
x = layers.Conv3D(filters=256, kernel_size=3, activation="relu",padding = 'same')(x)
x = layers.MaxPool3D(pool_size=2)(x)
x = layers.BatchNormalization()(x)
x = layers.GlobalAveragePooling3D()(x)
x = layers.Dense(units=512, activation="relu")(x)
x = layers.Dropout(0.3)(x)
outputs = layers.Dense(units=27, activation="softmax")(x)
# Define the model.
model = keras.Model(inputs, outputs, name="3dcnn")
return model
gen = img.ImageDataGenerator()
gen_train = gen.flow_video_from_dataframe(data.train_df,
os.path.join(path_vid,"Train"),
path_classes = path_label,
x_col='video_id',
y_col='label_id',
target_size = target_size,
nb_frames = nb_frames,
batch_size = batch_size,
skip = skip,
has_ext = True)
gen_val = gen.flow_video_from_dataframe(data.val_df,
os.path.join(path_vid,"Validation"),
path_classes = path_label,
x_col='video_id',
y_col='label_id',
target_size = target_size,
nb_frames = nb_frames,
batch_size = batch_size,
skip = skip,
has_ext = True)
# Build model.
model = get_model(width=64, height=64, depth=16)
model.summary()
# Compile model.
epochs = 100
learning_rate = 0.1
decay_rate = learning_rate / epochs
momentum = 0.8
model.compile(optimizer=SGD(lr=learning_rate, momentum=momentum, decay=decay_rate, nesterov=False),
loss='categorical_crossentropy',
metrics=['accuracy'])
# Define callbacks.
checkpoint_cb = keras.callbacks.ModelCheckpoint(
"3d_image_classification.h5", save_best_only=True
)
early_stopping_cb = keras.callbacks.EarlyStopping(monitor="val_acc", patience=15)
# Train the model, doing validation at the end of each epoch
model.fit_generator(
generator = gen_train,
validation_data=gen_val,
epochs=epochs,
shuffle=True,
verbose=1,
workers = 1,
callbacks=[checkpoint_cb, early_stopping_cb]
)
"""
model.fit(
train_generator,
steps_per_epoch=2000,
epochs=50,
validation_data=validation_generator,
validation_steps=800)
"""