-
Notifications
You must be signed in to change notification settings - Fork 67
/
Copy pathccl_dd.py
37 lines (27 loc) · 1.21 KB
/
ccl_dd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
import yfinance as yf
import numpy as np
import matplotlib.pyplot as plt
plt.style.use('dark_background')
tickers =['GGAL','GGAL.BA','YPF','YPFD.BA','PAM','PAMP.BA']
data = yf.download(tickers, auto_adjust=True, start='2011-01-01')['Close']
print('\n\n')
ccl = data['YPFD.BA']/data['YPF']
ccl += data['GGAL.BA']/data['GGAL'] * 10
ccl += data['PAMP.BA']/data['PAM'] * 25
ccl /= 3
ccl_max_h = ccl.cummax()
ccl_dd = ((ccl/ccl_max_h-1)*100).dropna().rolling(30).mean()
fig, ax = plt.subplots(figsize=(16,10), nrows=2)
ax[0].hist(ccl_dd, bins=150, width=0.1, color='w', alpha=0.3)
ax[0].set_title('CCL DrawDowns Histograma', y=1, fontsize=16)
ax[1].plot(ccl_dd, color='silver', lw=1)
ax[1].fill_between(ccl_dd.index, 0, ccl_dd, color='red', alpha=0.15)
ax[1].set_title('DrawDowns CCL', y=1, fontsize=16)
values = [-10,-15,-20,-25]
targets = ((1 + np.array(values)/100)*ccl.iloc[-1]).round(2)
for z in range(len(values)):
ax[1].plot(ccl.index, [values[z]]*len(ccl), 'w--', alpha=0.5)
sub_z = len(ccl_dd.loc[ccl_dd < values[z] ])/len(ccl_dd)
print(f'Probabilidad de baja > {-values[z]}% (${targets[z]}): {round(sub_z*100,1)}%')
plt.subplots_adjust(wspace=None, hspace=0.2)
plt.show()