diff --git a/docs/notebooks/RedClumpGaiaAllWISE/rcdemo/packages_to_import.py b/docs/notebooks/RedClumpGaiaAllWISE/rcdemo/packages_to_import.py index 147fb57..2b5c8e7 100644 --- a/docs/notebooks/RedClumpGaiaAllWISE/rcdemo/packages_to_import.py +++ b/docs/notebooks/RedClumpGaiaAllWISE/rcdemo/packages_to_import.py @@ -1,4 +1,5 @@ import os, sys, time, math +import agama import importlib as imp from time import sleep import ebf @@ -45,5938 +46,1852 @@ import uncertainties.unumpy as unumpy from configparser import ConfigParser +import sutil_sanj as sutil -# import agama -# import vaex -# matplotlib.use('Agg') # non interactive -# matplotlib.use('Qt5Agg') -# bmcmc = dtools.get_bmcmc2() -##### utility functions - -#---Toolssc -# def getdirec(loc,at='mac'): -# def getdirec(loc,at='bologna'): -def getdirec(loc,at='cluster2'): -# def getdirec(loc,at='torino'): - ''' - OPTIONS: - 1. home: '/home/shourya' - 2. phddir: home+'/Documents/phd_work' - 3. glxdir: phddir+'/GalaxiaWork' - 3. desktop: home+'/Desktop' - 4. downloads: home+'/Downloads' - 5. galaxia: home+'/GalaxiaData' - at = ['kapteyn','lenovo','mac','INAF','cluster','cluster2','torino'] - ''' - #savdir = HOME+'/warp2018' - - # home= '/home/shourya'; galaxia = home+'/GalaxiaData' - # home= '/import/photon1/skha2680';galaxia = '/import/photon1/sanjib/share/GsynthData' - - if at == 'kapteyn': - home= '/net/huygens/data/users/khanna'; - if at == 'mac': - home= '/Users/shouryapro'; - if at == 'bologna': - home= '/home/guest/Sunny/data8'; - if at == 'cluster': - home= '/u/skhanna'; - if at == 'cluster2': - home= '/iranet/users/pleia14/'; - if at == 'torino': - home= '/home/shouryakhanna'; - - - desktop = home+'/Desktop' - documents = home+'/Documents' - downloads = home+'/Downloads' - pdocdir= home+'/Documents/pdoc_work' - galaxia = documents+'/GalaxiaData' - phddir= home+'/Documents/phd_work' - glxdir = phddir+'/GalaxiaWork' - - gaiadata = home+'/Documents/phd_work/gaia/data' - - direc = {'home':home,'phddir':phddir,'pdocdir':pdocdir,'glxdir':glxdir,'desktop':desktop,'downloads':downloads,'galaxia':galaxia,'gaiadata':gaiadata,'documents':documents} - - return direc[loc] - - -def mk_mini(mydata,fac=1.0,key='pz',prnt_=True): +class stopwatch(object): + # import time + def __init__(self): + self.purpose = 'time' - import tabpy + def begin(self): + self.t1=time.time() + + + def end(self): + tm = (time.time()-self.t1) - putvelkeysback = False - #velkeys = ['usun','vsun','wsun','xsun','zsun'] - - velkeys = [] - for ky in mydata.keys(): - if mydata[ky].size < mydata[key].size: - velkeys.append(ky) - velkeys = np.array(velkeys) - tmp_vel={} - - for ky in velkeys: - if ky in mydata.keys(): - tmp_vel[ky] = mydata[ky] - del mydata[ky] - putvelkeysback = True + print('') + print('---------------------------------------------') + + print ('time (seconds, minutes, hours) =', str(np.round(tm,2))+','+str(np.round(tm/60.,2))+','+str(np.round(tm/3600.,2))) - - if prnt_: - print(mydata[key].size,' stars in all') + return tm - crnt = (mydata[key].size)*fac; crnt = int(crnt) - tabpy.shuffle(mydata,crnt) - if prnt_: - print(mydata[key].size,' stars shuffled') - - - if putvelkeysback: - for ky in velkeys: - mydata[ky] = tmp_vel[ky] - - return mydata -def filter_dict(data,ind): - ''' - PURPOSE - - > Filters given dictionary by given indices - equivalent of doing mydata['x'] = mydata['x'][ind] for each key - - INPUT: - > data: dictionary containing some data - > ind: indices at which to filter data - !!! all keys need to have same length !!! - - RETURNS: - > data filtered at specified indices - ''' - - data1={} - for key in data.keys(): - # print(key) - data1[key]=data[key][ind] - return data1 +timeit = stopwatch() +timeit.begin() -def indfinite(qnt,nans=False,print_=True): - ''' - Returns the indices where input quantity is finite +######################################### +# data projection functions + + +def densprof_indirect(_r,dmodel,count_unc_fac=1,bins=None,suffix='',rmin1=5,rmax1=30,zmin1=-5, + zmax1=5,nrbins1=40,hresz=0.5,svit=False,svnam='',_z=[],zmode=False,zphimode=False, + tempdir='',plotit=False,prntsv=False): + # add phi bins + + ''' + integrate over dr & plot ''' - if nans == False: - ind = np.where(np.isfinite(qnt))[0] - if print_: - print('ind where finite') - print(ind.size) - else: - ind = np.where(np.isfinite(qnt)==False)[0] - if print_: - print('ind where not finite') - print(ind.size) - return ind -def sqrtsum(ds=[],prnt=False): - ''' - handy function to sum up the squares and return the square-root - ''' + + # plt.close() + if zmode == False: + + rmins=np.linspace(rmin1,rmax1,nrbins1) + bval = [] + rcen = [] + nfull = [] + + + for inum,rmin in enumerate(rmins): + + if inum < len(rmins)-1: + rmax = rmins[inum+1] + indx=np.where((_r>rmin)&(_r 0.)[0] + nfull.append(indfull) - if prnt: - print(len(ds)) + + + # print(type(nfull)) + # dtools.picklewrite(nfull,'rubbish',desktop) + # nfull = np.array(nfull) + + # dtools.picklewrite(nfull,'nfull',desktop) + bval = np.array(bval) + rcen = np.array(rcen) + + wid= (rmax1-rmin1)/float(nrbins1) + divfac = (2.*np.pi*rcen*wid) - mysum = 0 - for i in range(len(ds)): + if plotit: + plt.plot(rcen,bval/divfac,'-',label=suffix) + plt.legend() + plt.yscale('log') + + + prof_ = {} + prof_['rcen'] = rcen + prof_['ndens'] = bval/divfac + + if svit ==True: + # print('saving plot..') + dtools.picklewrite(prof_,'profile_'+svnam,tempdir,prnt=prntsv) + + + return bval,rcen + + if zmode == True: + + + nzbins1 = int((zmax1 - zmin1)/hresz) + + # print('checking...') + # print(nzbins1) + zmins=np.linspace(zmin1,zmax1,nzbins1) + rmins=np.linspace(rmin1,rmax1,nrbins1) - tmp = ds[i]**2. - mysum+=tmp + + storeval = {} + storenval = {} + storeuncval = {} + for inum,rmin in enumerate(rmins): + + if inum < len(rmins)-1: + rmax = rmins[inum+1] + rcenval = (rmin+rmax)*0.5 + + + + storeval[rcenval] = {} + storenval[rcenval] = {} + for inumz,zmin in enumerate(zmins): + + if inumz < len(zmins)-1: + zmax = zmins[inumz+1] + indx = np.where((_r>rmin)&(_rzmin)&(_z 0 : + + + storeval[rcenval][zcenval] = bval + # storeuncval[rcenval][zcenval] = bval_unc + storenval[rcenval][zcenval] = nval + else: + storeval[rcenval][zcenval] = 0. + # storeuncval[rcenval][zcenval] = bval_unc + storenval[rcenval][zcenval] = 0. -def add_array_nan(im1,im2): + + storeval1 = storeval.copy() + storenval1 = storenval.copy() + dictnames = storeval.keys() + for ky in dictnames: + # print(ky) + tst = list(storeval1[ky].values()) + # print(tst) + # print(np.sum(tst)) + if np.sum(tst) == 0.: + del storeval1[ky] + del storenval1[ky] - import numpy + + + if svit ==True: + # print('saving plot..') + # dtools.picklewrite(prof_,'profile_z_'+svnam,desktop) + # dtools.picklewrite(storeval,'testprofz',tempdir) + + + dtools.picklewrite(storeval1,'profilez_'+svnam,tempdir,prnt=prntsv) + dtools.picklewrite(storenval1,'n_profilez_'+svnam,tempdir,prnt=prntsv) + dtools.picklewrite(storeuncval,'unc_profilez_'+svnam,tempdir,prnt=prntsv) - # a = im1.copy() - # b = im2.copy() - na = numpy.isnan(im1) - nb = numpy.isnan(im2) - im1[na] = 0 - im2[nb] = 0 - im1 += im2 - na &= nb - im1[na] = numpy.nan + return + if zphimode == True: + -class stopwatch(object): - # import time - def __init__(self): - self.purpose = 'time' - - def begin(self): - self.t1=time.time() + nzbins1 = int((zmax1 - zmin1)/hresz) + # print('checking...') + # print(nzbins1) - def end(self): - tm = (time.time()-self.t1) - - print('') - print('---------------------------------------------') + phimins=np.linspace(phimin1,phimax1,nphibins1) + zmins=np.linspace(zmin1,zmax1,nzbins1) + rmins=np.linspace(rmin1,rmax1,nrbins1) - print ('time (seconds, minutes, hours) =', str(np.round(tm,2))+','+str(np.round(tm/60.,2))+','+str(np.round(tm/3600.,2))) - return tm + + storeval = {} + storenval = {} + storeuncval = {} + for inum,rmin in enumerate(rmins): + + if inum < len(rmins)-1: + rmax = rmins[inum+1] + rcenval = (rmin+rmax)*0.5 + + + + storeval[rcenval] = {} + storenval[rcenval] = {} + for inumz,zmin in enumerate(zmins): + if inumz < len(zmins)-1: + zmax = zmins[inumz+1] + indx = np.where((_r>rmin)&(_rzmin)&(_z 0 : + + storeval[rcenval][zcenval] = bval + # storeuncval[rcenval][zcenval] = bval_unc + storenval[rcenval][zcenval] = nval + + + + if svit ==True: + # print('saving plot..') + # dtools.picklewrite(prof_,'profile_z_'+svnam,desktop) + # dtools.picklewrite(storeval,'testprofz',tempdir) -# kinematics -def get_lsr(typ='schonrich',show=False): - ''' - Comment: using 8.275 kpc following ESO-grav 2021 - # was using 8.2 kpc following ESO-grav 2018 - - typ =='schonrich': - from schonrich 2011 - - + dtools.picklewrite(storeval,'profilez_'+svnam,tempdir,prnt=prntsv) + dtools.picklewrite(storenval,'n_profilez_'+svnam,tempdir,prnt=prntsv) + dtools.picklewrite(storeuncval,'unc_profilez_'+svnam,tempdir,prnt=prntsv) - typ == 'gravity': - # values used in Drimmel 2022 (based on Gravity) + return +def getdthist(hx,hxdata,mincounts=0): - typ == 'galaxia': - for use with galaxia kinematics - ''' + reads in histogram (h1) - # print(typ) - - LSR = {} - if typ =='schonrich': - LSR = {'xsun':-8.275, - 'zsun':0.027, - 'usun':11.1, - 'wsun':7.25, - 'omega_sun':30.24} - elif typ == 'gravity': - # values used in Drimmel 2022 (based on Gravity) - LSR = {'xsun':-8.277, - 'zsun':0., - 'usun':9.3, - # 'omega_sun':6.39*4.74} - 'omega_sun':6.411*4.74} - - LSR['wsun'] = 0.219*4.74*LSR['xsun']*-1 - - - elif typ == 'galaxia': - LSR = {'xsun':-8., - 'zsun':0.0, - 'usun':11.1, - 'wsun':7.25, - 'omega_sun':239.08/8.} - - LSR['vsun'] = -LSR['omega_sun']*LSR['xsun'] - LSR['Rsun'] = -LSR['xsun'] - - if show: - - print('') - print(typ+' LSR: ') - for k, v in LSR.iteritems(): - print ("{:<15} :{:<15}".format(k,v)) - - return LSR + ''' + xsun = dtools.get_lsr()['xsun'] + zsun = dtools.get_lsr()['zsun'] -def getkin(d,rkey,rad_vel_key='vr',typ='schonrich'): + if len(hx.locations) == 2: + print('2D map') + + dx = (hx.locations[0][1:] - hx.locations[0][0:-1])[0] + dy = (hx.locations[1][1:] - hx.locations[1][0:-1])[0] + + + xv,yv = np.meshgrid(hx.locations[0],hx.locations[1],indexing='ij') + + + dthist={} + dthist['xv'] = xv.flatten() + dthist['yv'] = yv.flatten() + dthist['zv'] = np.zeros(dthist['xv'].size) + dthist['dx'] = dx + dthist['dy'] = dy + dthist['dens'] = hxdata #hx.data + dthist['ndens'] = hxdata*dx*dy # (hx.data)*dx*dy + dthist['rgcd'] = np.sqrt(dthist['xv']**2. + dthist['yv']**2.) - ''' - input: - d = dictionary of data - as a minimum requiring the columns [d['ra'],d['dec'],d[rkey],d['mura'],d['mudec'],d[rad_vel_key]] - where mura = pmra*1e-03 - rkey = the key in the dictionary representing heliocentric distance in kpc - rad_vel_key = the key in the dictionary representing line-of-sight velocity in km/s - typ = which LSR constants to use ['schonrich','gravity','galaxia'] - this calls get_lsr(typ) + l,b,r = autil.xyz2lbr(dthist['xv'] - xsun,dthist['yv'],dthist['zv'] - zsun) + dthist['l'] = l%360. + dthist['b'] = b + dthist['dist'] = r - Output: - R (galactocentric) = 'rgc' - r (galactocentric) = 'rgcd' - l = glon - b = glat - ''' + if len(hx.locations) == 3: + print('3D map') + + dx = (hx.locations[0][1:] - hx.locations[0][0:-1])[0] + dy = (hx.locations[1][1:] - hx.locations[1][0:-1])[0] + dz = (hx.locations[2][1:] - hx.locations[2][0:-1])[0] - print('') - print('rkey = '+rkey) - lsr = get_lsr(typ=typ) - print(lsr) - omega_sun = lsr['omega_sun'];usun=lsr['usun'];wsun=lsr['wsun'];xsun=lsr['xsun'];zsun=lsr['zsun'] + xv,yv,zv = np.meshgrid(hx.locations[0],hx.locations[1],hx.locations[2],indexing='ij') - vsun= -(omega_sun*xsun) + dthist={} + dthist['xv'] = xv.flatten() + dthist['yv'] = yv.flatten() + dthist['zv'] = zv.flatten() + dthist['dx'] = dx + dthist['dy'] = dy + dthist['dz'] = dz + dthist['dens'] = hxdata #hx.data + dthist['ndens'] = hxdata*dx*dy*dz # (hx.data)*dx*dy + dthist['rgc'] = np.sqrt(dthist['xv']**2. + dthist['yv']**2.) + dthist['rgcd'] = np.sqrt(dthist['xv']**2. + dthist['yv']**2.+ dthist['zv']**2.) + + l,b,r = autil.xyz2lbr(dthist['xv'] - xsun,dthist['yv'],dthist['zv'] - zsun) + dthist['l'] = l%360. + dthist['b'] = b + dthist['dist'] = r - # print('') - # print('Using '+dtype+' kinematics') + if mincounts > 0: - - # print('') - # print('Using '+rad_vel_key) + print('.........') + print('applying minimum count = '+str(mincounts)) + print('.........') - - # print(xsun) + indmin = np.where(dthist['dens'] < mincounts)[0] + dthist['dens'][indmin] = 0 + dthist['ndens'][indmin] = 0 + + return dthist - if 'l' in d.keys(): - d['glon'] = d['l'].copy() - d['glat'] = d['b'].copy() - if 'glon' not in d.keys() and 'l' not in d.keys(): - d['glon'],d['glat']=autil.equ2gal(d['ra'],d['dec']) + +def cylingrid(h1,add_dust_to_grid_2d=False,add_dust_to_grid_3d=False): + ''' - - if 'ra' not in d.keys(): - d['ra'],d['dec'] = autil.gal2equ(d['glon'],d['glat']) + h1 + ''' + xsun = dtools.get_lsr()['xsun'] + + dthist_use = getdthist(h1,h1.data,mincounts=0) + dthist_use['rgcv'] = dthist_use['xv'].copy() + dthist_use['phiv'] = dthist_use['yv'].copy() + + + dthist_use['drgc'] = dthist_use['dx'].copy() + dthist_use['dphi'] = dthist_use['dy'].copy() - d['glongc'],d['pzgc'],d['rgc'],d['vlgc'],d['vzgc'],d['vrgc']=autil.helio2gc(d['ra'],d['dec'],d[rkey],d['mura'],d['mudec'],d[rad_vel_key],gal=False,vsun=vsun,usun=usun,xsun=xsun,zsun=zsun,wsun=wsun) - d['px1'],d['py1'],d['pz1']=autil.lbr2xyz(d['glon'],d['glat'],d[rkey]) + + rmkeys = ['dx','dy','l', 'b', 'dist'] + for ky in rmkeys: + del dthist_use[ky] - l,b,d['mul'],d['mub'] = autil.equ2gal_pm(d['ra'],d['dec'],d['mura'],d['mudec']) - d['vl']=d['mul']*4.74e3*d[rkey] - d['vb']=d['mub']*4.74e3*d[rkey] + dthist_use['xv'] =dthist_use['rgcv'] *np.cos(np.radians(dthist_use['phiv'])) + dthist_use['yv'] =dthist_use['rgcv'] *np.sin(np.radians(dthist_use['phiv'])) + dthist_use['rgcd'] = dtools.sqrtsum(ds=[dthist_use['xv'],dthist_use['yv'],dthist_use['zv']]) - d['vx1'],d['vy1'],d['vz1'] = autil.vlbr2xyz(d['glon'],d['glat'],d[rkey],d['vl'],d['vb'],d[rad_vel_key]) + dthist_use['l'],dthist_use['b'],dthist_use['dist'] = autil.xyz2lbr(dthist_use['xv']-xsun,dthist_use['yv'],dthist_use['zv']) - d['glongc'],d['glatgc'],d['rgcd'],vlgc,vbgc,vrgc=autil.helio2gc(d['ra'],d['dec'],d[rkey],d['mura'],d['mudec'],d[rad_vel_key],gal=False,sph=True,vsun=vsun,usun=usun,xsun=xsun,zsun=zsun,wsun=wsun) - #d['glongc'] = phi_mod(d['glongc']) - d['pxgc'],d['pygc'],d['pzgc'] = autil.lbr2xyz(d['glongc'],d['glatgc'],d['rgcd']) - d['glongc'] = d['glongc']%360. + + dthist_use['l'] = dthist_use['l']%360. + + if add_dust_to_grid_2d: + print('2d dust') + import dustmaps.sfd + sfd = dustmaps.sfd.SFDQuery() + coo = astropy.coordinates.SkyCoord(l=dthist_use['l'] * astropy.units.degree, b=dthist_use['b'] * astropy.units.degree, frame='galactic') + ebval_ = sfd.query(coo) + dthist_use['a_g_val'] = ebval_* ebv2ag_ + + + if add_dust_to_grid_3d: + print('3d dust') + ebval_ = mydust.getebv(dthist_use['l'].astype(float),dthist_use['b'].astype(float),dthist_use['dist'].astype(float),typ='3d') + dthist_use['a_g_val'] = ebval_* ebv2ag_ + + - d['vxgc'],d['vygc'],vzgc = autil.vlbr2xyz(d['glongc'],d['glatgc'],d['rgcd'],d['vlgc'],vbgc,d['vrgc']) + + return dthist_use + +def densproj_(h1data,typ='xy',normtyp='lognorm',cnt=False,cmap=None,cmapname='viridis',cbar=False, + lblsuff='',xlbl=True,ylbl=True,cntcolor='black',return_avgcounts=False,plot_avgcounts=False,plot_pixcount=False, + plot_counts=False,binargs=[],Rwarps=5,vmin=0,vmax=1,delrwarps = 2.,parampack={}): -def vgsr(l,b,vhelio,dtype='data'): ''' - see Xu 2015, Schonrich 2012 + binargs=[hbinsx,hbinsy,hbinsz,xmin,xmax,ymin,ymax,zmin,zmax] ''' - b_rad = np.radians(b) - l_rad = np.radians(l) - #vgsr = vhelio + (13.84*np.cos(b_rad)*np.cos(l_rad)) + (250.*np.cos(b_rad)*np.sin(l_rad)) + (6.*np.sin(b)) - vgsr = vhelio + (11.1*np.cos(b_rad)*np.cos(l_rad)) + (8.34*30.24*np.cos(b_rad)*np.sin(l_rad)) + (7.25*np.sin(b)) - - if dtype =='galaxia': - vgsr = vhelio + (11.1*np.cos(b_rad)*np.cos(l_rad)) + (239.08*np.cos(b_rad)*np.sin(l_rad)) + (7.25*np.sin(b)) - - return vgsr -def calc_energy(rgc,pzgc,vlgc,vrgc,rscale,vscale,method=''): - if method == 'galpy': - print('----------------') - print('Using galpy.potential') - print('') + - import galpy - from galpy.potential import MWPotential2014 - energy = galpy.potential.evaluatePotentials(MWPotential2014,rgc/rscale,pzgc/rscale)+0.5*(np.square(vlgc/vscale)+np.square(vrgc/vscale)) - else: - print('----------------') - print('Using logarithmic approximation') - print('') - - energy = np.log(rgc/rscale)+0.5*(np.square(vlgc/vscale)+np.square(vrgc/vscale)) + hbinsx,hbinsy,hbinsz,xmin,xmax,ymin,ymax,zmin,zmax = binargs[0],binargs[1],binargs[2],binargs[3],binargs[4],binargs[5],binargs[6],binargs[7],binargs[8] - return energy + + if cmap is not None: + cmap = cc.cm[cmap] + else: + cmap = cmapname + + nsize = 100 + ddum = {} + ddum['pxgc'] = np.linspace(xmin,xmax,nsize) + ddum['pygc'] = np.linspace(ymin,ymax,nsize) + ddum['pzgc'] = np.linspace(zmin,zmax,nsize) -def n_from_res(tscale,tf,ti,res): - - ''' + if typ == 'xy': + + bin_incr = hbinsz - NAME: n_from_res + i=0 + vals= [] + meanvals= [] + npixvals = [] + while i < h1data.size: + vals.append(h1data[i:i+bin_incr].sum()) - PURPOSE: calculate number of orbit integrations to achieve desired resolution - + - INPUT: - - tf = final time (in Gyr) - ti = initial time (in Gyr) - res = resolution desired (in Myr) - + '----' + tmparray = h1data[i:i+bin_incr] + indfull = np.where( tmparray > 0 )[0] + meanvals.append(np.median(h1data[i:i+bin_incr][indfull])) + + npixvals.append(indfull.size) + '----' + i+=bin_incr + + vals = np.array(vals) + meanvals = np.array(meanvals) + npixvals = np.array(npixvals) + + h2 = sutil.hist_nd([ddum['pxgc'],ddum['pygc']],bins=[hbinsx,hbinsy],normed=False,range=[[xmin,xmax], [ymin,ymax]]) + + dx = h2.locations[0][1] - h2.locations[0][0] + dy = h2.locations[1][1] - h2.locations[1][0] + + if plot_pixcount : + + h2.data = npixvals.copy() + if normtyp == 'lognorm': + h2.imshow(npixvals,smooth=False,norm=LogNorm(),cmapname=cmap,vmin=1e+2,vmax=1e+05) + elif normtyp == '': - OUTPUT: N - - REMARKS: + h2.imshow(npixvals,smooth=False,cmapname=cmap) - - HISTORY: - - 20 November 2020 (RUG) - - ''' + cbarlabel = 'N pixels counted' + if plot_counts : + h2.data = vals.copy() - ti_bv = ti/tscale - tf_bv = tf/tscale - - res_p = res/(tscale*1000.) + if normtyp == 'lognorm': + # h2.imshow(vals,smooth=False,norm=LogNorm(vmin=10,vmax=1e+03),cmapname=cmap)#,vmin=1e+2,vmax=1e+05) + h2.imshow(vals,smooth=False,norm=LogNorm(),cmapname=cmap)#,vmin=1e+2,vmax=1e+05) - n = (tf_bv-ti_bv)/res_p - + elif normtyp == '': + h2.imshow(vals,smooth=False,cmapname=cmap,vmin=10,vmax=1000)#,vmin=1e+2,vmax=1e+05) + + cbarlabel = 'N ' + + print(cbarlabel) - return int(n) -class orbit_(object): + if plot_avgcounts : + h2.data = meanvals.copy() + # dtools.picklewrite(h2.data,'tmprub',desktop) - def __init__(self,pxgc,pygc,pzgc,vxgc,vygc,vzgc,ti=0.,tf=1,res=20,rscale=8.3,savdir=''): - + if normtyp == 'lognorm': + h2.imshow(meanvals,smooth=False,norm=LogNorm(vmin=10,vmax=1e+03),cmapname=cmap)#,vmin=1e+2,vmax=1e+05) + + if normtyp == '': + h2.imshow(meanvals,smooth=False,cmapname=cmap,vmin=0,vmax=1)#,vmin=1e+2,vmax=1e+05) + if normtyp == 'lims': + h2.imshow(meanvals,smooth=False,cmapname=cmap,vmin=vmin,vmax=vmax)#,vmin=1e+2,vmax=1e+05) + + cbarlabel = '<'+lblsuff+' > ' - ''' + if cbar: + plt.colorbar(label=cbarlabel) + + # h2_norm_data = (h2.data)/((h2.data.sum())*dx*dy) + # h2.data = h2_norm_data.copy() + + if xlbl: + plt.xlabel('X$_{GC}$ [kpc]') + if ylbl: + plt.ylabel('Y$_{GC}$ [kpc]') - NAME: orbit_ - - PURPOSE: orbit integration + + if cnt: + + # clevels = [0.864,0.39] + clevels = dtools.get_clevels(dims=2) - INPUT: - - pxgc = Galactocentric X - pygc = Galactocentric Y - pzgc = Galactocentric Z - vxgc = Galactocentric VX - vygc = Galactocentric VY - vzgc = Galactocentric VZ - - ti = initial time (in Gyr) - tf = final time (in Gyr) - res = resolution desired (in Myr) + continf = dtools.clevel(h2,levels=clevels,colors=cntcolor,coords=True) + + return vals,h2,continf + else: + return vals,h2 + - OUTPUT: N - - REMARKS: - - - HISTORY: - - 20 November 2020 (RUG) - - ''' + elif typ == 'xz': + # raise Exception print('correct for pixels with no data...') - print('') + + vals = [] + for i in range(hbinsx): + for j in range(hbinsz): + vals.append((h1data.reshape(hbinsx,hbinsy,hbinsz)[i][:,j]).sum()) + vals = np.array(vals) - val = locals() - self.args={} - for ky in val.keys(): - if ky !='self': - self.args[ky] = val[ky] + + + + h2 = sutil.hist_nd([ddum['pxgc'],ddum['pzgc']],bins=[hbinsx,hbinsz],normed=False,range=[[xmin,xmax], [zmin,zmax]]) + + dx = h2.locations[0][1] - h2.locations[0][0] + dz = h2.locations[1][1] - h2.locations[1][0] + + h2.data = vals.copy() + + h2.imshow(vals,smooth=False,norm=LogNorm(),cmapname=cmap)#,vmin=1e+2,vmax=1e+05) + # h2_norm_data = (h2.data)/((h2.data.sum())*dx*dz) + # h2.data = h2_norm_data.copy() + if xlbl: + plt.xlabel('X$_{GC}$ [kpc]') + if ylbl: + plt.ylabel('Z$_{GC}$ [kpc]') + + if cnt: + # clevels = [0.864,0.39] + clevels = dtools.get_clevels(dims=2) + continf =dtools.clevel(h2,levels=clevels,colors=cntcolor,coords=True) - if self.args['savdir'] == '': - raise RuntimeError('No savdirectory provided!!') - print('saving orbits to '+self.args['savdir']) + return vals,h2,continf + else: + return vals,h2 + + + elif typ == 'yz': + # raise Exception print('correct for pixels with no data...') - siminfo={} - siminfo['rscale']=rscale - siminfo['vscale']= get_lsr()['omega_sun']*siminfo['rscale'] - self.tscale = galpy.util.bovy_conversion.time_in_Gyr(siminfo['vscale'],siminfo['rscale']) - self.ti_bv = ti/self.tscale - self.tf_bv = tf/self.tscale + mymap = h1data.reshape(hbinsx,hbinsy,hbinsz).copy() - num = n_from_res(self.tscale,tf,ti,res) - print(num) - print(tf) - print(ti) - siminfo['ts']= np.linspace(self.ti_bv,self.tf_bv,num) - siminfo['npoints'] = num + valsy = [] + for j in range(hbinsy): + for i in range(hbinsx): + + if i == 0: + vals1 = mymap[i][j].copy() + else: + vals1 += mymap[i][j].copy() + valsy.append(vals1) + + valsy = np.array(valsy) + + vals = valsy.flatten() + + - self.siminfo = siminfo.copy() - self.prep_() + h2 = sutil.hist_nd([ddum['pygc'],ddum['pzgc']],bins=[hbinsy,hbinsz],normed=False,range=[[ymin,ymax], [zmin,zmax]]) - def prep_(self): - ''' + dy = h2.locations[0][1] - h2.locations[0][0] + dz = h2.locations[1][1] - h2.locations[1][0] + h2.data = vals.copy() - ''' + h2.imshow(vals,smooth=False,norm=LogNorm(),cmapname=cmap)#,vmin=1e+2,vmax=1e+05) + # h2_norm_data = (h2.data)/((h2.data.sum())*dx*dz) + # h2.data = h2_norm_data.copy() - pxgc,pygc,pzgc,vxgc,vygc,vzgc = self.args['pxgc'],self.args['pygc'],self.args['pzgc'],self.args['vxgc'],self.args['vygc'],self.args['vzgc'] - siminfo = self.siminfo.copy() + if xlbl: + plt.xlabel('Y$_{GC}$ [kpc]') + if ylbl: + plt.ylabel('Z$_{GC}$ [kpc]') + + if cnt: + # clevels = [0.864,0.39] + clevels = dtools.get_clevels(dims=2) + continf =dtools.clevel(h2,levels=clevels,colors=cntcolor,coords=True) - R = np.sqrt(pxgc**2. + pygc**2.) - vlgc,vzgc,vrgc = autil.vxyz2lzr(pxgc,pygc,pzgc,vxgc,vygc,vzgc) - phi = (np.arctan2(pygc,pxgc)) # in radians + return vals,h2,continf + else: + return vals,h2 + + + elif typ == 'phiz': + # raise Exception print('correct for pixels with no data...') - # rescale - self.R = R/siminfo['rscale'] - self.pzgc = pzgc/siminfo['rscale'] - - self.vlgc = vlgc/siminfo['vscale'] - self.vrgc = vrgc/siminfo['vscale'] - self.vzgc = vzgc/siminfo['vscale'] - self.phi = phi.copy() + + ddum['phigc'] = np.linspace(ymin,ymax,nsize) - # save temporary files - val_dt = {} - val_dt['rgc'] = self.R - val_dt['vrgc'] = self.vrgc - val_dt['vlgc'] = self.vlgc - val_dt['vzgc'] = self.vzgc - val_dt['pzgc'] = self.pzgc - val_dt['phi'] = self.phi - ebfwrite(val_dt,'tmp_data_rescaled',self.args['savdir']) - ebfwrite(self.siminfo,'tmp_siminfo',self.args['savdir']) + # + Rbin_delta = (xmax - xmin)/hbinsx + # print(type(Rbin_delta)) + # print(type(Rwarps)) + Rwindx1 = int(Rwarps/Rbin_delta) + Rwindx2 = int((Rwarps+delrwarps)/Rbin_delta) + # print(Rwindx1,Rwindx2) + # print('----') + mymap = h1data.reshape(hbinsx,hbinsy,hbinsz).copy() + valsy = [] + + for j in range(hbinsy): + vals1 = list(np.zeros(hbinsz)) + for i in range(hbinsx): + + if i >= Rwindx1 and i <= Rwindx2: + vals1 += mymap[i][j].copy() + valsy.append(vals1) + + valsy = np.array(valsy) + + vals = valsy.flatten() + + h2 = sutil.hist_nd([ddum['phigc'],ddum['pzgc']],bins=[hbinsy,hbinsz],normed=False,range=[[ymin,ymax], [zmin,zmax]]) - return + dy = h2.locations[0][1] - h2.locations[0][0] + dz = h2.locations[1][1] - h2.locations[1][0] - def intorb_(self): - - ''' - - NAME: orbit_ - - PURPOSE: integrate orbits using galpy + if plot_counts : + h2.data = vals.copy() + + h2.imshow(vals,smooth=False,norm=LogNorm(vmin=vmin,vmax=vmax),cmapname=cmap) + # h2.imshow(vals,smooth=False,cmapname=cmap)#,vmin=1e+2,vmax=1e+05) + # h2_norm_data = (h2.data)/((h2.data.sum())*dx*dz) + # h2.data = h2_norm_data.copy() + + plt.text(0.01,0.9,str(Rwarps)+'= parampack['zcell_min'])&(zcell <= parampack['zcell_max']) + if parampack['usemincount']: + indfull = np.where(( tmparray > parampack['mincount'])&conds)[0] + else: + indfull = np.where(conds)[0] + + + + meanvals.append(np.mean(h1data[i:i+bin_incr][indfull])) + # meanvals.append(np.mean(((h1data[i:i+bin_incr])*(zcell))[indfull])) - data['rgcd'] = np.sqrt(data['pxgc']**2. + data['pygc']**2. + data['pzgc']**2.) + npixvals.append(indfull.size) + '----' + i+=bin_incr + vals = np.array(vals) + + meanvals = np.array(meanvals) + npixvals = np.array(npixvals) + tmpvals = np.array(tmpvals) - print('scaling velocity and distance') - for key in data.keys(): - if key.startswith('v'): - data[key] = data[key]*self.siminfo['vscale'] - elif key.startswith('r'): - data[key] = data[key]*self.siminfo['rscale'] - elif key.startswith('p'): - data[key] = data[key]*self.siminfo['rscale'] + h2 = sutil.hist_nd([ddum['rgc'],ddum['phigc']],bins=[hbinsx,hbinsy],normed=False,range=[[xmin,xmax], [ymin,ymax]]) + dx = h2.locations[0][1] - h2.locations[0][0] + dy = h2.locations[1][1] - h2.locations[1][0] - return data -def intorb_one_(i): + + if plot_pixcount : + + h2.data = npixvals.copy() + if normtyp == 'lognorm': + h2.imshow(npixvals,smooth=False,norm=LogNorm(),cmapname=cmap,vmin=1e+2,vmax=1e+05) + elif normtyp == '': + h2.imshow(npixvals,smooth=False,cmapname=cmap) - ''' - - NAME: orbit_ + cbarlabel = 'N pixels counted' - PURPOSE: integrate orbits using galpy per star + if return_avgcounts : + + # print('average counts.') + h2.data = meanvals.copy() + # dtools.picklewrite(h2.data,'tmprub',desktop) + + im1 = 0 + if plot_avgcounts : + # if normtyp == 'lognorm': + # h2.imshow(meanvals,smooth=False,norm=LogNorm(vmin=10,vmax=1e+03),cmapname=cmap)#,vmin=1e+2,vmax=1e+05) - - INPUT: - - R = cylindrical Galactocentric radius at which to compute (default=1) - vrgc = - vlgc = - pzgc = - vzgc - phi = - inum = index + # if normtyp == '': + im1 = h2.imshow(meanvals,smooth=False,cmapname=cmap,vmin=vmin,vmax=vmax)#,vmin=1e+2,vmax=1e+05) + # if normtyp == 'lims': + # h2.imshow(meanvals,smooth=False,cmapname=cmap,vmin=vmin,vmax=vmax)#,vmin=1e+2,vmax=1e+05) + cbarlabel = '<'+lblsuff+' > ' - OUTPUT: density (rgcd) - - REMARKS: - - HISTORY: - - 25 November 2020 (RUG) - - ''' - from galpy.orbit import Orbit - from galpy.potential import MWPotential2014 + return im1,h2 - hloc = '/net/huygens/data/users/khanna/Documents/pdoc_work/science/halo' + if plot_counts : + h2.data = vals.copy() - siminfo = tabpy.read(hloc+'/tmp_orbit/tmp_siminfo.ebf') - val_dt = tabpy.read(hloc+'/tmp_orbit/tmp_data_rescaled.ebf') + if normtyp == 'lognorm': + # h2.imshow(vals,smooth=False,norm=LogNorm(vmin=10,vmax=1e+03),cmapname=cmap)#,vmin=1e+2,vmax=1e+05) + h2.imshow(vals,smooth=False,norm=LogNorm(),cmapname=cmap)#,vmin=1e+2,vmax=1e+05) - - - ts = siminfo['ts'] + elif normtyp == '': + h2.imshow(vals,smooth=False,cmapname=cmap,vmin=10,vmax=1000)#,vmin=1e+2,vmax=1e+05) - - R = val_dt['rgc'] - vrgc = val_dt['vrgc'] - vlgc = val_dt['vlgc'] - vzgc = val_dt['vzgc'] - pzgc = val_dt['pzgc'] - phi = val_dt['phi'] + cbarlabel = 'N ' + + print(cbarlabel) + + return vals, h2 + else: + return vals, h2 - oa=[] - o= Orbit(vxvv=[R[i],vrgc[i],vlgc[i],pzgc[i],vzgc[i],phi[i]]) - oa.append(o) - - nsize1=len(oa) - for j in range(len(oa)): - oa[j].integrate(ts,MWPotential2014,method='odeint') - data={} - data['lgc']=np.array([o.phi(ts) for o in oa])*360.0/(2*np.pi) - - # velocities - data['vlgc']=-np.array([o.vphi(ts)*o.R(ts) for o in oa]) - data['vrgc']=np.array([o.vR(ts) for o in oa]) - data['vzgc']=np.array([o.vz(ts) for o in oa]) + + if cbar: + plt.colorbar(label=cbarlabel) + + # h2_norm_data = (h2.data)/((h2.data.sum())*dx*dy) + # h2.data = h2_norm_data.copy() + + if xlbl: + plt.xlabel('R$_{GC}$ [kpc]') + if ylbl: + plt.ylabel('r$\phi_{GC}$ [kpc]') + + + if cnt: + + # clevels = [0.864,0.39] + clevels = dtools.get_clevels(dims=2) - # positions - data['rgc']=np.array([o.R(ts) for o in oa]) - data['pxgc']=np.cos(np.radians(data['lgc']))*data['rgc'] - data['pygc']=np.sin(np.radians(data['lgc']))*data['rgc'] - data['pzgc']=np.array([o.z(ts) for o in oa]) - - data['rgcd'] = np.sqrt(data['pxgc']**2. + data['pygc']**2. + data['pzgc']**2.) - - - print('scaling velocity and distance') - for key in data.keys(): - if key.startswith('v'): - data[key] = data[key]*siminfo['vscale'] - elif key.startswith('r'): - data[key] = data[key]*siminfo['rscale'] - elif key.startswith('p'): - data[key] = data[key]*siminfo['rscale'] - - ebfwrite(data,'orbit_'+str(i),hloc+'/tmp_orbit/orbits') - return data - - -class reid_spiral(object): - - - def __init__(self,kcor=False): - print('') - - self.kcor = kcor - self.getarmlist() - - def getarmlist(self): - - # self.arms = np.array(['3-kpc','Norma','Sct-Cen','Sgt-Car','Local','Perseus','Outer']) - self.arms = np.array(['3-kpc','Norma','Sct-Cen','Sgr-Car','Local','Perseus','Outer']) - - def getparams(self,arm): - - if arm == '3-kpc': - params = {'name':arm,'beta_kink':15,'pitch_low':-4.2,'pitch_high':-4.2,'R_kink':3.52,'beta_min':15,'beta_max':18,'width':0.18} - if arm == 'Norma': - params = {'name':arm,'beta_kink':18,'pitch_low':-1.,'pitch_high':19.5,'R_kink':4.46,'beta_min':5,'beta_max':54,'width':0.14} - if arm == 'Sct-Cen': - params = {'name':arm,'beta_kink':23,'pitch_low':14.1,'pitch_high':12.1,'R_kink':4.91,'beta_min':0,'beta_max':104,'width':0.23} - if arm == 'Sgr-Car': #'Sgr-Car' - params = {'name':arm,'beta_kink':24,'pitch_low':17.1,'pitch_high':1,'R_kink':6.04,'beta_min':2,'beta_max':97,'width':0.27} - if arm == 'Local': - params = {'name':arm,'beta_kink':9,'pitch_low':11.4,'pitch_high':11.4,'R_kink':8.26,'beta_min':-8,'beta_max':34,'width':0.31} - if arm == 'Perseus': - params = {'name':arm,'beta_kink':40,'pitch_low':10.3,'pitch_high':8.7,'R_kink':8.87,'beta_min':-23,'beta_max':115,'width':0.35} - if arm == 'Outer': - params = {'name':arm,'beta_kink':18,'pitch_low':3,'pitch_high':9.4,'R_kink':12.24,'beta_min':-16,'beta_max':71,'width':0.65} - - - if self.kcor: - Rreid = 8.15 - diffval = params['R_kink'] - Rreid - xsun = get_lsr()['xsun'] - if diffval < 0: - params['R_kink'] = (-xsun) + diffval - else: - params['R_kink'] = (-xsun) + diffval - - - return params - - - def model_(self,params): - ''' - X and Y are flipped in Reid et al. 2019 - I flip it back to sensible orientation here - - ''' - - beta_kink = np.radians(params['beta_kink']) - pitch_low = np.radians(params['pitch_low']) - pitch_high = np.radians(params['pitch_high']) - R_kink = params['R_kink'] - beta_min = params['beta_min'] - beta_max = params['beta_max'] - width = params['width'] - - - # beta = np.linspace(beta_min-180,beta_max,100) - beta = np.linspace(beta_min,beta_max,1000) - - - beta_min = np.radians(beta_min) - beta_max = np.radians(beta_max) - beta = np.radians(beta) - - - pitch = np.zeros(beta.size) + np.nan - indl = np.where(betabeta_kink)[0]; pitch[indr] = pitch_high - - tmp1 = (beta - beta_kink)*(np.tan(pitch)) - tmp2 = np.exp(-tmp1) - - R = R_kink*tmp2 - x = -R*(np.cos(beta)) - y = R*(np.sin(beta)) - - ##3 testing - R2 = (R_kink+(width*0.5))*tmp2 - x2 = -R2*(np.cos(beta)) - y2 = R2*(np.sin(beta)) - - R1 = (R_kink-(width*0.5))*tmp2 - x1 = -R1*(np.cos(beta)) - y1 = R1*(np.sin(beta)) - - - - return x,y, x1,y1,x2,y2 - - def plot_(self,arm,color='',typ_='HC',xsun_=[],linewidth=0.8,markersize=3,linestyle = '-'): - - if len(xsun_) == 0: - xsun = get_lsr()['xsun'] - else: - xsun = xsun_[0] - - - params = self.getparams(arm) ; - x,y, x1,y1,x2,y2 = self.model_(params); - if color == '': - color = 'black' - - if typ_ == 'GC': - plt.plot(x,y,color,label=params['name'],linestyle='--',linewidth=linewidth) - plt.plot(x2,y2,color,linestyle='dotted',linewidth=linewidth) - plt.plot(x1,y1,color,linestyle='dotted',linewidth=linewidth) - plt.axvline(xsun,linewidth=1,linestyle='--') - plt.axhline(0,linewidth=1,linestyle='--') - # plt.xlabel('X$_{GC}$') - # plt.ylabel('Y$_{GC}$') - plt.plot(0.,0.,marker='+',markersize=10,color='black') - plt.plot(xsun,0.,marker='o',markersize=10,color='black') - if typ_ == 'HC': - print('..') - print('using linewidth = '+str(linewidth)) - print('..') - xhc = x - xsun - xhc1 = x1 - xsun - xhc2 = x2 - xsun - plt.plot(xhc,y,color,label=params['name'],linestyle='-',linewidth=linewidth) - plt.plot(xhc1,y,color,linestyle='dotted',linewidth=linewidth) - plt.plot(xhc2,y,color,linestyle='dotted',linewidth=linewidth) - plt.plot(0.,0.,marker='o',markersize=markersize,color='black') - plt.plot(-xsun,0.,marker='+',markersize=markersize,color='black') - # plt.xlabel('X$_{HC}$') - # plt.ylabel('Y$_{HC}$') - # plt.xlabel('X [kpc]') - # plt.ylabel('Y [kpc]') - - # plt.legend() - - if typ_ =='polar': - - xhc = x - xsun - xhc1 = x1 - xsun - xhc2 = x2 - xsun - - rgc = sqrtsum(ds=[x,y]) - phi1 = np.arctan2(y,-x) - phi2 = np.degrees(np.arctan(y/-x)) - phi3 = np.degrees(np.arctan2(y,x))%180. - - # phi3 = 180.-np.degrees(phi1) - - # phi1 = (np.arctan2(yhc,xgc)) - # plt.plot(phi1,rgc,color,linestyle='-',linewidth=linewidth) - plt.plot(phi1,rgc,'.',color=color,markersize=markersize) - - - if typ_ =='polargrid': - - linewidth=2 - - yhc = y - xgc = x - phi4 = np.degrees(np.arctan2(yhc,xgc))%360. - rgc = sqrtsum(ds=[x,y]) - - plt.plot(np.radians(phi4),rgc,color=color,markersize=markersize,linestyle=linestyle,linewidth=linewidth,label=arm) - - - - - return - - -def spiral_eloisa(): - - ''' - plot contours of OB star spirals from Poggio 2021 - ''' - - pdocdir = getdirec('pdocdir') - dloc = pdocdir+'/science_verification/DR3/data' - # #read overdensity contours - xvalues_overdens=np.load(dloc+'/Eloisa_contours/xvalues_dens.npy') - yvalues_overdens=np.load(dloc+'/Eloisa_contours/yvalues_dens.npy') - over_dens_grid=np.load(dloc+'/Eloisa_contours/over_dens_grid_threshold_0_003_dens.npy') - - phi1_dens = np.arctan2(yvalues_overdens,-xvalues_overdens) - Rvalues_dens = sqrtsum(ds=[xvalues_overdens,yvalues_overdens]) - - # # #------------------ overplot spiral arms in overdens ------------------ - iniz_overdens=0 #.1 - fin_overdens=1.5 #.1 - N_levels_overdens=2 - levels_overdens=np.linspace(iniz_overdens,fin_overdens,N_levels_overdens) - cset1 = plt.contourf(xvalues_overdens, yvalues_overdens,over_dens_grid.T, levels=levels_overdens,alpha=0.2,cmap='Greys') - # cset1 = plt.contourf(phi1_dens, Rvalues_dens,over_dens_grid.T, levels=levels_overdens,alpha=0.2,cmap='Greys') - - iniz_overdens=0. #.1 - fin_overdens=1.5 #.1 - N_levels_overdens=4#7 - levels_overdens=np.linspace(iniz_overdens,fin_overdens,N_levels_overdens) - cset1 = plt.contour(xvalues_overdens, yvalues_overdens,over_dens_grid.T, levels=levels_overdens,colors='black',linewidths=0.7) - # cset1 = plt.contour(phi1_dens, Rvalues_dens,over_dens_grid.T, levels=levels_overdens,colors='black',linewidths=0.7) - - - - -class spiral_drimmel(object): - ''' - - February 22, 2022 - - Usage: - spi = spiral_drimmel() - spi.plot_(arm='1',color='b',typ_='HC') - spi.plot_(arm='2',color='b',typ_='HC') - spi.plot_(arm='all',color='b',typ_='HC') - - ''' - - def __init__(self): - - - # self.loc = '/net/huygens/data/users/khanna/Documents/pdoc_work/science_verification/DR3/data/Drimmel_spiral' - self.loc = getdirec('pdocdir')+'/science_verification/DR3/data/Drimmel_spiral' - self.fname = 'Drimmel2armspiral.fits' - self.xsun = get_lsr()['xsun'] - self.getdata(xsun_=[self.xsun]) - - def getdata(self,xsun_=[]): - ''' - - ''' - - dt = tabpy.read(self.loc+'/'+self.fname) - self.data0 = dt.copy() - if len(xsun_) == 0: - xsun = self.xsun - else: - xsun = xsun_[0] - # rescaling to |xsun| - qnts = ['rgc1','xhc1','yhc1','rgc2','xhc2','yhc2'] - for qnt in qnts: - dt[qnt] = dt[qnt]*abs(xsun) - - - - #----- add phase-shifted arms as `3` and `4` - - - - dloc = self.loc+'/phase_shifted' - for inum in [3,4]: - dt['xhc'+str(inum)] = np.load(dloc+'/Arm'+str(inum)+'_X_hel.npy') - dt['yhc'+str(inum)] = np.load(dloc+'/Arm'+str(inum)+'_Y_hel.npy') - dt['rgc'+str(inum)] = np.sqrt( ((dt['xhc'+str(inum)] + xsun)**2.) + ((dt['yhc'+str(inum)])**2.) ) - - - #------------------ - - - - self.data = dt.copy() - - return - - def plot_(self,color='',typ_='HC',xsun_=[],linewidth=0.8,arm='all',markersize=3): - - if len(xsun_) == 0: - xsun = get_lsr()['xsun'] - else: - xsun = xsun_[0] - - self.getdata(xsun_=[xsun]) - dt = self.data.copy() - # print(list(dt.keys())) - - if color == '': - color = 'black' - - numbs = [arm] - if arm == 'all': - numbs = ['1','2','4'] - # numbs = ['2','3','4'] - elif arm == 'main': - numbs = ['1','2'] - # numbs = ['1','4'] - - - - self.dused = {} - self.dused['rgc'] = [] - self.dused['xgc'] = [] - self.dused['yhc'] = [] - self.dused['phi1'] = [] - self.dused['phi4'] = [] - - - for numb in numbs: - - linestyle = '-' - if float(numb) > 2: - linestyle = '--' - - xhc = dt['xhc'+numb] - yhc = dt['yhc'+numb] - rgc = dt['rgc'+numb] - - xgc = xhc + xsun - - if typ_ == 'HC': - - - # plt.plot(xhc,yhc,color,label=arm,linestyle=linestyle,linewidth=linewidth,markersize=2) - plt.plot(xhc,yhc,color,linestyle=linestyle,linewidth=linewidth,markersize=2) - plt.plot(0.,0.,marker='o',markersize=markersize,color='black') - plt.plot(-xsun,0.,marker='+',markersize=markersize,color='black') - - # plt.xlabel('X$_{HC}$') - # plt.ylabel('Y$_{HC}$') - - - - if typ_ == 'GC': - - # plt.plot(xgc,yhc,color,label=arm,linestyle=linestyle,linewidth=linewidth) - plt.plot(xgc,yhc,color,linestyle=linestyle,linewidth=linewidth) - plt.axvline(xsun,linewidth=1,linestyle='--') - plt.axhline(0,linewidth=1,linestyle='--') - # plt.xlabel('X$_{GC}$') - # plt.ylabel('Y$_{GC}$') - plt.plot(0.,0.,marker='+',markersize=10,color='black') - plt.plot(xsun,0.,marker='o',markersize=10,color='black') - self.dused['xgc'].append(xgc) - self.dused['yhc'].append(yhc) - - - if typ_ =='polar': - - - phi1 = np.arctan2(yhc,-xgc) - - phi2 = np.degrees(np.arctan(yhc/-xgc)) - phi3 = np.degrees(np.arctan2(yhc,xgc))%180. - phi4 = np.degrees(np.arctan2(yhc,xgc))%360. - - # phi3 = 180.-np.degrees(phi1) - - # phi1 = (np.arctan2(yhc,xgc)) - # plt.plot(np.degrees(phi1),rgc,color,linestyle='--',linewidth=linewidth) - # plt.plot(np.degrees(phi1),rgc,'.',color='blue') - plt.plot(phi1,rgc,color=color,markersize=markersize,linestyle=linestyle,linewidth=linewidth) - - self.dused['rgc'].append(rgc) - self.dused['xgc'].append(xgc) - self.dused['yhc'].append(yhc) - self.dused['phi1'].append(phi1) - self.dused['phi4'].append(phi4) - - - if typ_ =='polargrid': - - - phi1 = np.arctan2(yhc,-xgc) - - phi2 = np.degrees(np.arctan(yhc/-xgc)) - phi3 = np.degrees(np.arctan2(yhc,xgc))%180. - phi4 = np.degrees(np.arctan2(yhc,xgc))%360. - - # phi3 = 180.-np.degrees(phi1) - - - if numb == numbs[0]: - plt.plot(np.radians(phi4),rgc,color=color,markersize=markersize,linestyle=linestyle,linewidth=linewidth,label='NIR') - - else: - plt.plot(np.radians(phi4),rgc,color=color,markersize=markersize,linestyle=linestyle,linewidth=linewidth) - - - - - self.dused['rgc'].append(rgc) - self.dused['xgc'].append(xgc) - self.dused['yhc'].append(yhc) - self.dused['phi1'].append(phi1) - self.dused['phi4'].append(phi4) - - - # plt.plot(xgc,yhc,'.',color=color) - - # plt.legend() - return - - - -class spiral_cepheids(object): - ''' - - June 28, 2024 - - Usage: - spi = spiral_drimmel() - spi.plot_(arm='1',color='b',typ_='HC') - spi.plot_(arm='2',color='b',typ_='HC') - spi.plot_(arm='all',color='b',typ_='HC') - - ''' - - def __init__(self): - - - # where the data is - - self.pdocdir = getdirec('pdocdir') - self.cephloc = self.pdocdir+'/science/dr3/data/cepheids' - self.spiral_loc = self.cephloc+'/spiral_model' - - - self.fname = 'ArmAttributes_dyoungW1_bw025.pkl' - - self.spirals = pickleread(self.spiral_loc+'/'+self.fname) - - self.armlist = list(self.spirals['0']['arm_attributes'].keys()) - - self.xsun = get_lsr()['xsun'] - self.rsun = get_lsr()['Rsun'] - - - def plotit_(self,armplt='',typ_='GC',markersize=4,linewidth=2,linestyle2='--'): - - from time import sleep - from scipy.signal import find_peaks - import numpy as np - import astropy - import astropy.table as tb - import pandas as pd - import os - import matplotlib as mpl - import matplotlib.pyplot as plt - import imp - import dtools - import autil - import tabpy - params = {'font.size':12, - 'text.usetex':False, - 'ytick.labelsize': 'medium', - 'legend.fontsize': 'large', - 'axes.linewidth': 1.0, - 'figure.dpi': 150.0, - 'xtick.labelsize': 'medium', - 'font.family': 'sans-serif', - 'axes.labelsize': 'medium'} - mpl.rcParams.update(params) - - imp.reload(dtools) - - - - spirals = self.spirals - - # arms and plotting colors for the arms - colors = ['C3','C0','C1','C2'] - arms = np.array(['Scutum','Sag-Car','Orion','Perseus']) - - figtyp = 'png' - - # XY positions - rsun = self.rsun # Might want to put these in a configuration file - xsun = self.xsun # Might want to put these in a configuration file - lnrsun = np.log(rsun) - - - # best phi range: - phi_range = np.deg2rad(np.sort(spirals['1']['phi_range'].copy())) - maxphi_range = np.deg2rad([60,-120]) - - - # arms and plotting colors for the arms - colors = ['C3','C0','C1','C2'] - arms = np.array(self.armlist) - - arm_clr = {'Scutum':'C3','Sag-Car':'C0','Orion':'C1','Perseus':'C2'} - self.arm_clr = arm_clr - - dt = {} - - - for armi in np.arange(arms.size): - - arm = arms[armi] - pang = (spirals['1']['arm_attributes'][arm]['arm_pang_strength']+spirals['1']['arm_attributes'][arm]['arm_pang_prom'])/2. - lnr0 = (spirals['1']['arm_attributes'][arm]['arm_lgr0_strength']+spirals['1']['arm_attributes'][arm]['arm_lgr0_prom'])/2. - - - - # plot the arms - - - phi=(np.arange(51)/50.)*np.diff(phi_range)[0] + phi_range[0] - lgrarm = lnr0 - np.tan(np.deg2rad(pang))*phi - - - xgc = -np.exp(lgrarm)*np.cos(phi); xhc = xgc - xsun - ygc = np.exp(lgrarm)*np.sin(phi) ; yhc = ygc - - - # extrapolate the arms - phi=(np.arange(101)/100.)*np.diff(maxphi_range)[0] + maxphi_range[0] - lgrarm = lnr0 - np.tan(np.deg2rad(pang))*phi - - xgc_ex = -np.exp(lgrarm)*np.cos(phi); xhc_ex = xgc_ex - xsun - ygc_ex = np.exp(lgrarm)*np.sin(phi); yhc_ex = ygc_ex - lonarm = np.arctan((np.exp(lgrarm)*np.sin(phi))/(rsun - np.exp(lgrarm)*np.cos(phi))) - - dt[arm] = {} - dt[arm]['xgc'] = xgc - dt[arm]['xhc'] = xhc - dt[arm]['ygc'] = ygc - dt[arm]['yhc'] = yhc - - dt[arm]['xgc_ex'] = xgc_ex - dt[arm]['xhc_ex'] = xhc_ex - dt[arm]['ygc_ex'] = ygc_ex - dt[arm]['yhc_ex'] = yhc_ex - - - - self.dused = {} - self.dused['rgc'] = [] - self.dused['xgc'] = [] - self.dused['yhc'] = [] - self.dused['phi1'] = [] - self.dused['phi4'] = [] - - - - # for armi in dt.keys(): - for armi in armplt: - # print(armplt) - - xgc = dt[armi]['xgc'] - ygc = dt[armi]['ygc'] - xhc = dt[armi]['xhc'] - yhc = dt[armi]['yhc'] - - xgc_ex = dt[armi]['xgc_ex'] - ygc_ex = dt[armi]['ygc_ex'] - xhc_ex = dt[armi]['xhc_ex'] - yhc_ex = dt[armi]['yhc_ex'] - - - rgc = np.sqrt(xgc**2. + ygc**2.) - rgc_ex = np.sqrt(xgc_ex**2. + ygc_ex**2.) - - - - if typ_ == 'GC': - - - - plt.plot(xgc,ygc,'-',color=arm_clr[armi]) - plt.plot(xgc_ex,ygc_ex,linestyle=linestyle2,color=arm_clr[armi]) - - plt.axvline(xsun,linewidth=1,linestyle='--') - plt.axhline(0,linewidth=1,linestyle='--') - - - plt.plot(0.,0.,marker='+',markersize=10,color='black') - plt.plot(xsun,0.,marker='o',markersize=10,color='black') - - plt.xlabel('X$_{GC}$') - plt.ylabel('Y$_{GC}$') - - - - - # # labels - # plt.text(-2,-5,'Scutum',fontsize=14,fontweight='bold',color=colors[0]) - # plt.text(-2,-10,'Sgr-Car',fontsize=14,fontweight='bold',color=colors[1]) - # plt.text(-3,-13,'Local',fontsize=14,fontweight='bold',color=colors[2]) - # plt.text(-9,-14,'Perseus',fontsize=14,fontweight='bold',color=colors[3]) - - - if typ_ == 'HC': - - - - - - # plt.plot(xhc,yhc,color,label=arm,linestyle=linestyle,linewidth=linewidth,markersize=2) - # plt.plot(xhc,yhc,color,linestyle=linestyle,linewidth=linewidth,markersize=2) - - - plt.plot(xhc,yhc,'-',color=arm_clr[armi]) - plt.plot(xhc_ex,yhc_ex,linestyle=linestyle2,color=arm_clr[armi]) - - plt.plot(0.,0.,marker='o',markersize=markersize,color='black') - plt.plot(-xsun,0.,marker='+',markersize=markersize,color='black') - - - - plt.xlabel('X$_{HC}$') - plt.ylabel('Y$_{HC}$') - - - - - if typ_ =='polar': - - - phi1 = np.arctan2(yhc,-xgc) - phi1_ex = np.arctan2(ygc_ex,-xgc_ex) - - phi2 = np.degrees(np.arctan(yhc/-xgc)) - phi3 = np.degrees(np.arctan2(yhc,xgc))%180. - phi4 = np.degrees(np.arctan2(yhc,xgc))%360. - - plt.plot(phi1,rgc,'-',color=arm_clr[armi],markersize=markersize) - plt.plot(phi1_ex,rgc_ex,linestyle=linestyle2,color=arm_clr[armi],markersize=markersize) - - - self.dused['rgc'].append(rgc) - self.dused['xgc'].append(xgc) - self.dused['yhc'].append(yhc) - self.dused['phi1'].append(phi1) - self.dused['phi4'].append(phi4) - - - if typ_ =='polargrid': - - linewidth=2 - linestyle = '-' - phi4 = np.degrees(np.arctan2(yhc,xgc))%360. - phi4_ex = np.degrees(np.arctan2(ygc_ex,xgc_ex))%360. - - phi1 = np.arctan2(yhc,-xgc) - phi1_ex = np.arctan2(ygc_ex,-xgc_ex) - - - # plt.plot(np.radians(phi4),rgc,color=arm_clr[armi],markersize=markersize,linestyle=linestyle,linewidth=linewidth) - - # plt.plot(phi1,rgc,color=arm_clr[armi],markersize=markersize,linestyle=linestyle,linewidth=linewidth) - # plt.plot(phi1_ex,rgc_ex,color=arm_clr[armi],markersize=markersize,linestyle='--',linewidth=linewidth) - - plt.plot(np.radians(phi4),rgc,color=arm_clr[armi],markersize=markersize,linestyle=linestyle,linewidth=linewidth) - - plt.plot(np.radians(phi4_ex),rgc_ex,color=arm_clr[armi],markersize=markersize,linestyle=linestyle2,linewidth=linewidth) - # plt.plot(np.radians(phi4_ex),rgc_ex,color=arm_clr[armi],markersize=markersize,linestyle='--',linewidth=linewidth) - - - self.dused['rgc'].append(rgc) - self.dused['xgc'].append(xgc) - self.dused['yhc'].append(yhc) - self.dused['phi4'].append(phi4) - - - - - -def ovplot_mw(): - - ''' - under development.... - plot the Milky Way background using Leung's package - - - History : created on July 24, 2023 [INAF, Torino] - - ''' - - import pylab as plt - - from mw_plot import MWPlot, MWSkyMap - - from astropy import units as u - - - # setup a mw-plot instance of bird's eyes view of the disc - mw2 = MWPlot(radius=20 * u.kpc, center=(0, 0)*u.kpc, unit=u.kpc, coord='galactocentric', rot90=2, grayscale=True, annotation=False) - mw3 = MWSkyMap() - - # setup subplots with matplotlib - - fig = plt.figure(figsize=(5,5)) - - ax1 = fig.add_subplot(221) - - ax2 = fig.add_subplot(222) - - # transform the subplots with different style - - mw2.transform(ax1) - - mw3.transform(ax2) - - - fig.tight_layout() - - - return - - - - -class sampfromcov_gaia(object): - - ''' - NAME: - - PURPOSE: - - Constructs covariance matrix for Gaia data. - - Used to generate samples from multivariate Gaussian - - - INPUT: data as dictionary - - OUTPUT: - - HISTORY: - - - October 07, 2021: - October 30, 2024: INAF - - ''' - - def __init__(self,data1): - - - self.dtrim, self.drest = self.prep_from_samp(data1) - data = self.dtrim.copy() - - - # print('777') - - data['pmra'] = data['mura']*1e+03 - data['pmdec'] = data['mudec']*1e+03 - - self.data = Table(data) - self.dsize = data['pmra'].size - - # Create a copy of the default unit map - self.get_unit_map() - - # Store the source table - data = self.data - - self.allnames = ['ra', 'dec', 'parallax', 'pmra', 'pmdec','radial_velocity'] - - # Update the unit map with the table units - self._invalid_units = dict() - for c in data.colnames: - if data[c].unit is not None: - try: - self.units[c] = u.Unit(str(data[c].unit)) - except ValueError: - self._invalid_units[c] = data[c].unit - - - - self.has_rv = 'radial_velocity' in self.data.colnames - self._cache = dict() - - - - def prep_from_samp(self,data1): - - ''' - input: the entire dataset - - dtrim = dictionary containing only relevant keys - drest = dictionary containing remaining keys to be joined later on - - ''' - - - - restkys = [] - self.limnames = ['ra', 'dec', 'parallax', 'pmra', 'pmdec','radial_velocity','mura','mudec'] - for ky in data1.keys(): - if 'pseudocolour' not in ky and 'phot' not in ky and 'feh' not in ky: - if 'corr' in ky or 'error' in ky: - - self.limnames.append(ky) - - for ky in data1.keys(): - if ky not in self.limnames: - restkys.append(ky) - - restkys = np.array(restkys) - - dtrim = {} - for ky in self.limnames: - dtrim[ky] = data1[ky].copy() - - drest = {} - for ky in restkys: - drest[ky] = data1[ky].copy() - - - - dtrim['source_id'] = drest['source_id'].copy() - - - - - self.dtrim = dtrim.copy() - self.drest = drest.copy() - - - - return self.dtrim, self.drest - - - - - def get_unit_map(self): - import astropy.units as u - gaia_unit_map = { - 'ra': u.degree, - 'dec': u.degree, - 'parallax': u.milliarcsecond, - 'pmra': u.milliarcsecond / u.year, - 'pmdec': u.milliarcsecond / u.year, - 'radial_velocity': u.km / u.s, - 'ra_error': u.milliarcsecond, - 'dec_error': u.milliarcsecond, - 'parallax_error': u.milliarcsecond, - 'pmra_error': u.milliarcsecond / u.year, - 'pmdec_error': u.milliarcsecond / u.year, - 'radial_velocity_error': u.km / u.s, - 'astrometric_excess_noise': u.mas, - 'astrometric_weight_al': 1/u.mas**2, - 'astrometric_pseudo_colour': 1/u.micrometer, - 'astrometric_pseudo_colour_error': 1/u.micrometer, - 'astrometric_sigma5d_max': u.mas, - 'phot_g_mean_flux': u.photon/u.s, - 'phot_g_mean_flux_error': u.photon/u.s, - 'phot_g_mean_mag': u.mag, - 'phot_bp_mean_flux': u.photon/u.s, - 'phot_bp_mean_flux_error': u.photon/u.s, - 'phot_bp_mean_mag': u.mag, - 'phot_rp_mean_flux': u.photon/u.s, - 'phot_rp_mean_flux_error': u.photon/u.s, - 'phot_rp_mean_mag': u.mag, - 'bp_rp': u.mag, - 'bp_g': u.mag, - 'g_rp': u.mag, - 'rv_template_teff': u.K, - 'l': u.degree, - 'b': u.degree, - 'ecl_lon': u.degree, - 'ecl_lat': u.degree, - 'teff_val': u.K, - 'teff_percentile_lower': u.K, - 'teff_percentile_upper': u.K, - 'a_g_val': u.mag, - 'a_g_percentile_lower': u.mag, - 'a_g_percentile_upper': u.mag, - 'e_bp_min_rp_val': u.mag, - 'e_bp_min_rp_percentile_lower': u.mag, - 'e_bp_min_rp_percentile_upper': u.mag, - 'radius_val': u.Rsun, - 'radius_percentile_lower': u.Rsun, - 'radius_percentile_upper': u.Rsun, - 'lum_val': u.Lsun, - 'lum_percentile_lower': u.Lsun, - 'lum_percentile_upper': u.Lsun, - 'ref_epoch': u.year - } - - self.units = gaia_unit_map.copy() - self.gaia_unit_map = gaia_unit_map.copy() - - - def get_cov(self,units=None): - """ - The Gaia data tables contain correlation coefficients and standard - deviations for (ra, dec, parallax, pm_ra, pm_dec), but for most analyses - we need covariance matrices. This converts the data provided by Gaia - into covariance matrices. - - If a radial velocity exists, this also contains the radial velocity - variance. If radial velocity doesn't exist, that diagonal element is set - to inf. - - The default units of the covariance matrix are [degree, degree, mas, - mas/yr, mas/yr, km/s], but this can be modified by passing in a - dictionary with new units. For example, to change just the default ra, - dec units for the covariance matrix, you can pass in:: - - units=dict(ra=u.radian, dec=u.radian) - - Parameters - ---------- - RAM_threshold : `astropy.units.Quantity` - Raise an error if the expected covariance array is larger than the - specified threshold. Set to ``None`` to disable this checking. - """ - - # The full returned matrix - C = np.zeros((len(self.data), 6, 6)) - - # We handle radial_velocity separately below - doesn't have correlation - # coefficients with the astrometric parameters - names = ['ra', 'dec', 'parallax', 'pmra', 'pmdec'] - - - # pre-load the diagonal - for i, name in enumerate(names): - if name + "_error" in self.data.colnames: - err = (self.data[name + "_error"])*self.gaia_unit_map[name + "_error"] - C[:, i, i] = err.to(self.gaia_unit_map[name]).value ** 2 - else: - C[:, i, i] = np.nan - - if self.has_rv: - name = 'radial_velocity' - err = self.data[name + "_error"] - C[:, 5, 5] = err ** 2 - else: - C[:, 5, 5] = np.inf - - C[:, 5, 5][np.isnan(C[:, 5, 5])] = np.inf # missing values - - for i, name1 in enumerate(names): - for j, name2 in enumerate(names): - if j <= i: - continue - - if "{0}_{1}_corr".format(name1, name2) in self.data.colnames: - corr = self.data["{0}_{1}_corr".format(name1, name2)] - else: - corr = np.nan - - # We don't need to worry about units here because the diagonal - # values have already been converted - C[:, i, j] = corr * np.sqrt(C[:, i, i] * C[:, j, j]) - C[:, j, i] = C[:, i, j] - - self._cache['cov'] = C - self._cache['cov_units'] = units - - return self._cache['cov'] - - def get_error_samples(self, size=1, rnd=None): - """Generate a sampling from the Gaia error distribution for each source. - - This function constructs the astrometric covariance matrix for each - source and generates a specified number of random samples from the error - distribution for each source. This does not handle spatially-dependent - correlations. Samplings generated with this method can be used to, e.g., - propagate the Gaia errors through coordinate transformations or - analyses. - - Parameters - ---------- - size : int - The number of random samples per soure to generate. - rnd : ``numpy.random.RandomState``, optional - The random state. - - Returns - ------- - g_samples : `pyia.GaiaData` - The same data table, but now each Gaia coordinate entry contains - samples from the error distribution. - - """ - - if rnd is None: - rnd = np.random.RandomState() - - tn = self.get_cov() - rv_mask = ~np.isfinite(tn[:, 5, 5]) - tn[rv_mask, 5, 5] = 0. - - arrs = [] - for nm in self.allnames: - arrs.append(self.data[nm]) - y = np.stack(arrs).T - rnd = np.random.RandomState() - - samples = np.array([rnd.multivariate_normal(y[i], tn[i], size=size) for i in range(len(y)) ]) - - - - dtemp = {} - for ky in self.allnames: - dtemp[ky] = np.zeros(self.dsize) + np.nan - - for jnum in range(self.dsize): - for inum,ky in enumerate(self.allnames): - dtemp[ky][jnum] = samples[jnum][0][inum] - - return dtemp - - - - - - -# Gaia validation - -def get_gaiaxpy(): - ''' - to import bmcmc2 from external directory - 01/Nov/2018 - - ''' - import sys - #loc = '/home/shourya/Documents/phd_work' - loc = getdirec('pdocdir')+'/validation/gaia_validation/GaiaXPy' - - sys.path.insert(0,loc) - import gaiaxpy as gxpy - - return gxpy - -def get_gunlim(): - ''' - to import gaiaunlimited from external directory - 10/Mar/2023 - - ''' - import sys - #loc = '/home/shourya/Documents/phd_work' - loc = getdirec('pdocdir')+'/gaiaunlimited/src' - - sys.path.insert(0,loc) - import gaiaunlimited as gunlim - - return gunlim - - -def make_kld_readme(): - - ''' - - NAME: make_kld_readme - - PURPOSE: makes readme files for kld runs - - - INPUT: - keyboard input - - OUTPUT: saves file in valdir - - HISTORY: March 07, 2021 (Groningen) - - - ''' - - pdocdir = getdirec('pdocdir') - valdir = pdocdir+'/validation/gaia_validation' - - - - dt = {} - - - date = input('month_date_year = ') - data = input('data ex: sources_03_03.... = ') - subset = input('subset = ') - keys_run = input('keys_run = ') - comments = input('comments = ') - - dt['date'] = [date] - dt['data'] = [data] - dt['subset'] = [subset] - dt['keys_run'] = [keys_run] - dt['comments'] = [comments] - - - - tab = Table(dt) - tab.write(valdir+'/readme.csv',format='csv') - - print('readme.csv file written in .... '+valdir) - - return - - - -# Galaxia -def add_kinematics(d,thick=True,modify=True): - - if modify: - usun=11.1 - vsun=239.08 - wsun=7.25 - xsun=-8.0 - zsun=0.0 - tmax=10.0; tmin=0.1 - Rd=2.5 - Rsig0=1/0.073 - Rsig1=1/0.132 - sigma_phi0=25.34 - sigma_z0=25.92 - sigma_R0=36.69 - betaR=0.164 - betaphi=0.164 - betaz=0.37 - - sigma_phi1=38.37 - sigma_z1=39.41 - sigma_R1=57.87 - - home = getdirec('home') - #vc_loc = '/work1/sharma/GsynthData' - vc_loc = getdirec('galaxia')+'/Model' - vcirc1=tab.read(vc_loc+'/vcirc_potential.csv') - - - glongc,pzgc,rgc=autil.xyz2lzr(d['px']+xsun,d['py'],d['pz']+zsun) - age=np.power(10.0,d['age']-9.0) - - Rsig=d['px']-d['px']+Rsig0 - fac=np.exp(-(rgc+xsun)/Rsig) - sigma_phi=sigma_phi0*np.power((age+tmin)/(tmax+tmin),betaphi)*fac - sigma_z=sigma_z0*np.power((age+tmin)/(tmax+tmin),betaz)*fac - sigma_R=sigma_R0*np.power((age+tmin)/(tmax+tmin),betaR)*fac - - if thick: - ind=np.where(d['popid']>6)[0] - Rsig[ind]=Rsig1 - fac[ind]=np.exp(-(rgc[ind]+xsun)/Rsig[ind]) - sigma_phi[ind]=sigma_phi1*fac[ind] - sigma_z[ind]==sigma_z1*fac[ind] - sigma_R[ind]==sigma_R1*fac[ind] - - ind_bulge_etc = np.where(d['popid'] > 7)[0] - vx_bluge_etc,vy_bluge_etc,vz_bluge_etc = d['vx'][ind_bulge_etc],d['vy'][ind_bulge_etc],d['vz'][ind_bulge_etc] - - #vcirc=239.08-12.2 - vcirc= np.interp(rgc,vcirc1['r'],vcirc1['vcirc']) - temp=vcirc*vcirc+sigma_R*sigma_R*(-rgc/Rd-2*rgc/Rsig+1-np.power(sigma_phi/sigma_R,2.0)+(1-np.power(sigma_z/sigma_R,2.0))*0.5) - print (np.mean(sigma_R),np.mean(-np.sqrt(temp)),np.mean(vcirc),np.mean(age)) - vphi=-np.sqrt(temp)+np.random.normal(size=d['px'].size)*sigma_phi - vz=np.random.normal(size=d['px'].size)*sigma_z - vR=np.random.normal(size=d['px'].size)*sigma_R - l,b,r,vl,vb,vr=autil.gc2helio(glongc,pzgc,rgc,vphi,vz,vR,gal=True,vsun=vsun,usun=usun,xsun=xsun) - d['vx'],d['vy'],d['vz']=autil.vlbr2xyz(d['glon'],d['glat'],d['rad'],vl,vb,vr) - - d['vx'][ind_bulge_etc],d['vy'][ind_bulge_etc],d['vz'][ind_bulge_etc] = vx_bluge_etc,vy_bluge_etc,vz_bluge_etc - - gutil.append_muvr(d) -def getmtip(age,feh): - - ''' - NAME: make_kld_readme - - PURPOSE: makes readme files for kld runs - - - INPUT: age [Gyr], [Fe/H] - - OUTPUT: mtip - - HISTORY: July 20, 2021 (Groningen) - - ''' - - loc = getdirec('galaxia') - d = ebf.read(loc+'/feh_age_mtip.ebf','/') - sgrid=sutil.InterpGrid(tabpy.npstruct(d),['feh','log_age']) - log_age = np.log10((age)*1e+09) - - mtip = sgrid.get_values('mtip',[feh,log_age],fill_value='nearest') - - return mtip - - -class mkglx(object): - - ''' - to make magnitude limited surveys from a galaxia file etc - - february 17, 2023 [INAF-TORINO] - - ''' - def __init__(self,data=None,writehere=''): - - - self.writehere = writehere - self.glxdir = getdirec('galaxia') - - def generate_(self,runfname='galaxy1'): - - - - - os.system('galaxia -r '+runfname+'.ebf') - os.system('galaxia -a --psys=GAIA '+runfname+'.ebf') - - - - return - - - def mini_file_old(self,survey='galaxia',add_errors=False,fac=1.0,iso='tmasswise'): - - # mydata = tabpy.read(desktop+'/galaxia_nw_allsky_rc_f0.01.ebf') - - # downloads = dtools.getdirec('downloads') - # fname = 'hermes4_nw_tmasswise_fehm0.3_jv15_f1.0_cut.ebf' - - # mydata = tabpy.read(downloads+'/'+fname) - - mydata = tabpy.read(self.glxdir+'/runs_/'+self.fname_+'.ebf') - - if 'log' in mydata.keys(): - del mydata['center'] - del mydata['log'] - - print(mydata['pz'].size,survey+' stars in all') - - # high [Fe/H] - ind = np.where(mydata['feh'] > -2.0)[0] - print(str(len(ind))+' high [Fe/H] stars') - high_data = dtools.filter_dict(mydata,ind) - crnt = (high_data['px'].size)*fac; crnt = int(crnt) - tabpy.shuffle(high_data,crnt) - print(high_data['pz'].size,survey+' [Fe/H] > -2.0 stars shuffled') - - # low [Fe/H] - ind = np.where(mydata['feh'] < -2.0)[0] - mydata = dtools.filter_dict(mydata,ind) - print(str(mydata['px'].size)+' low [Fe/H] stars') - - tabpy.union(mydata,high_data,pkey=None) - - print(mydata['pz'].size,survey+' stars selected') - if add_errors: - print('adding photometric & spectroscopic errors') - - gutil.add_tmass_ph_error(mydata) - add_spec_error(mydata) - - - mydata['gaia_g_1'],mydata['gaia_gbp_1'],mydata['gaia_grp_1'] = mydata['gaia_g'],mydata['gaia_gbp'],mydata['gaia_grp'] - mydata[iso+'_h_1'],mydata[iso+'_j_1'],mydata[iso+'_ks_1'] = mydata[iso+'_h'],mydata[iso+'_j'],mydata[iso+'_ks'] - mydata[iso+'_w1_1'],mydata[iso+'_w2_1'],mydata[iso+'_w3_1'],mydata[iso+'_w4_1'] = mydata[iso+'_w1'],mydata[iso+'_w2'],mydata[iso+'_w3'],mydata[iso+'_w4'] - gutil.abs2app(mydata,isoch_loc=dtools.getdirec('galaxia'),noext=False,corr=False) - #gutil.append_muvr(mydata) - - mydata['teff'] = 10**mydata['teff'] - mydata['logg'] = mydata['grav'].copy() - - if add_errors: - ebf.write(root_+'/glxminifile_errors.ebf','/',mydata,'w') - else: - ebf.write(root_+'/glxminifile.ebf','/',mydata,'w') - - return mydata - - def reducecols(self,useloc='',runfname='galaxy1',svfname='galaxy1_red'): - - - keepkys = ['px', 'py', 'pz', 'vx', 'vy', 'vz', 'feh', 'smass', 'age', 'rad', - 'popid', 'lum', 'teff', 'grav', 'mact', 'mtip', 'tmasswise_j', - 'tmasswise_h', 'tmasswise_ks', 'tmasswise_w1', 'tmasswise_w2', - 'tmasswise_w3', 'tmasswise_w4', 'exbv_schlegel', 'exbv_solar', - 'exbv_schlegel_inf', 'glon', 'glat', 'gaia_g', 'gaia_gbp', - 'gaia_grp'] - - if useloc =='': - - mydata = dtools.ebfread_keys(self.glxdir+'/runs_/'+runfname+'.ebf',keys=keepkys) - else: - mydata = dtools.ebfread_keys(useloc,keys=keepkys) - - dtools.ebfwrite(mydata,svfname,self.glxdir) - - return - - def mini_file(self,runfname='galaxy1_red',survey='galaxia',add_errors=False,fac=1.0,iso='tmasswise',noext=False,maglimband='',maglim=10000): - - suff_ = '' - if noext: - suff_ = '_noext' - print('noext is...'+str(noext)) - - - mydata = tabpy.read(self.glxdir+'/'+runfname+'.ebf') - - - - if 'log' in mydata.keys(): - del mydata['center'] - del mydata['log'] - - print(mydata['pz'].size,survey+' stars in all') - - if fac < 1.: - mk_mini(mydata,fac=fac,key='pz') - - - - if add_errors: - print('adding photometric & spectroscopic errors') - - gutil.add_tmass_ph_error(mydata) - add_spec_error(mydata) - - mydata['gaia_g_1'],mydata['gaia_gbp_1'],mydata['gaia_grp_1'] = mydata['gaia_g'],mydata['gaia_gbp'],mydata['gaia_grp'] - mydata[iso+'_h_1'],mydata[iso+'_j_1'],mydata[iso+'_ks_1'] = mydata[iso+'_h'],mydata[iso+'_j'],mydata[iso+'_ks'] - mydata[iso+'_w1_1'],mydata[iso+'_w2_1'],mydata[iso+'_w3_1'],mydata[iso+'_w4_1'] = mydata[iso+'_w1'],mydata[iso+'_w2'],mydata[iso+'_w3'],mydata[iso+'_w4'] - gutil.abs2app(mydata,isoch_loc=dtools.getdirec('galaxia'),noext=noext,corr=False) - #gutil.append_muvr(mydata) - - mydata['teff'] = 10**mydata['teff'] - mydata['logg'] = mydata['grav'].copy() - del mydata['grav'] - - - if maglimband != '': - - tabpy.where(mydata,condition=(mydata[maglimband]0.) - &(np.isfinite(d['parallax'])) - &((d['parallax_error']/d['parallax'])9.0)&(np.isfinite(d['teff']))&(np.isfinite(d['grav'])) - &(np.isfinite(d['feh']))&(np.isfinite(d['vr']))&(d['field_id']>=0)&(d['field_id']<7339)) - - d['vmag_jk']=autil.jk2vmag(d['tmasswise_j'],d['tmasswise_ks']) - - if ('pmra_hsoy' in s)and('pmra_ucac5' in s): - d['mura']=(d['pmra_ucac5']+d['pmra_hsoy'])*0.5*1e-3 - d['mudec']=(d['pmdec_ucac5']+d['pmdec_hsoy'])*0.5*1e-3 - - d['mura_ucac5'] = (d['pmra_ucac5'])*1e-3 - d['mura_hsoy'] = (d['pmra_hsoy'])*1e-3 - - d['mudec_ucac5'] = (d['pmdec_ucac5'])*1e-3 - d['mudec_hsoy'] = (d['pmdec_hsoy'])*1e-3 - else: - d['mura']=d['pmra']*1e-3 - d['mudec']=d['pmdec']*1e-3 - - if selrc: - cond = dtools.selfunc_rc(d['teff'],d['grav'],d[metalkey]) - tab.where(d,cond) - d['dist']=dtools.distance_rc(d['tmasswise_j'],d['tmasswise_ks'],d['teff'],d['grav'],d[metalkey]) #feh - d['rad']=d['dist'] - - print (d['ra'].size) - return d -def load_galah_apogee_gaia(survey='all',selrc=False,quasar_offset=True): - - def get_galah(): - - d1=load_survey('galah',metalkey='m_h',selrc=selrc) - - ## cmatch with gaia cross-matched file? - ##fl = tabpy.read('/home/shourya/Documents/phd_work/GalahWork/sobject_iraf_53_gaia.fits') - ##tabpy.sortby(fl,'angular_distance') - ##tabpy.unique(fl,'source_id') - ##tabpy.ljoin(d1,fl,'sobject_id','sobject_id') - - - - - - if 'mura' not in d1.keys(): - d1['mura'] = np.zeros(d1['ra'].size) -9999. - d1['mudec'] = np.zeros(d1['ra'].size) -9999. - return d1 - - def get_apogee(): - d3=load_survey('apogee_dr14',selrc=selrc) - fl = tabpy.read('/home/shourya/Documents/phd_work/apogee_14/apogee_dr14_gaia.fits') - tabpy.sortby(fl,'angdist') - tabpy.unique(fl,'apogee_id') - - # removes all multishaped keys to allow ljoin (check if you can resolve this later) # 091018 - for ky in fl.keys(): - if np.array(fl[ky].shape).size >1: - del fl[ky] - - tabpy.ljoin(d3,fl,'apogee_id','apogee_id') - - if 'mura' not in d3.keys(): - d3['mura'] = np.zeros(d3['apogee_id'].size) -9999. - d3['mudec'] = np.zeros(d3['apogee_id'].size) -9999. - - return d3 - - def get_apogee_rc(): - d3=load_survey('apogee_rc_dr14',selrc=selrc) - fl = tabpy.read('/home/shourya/Documents/phd_work/gaia/data/apogee_gaia.fits') - tabpy.sortby(fl,'angdist') - tabpy.unique(fl,'apogee_id') - - # removes all multishaped keys to allow ljoin (check if you can resolve this later) # 091018 - for ky in fl.keys(): - if np.array(fl[ky].shape).size >1: - del fl[ky] - - tabpy.ljoin(d3,fl,'apogee_id','apogee_id') - - if 'mura' not in d3.keys(): - d3['mura'] = np.zeros(d3['apogee_id'].size) -9999. - d3['mudec'] = np.zeros(d3['apogee_id'].size) -9999. - - return d3 - - if survey =='all': - print('') - - if selrc: - print('combining APOGEE & GALAH RC....') - else: - print('combining APOGEE & GALAH .....') - d1 = get_galah() - d3 = get_apogee() - ####keep common keys only - d1keys = np.array(d1.keys()) - d3keys = np.array(d3.keys()) - indl,indr,indnm = tabpy.crossmatch(d3keys,d1keys) - for key in d1.keys(): - if key not in d1keys[indr]: - del d1[key] - tab.union(d1,d3,None) - - elif survey == 'galah': - print('') - - if selrc: - print('getting GALAH RC....') - else: - print('getting GALAH ....') - d1 = get_galah() - elif survey == 'apogee': - print('') - - if selrc: - print('selecting RC from APOGEE....') - else: - print('getting APOGEE ....') - d1 = get_apogee() - - elif survey == 'apogee_rc': - print('') - - if selrc: - print('selecting RC from APOGEE-RC ....') - else: - print('getting APOGEE-RC ....') - d1 = get_apogee_rc() - - print('') - print('Not making parallax cuts!!!!!!!!!!!!!!!!!!!!') - - #p_errorcut = 0.2 - - #tabpy.where(d1,condition= (np.isfinite(d1['parallax'])&(d1['parallax']>0.) &((d1['parallax_error']/d1['parallax'])2.0)&(d['gaia_g']<17.0)) - #tab.where(data,(data['phot_g_mean_mag']>2.0)&(data['phot_g_mean_mag']<17.0)) - #h=sutil.hist_nd([data['glon'],data['glat'],data['phot_g_mean_mag']],range=[[0,360.],[-90.0,90.],[2.0,17.0]],bins=[np.max(data['field_id'])+1,5]) - ##h.data=h.data*4 - #ind=h.resample([d['field_id'],d['vmag_jk']]) - #tab.select(d,ind) - #elif survey == 'apogee': -## np.random.seed(12) -## print('seed =12') - #d['field_id']=d['location_id'] - #del d['location_id'] - #tab.where(d,(d['tmasswise_h']>7.0)&(d['tmasswise_h']<13.8)&((d['tmasswise_j']-d['tmasswise_ks'])>0.5)) - #tab.where(data,(data['tmasswise_h']>7.0)&(data['tmasswise_h']<13.8)&((data['tmasswise_j']-data['tmasswise_ks'])>0.5)) - #h=sutil.hist_nd([data['field_id'],data['tmasswise_h']],range=[[0,np.max(data['field_id'])+1],[7.0,13.8]],bins=[np.max(data['field_id'])+1,34]) - ##h.data=h.data*4 - #ind=h.resample([d['field_id'],d['tmasswise_h']],fsample=1.0) - #tab.select(d,ind) - - #else: -## tab.where(d,(d['tmasswise_h']>7.0)&(d['tmasswise_h']<15.0)&(d['vmag_jk']<15.0)) -## tab.where(d,(d['tmasswise_h']>7.0)&(d['tmasswise_h']<13.8)) - #tab.where(d,(d['tmasswise_h']>7.0)) - #print d['ra'].size - - return d -def fltr_pilot_galah(mydata,keep_=['','k2','tess']): - - print('Removing PILOT [cobid>1403010000] & -ve fid only') - tabpy.where(mydata,condition=(mydata['field_id'] >-1)&(mydata['cob_id']>1403010000)) - - print('') - print('Using only: ') - print(keep_) - - tabpy.where(mydata,condition=(mydata['progname']==keep_[0])|(mydata['progname']==keep_[1])|(mydata['progname']==keep_[2])) - - return mydata -def dgaia(ver='dr2'): - - if ver == 'dr2': - fname = 'gaia_mini' - loc = getdirec('phddir')+'/gaia/data' - elif ver == 'edr3': - loc = getdirec('pdocdir')+'/science/edr3/gedr3data' - - fname = 'rvs_poege5_ext' - # elif ver == 'dr3': - # loc = getdirec('pdocdir')+'/science/edr3/gedr3data' - - # fname = 'rvs_poege5_ext' - - print(loc) - print('reading.... '+ver+'...'+fname) - d1=ebf.read(loc+'/'+fname+'.ebf') - if ver == 'edr3': - print('') - d1_feh = ebf.read(loc+'/'+fname+'_feh.ebf') - tabpy.ljoin(d1,d1_feh,'source_id','source_id') - # d1['lgc'] = d1['glongc'].copy() - - return d1 -def dgalah(create=False): - loc = getdirec('phddir')+'/GalahWork' - if create: - dt = load_galah_apogee_gaia(survey='galah') - getkin(dt,'dist_gaia',dtype='data') - ebfwrite(dt,'galah_use',loc) - d = dt.copy() - else: - dt=ebf.read(loc+'/'+'galah_use_dr2.ebf') - - dt2=ebf.read(loc+'/'+'galah_use.ebf') - #dsven = tabpy.read(loc+'/GALAH_iDR3_v1_181221.fits') - dsven = tabpy.read(loc+'/GALAH_iDR3_main_alpha_190529.fits') - - indl,indr,indnm=tabpy.crossmatch(dt['sobject_id'],dsven['sobject_id']) - - dt['feh_new'] = np.zeros(dt['feh'].size) + np.nan - dt['feh_new'][indl] = dsven['fe_h'][indr] - - dt['alpha_new'] = np.zeros(dt['alpha_fe_cannon'].size) + np.nan - dt['alpha_new'][indl] = dsven['alpha_fe'][indr] - - d = dt.copy() - d['lgc'] = d['glongc'].copy() - - return d -def dapogee(filetyp=''): - ''' - do this properly for DR17 - ''' - gloc = '/net/gaia2/data/users/gaia' - loc = gloc+'/apogee_dr17' - # # loc = gloc+'/apogee_16' - - if filetyp == 'rc': - print('reading apogee-dr17 rc file') - loc = gloc+'/apogee_dr17' - dt = tabpy.read(loc+'/apogee-rc-DR17.fits') - - # correctly format apogee_id in the RC catalog - dt['apogee_id'] = dt['apogee_id'].astype(str) - tmpval = [] - for val in dt['apogee_id']: - tmpval.append(val.replace(" ","")) - dt['apogee_id'] = np.array(tmpval) - - - else: - # print('reading apogee-dr16') - # dt = tabpy.read(loc+'/allStar-r12-l33.fits') - print('reading apogee-dr17') - dt = tabpy.read(loc+'/allStar-dr17-synspec_rev1.fits') - dt['apogee_id'] = dt['apogee_id'].astype(str) - - - return dt - - - - - -class dtoy_sanjib(object): - - - - - def __init__(self,name=None,readsnaps=False): - self.loc = getdirec('phddir')+'/toy_phasemix' - - if name is not None: - self.name = name - self.filename = name+'.ebf' - else: - self.filename = 'ridge_galpy2.ebf' - - print(self.filename) - - if readsnaps == False: - self.mkfile() - - - - - def mkfile(self): - self.data=ebf.read(self.loc+'/'+self.filename,'/data/') - self.siminfo=ebf.read(self.loc+'/'+self.filename,'/siminfo/') - - self.rscale=self.siminfo['rscale'] - self.vscale=self.siminfo['vscale'] - self.npoints = self.data[list(self.data.keys())[0]][0,:].size - - - def getsnaps(self,snapnum=99): - ''' - Only works in readsnaps=False mode - - ''' - print('reading saved snapshots') - print(snapnum) - loc = self.loc+'/'+self.name+'_snapshots' - self.d = tabpy.read(loc+'/'+str(snapnum)+'.ebf') - - - return self.d - def gettscale(self): - ''' - Only works in readsnaps=False mode (check this!) - - ''' - print('reading tscale from saved snapshots') - loc = self.loc+'/'+self.name+'_snapshots' - timescale = tabpy.read(loc+'/timescale.ebf') - - - return timescale['ts'] - - - - def getrun(self,i=70,**kwargs): - - endpoint = self.npoints - if 'points' in kwargs.keys(): - endpoint = kwargs['points'] - print(endpoint) - - d = {} - for key in self.data.keys(): - d[key] = self.data[key][i,:endpoint].copy() - - - print('scaling velocity and distance') - for key in d.keys(): - if key.startswith('v'): - d[key] = d[key]*self.vscale - elif key.startswith('r'): - d[key] = d[key]*self.rscale - - # assign spiral-arm ids: - d['id']=(np.arange(d['rgc'].size)%(d['rgc'].size/16))/(d['rgc'].size/(16*4)) - - self.d = d.copy() - - return self.d - - -# Distance catalogues -def add_pauld(d): - ''' - McMillan distances are in parsec! - ''' - flloc = getdirec('phddir')+'/gaia/data' - fl=tabpy.read(flloc+'/GaiaDR2_RV_star_distance_paul.ebf') - ind=np.where((fl['distance_error']/fl['distance'])>0.2)[0] - fl['distance'][ind]= np.nan - fl['distance'] = fl['distance']*1e-03 - fl['distance_error'] = fl['distance_error']*1e-03 - tabpy.ljoin(d,fl,'source_id','source_id') -def mk_schon_dist(): - desktop = dtools.getdirec('desktop') - - timeit = dtools.stopwatch() - timeit.begin() - - #subdir = 'modoffset'; flname = 'gaiaRVdelpeqspdelsp43' - subdir = '54offset'; flname = 'gaiaRVdelp54delsp43' - - loc = dtools.getdirec('phddir')+'/gaia/data/schonrich_d/'+subdir - d1 = ascii.read(loc+'/'+flname+'.txt') - - dt = {} - dt['source_id'] = d1['sourceid'].copy() - dt['dschon'] = d1['E_dist'].copy() - dt['parallax_schon'] = d1['parallax'].copy() - dt['parallax_parallaxerr_schon'] = d1['parallax/parallaxerr'].copy() - dtools.ebfwrite(dt,subdir+'_use',loc) - - - timeit.end() - - -# stats -def midx(x): - midx = (x[1:]+x[0:-1])*0.5 - return midx -def gaus(x,x0,sigma): - return (1.0/(np.sqrt((2*np.pi))*sigma))*np.exp(-0.5*(np.power((x-x0)/sigma,2.0))) -def boots(data,iters=2): - from astropy.stats import bootstrap - from astropy.utils import NumpyRNGContext - - test_statistic = lambda x: (np.mean(x)) - - with NumpyRNGContext(1): - bootresult = bootstrap(data, iters,bootfunc = test_statistic) - - - boot_std = np.std(bootresult) - return boot_std, bootresult - - -def bootstrap_(data,iters=2,bootfunc=None): - from astropy.stats import bootstrap - from astropy.utils import NumpyRNGContext - - with NumpyRNGContext(1): - bootresult = bootstrap(data, iters,bootfunc=bootfunc) - - - - return bootresult -def mystat(x,uplow=False):#-----------bmcmc type print - temp=np.percentile(x,[16.0,84.0,50.0]) - sig=(temp[1]-temp[0])/2.0 - xmean=np.mean(x) - d2=np.floor(np.log10(sig)) - return np.round(xmean*(10**(-d2)))/10.0**(-d2) -def get_bmcmc2(): - ''' - to import bmcmc2 from external directory - 01/Nov/2018 - - ''' - import sys - loc = getdirec('pdocdir')+'/py_scripts' - - sys.path.insert(0,loc) - - import bmcmc2 as bmcmc - - return bmcmc - -def pdf2cdf(pdf_,xv=None,plotit=False,getlims=False,usesig=1,sample_=False,nsamples=10,interp_=False,yv=0): - ''' - xv = xpoints - pdf = evaluated at xv - assuming that xv is already ordered - - ''' - - cdf = np.cumsum(pdf_) - cdfval = cdf/cdf[-1] - if plotit: - plt.plot(xv,cdfval) - - if getlims: - zm = interp1d(cdfval,xv,bounds_error=False,fill_value=(cdfval[0],cdfval[-1])) - - dlta = stats.chi2.cdf(usesig**2.,1)/2. - xmin, xmax = zm(0.5 - dlta),zm(0.5+dlta) - - return cdfval, xmin, xmax - - if sample_: - zm = interp1d(cdfval,xv,bounds_error=False,fill_value=(cdfval[0],cdfval[-1])) - - cdfpnts = np.random.uniform(size=nsamples) - xpnts = zm(cdfpnts) - - return xpnts - if interp_: - - zm = interp1d(xv,cdfval,bounds_error=False,fill_value=(xv[0],xv[-1])) - - ypnts = zm(yv) - - return ypnts - - - else: - return cdfval - - -def get_pyia(): - ''' - to import pyia from external directory - 06/Nov/2019 - - ''' - import sys - #loc = '/home/shourya/Documents/phd_work' - loc = getdirec('phddir')+'/pyia-master' - - sys.path.insert(0,loc) - import pyia - - return pyia - -def chisq(data,model): - - chisq = np.square(data - model)/model - return chisq -def chi2(x1,x2,bins=10,range=None): - h1,be1=np.histogram(x1,range=range,bins=bins,density=False) - h2,be2=np.histogram(x2,range=range,bins=bins,density=False) - temp=np.sum(h1,dtype=np.float64)/np.sum(h2,dtype=np.float64) - err=h1+h2*np.square(temp) - ind=np.where((h1+h2)>0)[0] - return np.sum(np.square(h1[ind]-h2[ind]*temp)/err[ind],dtype=np.float64)#/(ind.size-1) - - -def chunkwriter(i): - mydata = mydatacopy.copy() - idkey = idkey_ - indl, indr, indnm = tabpy.crossmatch(chunk_list[i],mydata[idkey]) - d = {} - for ky in mydata.keys(): - d[ky] = mydata[ky][indr] - if write_as_=='fits': - fitswrite(d,'data_part_'+str(i),loc_) - elif write_as_ == 'ebf': - ebfwrite(d,'data_part_'+str(i),loc_) - return - -def mk_chunks(mydata,chunk_size=1000,loc='',refkey='glon',idkey='fid',write_as='ebf',ncpu=5): - - ''' - clean it right away!! - ''' - - - global mydatacopy - global loc_ - global write_as_ - - global chunk_list - global idkey_ - - if idkey in mydata.keys(): - raise RuntimeError(idkey+' already present') - - if chunk_size > mydata[refkey].size: - raise Exception('Reduce chunk size (bigger than data size)') - - mydata[idkey]=np.array([i for i in range(mydata[refkey].size)]) - items, chunk = mydata[idkey], chunk_size - # chunk_list = np.array(zip(*[iter(items)]*chunk)) #python2 - chunk_list = np.array(list(zip(*[iter(items)]*chunk))) #python3 - - - - mydatacopy = mydata.copy() - loc_ = loc - write_as_ = write_as - idkey_ = idkey - - #### - - # # # for i in range(len(chunk_list)): - # # # indl, indr, indnm = tabpy.crossmatch(chunk_list[i],mydata[idkey]) - # # # d = {} - # # # for ky in mydata.keys(): - # # # d[ky] = mydata[ky][indr] - # # # if write_as=='fits': - # # # fitswrite(d,'data_part_'+str(i),loc) - # # # elif write_as == 'ebf': - # # # ebfwrite(d,'data_part_'+str(i),loc) - - - - print('running pool') - - i = np.arange(len(chunk_list)) - ifinal = i[-1]+1 - from multiprocessing import Pool - p=Pool(ncpu) - p.map(chunkwriter,i) - - print('end pool') - - #### - - print(str(ifinal)+' files written') - - chunk_list_flt = chunk_list.flatten() - indl, indr, indnm = tabpy.crossmatch(chunk_list_flt,mydata[idkey]) - - if indnm.size >0: - d = {} - for ky in mydata.keys(): - d[ky] = mydata[ky][indnm] - - if write_as=='fits': - fitswrite(d,'data_part_'+str(ifinal),loc) - - elif write_as == 'ebf': - ebfwrite(d,'data_part_'+str(ifinal),loc) - - - print('') - print('Remainder file contains = '+str(d[refkey].size)) - - - return - - - -def cmb_chunks(loc='',svloc='',refkey='',write_as='ebf',read_format='.fits',svname='combined'): - - - import natsort - from natsort import natsorted, ns - - timeit = stopwatch() - timeit.begin() - - - import os - if svloc == '': - svloc = os.getcwd() - - files = os.listdir(loc) - files = natsorted(files) - files = np.array(files) - - - - ####-- shuffle - currently running! (delete this line upon completion) - #print('Total = '+str(len(files))) - #inds = np.arange(0,len(files),1) - #np.random.shuffle(inds) - #ind = inds[:100] - #files = files[ind] - # files = files[:10] - ####----------------- - - file_list = [] - for fl in files: - if fl.endswith(read_format): - file_list.append(fl) - - file_list = np.array(file_list) - - #print(len(file_list)) - print(file_list) - - - d1 = tabpy.read(loc+'/'+file_list[0]) - - - for inum, fl in enumerate(file_list[1:]): - print(str(inum)+'......') - print(fl) - d2 = tabpy.read(loc+'/'+fl) - tabpy.union(d1,d2,None) - #print(d1[refkey].size) - - if refkey != '': - tabpy.sortby(d1,refkey) - tabpy.unique(d1,refkey) - #print(d1[refkey].size) - - - if write_as=='fits': - dt = Table(d1) - dt.write(svloc+'/'+svname+'.fits',format='fits',overwrite=True) - - elif write_as == 'ebf': - ebfwrite(d1,svname,svloc) - - - print('') - print('combined file contains = '+str(d1[list(d1.keys())[0]].size)) - - timeit.end() - return - -def cmb_chunks_keys(loc='',svloc='',refkey='glon',write_as='ebf',read_format='.ebf',svname='combined',keys='',pky=False,nosavrefky=False): - ''' - February 23 2019 - To combine chunks based on a given keylist - ! only works if read_format = ebf - ''' - - import os - import natsort - from natsort import natsorted, ns - - if svloc == '': - svloc = os.getcwd() - - files = os.listdir(loc) - files = natsorted(files) - files = np.array(files) - - file_list = [] - for fl in files: - if fl.endswith(read_format): - file_list.append(fl) - - file_list = np.array(file_list) - - if read_format == '.ebf': - d1 = ebfread_keys(loc+'/'+file_list[0],keys=keys) - - for inum, fl in enumerate(file_list[1:]): - print(str(inum)+'......') - d2 = ebfread_keys(loc+'/'+fl,keys=keys) - tabpy.union(d1,d2,None) - - - tabpy.sortby(d1,refkey) - tabpy.unique(d1,refkey) - - - ds = {} - for ky in d1.keys(): - ds[str(ky)] = d1[ky].copy() - - - ## added on December 14, 2022 [INAF TORINO] - if nosavrefky: - del ds[refkey] - - if write_as=='fits': - dt = Table(ds) - dt.write(svloc+'/'+svname+'.fits',format='fits',overwrite=True) - - elif write_as == 'ebf': - ebfwrite(ds,svname,svloc) - - - print('nosavrefky is ..='+str(nosavrefky)) - print(ds) - - print('') - print('combined file contains = '+str(ds[list(ds.keys())[0]].size)) - - - return - -def scott_bin(N,sigma,dim=1): - ''' - - NAME: - - PURPOSE: - calculates bin width using Scott's rule - INPUT: - N = total number of data points - sigma = standard dev along a dimension - dim (=1 by default) = number of dimensions - - OUTPUT: bin width - - HISTORY: generalised formula (16 Aug, 2023) - - https://ui.adsabs.harvard.edu/abs/1992mde..book.....S/abstract - - https://stats.stackexchange.com/questions/114490/optimal-bin-width-for-two-dimensional-histogram - https://arxiv.org/pdf/physics/0605197.pdf - ''' - - - b_width = (3.5*sigma)/(N**(1./(2. + dim))) - - # b_width = (3.5*sigma)/(N**(1./3.)) - # b_width = (2.15*sigma)/(N**(1./5.)) - - return b_width - - - - -def rms(data): - - return np.sqrt(np.mean(data**2.)) -def entropy(prob): - ''' - - NAME: - - PURPOSE: - calculates entropy - INPUT: - probability - - OUTPUT: - - HISTORY: - - - ''' - lnprob = np.log(prob) - ind_en = indfinite(lnprob) - ent = -np.sum(prob[ind_en]*lnprob[ind_en]) - - return ent - -def modulus(x,y,z): - ''' - returns the modulus of the x and y and z components - ''' - - val = np.sqrt(x**2 + y**2 + z**2) - return val - - -def fitgauss(plotchars,xval,yval,amp=5, cen=5, width=1): - - ''' - NAME: - - PURPOSE: - fits a Gaussian profile to a given data curve (x,y) - INPUT: - x,y - - OUTPUT: - - HISTORY: January 24, 2022 (RUG) - - ''' - - from numpy import exp, loadtxt, pi, sqrt - from lmfit import Model - - - def gaussian_func(x, amp, cen, wid): - """1-d gaussian: gaussian(x, amp, cen, wid)""" - return (amp / (sqrt(2*pi) * wid)) * exp(-(x-cen)**2 / (2*wid**2)) - - - gmodel = Model(gaussian_func) - result = gmodel.fit(yval, x=xval, amp=amp, cen=cen, wid=width) - - - # # print(result.fit_report()) - - - if plotchars['plot_']: - - plt.close('all') - - # plm=putil.Plm2(1,2,xsize=8.0,ysize=3.,xmulti=False,ymulti=False,full=True,slabelx=0.7,slabely=0.07) - plm=putil.Plm1(1,1,xsize=8.0,ysize=6.,xmulti=False,ymulti=False,full=False,slabelx=0.7,slabely=0.07) - plm.next() - plt.plot(xval, yval, 'k.') - plt.plot(xval, result.best_fit, '-', label='best fit') - plt.plot(xval, result.init_fit, '--', label='initial fit') ; plt.legend() - plt.axvline(result.best_values['cen']) - - - plt.title(plotchars['title']) - plt.text(0.5,0.95,str(np.round(result.best_values['cen'],3))+', '+str(np.round(result.best_values['wid'],3)),transform=plt.gca().transAxes,color='orange',fontsize=10) - - if plotchars is not None: - - # plm.next() - # plt.plot(plotchars['x2'],yval,'r.') - - plm.tight_layout() - - if plotchars['plotsave']: - plt.savefig(plotchars['plotloc']+'/fitgauss_'+plotchars['plotname']+'.png') - - return result.best_values['cen'],result.best_values['wid'],result - - -def get_kde(data,kernel='gaussian',use_scott=False,bandwidth=1,showleg=False,density=True,outbins=1000,lwdth = 2,alpha=0.5,typ='',prnt=True): - - ''' - - NAME: get_kde - - PURPOSE: to provide a kernel density fit - - - INPUT: data (1d array) - kernel: 'gaussian' or 'tophat' (check for updates to see if other kernels are available) - use_scott: True/False [to plot data histogram using Scott's binning] - if False, bins is computed using data percentiles - bandwidth: used for kde estimation [same units as data] - outbins: N bins to be used for output data - - - OUTPUT: a plot of data, - X [x axis where kde is evaluated] - Y [kde evaluated at X] - HISTORY: September 28, 2021 (Groningen) - April 07, 2023 (INAF-Torino) [cleaned up to allow kde sampling at user-defined bins] - - https://scikit-learn.org/stable/auto_examples/neighbors/plot_kde_1d.html#sphx-glr-auto-examples-neighbors-plot-kde-1d-py - - ''' - - - - - from sklearn.neighbors import KernelDensity - - xmin,xmax = np.nanpercentile(data,1),np.nanpercentile(data,99) - fac = 0.25 - if use_scott: - if prnt: - print('using Scotts rule') - bandwidth = fac*scott_bin(data.size,np.std(data)) - # print('Scott bin width = '+str(bn_width)) - bins = int((xmax-xmin)/bandwidth) - - else: - bins = int((xmax - xmin)/bandwidth) - - if prnt: - print(bandwidth,bins) - - - print('using '+kernel+' kernel') - - X = data[:,np.newaxis] - kde = KernelDensity(kernel=kernel, bandwidth=bandwidth).fit(X) - - X_plot = np.linspace(xmin, xmax, outbins)[:, np.newaxis] - log_dens = kde.score_samples(X_plot) - - - - if typ =='': - plt.hist(data,bins=bins,density=density,range=[xmin,xmax],label='data',histtype='step',alpha=alpha) - plt.plot(X_plot[:, 0], np.exp(log_dens),label='fit',linewidth=lwdth,color='orange') - - - - ########## - - if showleg: - plt.legend() - - - return X_plot[:, 0], np.exp(log_dens) - - - -def getlike_basic(model_,data_,sigval=1): - ''' - very basic log likelihood - ''' - - - tmp1 = data_ - model_ - sig1 = sigval - - # indf = dtools.indfinite(1./sig1,print_=False) - # sig = sig1[indf] - # tmp = tmp1[indf] - - sig = sig1 - tmp = tmp1 - - loglike_ = -0.5*(np.sum((((tmp)/sig)**2) - np.log(2.*np.pi*sig))) - minloglike_ = -loglike_ - return minloglike_, sig - - - -def getlikelihood(model,data,noise=[],useall=False,typ='gauss'): - - ''' - - NAME: likelihood_poiss - - PURPOSE: - returns Poissonian likelihood - INPUT: - model - data - noise (if typ == 'poiss') - - typ: 'gauss' 'poiss' - - OUTPUT: - - HISTORY: February 12, 2024 (INAF-OATO) - - - returns: log L - - useall = uses all three terms in the log l - ''' - - - if typ =='poiss': - - tmp1 = - model - tmp2 = data*np.log(model) - - tmp = tmp1 + tmp2 - if useall: - tmp3 = - np.log(scipy.special.factorial(data)) - tmp += tmp3 - - return tmp - - elif typ =='gauss': - - if len(noise) == 0: - raise Exception('using Gaussian likelihood, provide noise') - - - - temp = 0 - pdf_ = scipy.stats.norm.logpdf(data,loc=model,scale=noise) - temp+= pdf_ - - return pdf_ - - - - - -def eqn_linear(x,m,cy=None,cx=None): - ''' - input: xpoints (array) - m (gradient) - cy (y-intercept, None by default) - cx (x-intercept, None by default); if provided, make sure to have cy=None - - History: July 10, 2022 (INAF, Torino) - ''' - - if cy is not None: - c = cy - else: - c = -m*cx - - y = (m*x) + c - - return y - - - -def getpercentiles(data,useval=[1,16,50,84,99],prnt=True): - - ''' - gets percentiles at specified intervals. - default at [1,16,50,84,99] - - ''' - - if prnt: - print(useval) - pval = [] - for val in useval: - pval.append(np.nanpercentile(data,val)) - - return np.array(pval) - - - - -# File reading -def ebfread_keys(file1,keys,printkeys=False): - ''' - PURPOSE: reads ebf file (specified keys only) - good for reading huge files - ''' - - data = {} - for key in keys: - if printkeys: - print('') - print(key) - print('') - data[key] = ebf.read(file1,'/'+key) - - return data - -def readh5(file2,path=None): - ds = astropy.io.misc.hdf5.read_table_hdf5(file2,path=path) - - return ds - - -def pickleread(file1): - - ''' - read pickle files - input: fileloc+'/'+filename - - ''' - import pickle - data = pickle.load(open(file1,'rb')) - - - return data - - - -# File writing -def ebfwrite(data,nam,loc,prnt=True): - ''' - - ''' - - ebf.write(loc+'/'+nam+'.ebf','/',data,'w') - if prnt: - - print(nam+'.ebf written to '+loc) - return -def ebfappend(file1,data,ext): - ''' - file1 : ebf file to be modified - data: new key data being added - ext: new key name being added - ''' - - - ebf.write(file1,'/'+ext,data,'a') - print(file1+' appended') - return - -def fitswrite(data,nam,loc,prnt=True): - - dt = Table(data) - dt.write(loc+'/'+nam+'.fits',format='fits',overwrite=True) - if prnt: - print(nam+' .FITS written to '+loc) - return - -def picklewrite(data,nam,loc,prnt=True): - ''' - write files using pickle - ''' - - - - import pickle - - pickle.dump(data,open(loc+'/'+nam+'.pkl','wb')) - if prnt: - print(nam+' .pkl written to '+loc) - - return - - - -def findkey(data,name,look=''): - ''' - - Fix runtime error issue (June 27 2018) - - last update: April 23 2018 - - ''' - - kyvals = [] - if look == '': - for key in data.keys(): - if key.startswith(name): - # print(key) - kyvals.append(key) - #else key.startswith(name)==False: - #raise RuntimeError('key not found') - - if look=='any': - for key in list(data.keys()): - if name in key: - #print(key) - kyvals.append(key) - if len(kyvals) > 0: - # print(str(len(kyvals))+' found') - return kyvals - else: - return None - - -def mk_textable(): - fldir = '/home/shokan/Downloads/' - flnm = 'galaxy10myparameterfile' - - FILE=np.loadtxt(fldir+flnm+'.txt', dtype=str)#,usecols=(0,7,10)) - col=zip(*FILE) - tab=Table(col) - tab.write('table',format='latex') - print(tab) - return - -# plotting -def one2one(x,y,rng=[],alpha=0.2,s=0.2,**kwargs): - - lbl = '' - lnstyle = '-' - clr='black' - if 'label' in kwargs.keys(): - lbl = kwargs['label'] - if 'linestyle' in kwargs.keys(): - lnstyle = kwargs['linestyle'] - if 'color' in kwargs.keys(): - clr = kwargs['color'] - - - # plt.plot(x,y,'-',color=clr,label=lbl) - if len(rng) > 0.: - xpnt = np.linspace(rng[0],rng[1],100) - plt.xlim([rng[0],rng[1]]) - plt.ylim([rng[0],rng[1]]) - xpnt = np.linspace(0.,10.,100) - plt.plot(xpnt,xpnt,linestyle='--') - plt.plot(xpnt,xpnt,'.') - - - else: - print('here..') - xmin = np.nanpercentile(x,1) - xmax = np.nanpercentile(x,99) - - ymin = np.nanpercentile(y,1) - ymax = np.nanpercentile(y,99) - - print(xmin,xmax) - xpnt = np.linspace(xmin,xmax,100) - plt.plot(xpnt,xpnt,linestyle='--') - # plt.plot(xpnt,xpnt,'.') - - - plt.scatter(x,y,alpha=alpha,s=s,color=clr) - - #plt.legend() - - - return - -def png2movie(readdir,savdir,flname='movie',fmt='gif',duration=1.): - ''' - Purpose: make a gif from set of images - readdir = directory where set of images are - savdir = directory where to save the final movie - flname = filename - - #dtools.png2movie(desktop+'/snaps/',desktop) - - ''' - - from PIL import Image as image - import imageio - import natsort - from natsort import natsorted, ns - - images = [] - filenames = os.listdir(readdir) - filenames = natsorted(filenames) - filenames = np.array(filenames) - - fps = 1./duration - - for filename in filenames: - filename = readdir+'/'+filename - images.append(imageio.imread(filename)) - - if fmt == 'gif': - imageio.mimsave(savdir+'/'+flname+'.gif', images,duration=duration) - elif fmt == 'mp4': - imageio.mimsave(savdir+'/'+flname+'.mp4', images,fps=fps) - - - #import images2gif - #from images2gif import writeGif - #for filename in filenames: - #filename = readdir+'/'+filename - #images.append(image.io.open(filename)) - #imageio.mimsave(savdir+'/'+flname+'.gif', images,duration=0.8) - ###writeGif("images.gif",images,duration=0.3,dither=0) - - - return - - -def mkcirc(rval): - - theta = np.radians(np.linspace(0.,360.,100)) - xval = rval*np.cos(theta) - yval = rval*np.sin(theta) - - return xval, yval - -def plot3d(x,y,z,setlim=False,xmin=0,xmax=10,ymin=0,ymax=10,zmin=0,zmax=10,color='red',s=0.2,alpha=0.2): - # def plot3d(x,y,z,indset1,indset2,setlim=False,xmin=0,xmax=10,ymin=0,ymax=10,zmin=0,zmax=10,color='red'): - from mpl_toolkits.mplot3d import Axes3D - from mpl_toolkits.mplot3d.art3d import Poly3DCollection - - fig = plt.figure() - ax = fig.add_subplot(projection='3d') - # ax.scatter3D(x,y,z, marker='p',s=1,alpha=0.7, color=color) - ax.scatter3D(x,y,z, marker='p',s=s,alpha=alpha, color='red') - # ax.scatter3D(x,y[indset2],z[indset2], marker='p',s=1,alpha=0.7, color='blue') - - - ax.set_xlabel('X (kpc)') - ax.set_ylabel('Y (kpc)') - ax.set_zlabel('Z (kpc)') - - if setlim: - - ax.set_xlim([xmin,xmax]) - ax.set_ylim([ymin,ymax]) - ax.set_zlim([zmin,zmax]) - - plt.subplots_adjust(left=0.01, bottom=0.01, right=0.99, top=0.99) - - - - return - -def threed(x,y,z): -#---------- Plot 3D ------------------------# - fig = plt.figure(); ax = fig.add_subplot(111, projection='3d') - ax.scatter(x, y,z, marker='p',s=1,alpha=0.7) - ax.set_xlabel('X (kpc)'); ax.set_ylabel('Y (kpc)'); ax.set_zlabel('Z (kpc)') - - return - -def mkline(m=1.,c=1.,x=[0.,1.],color='black',linestyle='-'): - - xp = np.linspace(x[0],x[1],100) - - y = m*xp + c - - plt.plot(xp,y,color=color,linestyle=linestyle) - - return - - -def invert(axis): - - if axis == 'x': - plt.gca().invert_xaxis() - elif axis =='y': - plt.gca().invert_yaxis() - elif axis == 'both': - plt.gca().invert_xaxis() - plt.gca().invert_yaxis() - return - - -def pltLabels(xlabel, ylabel, lblsz=None): - if lblsz: - plt.xlabel(xlabel, fontsize = lblsz) - plt.ylabel(ylabel,fontsize = lblsz) - - else: - plt.xlabel(xlabel) - plt.ylabel(ylabel) - - return - -def profile(x,z,bins=100,range=None,label=None,mincount=3,fmt='-o',markersize=2,color='',meanerror=False,style=None,func=None,lw=None,return_profile=False,return_bins=False,fig=True): - """ - style: ['lines','fill_between,'errorbar'] - - To add: bootstrapping errors - """ - - - if lw == None: - lw=5.0 - #style=['lines','fill_between','errorbar'] - ind=np.where(np.isfinite(x)&np.isfinite(z))[0] - x=x[ind] - z=z[ind] - h=sutil.hist_nd(x,bins=bins,range=range) - ind1=np.where(h.data>=mincount)[0] - if func is None: - ym=h.apply(z,np.median)[ind1] - else: - ym=h.apply(z,func)[ind1] - xm=h.locations[0][ind1] - yl=h.apply(z,np.percentile,16)[ind1] - yh=h.apply(z,np.percentile,84)[ind1] - - if meanerror: - yl=ym+(yl-ym)/np.sqrt(h.data[ind1]) - yh=ym+(yh-ym)/np.sqrt(h.data[ind1]) - - - if fig: - - if style == 'fill_between': - plt.fill_between(xm,yl,yh,interpolate=True,alpha=0.25,label=label,color=color) - elif style == 'errorbar': - #plt.errorbar(xm,ym,yerr=[ym-yl,yh-ym],fmt=color+'-o',label=label,lw=lw) - #plt.errorbar(xm,ym,yerr=[ym-yl,yh-ym],fmt=color,label=label,lw=lw) #restore!! #+'-*' - plt.errorbar(xm,ym,yerr=[abs(ym-yl),abs(yh-ym)],fmt=color,label=label,lw=lw) #restore!! #+'-*' - #plt.errorbar(xm,ym,yerr=[0.5*(yh-yl),0.5*(yh-yl)],fmt=color+'-*',label=label,lw=lw) - - elif style == 'lines': - if color == '': - color=plt.gca()._get_lines.get_next_color() - plt.plot(xm,ym,fmt,label=label,color=color,lw=lw,markersize=markersize) - plt.plot(xm,yl,'--',color=color,lw=lw) - plt.plot(xm,yh,'--',color=color,lw=lw) - else: - if fig: #added by Shourya (August 9, 2018) - #plt.plot(xm,ym,color+fmt,label=label,lw=lw) - plt.plot(xm,ym,fmt,label=label,color=color,lw=lw,markersize=markersize) - # plt.plot(xm,ym,color+'-',label=label,lw=lw) - - ncount= [] - indset = [] - for i in np.arange(h.bins): - ncount.append(h.indices(i).size) - indset.append((h.indices(i))) - ncount = np.array(ncount, dtype=object) - indset = np.array(indset, dtype=object) - - - - if return_profile and return_bins: - return xm,ym,ncount[ncount>=mincount],indset, 0.5*(abs(ym-yl) + abs(yh-ym)) - elif return_profile: - return xm,ym - - -def dens_logmeth(mode='vol',plotit=False,rlogmin=-2,rlogmax=3,nbins=128): - - ''' - pwelan logmeth - ''' - bins = np.logspace(rlogmin, rlogmax, nbins) - bin_cen = (bins[1:] + bins[:-1]) / 2. - H,edges = np.histogram(dt['rgc'], bins=bins, weights=np.zeros_like(dt['rgc']) + 1/dt['rgc'].size) - - if mode =='vol': - V = 4/3.*np.pi*(bins[1:]**3 - bins[:-1]**3) - densval_ = (H / V) - else: - A = np.pi*(bins[1:]**2 - bins[:-1]**2) - densval_ = (H / A) - - if plotit: - plt.loglog(bin_cen, densval_, marker=None, label='Particles', color='red') - - return bin_cen,densval_ - -def cmaps(key=''): - ''' - prints details about colorcet colorschemes - ''' - for ky in cc.cm.keys(): - if ky.startswith(key): - print(ky) - - - return - -def colbar(im,ax,label='',orientation='vertical',pad=0.05,ticks=None): - ''' - - ax = plt.gca() - ''' - print('pad = ') - print(pad) - from mpl_toolkits.axes_grid1 import make_axes_locatable - from matplotlib.transforms import Bbox - - divider1 = make_axes_locatable(ax) - cax = divider1.append_axes("right", size="5%",pad=pad) - - if ticks is not None: - plt.colorbar(im,cax,orientation=orientation,label=label,ticks=ticks) - else: - plt.colorbar(im,cax,orientation=orientation,label=label) - - return - -def clevel(h1,levels=[1.,0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1],colors='red',linestyles='dotted',label=None,coords=False): - ''' - Must be normed=True! - - ''' - xbin_wdth = (h1.locations[0][1] - h1.locations[0][0]) - ybin_wdth = (h1.locations[1][1] - h1.locations[1][0]) - z = (h1.data.reshape(h1.bins))*xbin_wdth*ybin_wdth - - n = 1000 - t = np.linspace(0, z.max(), n) - integral = ((z >= t[:, None, None]) * z).sum(axis=(1,2)) - - from scipy import interpolate - - f = interpolate.interp1d(integral,t,bounds_error=False,fill_value=(t[0],t[-1])) - - t_contours = f(np.array(levels)) - - - xe = np.linspace(h1.range[0,0],h1.range[0,1],h1.bins[0]+1) - ye = np.linspace(h1.range[1,0],h1.range[1,1],h1.bins[1]+1) - xc = (xe[0:-1]+xe[1:])/2.0 - yc = (ye[0:-1]+ye[1:])/2.0 - x=np.meshgrid(xc,yc,indexing='ij') - - cntour = plt.contour(x[0],x[1],z, t_contours,colors=colors,linestyles=linestyles) - - - - ################# - if coords: - continf = {} - continf['rvals'] = [] - ncnts = len(cntour.collections) - - for j in range(ncnts): - continf[str(j)+'x'] = [] - continf[str(j)+'y'] = [] - - plens = len(cntour.collections[j].get_paths()) - rvals = [] - for i in range(plens): - ps = cntour.collections[j].get_paths()[i].vertices - rvals.append(np.max(np.sqrt(ps[:,0]**2. + ps[:,1]**2.))) # using max seems to better trace the contour radius - continf[str(j)+'x'].append(ps[:,0]) - continf[str(j)+'y'].append(ps[:,1]) - - rvals = np.array(rvals) - continf['rvals'].append(np.mean(rvals)) - - return continf - - ################# - elif label != None: - lns = [] - lbls = [] - lines = []; lines.extend(cntour.collections); lns = [lines[0]] - lbls = [label] - - return lns,lbls - -def get_clevels(dims=1): - ''' - get clevels - - ''' - - lvls = [] - - for i in range(1,6): - lvls.append(scipy.stats.chi2.cdf(i**2.,dims)) - - lvls = np.array(lvls) - - - - return lvls[::-1] - -def view_hist(fl,xcol,ycol): - import sutil_sanj - cmap = cc.cm['linear_kryw_0_100_c71_r'] - sutil_sanj.hist2d(fl[xcol],fl[ycol],bins=100,normed=True,dnorm=2,norm=LogNorm(vmin=1e-2,vmax=1),cmap=cmap,smooth=False) - - return - -def pltfig_hist(x,y,bins=100,xrng=[0.,100],yrng=[0.,100],labels=['',''],eplot=False): - - ''' - NAME: pltfig_hist - - PURPOSE: scatter-plot with histograms - - - INPUT: - - x - y - bins = hist bins (default=100) - xrng = [min,max] (default=[0,100]) - yrng = [min,max] (default=[0,100]) - labels = [xlabel,ylabel] (default=['','']) - - OUTPUT: plots figure - - REMARKS: - - - - HISTORY: - - 28 October 2020 (RUG) - - ''' - - # Set up the axes with gridspec - fig = plt.figure(figsize=(6, 6)) - grid = plt.GridSpec(4, 4, hspace=0.2, wspace=0.2) - main_ax = fig.add_subplot(grid[-3:, 0:3]) - y_hist = fig.add_subplot(grid[-3:, 3], xticklabels=[], sharey=main_ax) - x_hist = fig.add_subplot(grid[0,0:3 ], yticklabels=[], sharex=main_ax) - - # scatter points on the main axes - main_ax.plot(x, y, 'ok', markersize=3, alpha=0.2) - - main_ax.set_xlabel(labels[0]) - main_ax.set_ylabel(labels[1]) - main_ax.set_xlim([xrng[0],xrng[1]]) - main_ax.set_ylim([yrng[0],yrng[1]]) - - - def get_rp_from_e(e,ra): - - rp = ra/((2./(1-e)) - 1.) - - - return rp - - if eplot: - e_vals = np.array([0.,0.5,0.9]) - ra = np.linspace(xrng[0],xrng[1],100) - for e_val in e_vals: - rp = get_rp_from_e(e_val,ra) - main_ax.plot(ra,rp,'r--',linewidth=0.4) - - - - # histogram on the attached axes - x_hist.hist(x, bins=bins, histtype='stepfilled',orientation='vertical', color='gray',range=[xrng[0],xrng[1]]) - # x_hist.hist(x, bins=bins, histtype='step',orientation='vertical', color='gray',range=[xrng[0],xrng[1]]) - - - x_hist.tick_params(labelbottom=False,labeltop=True) - - y_hist.hist(y, bins=bins, histtype='stepfilled', - orientation='horizontal', color='gray',range=[yrng[0],yrng[1]]) - - y_hist.tick_params(labelleft=False, labelright=True) - - - return - - -def addgpos(addsun=True,addgc=True,frame='hc',coord_='cartesian',markersize=5): - - ''' - function to overplot the locations of the Sun, Galactic center etc - - - INPUT: - addsun=True - addgc=True - frame='hc' ('gc') - coord = 'cartesian' (polar) - - - - ''' - - xsun = get_lsr()['xsun'] - Rsun = get_lsr()['Rsun'] - - if addsun: - - if coord_ == 'cartesian': - - if frame =='hc': - plt.plot(xsun,0.,marker='*',markersize=markersize,color='black') - - - if coord_ == 'polar': - - if frame =='gc': - plt.plot(Rsun,180.,marker='*',markersize=markersize,color='black') - - - if addgc: - - - if coord_ == 'cartesian': - - if frame =='gc': - plt.plot(0.,0.,marker='+',markersize=markersize,color='black') - - if coord_ == 'polar': - if frame =='gc': - plt.plot(0,0.,marker='+',markersize=markersize,color='black') - - - - return - - -def smoother_(image_,sigma=1,truncate=5,donoth=False): - - ''' - smooth out an image - # sigma = standard deviation for Gaussian kernel - # truncate = truncate filter at this many sigmas - - March 15, 2022 RUG - - ''' - - if donoth: - return image_ - - else: - import numpy as np - import scipy as sp - import scipy.ndimage - - - U = image_.copy() - - V=U.copy() - V[np.isnan(U)]=0 - VV=sp.ndimage.gaussian_filter(V,sigma=sigma,truncate=truncate) - # VV=sp.ndimage.median_filter(V,size=sigma) - - W=0*U.copy()+1 - W[np.isnan(U)]=0 - WW=sp.ndimage.gaussian_filter(W,sigma=sigma,truncate=truncate) - # WW=sp.ndimage.median_filter(W,size=sigma) - - img=VV/WW - - # mask out smear beyond data - indf = np.where(np.isnan(image_.flatten()))[0] - i3 = img.copy().flatten() - i3[indf] = np.nan - i4 = np.reshape(i3,img.shape) + continf = dtools.clevel(h2,levels=clevels,colors=cntcolor,coords=True) + + return vals,h2,continf + else: + return vals,h2,tmpvals - - return i4 - -# under construction # -def smoothroutine2(i,addons): - - x = addons['x'] - y = addons['y'] - kernel_epan = addons['kernel_epan'] - Deltapix_x = addons['Deltapix_x'] - Deltapix_y = addons['Deltapix_y'] - Deltapix_x_large = addons['Deltapix_x_large'] - Deltapix_y_large = addons['Deltapix_y_large'] - coords = addons['coords'] - - prod_bandwidth = addons['prod_bandwidth'] - prod_bandwidth_large = addons['prod_bandwidth_large'] - - this_x= coords[i][0] - this_y= coords[i][1] - - # - ker_x,n_data = kernel_epan(this_x,x,Deltapix_x) - ker_y,n_data = kernel_epan(this_y,y,Deltapix_y) - - # - ker_xy=np.sum(ker_x*ker_y) - dens=ker_xy/(n_data*prod_bandwidth) - - # - #---------------------------------------------------- - # - ker_x_large,n_data=kernel_epan(this_x,x,Deltapix_x_large) - ker_y_large,n_data=kernel_epan(this_y,y,Deltapix_y_large) - - - - # - ker_xy_large=np.sum(ker_x_large*ker_y_large) - mean_dens=ker_xy_large/(n_data*prod_bandwidth_large) - - - over_dens_grid_local=(dens-mean_dens)/np.double(mean_dens) - # - res = {} - res['i'] = np.array([i]) - res['this_x'] = np.array([this_x]) - res['this_y'] = np.array([this_y]) - res['over_dens_grid_local'] = np.array([over_dens_grid_local]) - # # dtools.picklewrite(res,'rub1',desktop) - - - return res -class smoother2_(object): - - ''' - - smoothing code (Eloisa + ) - - ''' - def __init__(self,data=None,ncpu=5): - print('') - - self.ncpu = ncpu - self.data = data - - def kernel_epan(self,x_point,x_data,h): +def data_hist2d_(data,xmin=-40,xmax=40,ymin=-40,ymax=40, + zmin=-40,zmax=40,hbins=None,hbinsx=10, + hbinsy=10,hbinsz=10,plt=False,xy=False,xz=False,yz=False,normed=False): - ker=np.zeros(len(x_data)) #final kernel - var=(x_point-x_data)/np.double(h) #my variable - n_data=len(x_data); self.n_data = n_data - i_in=np.where(abs(var) < 1) - - if ( len(ker[i_in]) > 0): - ker[i_in]=(1. - (var[i_in])**2)*3./4. #(1.- (var[i_in]^2) )*3./4. + - - return ker,n_data - - - - def mainstuff(self,x=[],xmin=-1,xmax=1,binsx=10,y=[],ymin=-1,ymax=1,binsy=10,meth=1): - - xstep = (xmax - xmin)/binsx - ystep = (ymax - ymin)/binsy - - kernel_epan = self.kernel_epan - - xvalues=np.arange(start=xmin,stop=xmax,step=xstep) - yvalues=np.arange(start=ymin,stop=ymax,step=ystep) - + d1 = data.copy() - nx=len(xvalues) - ny=len(yvalues) - - self.xvalues = xvalues - self.yvalues = yvalues - - xgrid=np.zeros([nx,ny]) - ygrid=np.zeros([nx,ny]) - dens_grid=np.zeros([nx,ny]) - over_dens_grid=np.zeros([nx,ny]) + xbins,ybins,zbins = hbins,hbins,hbins + if hbins == None: + xbins,ybins,zbins = hbinsx,hbinsy,hbinsz - - Deltapix_x=0.02 #define one value for the "local" bandwith in Z. - Deltapix_y=1.2 #define one value for the "local" bandwith in Vz. - prod_bandwidth=Deltapix_x*Deltapix_y - - Deltapix_x_large=4.*Deltapix_x - Deltapix_y_large=4.*Deltapix_y - - prod_bandwidth_large=Deltapix_x_large*Deltapix_y_large - + print(xbins,ybins,zbins) - addons = {} - addons['x'] = x - addons['y'] = y - addons['kernel_epan'] = kernel_epan - addons['Deltapix_x'] = Deltapix_x - addons['Deltapix_y'] = Deltapix_y - addons['Deltapix_x_large'] = Deltapix_x_large - addons['Deltapix_y_large'] = Deltapix_y_large - addons['prod_bandwidth'] = prod_bandwidth - addons['prod_bandwidth_large'] = prod_bandwidth_large + if xy: + print('xy projection') + print('xmin,xmax = '+str(xmin)+','+str(xmax)) + print('ymin,ymax = '+str(ymin)+','+str(ymax)) + h1 = sutil.hist_nd([d1['pxgc'],d1['pygc']],bins=[xbins,ybins],normed=normed,range=[[xmin,xmax], [ymin,ymax]]) - iniz=-0.4 ; fin=0.4 ; N_levels=40 ; self.levels=np.linspace(iniz,fin,N_levels) - if meth == 3: - - print('using pool..') - ncpu = self.ncpu - print('running on ..'+str(ncpu)) - - X,Y = np.meshgrid(xvalues,yvalues) - xygrid = np.array([X.ravel(), Y.ravel()]).T - addons['coords'] = xygrid - - indres = np.arange(xygrid.shape[0]) - # # indres = np.arange(100) - from multiprocessing import Pool - p=Pool(ncpu) - overdens_smooth_intmd = p.map(partial(smoothroutine2,addons=addons), indres) - data_pd={} - for key in overdens_smooth_intmd[0].keys(): - data_pd[key]=np.concatenate([d[key] for d in overdens_smooth_intmd]).transpose() - - self.over_dens_grid = data_pd['over_dens_grid_local'].reshape(binsx,binsy) - # self.xvalues = data_pd['this_x'] - # self.yvalues = data_pd['this_y'] - - p.close() - - elif meth == 4: - - for ix in np.arange(0,nx): - print(ix) - for iy in np.arange(0,ny): - this_x=xvalues[ix] - this_y=yvalues[iy] - # - ker_x,n_data = kernel_epan(this_x,x,Deltapix_x) - ker_y,n_data = kernel_epan(this_y,y,Deltapix_y) - - - - # - ker_xy=np.sum(ker_x*ker_y) - dens=ker_xy/(n_data*prod_bandwidth) - dens_grid[ix,iy]=dens - # - #---------------------------------------------------- - # - ker_x_large,n_data1=kernel_epan(this_x,x,Deltapix_x_large) - ker_y_large,n_data1=kernel_epan(this_y,y,Deltapix_y_large) - # - ker_xy_large=np.sum(ker_x_large*ker_y_large) - mean_dens=ker_xy_large/(n_data*prod_bandwidth_large) - over_dens_grid[ix,iy]=(dens-mean_dens)/np.double(mean_dens) - # - xgrid[ix,iy]=this_x - ygrid[ix,iy]=this_y - self.over_dens_grid = over_dens_grid - - - - - def plotit(self): - - iniz=-0.2 - fin=0.2 - N_levels=40 - levels=np.linspace(iniz,fin,N_levels) - cset1 = plt.contourf(smt.xvalues, smt.yvalues,smt.over_dens_grid.T, levels=levels, cmap='seismic') - - cbar=plt.colorbar(mappable=cset1,orientation='vertical') - - cbar.set_label('Overdensity', fontsize=18) - - # cbar.ax.tick_params(labelsize=18) - - # plt.xlabel('Z (kpc)', fontsize=18) - # plt.ylabel('Vz (km/s)', fontsize=18) - # plt.xticks(fontsize=18) - # plt.yticks(fontsize=18) - # #plt.xlim([-4.5,4.]) - # #plt.ylim([-5.4,5.]) - # plt.show() - - plt.savefig(desktop+'/rubfigs/test.png') - - - return + elif xz: + print('xz projection') + print('xmin,xmax = '+str(xmin)+','+str(xmax)) + print('zmin,zmax = '+str(zmin)+','+str(zmax)) -def usharp(myimg,radius=2,amount=200): - - from skimage.filters import unsharp_mask - from skimage.filters import gaussian - from skimage import io, img_as_float + h1 = sutil.hist_nd([d1['pxgc'],d1['pzgc']],bins=[xbins,zbins],normed=normed,range=[[xmin,xmax], [zmin,zmax]]) + elif yz: + print('yz projection') + print('ymin,ymax = '+str(ymin)+','+str(ymax)) + print('zmin,zmax = '+str(zmin)+','+str(zmax)) + h1 = sutil.hist_nd([d1['pygc'],d1['pzgc']],bins=[ybins,zbins],normed=normed,range=[[ymin,ymax], [zmin,zmax]]) - unsharped_img = unsharp_mask(myimg,radius=radius,amount=amount,preserve_range=True) - - - - return unsharped_img - -#................. - -# spectroscopy etc -def Z2XY_abun(Z): - ''' - using relations given in Onno Pols et al. 1998, MNRAS 298, 525-536 - ''' - X = 0.76 - 3*Z - Y = 0.24 + 2*Z - return X,Y -def feh2Z(feh,Zsolar=0.019,A=1.0): - ''' - using relations given in Onno Pols et al. 1998, MNRAS 298, 525-536 - X = 0.76 - 3*Z - Y = 0.24 + 2*Z - Z = 0.76f/(1+ 3f) - where f = 10^(M/H) *(Zsolar/Xsolar) - ''' - Xsolar, Ysolar = Z2XY_abun(Zsolar) + print(h1.data.shape) - meh = A*feh - f = (10**meh)*(Zsolar/Xsolar) - Z = (0.76*f)/(1 + 3*f) - return Z -def Z2feh(Z,Zsolar=0.019,A=1.0): - Xsolar, Ysolar = Z2XY_abun(Zsolar) + return h1 +def data_hist3d_(data,xmin=-40,xmax=40,ymin=-40,ymax=40, + zmin=-40,zmax=40,hbins=None,hbinsx=10,hbinsy=10,hbinsz=10): - f = Z/(0.76 - 3*Z) - meh = np.log10(f/(Zsolar/Xsolar)) + d1 = data.copy() - feh = A*meh + xbins,ybins,zbins = hbins,hbins,hbins + if hbins == None: + xbins,ybins,zbins = hbinsx,hbinsy,hbinsz - return feh -def get_galaxia_mtip_new(log_age=1.,feh=1.): - - ''' - INPUT: (as arrays of size>1) - log_age = log10(Age/yr) - feh = [Fe/H] - - OUTPUT: - mtip_new - ''' - import sutil_sanj - - HOME = getdirec('home') - loc = HOME+'/GalaxiaData' - - d = ebf.read(loc+'/feh_age_mtip.ebf','/') - sgrid=sutil_sanj.InterpGrid(tab.npstruct(d),['feh','log_age']) - mtip_new = sgrid.get_values('mtip',[feh,log_age],fill_value='nearest',method='linear') - return mtip_new -def m_h_from_feh(feh=0.,a_feh=0.): - - ''' - input: - feh: [Fe/H] - a_feh: [alpha/Fe] - - Output: - [M/H] - - reference: Salaris & Cassisi, Evolution of Stars and Stellar Populations - ''' - f_alpha = 10.**(a_feh) - m_h = feh + np.log10(0.694*f_alpha + 0.306) - return m_h -def feh_from_m_h(m_h=0.,a_feh=0.): - - ''' - input: - m_h: [M/H] - a_feh: [alpha/Fe] - - Output: - [Fe/H] - - reference: Salaris & Cassisi, Evolution of Stars and Stellar Populations - ''' - f_alpha = 10.**(a_feh) + h1 = sutil.hist_nd([d1['pxgc'],d1['pygc'],d1['pzgc']],bins=[xbins,ybins,zbins],normed=False,range=[[xmin,xmax], [ymin,ymax], [zmin,zmax]]) - feh = m_h - np.log10(0.694*f_alpha + 0.306) - return feh -def rc_teff2clr(teff,a,b,c): - ''' Here a,b and c are quadratic coeffecients: - a(x^2) + bx + c ''' - cprime = (c) - (5040./teff) - discrim_sqrt = np.sqrt((b**2.0) - (4*a*cprime)) - clr = (-b + discrim_sqrt)/(2*a) - - return clr -def rc_clrzero(feh,teff,method='direct'): - ''' RETURNS jk_0 FROM [Fe/H] & Teff ''' - - HOME = getdirec('phddir') - glxdir = getdirec('galaxia') - - if method == 'direct': - - print('') - + + return h1 - ############################################ - ## [teff, Feh] to clr (direct method) - ############################################ - import calibrations_direct +#-------------------------------------------------- - calib_file = 'k18rc_jk_teff_feh_coeff.pkl' - - # popt_pop = ebf.read(HOME+'/GalaxiaWork/calibrations/now_direct/calib_res_direct.ebf')['clumps'] - popt_pop = dtools.pickleread(glxdir+'/'+calib_file) - popt = np.array([popt_pop[1],popt_pop[2],popt_pop[3],popt_pop[4],popt_pop[5],popt_pop[6]]) - popt = popt.astype(np.float) - - xs = np.array([feh,teff]) - clr = (calibrations_direct.func(xs,popt[0],popt[1],popt[2],popt[3],popt[4],popt[5],prnt=True)) - - - elif method == 'inverted': - - ############################################ - ## teff2clr (inverted method) - ############################################ - - pop = 'clumps'; usemet='n' - out=np.loadtxt(HOME+'/GalaxiaWork/calibrations/calib_res.txt', dtype=str,usecols=(0,1,2,3,4,5,6,7,8)) - for i in range(len(out)): - if pop in out[i,0] and usemet in out[i,1]: - c,b,a = float(out[i,2]),float(out[i,3]),float(out[i,4]) - - clr = rc_teff2clr(teff,a=a,b=b,c=c) - - return clr -def distance_rc(j,ks,teff,logg,feh,akval=[]): - ''' - 1. f(i) = A(i)/E(B-V); use GALAXIA tables --> UKIRT J & K - 2. red-clump Mk-[Fe/H] curve valid for -0.8<[Fe/H]<0.4 - - ''' - print('using new Ak correction') - print('') - print('reading Mks_[Fe/H] interp file') - glxdir = getdirec('glxdir') - loc = glxdir+'/calibrations' - - nam_intp_file = 'absks_feh_intp_tmasswise_direct' - absks_feh_intp = ebf.read(loc+'/'+nam_intp_file+'.ebf') - f = interp1d(absks_feh_intp['feh_intp'],absks_feh_intp['absks_intp'],bounds_error=False,fill_value=(absks_feh_intp['absks_intp'][0],absks_feh_intp['absks_intp'][-1])) - #mk_intp = np.interp(feh,absks_feh_intp['feh_intp'],absks_feh_intp['absks_intp']) - correct this - requires sorted arrays!! - mk_intp = f(feh) - #print('mk_curve is :') - #print(mk_intp) - - #print(absks_feh_intp) - #plt.plot(feh,mk_intp,'r.') - aebv = aebv_galaxia() - fj=aebv.info('TMASSWISE_J')[2] #0.88579 - fk=aebv.info('TMASSWISE_Ks')[2] #0.36247 +def profile(x,z,bins=100,range=None,label=None,mincount=3,fmt='-o',markersize=2,color='',meanerror=False,style=None,func=None,lw=None,return_profile=False,return_bins=False,fig=True): + """ + style: ['lines','fill_between,'errorbar'] - if akval == []: - clr = rc_clrzero(feh,teff,method='direct') - ak=fk*((j-ks)-clr)/(fj-fk) - else: - ak = akval[0] + To add: bootstrapping errors + """ - - return autil.dmod2dist(ks-mk_intp-ak) -def selfunc_rc(teff,logg,feh,mthd='direct',clr=[]): - print('selecting red-clumps (Bovy"s method but using abs_j,ks etc)') - - zsolar = 0.019 - mydata = {'teff':teff,'logg':logg,'feh':feh} - mydata['Zmet'] = (10**(mydata['feh']))*zsolar - - if clr == []: - mydata['clr'] = rc_clrzero(mydata['feh'],mydata['teff'],method=mthd) + if lw == None: + lw=5.0 + #style=['lines','fill_between','errorbar'] + ind=np.where(np.isfinite(x)&np.isfinite(z))[0] + x=x[ind] + z=z[ind] + h=sutil.hist_nd(x,bins=bins,range=range) + ind1=np.where(h.data>=mincount)[0] + if func is None: + ym=h.apply(z,np.median)[ind1] else: - print('using true colours') - mydata['clr'] = clr[0].copy() + ym=h.apply(z,func)[ind1] + xm=h.locations[0][ind1] + yl=h.apply(z,np.percentile,16)[ind1] + yh=h.apply(z,np.percentile,84)[ind1] + if meanerror: + yl=ym+(yl-ym)/np.sqrt(h.data[ind1]) + yh=ym+(yh-ym)/np.sqrt(h.data[ind1]) - ############################################ - ## SELECT RED-CLUMPS - ############################################ - teff_ref = -(382.5*mydata['feh']) + 4607 - loggup = 0.0018*(mydata['teff'] - teff_ref) + 2.5 - zlower = 1.21*((mydata['clr'] -0.05)**9.0) + 0.0011; - zupper = 2.58*((mydata['clr'] -0.40)**3.0) + 0.0034 - - - cond1 = (mydata['clr'] > 0.5)&(mydata['clr'] < 0.8) - cond2 = (mydata['logg']>= 1.8)&(mydata['logg']<= loggup) - cond3 = (mydata['feh']>=-0.8)&(mydata['feh']<= 0.4) - cond4 = (mydata['Zmet']<= 0.06)&(mydata['Zmet']>=zlower)&(mydata['Zmet']<=zupper) - #cond4 = 1 - - cond = cond1&cond2&cond3&cond4 - return cond - - -# Fourier -def psd2d_old(image,binsize,dx,dy,pad=0): - import bovy_psd - - ''' - OLD VERSION - ''' - - #image=image-np.mean(image[True-np.isnan(image)]) - image=image-np.mean(image[True ^ np.isnan(image)]) - image[np.isnan(image)]= 0. - - image=image-np.mean(image) - temp= np.fft.fftshift(np.fft.fft2(image,s=((1+pad)*image.shape[0]+1,(1+pad)*image.shape[1]+1))) - if pad == 0: - temp= np.fft.fftshift(np.fft.fft2(image,s=((1+pad)*image.shape[0],(1+pad)*image.shape[1]))) - - nxbins = image.shape[0] - nybins = image.shape[1] - - Lx = image.shape[0]*dx - Ly = image.shape[1]*dy - Lbovx = 6.75 - Lbovy = 6.75 - - #nom_cor = dx*dy*0.01716 #64./(((nxbins*nybins)**2.)*dx*dy) # to match Bovy 2015 - #nom_cor =4./((nxbins*nybins)**2.) - #bv_cor = 16. * (((Lx*Ly)/(Lbovx*Lbovy))**2.) - #hf=np.power(np.abs(temp),2.0)*nom_cor*bv_cor - - - hf=np.power(np.abs(temp),2.0)*(dx*dy)*0.01716 - - - x=np.fft.fftshift(np.fft.fftfreq(temp.shape[0],dx)) - y=np.fft.fftshift(np.fft.fftfreq(temp.shape[1],dy)) - - binsize=binsize/(temp.shape[0]*dx) - - x2,y2=np.meshgrid(x,y,indexing='ij') - r = np.hypot(x2, y2) - nbins = int(np.round(r.max() / binsize)+1) - maxbin = nbins * binsize - - h1=sutil.hist_nd(r.flatten(),bins=nbins,range=[0,maxbin]) - res=h1.apply(hf.flatten(),np.mean) - loc=h1.locations[0] - - return loc*2.1,res -def psd2d(image,binsize,dx,dy,pad=0): - import bovy_psd - ''' - FROM SANJIB: OCTOBER 01, 2018 - ''' - - - fac=np.sum(np.isfinite(image))*1.0/np.prod(image.shape); #print('fac = '+str(fac)); print('imshape = ='+str(np.prod(image.shape))) - image=image-np.nanmean(image) - image[np.isnan(image)]= 0.0 - temp= np.fft.fftshift(np.fft.fft2(image,s=((1+pad)*image.shape[0]+1,(1+pad)*image.shape[1]+1))) - hf=(np.power(np.abs(temp),2.0)*dx*dy/(np.prod(image.shape)*fac)) - x=np.fft.fftshift(np.fft.fftfreq(temp.shape[0],dx)) - y=np.fft.fftshift(np.fft.fftfreq(temp.shape[1],dy)) - binsize=binsize/(temp.shape[0]*dx) - x2,y2=np.meshgrid(x,y,indexing='ij') - r = np.hypot(x2, y2) - nbins = int(np.round(r.max() / binsize)+1) - # # print('testing................') - # # print(nbins) - # # print('.........') - maxbin = nbins * binsize - h1=sutil.hist_nd(r.flatten(),bins=nbins,range=[0,maxbin]) - res=h1.apply(hf.flatten(),np.mean) - loc=h1.locations[0] - - #print np.sum(hf)*(x[1]-x[0])*(y[1]-y[0]),np.sum(image*image)/(np.prod(image.shape)*fac),np.trapz(res[0:-1]*loc[0:-1]*2*np.pi,loc[0:-1]),fac - #ind = np.where(np.isfinite(res))[0] - #print(np.sum(res[ind]*2.*np.pi*loc[ind]*(loc[1]-loc[0])) ) - return loc*2.1,res - - - -# vizier -def get_vizier(catalog): - nam = {'gaiadr2':'vizier:I/345/gaia2', - 'gaiaedr3':'vizier:I/350', - 'wise':'vizier:II/311/wise', - 'allwise':'vizier:II/328/allwise', - 'unwise':'vizier:II/363/unwise', - 'catwise':'vizier:II/365/catwise', - 'panstarrs':'vizier:II/349/ps1', - 'sdss':'vizier:V/147/sdss12', - 'harris': 'vizier:VII/202/catalog', - 'spitzer':'vizier:II/293/glimpse', - 'dodddr3':'J/A+A/670/L2', - 'twomass':'vizier:II/246/out'} - - return nam[catalog] -def mk_upload(data,FILENAME='tst',FORMAT='csv',loc='',rakey='ra',deckey='dec',**kwargs): - ''' - creates .csv file - - ''' - from astropy.table import Table, Column - from astropy.io import ascii - - - mydata={} - mydata[rakey] = data[rakey] - mydata[deckey] = data[deckey] - idkey = kwargs['idkey'] - mydata[idkey] = data[idkey] - - #mydata['_2mass'] = data['_2mass'] - - tab = Table(mydata) - - if loc == '': - loc = os.getcwd() - - fullname =loc+'/'+FILENAME+'.'+FORMAT - tab.write(fullname,format='csv',names=list(mydata.keys()),overwrite=True) - - print('') - print('file written') - return tab -def cmatch(data,radius=5.,cat2='vizier:I/345/gaia2',colra1='ra',coldec1='dec',outname='mydata',match_key='source_id',loc='',write_as='fits'): - from astropy import units as u - from astroquery.xmatch import XMatch - from astropy.table import Table, Column - from astropy.io import ascii - - if loc == '': - loc = os.getcwd() - - print('') - print('Cross-matching with '+cat2) - mk_upload(data,rakey=colra1,deckey=coldec1,idkey=match_key,loc=loc) - - data_temp = XMatch.query(cat1=open(loc+'/tst.csv'),cat2=cat2,max_distance=radius * u.arcsec,colRA1=colra1,colDec1=coldec1) - #table = XMatch.query_async(cat1=open(cat1),cat2=cat2,max_distance=radius * u.arcsec,colRA1=colra1,colDec1=coldec1) - - print(data_temp) - kyuse = '' - for ky in data_temp.keys(): - if ky.startswith('ra'): - kyuse = ky - - print(data_temp[ky].size) - print('joining...') - tabpy.ljoin(data,data_temp,match_key,match_key) - - for ky in data.keys(): - if ky.startswith('ang'): - tabpy.sortby(data,ky) - - tabpy.unique(data,match_key) - - print('') - print('----------') - if write_as == 'fits': - dt = Table(data) - dt.write(loc+'/'+outname+'.fits',format='fits',overwrite=True) - print('File written to '+loc) - if write_as == 'ebf': - ebfwrite(data,outname,loc) - print('File written to '+loc) - - - - return data -def topcatxm(in1,in2,outfile): - - print('') - - os.system('topcat -stilts tmatch2 in1='+in1+' in2='+in2+'\ - join=1and2 matcher=exact values1=source_id values2=source_id find=best ofmt=colfits-plus out='+outfile) - - - return - - - -def xmatch_topcat(floc1,floc2,floc3,radius=5): - ''' - all with full path: - floc1 = first file - floc2 = second file - floc3 = save file - radius = arcseconds - ''' - - os.system('topcat -stilts tskymatch2 in1='+floc1+' in2='+floc2+' ra1=ra dec1=dec ra2=ra dec2=dec join=1and2 find=best error='+str(radius)+' ofmt=colfits-plus out='+floc3) - - return - -# Extinction - - - -def redden_fac(maptype=''): - ''' - - maptype: '' == uses Galaxia values - maptype: 'bayestar3d' == uses values as in Bayestar - - HISTORY: 14 November 2019 (RUG) - 21 JUNE 2021 (RUG) - - Purpose: Returns multiplicative factor to convert reddening E(B-V) - - 1. from Cassagrande & Vandenburg 2018, for Gaia bands - 2. from Green et al. 2019, in to extinction for PANSTARS and 2MASS bands. + if fig: + + if style == 'fill_between': + plt.fill_between(xm,yl,yh,interpolate=True,alpha=0.25,label=label,color=color) + elif style == 'errorbar': + #plt.errorbar(xm,ym,yerr=[ym-yl,yh-ym],fmt=color+'-o',label=label,lw=lw) + #plt.errorbar(xm,ym,yerr=[ym-yl,yh-ym],fmt=color,label=label,lw=lw) #restore!! #+'-*' + plt.errorbar(xm,ym,yerr=[abs(ym-yl),abs(yh-ym)],fmt=color,label=label,lw=lw) #restore!! #+'-*' + #plt.errorbar(xm,ym,yerr=[0.5*(yh-yl),0.5*(yh-yl)],fmt=color+'-*',label=label,lw=lw) - ''' - - - aebv=aebv_galaxia() + elif style == 'lines': + if color == '': + color=plt.gca()._get_lines.get_next_color() + plt.plot(xm,ym,fmt,label=label,color=color,lw=lw,markersize=markersize) + plt.plot(xm,yl,'--',color=color,lw=lw) + plt.plot(xm,yh,'--',color=color,lw=lw) + else: + if fig: #added by Shourya (August 9, 2018) + #plt.plot(xm,ym,color+fmt,label=label,lw=lw) + plt.plot(xm,ym,fmt,label=label,color=color,lw=lw,markersize=markersize) + # plt.plot(xm,ym,color+'-',label=label,lw=lw) - - val= {'jmag': aebv.info('TMASSWISE_J')[2], - 'hmag': aebv.info('TMASSWISE_H')[2], - 'kmag': aebv.info('TMASSWISE_Ks')[2], - 'phot_g_mean_mag': 2.74, - 'bp': 3.374, - 'rp': 2.035} - - - if maptype == 'bayestar3d': - val['gP1'] = 3.518 - val['rP1'] = 2.617 - val['iP1'] = 1.971 - val['zP1'] = 1.549 - val['yP1'] = 1.263 - val['jmag'] = 0.7927 - val['hmag'] = 0.4690 - val['kmag'] = 0.3026 - - - - wise='WISE_W' - for num in [1,2,3,4]: - # val['w'+str(num)+'mag']=aebv.info(wise+str(num))[2] - val['w'+str(num)+'mag']=aebv.info('TMASSWISE_W'+str(num))[2] - val['w'+str(num)+'mpro']=aebv.info('TMASSWISE_W'+str(num))[2] - - # val['w1mpro'] = val['bp']/125.6 - # val['w2mpro'] = val['bp']/138.5 - return val - -def deredden_map(): - mags={'jmag':'2mass_j', 'kmag':'2mass_ks','hmag':'2mass_h', 'w1mag':'wise_w1', 'w2mag':'wise_w2', 'w3mag':'wise_w3', 'w4mag':'wise_w4', 'phot_g_mean_mag':'gaia_g'} + ncount= [] + indset = [] + for i in np.arange(h.bins): + ncount.append(h.indices(i).size) + indset.append((h.indices(i))) + ncount = np.array(ncount, dtype=object) + indset = np.array(indset, dtype=object) - return mags -class aebv_galaxia(object): - ''' - NAME: - PURPOSE: aebv factors from GALAXIA + if return_profile and return_bins: + return xm,ym,ncount[ncount>=mincount],indset, 0.5*(abs(ym-yl) + abs(yh-ym)) + elif return_profile: + return xm,ym - INPUT: bandname - OUTPUT: 'name, lambda, fac' - - HISTORY: 10 April 2020 - ''' - def __init__(self): - - filename=getdirec('galaxia')+'/Isochrones/aebv_factor.ebf' - self.aebv_file = ebf.read(filename) - self.aebv_file['filter'] = self.aebv_file['filter'].astype(str) - - self.get_bands() - def get_bands(self): - - val = self.aebv_file['filter'] - return val - - def info(self,band): - - if band in self.aebv_file['filter']: - - indf = np.where(self.aebv_file['filter']==band)[0] - #print('name, lambda, fac') - return self.aebv_file['filter'][indf][0], self.aebv_file['lambda_eff'][indf][0],self.aebv_file['aebv_factor'][indf][0] - - else: - raise Exception('check bandname') -def deredden(glon,glat,mag1=None,bandname1=None,mag2=None,bandname2=None,getebv_only=False,corrfac='bstar'): - + +# SF stuff +# # global dthist_usehier +def comp_map_prl_exec(ival,typ='global'): ''' - Estimate extinction at infinity using Schlegel maps - + INPUT: ival [pixel index from a Nd histogram] - corrfac = bstar (0.86 by default) - '' (uses the scheme in Sharma 2011, Koppelman 2020) + Purpose: Uses qnt_vec [vector of l,b,g,g_rp], to compute the completeness there + Mainly used for parallel implementation of completeness maps + + + ''' - - import gutil2 - filename=getdirec('galaxia')+'/Isochrones/aebv_factor.ebf' - - - - ext=gutil2.Extinction(GalaxiaPath=getdirec('galaxia')+'/Extinction/',filename=filename) - ebv=ext.ebv_inf(glon,glat) - - if corrfac == 'bstar': - ebv = ebv*0.86 - elif corrfac == 'koppelman': - - indcor = np.where(ebv > 0.15)[0] - - ''' - correct for overestimated Schlegel maps using the scheme in Sharma 2011 etc - - ''' - cor_fac = 0.6 + (0.2*(1 - np.tanh((ebv[indcor] - 0.15)/0.3) ) ) - ebv[indcor] = ebv[indcor]*cor_fac - + if typ == 'global': + use_sf = DR3SelectionFunctionTCG() + elif typ == 'sub': + use_sf = dtools.pickleread(sfdir+'/use_sf.pkl') + qnt_vec = dtools.pickleread(sfdir+'/qntvec.pkl') - if getebv_only: - return ebv - - - else: + l,b,g,g_rp = qnt_vec['l'][ival],qnt_vec['b'][ival],qnt_vec['phot_g_mean_mag'][ival],qnt_vec['G-Rp'][ival] + l = np.array([l]) + b = np.array([b]) + val,unc_val = gunlim_comp(l,b,g,use_sf,grp=g_rp,typ=typ) + comp_ = {} + comp_['inum'] = np.array([ival]) + comp_['compl'] = np.array([val]) + comp_['unc_compl'] = np.array([unc_val]) + - aebv_file = ebf.read(filename) - filter_names = (np.array([filters.lower() for filters in aebv_file['filter']])).astype(str) - - bandnames = {'bandname1':bandname1} - if mag2 is not None: - bandnames['bandname2'] = bandname2 + return comp_ + +def make_compl_map_parallel(step_=2000,nchunks = 250,ncpu=28,savprefix='',typ='global'): - for bandname in bandnames.keys(): - if bandnames[bandname] not in filter_names: - print(bandnames[bandname]) - print(aebv_file['filter']) - bandname = raw_input('bandname = ') ; # bandname = input('bandname = ') - bandnames[bandname] = bandname - print('') - print('dereddenning:') - print(bandnames) - + ''' + requires: - col0=ext.deredden(ebv,mag1,bandname1) + desktop/ + temp_indres - if mag2 is not None: - col0=ext.deredden(ebv,mag1,bandname1)-ext.deredden(ebv,mag2,bandname2) - return col0, ebv - -def extmapsanj(l,b,r): - - ''' - function to interpolate extinction from 2D and 3D maps - - NAME: extmapsanj - - PURPOSE: obtain ebv using Sanjib's interpolated extinction map - - INPUT: l,b,r - - OUTPUT: ebv-2d, ebv-3d, intfac - - HISTORY: August 16, 2022 - + qntvec + sf ''' - l = np.array(l) - b = np.array(b) - r = np.array(r) - - data = {} - data['glon'] = l.copy() - data['glat'] = b.copy() - data['rad'] = r.copy() - - import scipy.interpolate - - GalaxiaPath=getdirec('galaxia')+'/Extinction/' - x=np.zeros((data['glon'].size,3),dtype='float64') - x[:,0]=data['glon'] - x[:,1]=data['glat'] - x[:,2]=np.log10(data['rad']) - data3d=ebf.read(GalaxiaPath+'ExMap3d_1024.ebf','/ExMap3d.data') - xmms3d=ebf.read(GalaxiaPath+'ExMap3d_1024.ebf','/ExMap3d.xmms') - points3d=[xmms3d[i,0]+np.arange(data3d.shape[i])*xmms3d[i,2] for i in range(data3d.ndim)] - data2d=ebf.read(GalaxiaPath+'Schlegel_4096.ebf','/ExMap2d.data') - xmms2d=ebf.read(GalaxiaPath+'Schlegel_4096.ebf','/ExMap2d.xmms') - points2d=[xmms2d[i,0]+np.arange(data2d.shape[i])*xmms2d[i,2] for i in range(data2d.ndim)] - temp3d=scipy.interpolate.interpn(points3d,data3d,x,bounds_error=False,fill_value=None,method='linear') - temp2d=scipy.interpolate.interpn(points2d,data2d,x[:,0:2],bounds_error=False,fill_value=None,method='linear') - data['exbv_schlegel_inf']=temp2d - data['exbv_schlegel']=temp2d*temp3d + from multiprocessing import Pool + from functools import partial + indres = dtools.pickleread(sfdir+'/temp_indres.pkl') - return temp2d, temp2d*temp3d, temp3d - - - -class deredden_3d(object): - - ''' - NAME: deredden_3d from schlegel + os.system('rm -rf '+desktop+'/runtime') + os.system('mkdir '+desktop+'/runtime') - PURPOSE: estimate 3d extinction from 2d Schlegel maps by correcting using the methods in Binney 2014 + Koppelman 2020 and Sharma 2011 + inum = 0 + maxchunks_,remainstars_ = maxchunks(indres.size,step_) - - ** has to be done star-by-star!! + timeit.begin() - INPUT: - l (degrees) - b (degrees) - d (kpc) - mag - mag_map + while inum < nchunks and inum <= maxchunks_ : - OUTPUT: a_val, mag0, intfac(ratio) - - HISTORY: 28 April 2020 [Groningen] - : 02 September 2022 [Torino] - - need to add a line to apply only to R > Rwarp and Rflare + if inum < maxchunks_: - ''' - def __init__(self): - - - self.constants() + inddelta = step_+(inum*step_) + indx = indres[inum*step_:inddelta] + nall = indx.size + elif remainstars_ > 0: - - def constants(self): - - - self.Rsun = get_lsr()['Rsun'] - self.zsun = get_lsr()['zsun'] - self.hr = 4.2 #kpc - self.hz = 0.088 #kpc - self.yflare = 0.0054 #kpc^-1 - self.ywarp = 0.18 #kpc^-1 - - self.Rflare = 1.12*self.Rsun #kpc - self.Rwarp = 8.4 #kpc - - - return - - - def dum(self,rterm): - l = self.l - b = self.b - - R,lgc = self.getcoords(l,b,rterm) - - self.kflare = 1. + (self.yflare*(np.min([self.Rflare,R-self.Rflare]) )) - self.zwarp= (self.ywarp*(np.min([self.Rwarp,R-self.Rwarp]) )*np.sin(np.radians(lgc))) - - a1 = (np.cos(np.radians(b)))**2. - a2 = (-2.)*self.Rsun*(np.cos(np.radians(b)))*(np.cos(np.radians(l))) - a3 = (self.Rsun)**2. - a4 = (np.sin(np.radians(b))) - - tmp1 = np.exp(self.Rsun/self.hr) - tmp2 = np.exp(-(( (a1*rterm**2.) + (a2*rterm) + a3)**0.5)/self.hr) - - - tmp3 = np.exp(-(abs( (a4*rterm) + self.zsun - self.zwarp) )/(self.kflare*self.hz) ) - - val = tmp1*tmp2*tmp3 - - - return val - - - def getcoords(self,l,b,distance): - - - xsun = get_lsr()['xsun'] - zsun = get_lsr()['xsun'] - - x,y,z = autil.lbr2xyz(l,b,distance) - xgc = x+xsun - zgc = z+zsun - ygc = y.copy() - - #rgcd = np.sqrt(xgc**2. + ygc**2. + zgc**2.) - rgc = np.sqrt(xgc**2. + ygc**2.) - - lgc = np.degrees(np.arctan2(ygc,xgc)) + indx = indres[-remainstars_:] + nall = indx.size - return rgc,lgc + print('inum = '+str(inum)) - def getintfac(self,l,b,r): - - # timeit = stopwatch() - # timeit.begin() + p=Pool(ncpu) + # comp_res_set = p.map(comp_map_prl_exec,indx) + comp_res_set = p.map(partial(comp_map_prl_exec, typ=typ), indx) + p.close() + timeit.end() - self.l = l - self.b = b - self.r = r + comp_res={} + for key in comp_res_set[0].keys(): + comp_res[key]=np.concatenate([d[key] for d in comp_res_set]).transpose() - func = lambda rfn : self.dum(rfn) - ts = scipy.integrate.nquad(func,ranges=[[0.,r]],full_output=True) - - # print('here...') - # timeit.end() + print('results obtained!..') + dtools.ebfwrite(comp_res,'comp_res_'+str(inum),desktop+'/runtime') - - ts1 = scipy.integrate.nquad(func,ranges=[[0.,np.inf]],full_output=True) - # print('here...') - # timeit.end() + inum+= 1 - - self.intfac = ts[0]/ts1[0] - return self.intfac - - def getmag0(self,mag,mag_map): - ''' - returns: mag0_3d, mag0_2d, Amag_3d - ''' - - l,b,r = self.l,self.b,self.r - - ## calculate a_lambda - mag0_sch,ebv_sch = deredden(l,b,mag,mag_map) - - a_mag_sch = mag - mag0_sch - - a_mag_sch_3d = self.intfac*a_mag_sch - mag0_sch_3d = mag - a_mag_sch_3d - - # return a_mag_sch_3d, mag0_sch_3d, intfac, ebv_sch - return mag0_sch_3d, mag0_sch, a_mag_sch_3d - -def chk(): - l,b,r = 187.36485163807515, -35.11673792906733, 0.6573329467773438 - myred = deredden_3d() - myred.getintfac(l,b,r) - - return - + dtools.cmb_chunks(loc=desktop+'/runtime',svloc=sfdir,refkey='inum',read_format='.ebf',svname='compl_fac_'+savprefix+'_'+typ) -def dustmap_web(l,b,d,band,version='bayestar2019'): - ''' - estimate extinction from 3d maps from Green et al. 2019 using their webserver - - l (degrees) - b (degrees) - d (kpc) +class rcselfunc(object): ''' - from astropy.coordinates import SkyCoord - import astropy.units as u - from dustmaps.bayestar import BayestarWebQuery + gaiaunlimited completeness grid stuff - l = l*u.deg - b = b*u.deg - d = (d*1000.)*u.pc + May 16, 2023 [INAF-TORINO] - coords = SkyCoord(l, b, distance=d, frame='galactic') - q = BayestarWebQuery(version=version) + # # # plt.close('all') + # # # gu = rcselfunc(magsuff='g') + # # # use_sf = 'gaia_wise_parallax'; savprefix='gaiawise' - E = q(coords, mode='median') - print('E is ...'+str(E)) + # # # dr3SubsampleSF = gu.gunlim_subsf(use_=use_sf,plot=True,plotmeth2=True,magmin=12,magmax=15,clruse=1.5,nocol=False) - rfac = redden_fac() - if band in rfac.keys(): - A_lambda = E*rfac[band] - else: - A_lambda = np.zeros(len(l)) + np.nan - return A_lambda -class dustmap_green(object): - - ''' - estimate extinction from 3d maps from Green et al. 2019 using their downloaded map - l (degrees) - b (degrees) - d (kpc) - - machine: home or huygens ''' - def __init__(self,machine='home',usemap='bayestar'): - print('') + def __init__(self,data=None,writehere='',magsuff='g',dlen=1000): - self.usemap = usemap - self.machine = machine - print('running on '+self.machine) + ''' + magsuff = 'g' or 'w1' [the magnitude used to compute distances] + ''' - if machine == 'kapteyn': - self.readloc_ = '/net/huygens/data/users/khanna/Documents/phd_work' - if machine == 'bologna': - self.readloc_ ='/home/guest/Sunny/data8/Documents/pdoc_work' - if machine == 'cluster2': - self.readloc_ =getdirec('pdocdir',at='cluster2') - - def loadit(self,max_samples=20): - - from dustmaps.bayestar import BayestarQuery - timeit=stopwatch() - timeit.begin() - - maploc = 'dustmaps/'+self.usemap - mapname = os.listdir(self.readloc_+'/'+maploc)[0] + - self.bayestar = BayestarQuery(max_samples=max_samples,map_fname=self.readloc_+'/'+maploc+'/'+mapname) + if data == None: + keepkys = ['pxgc','pygc','pzgc'] + data = {} + for ky in keepkys: + data[ky+magsuff] = np.zeros(dlen) + # raise RuntimeError('no data object provided') + + self.magsuff = magsuff + data['pxgc'] = data['pxgc'+magsuff] + data['pygc'] = data['pygc'+magsuff] + data['pzgc'] = data['pzgc'+magsuff] - timeit.end() - return - - def get(self,l,b,d,band=None,mode='median',getebv_only=False,getebv=False): + self.data = data - from astropy.coordinates import SkyCoord - import astropy.units as u - - l = l*u.deg - b = b*u.deg - d = (d*1000.)*u.pc - coords = SkyCoord(l, b, distance=d, frame='galactic') + if 'l0' in data.keys(): + self.kymap = {'l':'l0','b':'b0','phot_g_mean_mag':'g','G-Rp':'g_rp'} + else: + self.kymap = {'l':'l','b':'b','phot_g_mean_mag':'g','G-Rp':'g_rp'} + - q = self.bayestar - if mode == 'median': - E = q(coords, mode=mode) - elif mode == 'samples': - E = q(coords, mode='samples') - - if getebv_only: - - return E + qfileloc = str(fetch_utils.get_datadir())+'/gfiles/qfiles' + self.qfileloc = qfileloc - else: - - rfac = redden_fac(maptype='bayestar3d') - - if band in rfac.keys(): - A_lambda = E*rfac[band] - elif l.size == 1: - A_lambda = np.nan - else: - A_lambda = np.zeros(len(l)) + np.nan - - if getebv: - print(' A_lambda & E(B-V) ') - return A_lambda, E - else: - return A_lambda + def grid2d_(self, + xmin=-10., + xmax = 10., + ymin=-10., + ymax = 10., + zmin=-10., + zmax = 10., + hbins = None, + hbinsx = 10, + hbinsy = 10, + hbinsz = 10, + normed=False, + xy=False,xz=False,yz=False + ): -def extmaplallemant(l,b,r,typ='19'): - - - ''' - l [deg] - b [deg] - r [kpc] - - typ = '18' or '22' + + val = locals() + self.args={} + for ky in val.keys(): + if ky !='self': + self.args[ky] = val[ky] + + ddum = self.data.copy() - ''' - import imp + h1 = data_hist2d_(ddum.copy(),xmin=xmin,xmax=xmax,ymin=ymin,ymax=ymax,zmin=zmin,zmax=zmax,hbins=hbins,hbinsx=hbinsx,hbinsy=hbinsy,hbinsz=hbinsz,xy=xy,xz=xz,yz=yz,normed=normed) + + return h1 + + def grid3d_(self, + xmin=-10., + xmax = 10., + ymin=-10., + ymax = 10., + zmin=-10., + zmax = 10., + hbins = None, + hbinsx = 100, + hbinsy = 100, + hbinsz = 100, + ): - import lallement as llm + val = locals() + self.args={} + for ky in val.keys(): + if ky !='self': + self.args[ky] = val[ky] + - - if typ =='18': - lmap = llm.L18map(dustmaploc=getdirec('pdocdir')+'/dustmaps') - elif typ =='19': - lmap = llm.L19map(dustmaploc=getdirec('pdocdir')+'/dustmaps') + ddum = self.data.copy() - ebv = lmap.getebv(l,b,r,plot=True) - - return ebv - + h1 = data_hist3d_(ddum.copy(),xmin=xmin,xmax=xmax,ymin=ymin,ymax=ymax,zmin=zmin,zmax=zmax,hbins=hbins,hbinsx=hbinsx,hbinsy=hbinsy,hbinsz=hbinsz) + + return h1 + def ncheck(self,h1): + + ''' + 1. Saves qnt_vec [vector of l,b,g,g_rp] to sfdir + 2. Saves pixel indices to desktop with finite number of sources (to be run in paralell), to sfdir + ''' -# Other Astronomy (rarely used) -def periodic_dist(x1,x2,l=360.): - - ''' - To get stars around longitude=20.0 use the following function - periodic_dist(l,20,360) < 20 - - ''' - - dx=(x2-x1)%360.0 - if (hasattr(dx,"__len__") == False): - return np.min([dx,l-dx]) - else: - return np.select([dx>l*0.5],[l-dx],default=dx) -def a2age(age_a): - from astropy.cosmology import Planck15 - z = (1.0/age_a) - 1.0 - - age_giga = Planck15.lookback_time(z).value - - return age_giga -def get_absmag(mag,a_ext,dmod): - - ''' - Absolute magnitude from apparent magnitude and dmod - - ''' - - abs_mag = mag - a_ext - dmod - - return abs_mag -def get_absmag_d(mag,a_ext,d): - - ''' - Absolute magnitude from apparent magnitude and distance - - - ''' - - import uncertainties.unumpy as unumpy - - abs_mag = mag - a_ext - 10 + (5.*unumpy.log10(1./d)) + func=np.median + qnt_vec = {} + for ky in self.kymap: + print('running ..'+ky) + val = h1.apply(self.data[self.kymap[ky]],func) + qnt_vec[ky] = val.copy() + + qnt_vec['ncounts'] = h1.apply(self.data[self.kymap[ky]],len) + + self.qnt_vec = qnt_vec + dtools.picklewrite(gu.qnt_vec,'qntvec',sfdir) + + timeit.end() + # grab finite indices + ky1 = 'G-Rp' + ky2 = 'l' + cond1 = np.isfinite((self.qnt_vec[ky1])) + cond2 = np.isfinite((self.qnt_vec[ky2])) + self.indf = np.where(cond1&cond2)[0] + timeit.end() - - return abs_mag -def get_absmag_plx(mag,a_ext,parallax): - - ''' - Absolute magnitude from apparent magnitude and parallaxes - - ''' - # import uncertainties.unumpy as unumpy - - # indx = np.where(parallax<0)[0] - # parallax[indx] = np.nan - - # abs_mag = mag - a_ext - 10 + (5.*unumpy.log10(parallax)) - - abs_mag = mag - a_ext - 10 + (5.*np.log10(parallax)) - - # return abs_mag.astype(np.float32) - return abs_mag - -def get_dmod(abs_mag,a_ext,mag): - - ''' - dist modulus from Absolute magnitude - ''' - - dmod = mag - a_ext - abs_mag - return dmod - -def phi_mod(value): - - ''' - Modified Galactocentric phi (to match Katz 2018 GDR2) - ''' - #val = np.degrees(np.arctan2(y,x)) - - phi=[] - for val in value: - if val >= 0.: - val = 180. - val - elif val <= 0.: - val = -1.*(180. - abs(val)) - phi.append(val) - - return np.array(phi) -def iter_cent(part_data,rcentmax): - ## Iterative centering to return new x_cen ## - r_max = max(abs(part_data[:,0])) - ind=np.arange(part_data[:,0].size) - while (r_max > rcentmax): - xyz_cen = [np.mean(part_data[ind,0]),np.mean(part_data[ind,1]),np.mean(part_data[ind,2])] - r_new=0 - for i in [0,1,2]: - temp=(part_data[:,i]-xyz_cen[i]) - r_new+=temp*temp - r_new = np.sqrt(r_new) - ind=np.where(r_new < r_max)[0] - r_max = 0.7*r_max - - return xyz_cen, ind - - -# Healpix -def allsky_area(): - - ''' - returns the allsky surface area in degrees squared - ''' - - r = 360./(2.*np.pi) - A = 4*np.pi*(r**2.) - - return A -def pixsize2nside(pixel_size): - - ''' - - - NAME: pixsize2nside + indres = (self.indf).copy() + np.random.shuffle(indres) + timeit.end() + + self.indres = indres + dtools.picklewrite(self.indres,'temp_indres',sfdir) - PURPOSE: pixel size to nside + return - INPUT: pixel_size [degrees squared] - OUTPUT: nside - - HISTORY: March 05, 2020 (Groningen) - - - ''' + def gunlim_queries(self): + + ''' + keeps a record of the queries run on the archive to obtain statistics to pass on to SF code - import healpy as hp - - A_allsky = allsky_area() - npix = (int(A_allsky/pixel_size)) - nside = int(np.sqrt((npix/12.))) - - # nside = hp.npix2nside(int(A_allsky/pixel_size)) - return nside - + Gaia X xp : gaia_xp.fits (37 minutes) + SELECT healpix_, phot_g_mean_mag_, g_rp_, COUNT(*) AS n, SUM(selection) AS k + FROM (SELECT to_integer(GAIA_HEALPIX_INDEX(5,source_id)) AS healpix_, to_integer(floor((phot_g_mean_mag - 3)/1.)) AS phot_g_mean_mag_, to_integer(floor((g_rp - -1.0)/0.5)) AS g_rp_, to_integer(IF_THEN_ELSE(has_xp_continuous='true',1.0,0.0) ) AS selection + FROM gaiadr3.gaia_source as gdr3 + WHERE phot_g_mean_mag > 3 AND phot_g_mean_mag < 20 AND g_rp > -1 AND g_rp < 3.0) AS subquery + GROUP BY healpix_, phot_g_mean_mag_, g_rp_ -def sourceid2hpx(source_id,level=12): - ''' - source_id (has to be array or int) - level (12 by default) - - hpx id - - April 23, 2021 - February 18, 2022 - ''' - - # val = int(source_id/((2**35)*(4**(12-level)))) - val = (source_id/((2**35)*(4**(12-level)))) + Gaia X xp [Wise] no clr : eloisa_query.fits (1 hour 10 minutes) - EP paper - # if val.size > 1: - # return val.astype(int) - # else: - # return int(val) - # if type(val) != 'float'.size > 1: - # return val.astype(int) - # else: - # return int(val) + SELECT healpix_, phot_g_mean_mag_, COUNT(*) AS n, SUM(selection) AS k + FROM (SELECT to_integer(GAIA_HEALPIX_INDEX(5,source_id)) AS healpix_, to_integer(floor((phot_g_mean_mag - 4)/1.)) AS phot_g_mean_mag_, to_integer(IF_THEN_ELSE(has_xp_continuous='true',1.0,0.0) ) AS selection + FROM gaiadr3.gaia_source as gdr3 + left outer join gaiadr3.allwise_best_neighbour as wisenb USING (source_id) + WHERE phot_g_mean_mag > 4 AND phot_g_mean_mag < 15 and wisenb.source_id is not null ) AS subquery + GROUP BY healpix_, phot_g_mean_mag_ + + + + Gaia X xp [Wise] : gaia_xp_wise.fits (1 hour 10 minutes) + SELECT healpix_, phot_g_mean_mag_, g_rp_, COUNT(*) AS n, SUM(selection) AS k + FROM (SELECT to_integer(GAIA_HEALPIX_INDEX(5,source_id)) AS healpix_, to_integer(floor((phot_g_mean_mag - 3)/1.)) AS phot_g_mean_mag_, to_integer(floor((g_rp - -1.0)/0.5)) AS g_rp_, to_integer(IF_THEN_ELSE(has_xp_continuous='true',1.0,0.0) ) AS selection + FROM gaiadr3.gaia_source as gdr3 + left outer join gaiadr3.allwise_best_neighbour as wisenb USING (source_id) + WHERE phot_g_mean_mag > 3 AND phot_g_mean_mag < 20 AND g_rp > -1 AND g_rp < 3.0 and wisenb.source_id is not null ) AS subquery + GROUP BY healpix_, phot_g_mean_mag_, g_rp_ + - if isinstance(val, (float)) == False: - return val.astype(int) - else: - return int(val) - -def hpx2sourceid(hpx,level=12): - ''' - hpx id - level (12 by default) - - source_id id - - May 06, 2021 - ''' - - - source_id = hpx*((2**35)*(4**(12-level))) - + Gaia X XP [wise, rc selection using source ids]: gaia_xp_wise_rc.fits (41 minutes) + SELECT healpix_, phot_g_mean_mag_, g_rp_, COUNT(*) AS n, SUM(selection) AS k + FROM (SELECT to_integer(GAIA_HEALPIX_INDEX(5,source_id)) AS healpix_, to_integer(floor((phot_g_mean_mag - 3)/1.)) AS phot_g_mean_mag_, to_integer(floor((g_rp - -1.0)/0.5)) AS g_rp_, to_integer(IF_THEN_ELSE('source_id in (select source_id from user_skhann01.table1)' ,1.0,0.0) + ) AS selection + FROM gaiadr3.gaia_source as gdr3 + + WHERE phot_g_mean_mag > 3 AND phot_g_mean_mag < 20 AND g_rp > -1 AND g_rp < 3.0) AS subquery + GROUP BY healpix_, phot_g_mean_mag_, g_rp_ + - # if source_id.size > 1: - # return source_id.astype(int) - # else: - # return int(source_id) + Gaia X XP [catwise, rc selection using source ids]: gaia_xp_catwise_rc.fits (41 minutes) + SELECT healpix_, phot_g_mean_mag_, g_rp_, COUNT(*) AS n, SUM(selection) AS k + FROM (SELECT to_integer(GAIA_HEALPIX_INDEX(5,source_id)) AS healpix_, to_integer(floor((phot_g_mean_mag - 3)/1.)) AS phot_g_mean_mag_, to_integer(floor((g_rp - -1.0)/0.5)) AS g_rp_, to_integer(IF_THEN_ELSE('source_id in (select source_id from user_skhann01.table1)' ,1.0,0.0) + ) AS selection + FROM gaiadr3.gaia_source as gdr3 + + WHERE phot_g_mean_mag > 3 AND phot_g_mean_mag < 20 AND g_rp > -1 AND g_rp < 3.0) AS subquery + GROUP BY healpix_, phot_g_mean_mag_, g_rp_ - return int(source_id) + + Gaia X Rave : gaia_rave.fits (37 minutes) + SELECT healpix_, phot_g_mean_mag_, g_rp_, COUNT(*) AS n, SUM(selection) AS k + FROM (SELECT to_integer(GAIA_HEALPIX_INDEX(5,source_id)) AS healpix_, to_integer(floor((phot_g_mean_mag - 3)/1.)) AS phot_g_mean_mag_, to_integer(floor((g_rp - -1.0)/0.5)) AS g_rp_, to_integer(IF_THEN_ELSE(ravenb.source_id >0,1.0,0.0)) AS selection + FROM gaiadr3.gaia_source as gdr3 + left outer join gaiadr3.ravedr6_best_neighbour as ravenb USING (source_id) + WHERE phot_g_mean_mag > 3 and phot_g_mean_mag < 16 and g_rp > -1 and g_rp < 5) AS subquery + GROUP BY healpix_, phot_g_mean_mag_, g_rp_ -def sourceid2pos(source_id,level=12): - - ''' - source_id - level (12 by default) - - ra, dec, l , b - - May 06, 2021 - ''' - - from astropy_healpix import HEALPix - from astropy import units as u - - nside = 2**level - hp = HEALPix(nside, order='nested') - val = (source_id/((2**35)*(4**(12-level)))) - val = np.array(val) - - if val.size>1: - val = val.astype(int) - else: - val = int(val) + + + Gaia X WISE : gaia_wise.fits ( minutes) + + SELECT healpix_, phot_g_mean_mag_, g_rp_, COUNT(*) AS n, SUM(selection) AS k + FROM (SELECT to_integer(GAIA_HEALPIX_INDEX(5,source_id)) AS healpix_, to_integer(floor((phot_g_mean_mag - 3)/1.)) AS phot_g_mean_mag_, to_integer(floor((g_rp - -1.0)/0.5)) AS g_rp_, to_integer(IF_THEN_ELSE(wisenb.source_id >0,1.0,0.0) ) AS selection + FROM gaiadr3.gaia_source as gdr3 + left outer join gaiadr3.allwise_best_neighbour as wisenb USING (source_id) + WHERE phot_g_mean_mag > 3 AND phot_g_mean_mag < 20 AND g_rp > -1 AND g_rp < 3.0) AS subquery + GROUP BY healpix_, phot_g_mean_mag_, g_rp_ + + + Gaia X WISE [parallax]: gaia_wise_parallax.fits ( minutes) + + SELECT healpix_, phot_g_mean_mag_, g_rp_, COUNT(*) AS n, SUM(selection) AS k + FROM (SELECT to_integer(GAIA_HEALPIX_INDEX(5,source_id)) AS healpix_, to_integer(floor((phot_g_mean_mag - 3)/1.)) AS phot_g_mean_mag_, to_integer(floor((g_rp - -1.0)/0.5)) AS g_rp_, to_integer(IF_THEN_ELSE(wisenb.source_id >0,1.0,0.0) ) AS selection + FROM gaiadr3.gaia_source as gdr3 + left outer join gaiadr3.allwise_best_neighbour as wisenb USING (source_id) + WHERE phot_g_mean_mag > 3 AND phot_g_mean_mag < 20 AND g_rp > -1 AND g_rp < 3.0 and parallax is not null) AS subquery + GROUP BY healpix_, phot_g_mean_mag_, g_rp_ - - ra, dec = hp.healpix_to_lonlat([val]) # radians - ra,dec = np.degrees(ra.value)[0], np.degrees(dec.value)[0] - - l,b = autil.equ2gal(ra,dec) + + Gaia X WISE [parallax]_noclr: gaia_wise_parallax_noclr.fits ( minutes) - return ra, dec, l, b + SELECT healpix_, phot_g_mean_mag_, COUNT(*) AS n, SUM(selection) AS k + FROM (SELECT to_integer(GAIA_HEALPIX_INDEX(5,source_id)) AS healpix_, to_integer(floor((phot_g_mean_mag - 3)/1.)) AS phot_g_mean_mag_,to_integer(IF_THEN_ELSE(wisenb.source_id >0,1.0,0.0) ) AS selection + FROM gaiadr3.gaia_source as gdr3 + left outer join gaiadr3.allwise_best_neighbour as wisenb USING (source_id) + WHERE phot_g_mean_mag > 3 AND phot_g_mean_mag < 20 AND g_rp > -1 AND g_rp < 3.0 and parallax is not null) AS subquery + GROUP BY healpix_, phot_g_mean_mag_ -def hpix2pos(hpix,nside,nest=True,lonlat=True,style=''): - ''' - - hpixel - nside - - ra, dec, l , b - - * note if style == 'gaia' healpix id is passed in, it returns ra dec instead of l, b, internally corercted. - - HISTORY: 20 May, 2024 (INAF-TORINO) - - ''' - - l,b = healpy.pix2ang(nside,hpix,lonlat=lonlat,nest=nest) - ra,dec = autil.gal2equ(l,b) - - if style == 'gaia': - ra,dec = healpy.pix2ang(nside,hpix,lonlat=lonlat,nest=nest) - l,b = autil.equ2gal(ra,dec) - - return ra, dec, l, b - - -def DeclRaToIndex(decl, RA, nside): - return healpy.pixelfunc.ang2pix(nside,np.radians(decl+90.),-np.radians(360.-RA)) -def hpstatistic(nside, ra, dec, statistics='count', vals=None,nest=False): - """ - Create HEALpix map of count, frequency or mean or rms value. - :param nside: nside of the healpy pixelization - :param v: either (x, y, z) vector of the pixel center(s) or only x-coordinate - :param y: y-coordinate(s) of the center - :param z: z-coordinate(s) of the center - :param statistics: keywords 'count', 'frequency', 'mean' or 'rms' possible - :param vals: values (array like) for which the mean or rms is calculated - :return: either count, frequency, mean or rms maps - """ - - import healpy - npix = healpy.nside2npix(nside) - pix = healpy.ang2pix(nside,ra, dec,lonlat=True,nest=nest) - - - - n_map = np.bincount(pix, minlength=npix) - if statistics == 'count': - v_map = n_map.astype('float') - elif statistics == 'frequency': - v_map = n_map.astype('float') - v_map /= max(n_map) # frequency [0,1] - elif statistics == 'mean': - if vals is None: - raise ValueError - v_map = np.bincount(pix, weights=vals, minlength=npix) - v_map /= n_map # mean - elif statistics == 'rms': - if vals is None: - raise ValueError - v_map = np.bincount(pix, weights=vals ** 2, minlength=npix) - v_map = (v_map / n_map) ** .5 # rms - else: - raise NotImplementedError("Unknown keyword") - return v_map, pix - - -# tepper sims - -#-- DICE FILES USING FORTRAN -def tep(snp,svloc=''): - from astropy.table import Table, Column - from astropy.io import ascii - - print('svloc = '+svloc) - print(os.getcwd()+'/'+svloc) - - loc = os.getcwd() - - dt = ascii.read(loc+'/table.txt') - kys = {'x[kpc]':'px', 'y[kpc]':'py', 'z[kpc]':'pz','vx[km/s]':'vx','vy[km/s]':'vy','vz[km/s]':'vz','ID':'part_id'} - - data = {} - for key in kys: - data[kys[key]] = np.array(dt[key]) - - - ebfwrite(data,snp,os.getcwd()+'/'+svloc) - return - -def runtep(typ=3): - ''' - - FORTRAN - - ''' - - - timeit = stopwatch() - timeit.begin() - - desc = {3:'thick_disc',11:'thin_disc'} - print('making '+desc[typ]+'...') - typ = str(typ) - - # previously did for 60 steps - #outs = np.linspace(1.,300.,300) # iso - #outs = np.linspace(1.,174.,174) # s - outs = np.linspace(1.,154.,154) # r + + ''' + + return + - print(len(outs)) - print(outs) - outs = outs.astype(int) - outps = [] - for t in outs: - val = t.astype(str).rjust(5,'0') - outps.append(val) - outps = np.array(outps) + def gunlim_subsf(self,use_=None,plot=False,plotmeth2=False,magmin=10,magmax=15,clruse = 0.5,nocol=False): - simname = 'dice_MW_Sgr_dSph_r_hires' #dice_MW_Sgr_dSph_p_MWonly_hires - svloc = simname+'_'+typ - os.mkdir(svloc) - for out in outps: - print(out) + ''' + This grabs the selection function for a specific pre-run query + + use_ = None + use_ = gaia_xp_allwise_plx + use_ = + ''' + + if use_ == None: + raise RuntimeError('specify query time to use \ gaia_xp_allwise_plx \ ') + - dloc = '/import/photon1/tepper/ramses_output/Nbody/dice/myics/'+simname - cf = './read_part -inp '+dloc+'/output_'+out+' -out table.txt -typ '+typ+' -nc 11 -fil ascii' - os.system(cf) - tep(out+'_'+typ,svloc=svloc) + if use_ == 'gaia_xp': + + hplevel_and_binning = {'healpix': 5, 'phot_g_mean_mag': [3 ,20 ,1] , 'g_rp': [-1 ,3 ,0.5]} + query_filename = use_ ; ttl = 'Gaia X xp ' + if use_ == 'gaia_xp_wise': + + hplevel_and_binning = {'healpix': 5, 'phot_g_mean_mag': [3 ,20 ,1] , 'g_rp': [-1 ,3 ,0.5]} + query_filename = use_ ; ttl = 'Gaia X xp X wise ' + if use_ == 'gaia_wise_plx': + + hplevel_and_binning = {'healpix': 5, 'phot_g_mean_mag': [3 ,20 ,1] , 'g_rp': [-1 ,3 ,0.5]} + query_filename = use_ ; ttl = 'Gaia X wise X plx ' + if use_ == 'gaia_wise': + + hplevel_and_binning = {'healpix': 5, 'phot_g_mean_mag': [3 ,20 ,1] , 'g_rp': [-1 ,3 ,0.5]} + query_filename = use_ ; ttl = 'Gaia X wise ' + if use_ == 'gaia_wise_parallax': + + hplevel_and_binning = {'healpix': 5, 'phot_g_mean_mag': [3 ,20 ,1] , 'g_rp': [-1 ,3 ,0.5]} + query_filename = use_ ; ttl = 'Gaia X wise X parallax clr' + if use_ == 'gaia_wise_parallax_noclr': + + hplevel_and_binning = {'healpix': 5, 'phot_g_mean_mag': [3 ,20 ,1]} + query_filename = use_ ; ttl = 'Gaia X wise X parallax ' + if use_ == 'eloisa_query': + hplevel_and_binning = {'healpix': 5, 'phot_g_mean_mag': [4 ,15 ,1]} + query_filename = use_ ; ttl = 'Gaia XP x WISE ' + if use_ == 'gaia_xp_wise_rc': + hplevel_and_binning = {'healpix': 5, 'phot_g_mean_mag': [3 ,20 ,1] , 'g_rp': [-1 ,3 ,0.5]} + query_filename = use_ ; ttl = 'Gaia X xp X wise (rc) ' + + if use_ == 'gaia_xp_catwise_rc': + hplevel_and_binning = {'healpix': 5, 'phot_g_mean_mag': [3 ,20 ,1] , 'g_rp': [-1 ,3 ,0.5]} + query_filename = use_ ; ttl = 'Gaia X xp X catwise (rc) ' + - timeit.end() + if use_ == 'rvssubsel': + + hplevel_and_binning = {'healpix': 5, 'phot_g_mean_mag': [3 ,20 ,0.2] , 'g_rp': [-2.5 ,5.1 ,0.4]} + query_filename = use_ ; ttl = 'rvs ' + + if use_ == 'rvssubsel_widebins': + + hplevel_and_binning = {'healpix': 5, 'phot_g_mean_mag': [3 ,20 ,1.0] , 'g_rp': [-1.0 ,3. ,0.5]} + query_filename = use_ ; ttl = 'rvs ' + + if use_ == 'gaia_rave': + + hplevel_and_binning = {'healpix': 5, 'phot_g_mean_mag': [3 ,16 ,1.] , 'g_rp': [-1.0 ,5. ,0.5]} + query_filename = use_ ; ttl = ' ' -#-- AGAMA FILES USING pynbody -def read_tepper_pynbody(file1,clock=True): - ''' - pyNbody - + qfileloc = self.qfileloc + file_name = query_filename+'_modif' + print(file_name) + mydata = tabpy.read(qfileloc+'/'+query_filename+'.fits') + t = Table(mydata) + self.t = t - Access to the following models can be found on: - - /export/photon1/tepper/ramses_output/Nbody/agama/myics/ - + dr3SubsampleSF = sksubsamplesf(mydata,query_filename,file_name,hplevel_and_binning) + pixtomagfac_1 = hplevel_and_binning['phot_g_mean_mag'][2] + pixtomagfac_2 = hplevel_and_binning['phot_g_mean_mag'][0] - I. Models with a bar: - agama_test - agama_test_hires - - II. Featureless model: - chequers_2018_iso - - AGAMA component IDs - 1 -> DM halo - 3 -> stellar bulge - 5 -> thick disc - 7 -> thin disc - - - ''' - - import pynbody - - if clock: - timeit = stopwatch() - timeit.begin() - - - MaxCompNumber = 11 - ro = pynbody.load(file1) - ro.physical_units() - tstamp = float(ro.properties['time']) # in Gyr - ro['part_id']=ro['iord'] % (2*MaxCompNumber) - ro['pos'] = ro['pos'] - (ro['pos']).mean(axis=0) - ro['vel'] = ro['vel'] - (ro['vel']).mean(axis=0) - - d={} - d['px']=np.array(ro['pos'][:,0]) - d['py']=np.array(ro['pos'][:,1]) - d['pz']=np.array(ro['pos'][:,2]) - d['vx']=np.array(ro['vel'][:,0]) - d['vy']=np.array(ro['vel'][:,1]) - d['vz']=np.array(ro['vel'][:,2]) - d['part_id']=ro['part_id'] - d['popid']=np.array(ro['part_id']) - d['lgc'],d['pzgc'],d['rgc']=autil.xyz2lzr(d['px'],d['py'],d['pz']) - d['vlgc'],d['vzgc'],d['vrgc']=autil.vxyz2lzr(d['px'],d['py'],d['pz'],d['vx'],d['vy'],d['vz']) - d['lgc']=d['lgc']%360.0 - d['pzgc_abs']=np.abs(d['pzgc']) - d['vphi']=-(d['vlgc']) - #........ - d['vlgc']=-(d['vlgc'].copy()) - #........ - d['vphi']=-(d['vlgc']) - d['tstamp'] = np.zeros(d['px'].size) + tstamp - - d['pxgc'], d['pygc'] = d['px'],d['py'] - del d['px'] - del d['py'] - - - - print('saving only thick and thin disc stars...') - tabpy.where(d,(d['part_id']==5)|(d['part_id']==7)) - - if clock: - timeit.end() - return d + + magindxs = np.unique(np.array(t['phot_g_mean_mag_'])) + mags = (magindxs*pixtomagfac_1)+pixtomagfac_2 + indmags = np.where((mags[magindxs] > magmin)&(mags[magindxs] < magmax))[0] -def getsims(): - timeit = stopwatch() - timeit.begin() + if 'g_rp' in hplevel_and_binning.keys(): + pixtoclrfac_1 = hplevel_and_binning['g_rp'][2] + pixtoclrfac_2 = hplevel_and_binning['g_rp'][0] - - simname = 'agama_test_hires' - svloc = '/import/photon1/skha2680/Documents/phd_work/tepper_sims/warp/'+simname - os.mkdir(svloc) - import natsort - from natsort import natsorted, ns - dloc = '/export/photon1/tepper/ramses_output/Nbody/agama/myics/'+simname - filenames = os.listdir(dloc) - filenames = natsorted(filenames) - filenames = np.array(filenames) - for fl in filenames: - if fl.startswith('output_00140'): - print(fl) - dt = read_tepper_pynbody(dloc+'/'+fl,clock=False) - ebfwrite(dt,fl,svloc) - timeit.end() - return - - + + + clrindxs = (np.unique(np.array(t['g_rp_']))) + clrs = (clrindxs*pixtoclrfac_1) + pixtoclrfac_2 + + from scipy import interpolate + f = interpolate.interp1d(clrs,clrindxs,bounds_error=False,fill_value=(clrindxs[0],clrindxs[-1])) + clrbin = f(clruse) + + clrmin = (clrbin*pixtoclrfac_1) + pixtoclrfac_2 + clrmax = clrmin + pixtoclrfac_1 -# Miscellaneous + if plot: + plt.close('all') -def points_sphere_equ(N=100,r=10,smpfac=0.1): - - ''' - returns equidistant points on a sphere - - https://www.cmu.edu/biolphys/deserno/pdf/sphere_equi.pdf - - - N = number of points to generate - r = radius at which to generate - + + t['hpx4'] = t['healpix_'] // 4 + t['hpx3'] = t['healpix_'] // 16 + t['hpx2'] = t['healpix_'] // 64 + t['hpx1'] = t['healpix_'] // 256 + t['hpx0'] = t['healpix_'] // 1024 + + t_only_by_mag = t.group_by(['phot_g_mean_mag_']).groups.aggregate(np.sum) + + k_over_n = t_only_by_mag['k'] / t_only_by_mag['n'] + plt.step( (t_only_by_mag['phot_g_mean_mag_']*pixtomagfac_1)+pixtomagfac_2 , k_over_n , where='post') + plt.minorticks_on() + plt.xlabel('G') + plt.ylabel('fraction of sources:'+query_filename) + plt.ylim(-0.03,1.03) + + plt.savefig(desktop+'/rubfigs/magonly.png') + - # dts = points_sphere_equ(N=1000,r=50) - # # dtools.picklewrite(dts,'pointings',desktop) - - # dts = dtools.pickleread(desktop+'/pointings.pkl') - - ''' + + for magindx in magindxs[indmags]: #[50:56] + + if nocol: + t_colourMagnitudeBin = t[ (t['phot_g_mean_mag_']==magindx) ] + clrmin = '' + clrmax = '' + else: + t_colourMagnitudeBin = t[ (t['phot_g_mean_mag_']==magindx) & (t['g_rp_']==clrbin) ] + + plt.close('all') + + print(magindx,clrbin) + print('at this magnitude ') + print(str((magindx*pixtomagfac_1)+pixtomagfac_2)) + print(clrmin, clrmax) + import healpy as hp + + plt.figure(figsize=(12,6)) + + for lll,level in enumerate(['hpx0','hpx1','hpx2','hpx3','hpx4','healpix_']): + t_lowres = t_colourMagnitudeBin.group_by([level]).groups.aggregate(np.sum) + ratios_lowres = t_lowres['k']/t_lowres['n'] + hpxNb_lowres = t_lowres[level] + + # Some might be empty, so we make a new list with the correct length and fill it: + ratios_lowres_nogaps = np.empty(12*4**lll) + ratios_lowres_nogaps[:] = np.nan + for iii in range(len(ratios_lowres_nogaps)): + try: + ratios_lowres_nogaps[iii] = ratios_lowres[ t_lowres[level]==iii ][0] + except: + pass #we have no counts in there + + plt.subplot(2,3,lll+1) + hp.mollview( ratios_lowres_nogaps , nest=True , coord='CG',hold=True,min=0,max=1., + title='healpix level %i' % (lll) ) + + plt.text(0.01,0.9,str(clrmin)+'_'+str(clrmax),transform=plt.gca().transAxes,fontsize=10,color='black',rotation=0) + + plt.savefig(desktop+'/rubfigs/rubbish'+str((magindx*pixtomagfac_1)+pixtomagfac_2)+'.png') + - Nc = 0 - r1 = 1. - a = (4*np.pi*(r1**2.))/N - d = np.sqrt(a) - mtheta = int(np.round(np.pi/d)) - dtheta= np.pi/mtheta - dphi = a/dtheta - dts = {} - dts['xv'] = [] - dts['yv'] = [] - dts['zv'] = [] - for m in range(0,mtheta-1): - theta = (np.pi*(m + 0.5))/mtheta - mphi = int(np.round(2*np.pi*(np.sin(theta)/dphi))) - for n in range(0,mphi-1): - phi = (2*np.pi*n)/mphi - x = r*np.sin(theta)*np.cos(phi) - y = r*np.sin(theta)*np.sin(phi) - z = r*np.cos(theta) + if plotmeth2: - dts['xv'].append(x) - dts['yv'].append(y) - dts['zv'].append(z) - for ky in dts.keys(): - dts[ky] = np.array(dts[ky]) + import healpy as hp + plt.close('all') + # cmap=cc.cm['linear_green_5_95_c69'] + # cmap=cc.cm['linear_kbgoy_20_95_c57'] + cmap=cc.cm['bgy'] + + # plm=putil.Plm1(3,3,xsize=8.0,ysize=8.,xmulti=False,ymulti=False,full=True,slabelx=0.7,slabely=0.07) + # plm=putil.Plm1(1,1,xsize=8.0,ysize=8.,xmulti=False,ymulti=False,full=True,slabelx=0.7,slabely=0.07) + + + healpix_level = 5 + nside = 2**healpix_level + totpix = 12*(nside**2) + area_per_pix = dtools.allsky_area()/(totpix) + print(' area per pixel is,') + print(area_per_pix) + - dts['l'],dts['b'],dts['d'] = autil.xyz2lbr(dts['xv'],dts['yv'],dts['zv']) - dts['l']=dts['l']%360. - - indall = np.arange(0,dts['l'].size) - np.random.shuffle(indall) - # print(smpfac) - smpsize = int(smpfac*indall.size) - # print(smpsize) - dts = dtools.filter_dict(dts,indall[:smpsize]) - - dts['dgrid'] = np.linspace(0.,30,100) - - return dts + + coords_of_centers = get_healpix_centers (healpix_level) + # for inum,gmags in enumerate(range(6,20,1)): + for inum,gmags in enumerate(range(10,17,1)): + # for inum,gmags in enumerate(range(10,14,1)): + + # plm.next() + plt.close('all') + print(gmags) + G = gmags + G_RP = clruse + + gmag = np. ones_like(coords_of_centers)*G + col = np. ones_like(coords_of_centers)*G_RP + completeness,unc_completeness=dr3SubsampleSF.query(coords_of_centers,phot_g_mean_mag_=gmag,g_rp_=col) + + hp.mollview( completeness , nest=False , coord='CG',hold=False,min=0,max=1., + title=str(gmags)+' 180 as negative - ''' + zedges_ind_min = dthist_use2['zv'] - zbnwd/2. + zedges_ind_max = dthist_use2['zv'] + zbnwd/2. - if typ == '': - phival = glon.copy() - indg = np.where(glon < 180)[0] - phival[indg] = -(glon[indg]).copy() - indl = np.where(glon > 180)[0] - phival[indl] = 360. - glon[indl].copy() - if typ == '2': - - phival = glon.copy() - indg = np.where(glon < 180)[0] - phival[indg] = (glon[indg]).copy() - indl = np.where(glon > 180)[0] - phival[indl] = glon[indl].copy() - 360 + mydata_ = {} + mydata_['rgc'] = np.linspace(0.,10,100) + mydata_['phi1'] = np.linspace(0.,10,100) + mydata_['pzgc'] = np.linspace(0.,10,100) - return phival - -def comments_form(): - - ''' - - NAME: + plt.close('all') - PURPOSE: + h3 = sutil.hist_nd([mydata_['rgc'],mydata_['phi1'],mydata_['pzgc']],bins=[nbinsR3,nbinsphi3,nbinsz3],normed=False,range=[[Rmin,Rmax],[phimin,phimax],[zmin,zmax]]) + dthist_use3 = cylingrid(h3,add_dust_to_grid_2d=add_dust_to_grid_2d,add_dust_to_grid_3d=add_dust_to_grid_3d) + dthist_use3['gmag_pred'] = autil.dist2dmod(dthist_use3['dist']) + absmag_lit['absg'] - INPUT: - OUTPUT: - - HISTORY: - - ''' + xbnwd3 = (h3.range[0][1] - h3.range[0][0])/h3.bins[0] + ybnwd3 = (h3.range[1][1] - h3.range[1][0])/h3.bins[1] + zbnwd3 = (h3.range[2][1] - h3.range[2][0])/h3.bins[2] + xedges3_ind_min = dthist_use3['rgcv'] - xbnwd3/2. + xedges3_ind_max = dthist_use3['rgcv'] + xbnwd3/2. - ''' - - NAME: Einasto density - - PURPOSE: evaluate Einasto density at a given radius (or rq) - - - INPUT: - - rv = radius at which to compute (default=1) - ntot = Total number/mass of stars in volume (default=1) - n = Einasto profile shape (default=1) - rs = half-mass radius (default=1) - p = triaxiality (y/x, default=1) - q = triaxiality (z/x, default=1) - - OUTPUT: density (rgcd) - - REMARKS: - - -analytical form taken from Merrit 2006 (page 15) - -also refer to Retana-Montenegro 2012 for expressions - - HISTORY: - - 28 September 2020 (RUG) - - ''' + yedges3_ind_min = dthist_use3['phiv'] - ybnwd3/2. + yedges3_ind_max = dthist_use3['phiv'] + ybnwd3/2. + zedges3_ind_min = dthist_use3['zv'] - zbnwd3/2. + zedges3_ind_max = dthist_use3['zv'] + zbnwd3/2. - - #Java: - ''' - - /** - * NAME: - * PURPOSE: - * INPUT: - * OUTPUT: - * HISTORY: - - */ - - + + tmpfile = {} + tmpfile['xedges_ind_min'] = xedges_ind_min + tmpfile['xedges_ind_max'] = xedges_ind_max + tmpfile['yedges_ind_min'] = yedges_ind_min + tmpfile['yedges_ind_max'] = yedges_ind_max + tmpfile['zedges_ind_min'] = zedges_ind_min + tmpfile['zedges_ind_max'] = zedges_ind_max + + tmpfile['xedges3_ind_min'] = xedges3_ind_min + tmpfile['xedges3_ind_max'] = xedges3_ind_max + tmpfile['yedges3_ind_min'] = yedges3_ind_min + tmpfile['yedges3_ind_max'] = yedges3_ind_max + tmpfile['zedges3_ind_min'] = zedges3_ind_min + tmpfile['zedges3_ind_max'] = zedges3_ind_max + tmpfile['dmaglim'] = dmaglim + tmpfile['extinct_'] = extinct_ + + dtools.picklewrite(tmpfile,'tmpfile',tempdir) + dtools.picklewrite(dthist_use3,'dthisttmp3',tempdir) + + + timeit.end() + + + if compsf: + + indres = np.arange(0,xedges_ind_min.size) + from multiprocessing import Pool + p=Pool(30) + data_postdist = p.map(partial(hiercalc_cylin3d), indres) + data_pd={} + for key in data_postdist[0].keys(): + data_pd[key]=np.concatenate([d[key] for d in data_postdist]).transpose() + + + p.close() - ''' + + timeit.end() - return -class cltemplate(object): - ''' - empty class template + if gusf: + + data_pd['subsf'],data_pd['unc_subsf'] = compgusf_grid(dthist_use3['l'],dthist_use3['b'],dthist_use3['gmag_pred'],typ_='sub',use_subsf=use_subsf) + data_pd['globsf'],data_pd['unc_globsf'] = compgusf_grid(dthist_use3['l'],dthist_use3['b'],dthist_use3['gmag_pred'],typ_='global',use_subsf=use_subsf) - ''' - def __init__(self,data=None): - print('') + + + dtools.picklewrite(data_pd,'sfhier_interm',sfdir) + + + if gusf: + + sftyp = 'subsf' - def fnc(self): + indres = np.arange(0,xedges_ind_min.size) + from multiprocessing import Pool + p=Pool(30) + data_postdist = p.map(partial(hiercalc_cylin3d_gusf,typ_=sftyp), indres) + data_pd1={} + for key in data_postdist[0].keys(): + data_pd1[key]=np.concatenate([d[key] for d in data_postdist]).transpose() + + p.close() - return + data_pd['subsf_avg'] = data_pd1['sfval'].copy() + data_pd['subsf_std'] = data_pd1['sfval_std'].copy() + + timeit.end() + + sftyp = 'globsf' + + indres = np.arange(0,xedges_ind_min.size) + from multiprocessing import Pool + p=Pool(30) + data_postdist = p.map(partial(hiercalc_cylin3d_gusf,typ_=sftyp), indres) + data_pd1={} + for key in data_postdist[0].keys(): + data_pd1[key]=np.concatenate([d[key] for d in data_postdist]).transpose() + + + p.close() + data_pd['globsf_avg'] = data_pd1['sfval'].copy() + data_pd['globsf_std'] = data_pd1['sfval_std'].copy() - -def ncombs(N,ncmb=2): - ''' - No. of unique combinations - ''' - print('N = '+str(N)) - print('unique combinations of '+str(ncmb)) + timeit.end() - num1 = float(np.math.factorial(N)) - num2 = float(np.math.factorial(N-ncmb)) - num3 = float(np.math.factorial(ncmb)) - num1/(num2*num3) - return num1/(num2*num3) + if gusf == False: + data_pd['globsf_avg'] = np.zeros(data_pd['sf'].size) + 1. + data_pd['globsf_std'] = np.zeros(data_pd['sf'].size) + 1. -def tpass(n=10,t=5): + data_pd['subsf_avg'] = np.zeros(data_pd['sf'].size) + 1. + data_pd['subsf_std'] = np.zeros(data_pd['sf'].size) + 1. + + + return data_pd + + + +def hiercalc_cylin3d_gusf(i,typ_='sub'): + ''' - dummy run + typ_ = 'sub' or 'global' + ''' - for i in range(n): - print(i) - time.sleep(t) - -def dbug(): + tmpfile = dtools.pickleread(tempdir+'/tmpfile.pkl') + sfcomp = dtools.pickleread(sfdir+'/sfhier_interm.pkl') - print('--------------------------') - print('testing..............') - - print('--------------------------') + xedges_ind_min = tmpfile['xedges_ind_min'] + xedges_ind_max = tmpfile['xedges_ind_max'] + yedges_ind_min = tmpfile['yedges_ind_min'] + yedges_ind_max = tmpfile['yedges_ind_max'] + zedges_ind_min = tmpfile['zedges_ind_min'] + zedges_ind_max = tmpfile['zedges_ind_max'] - return + xedges3_ind_min = tmpfile['xedges3_ind_min'] + xedges3_ind_max = tmpfile['xedges3_ind_max'] + yedges3_ind_min = tmpfile['yedges3_ind_min'] + yedges3_ind_max = tmpfile['yedges3_ind_max'] + zedges3_ind_min = tmpfile['zedges3_ind_min'] + zedges3_ind_max = tmpfile['zedges3_ind_max'] + dmaglim = tmpfile['dmaglim'] + extinct_ = tmpfile['extinct_'] + -def basic_pool_example(): + cond1 = (xedges3_ind_min >= xedges_ind_min[i])&(xedges3_ind_min < xedges_ind_max[i]) + cond2 = (yedges3_ind_min >= yedges_ind_min[i])&(yedges3_ind_max <= yedges_ind_max[i]) + cond3 = (zedges3_ind_min >= zedges_ind_min[i])&(zedges3_ind_max <= zedges_ind_max[i]) + conds = cond1&cond2&cond3 + indf = np.where(conds)[0] + tmpval = sfcomp[typ_][indf] + res = {} + res['sfval'] = np.array([np.median(tmpval)]) + res['sfval_std'] = np.array([np.std(tmpval)]) + + return res - exec(open("./packages.py").read()) - - desktop = dtools.getdirec('desktop') - - os.environ["NUMEXPR_MAX_THREADS"] = "5" - - - - import argparse - parser = argparse.ArgumentParser() - parser.add_argument('--ncpu',nargs='+') - parser.add_argument('--flen',nargs='+') - args = parser.parse_args() - ncpu= int(args.ncpu[0]) - flen= int(args.flen[0]) - - - timeit = dtools.stopwatch() - timeit.begin() +def hiercalc_cylin3d(i): + ''' + dthist_usehier is set to global + ''' - stp1 = False + # print(i) + tmpfile = dtools.pickleread(tempdir+'/tmpfile.pkl') + dthist_usemain = dtools.pickleread(tempdir+'/dthist1_rphiz.pkl') + dthist_use3 = dtools.pickleread(tempdir+'/dthisttmp3.pkl') - # notes: send this file to cluster - > desktop+'/xgbrc.ebf' - # notes: send this directory to cluster - > desktop+'/dummy/' + xedges_ind_min = tmpfile['xedges_ind_min'] + xedges_ind_max = tmpfile['xedges_ind_max'] + yedges_ind_min = tmpfile['yedges_ind_min'] + yedges_ind_max = tmpfile['yedges_ind_max'] + zedges_ind_min = tmpfile['zedges_ind_min'] + zedges_ind_max = tmpfile['zedges_ind_max'] - if stp1: - - ''' - creates files - ''' - fl = tabpy.read(desktop+'/xgbrc.ebf') - fl = dtools.mk_mini(fl,fac=0.06,key='source_id') - - os.system('rm -rf '+desktop+'/dummy') - os.system('mkdir '+desktop+'/dummy') + xedges3_ind_min = tmpfile['xedges3_ind_min'] + xedges3_ind_max = tmpfile['xedges3_ind_max'] + yedges3_ind_min = tmpfile['yedges3_ind_min'] + yedges3_ind_max = tmpfile['yedges3_ind_max'] + zedges3_ind_min = tmpfile['zedges3_ind_min'] + zedges3_ind_max = tmpfile['zedges3_ind_max'] + dmaglim = tmpfile['dmaglim'] + extinct_ = tmpfile['extinct_'] - for inum in range(flen): - print('running...'+str(inum)) - # fl = tabpy.read(desktop+'/dummy.fits') - - val1 = np.random.uniform(0.,100000,1) - val = val1**2. + fl['source_id'] - dtools.picklewrite(val,'test_'+str(inum),desktop+'/dummy') - - - def myfunc(i,floc): - + + cond1 = (xedges3_ind_min >= xedges_ind_min[i])&(xedges3_ind_min < xedges_ind_max[i]) + cond2 = (yedges3_ind_min >= yedges_ind_min[i])&(yedges3_ind_max <= yedges_ind_max[i]) + cond3 = (zedges3_ind_min >= zedges_ind_min[i])&(zedges3_ind_max <= zedges_ind_max[i]) + conds = cond1&cond2&cond3 + indf = np.where(conds)[0] - fl = dtools.pickleread(floc+'/test_'+str(i)+'.pkl') - res = {} - - res['source_id'] = fl - res['value'] = (fl + fl) + np.sin(0.4) - - - - return res - - def stp2(ncpu): - - - ''' - uses pool - ''' - - - floc = desktop+'/dummy' - nfiles = dtools.fcount(floc,nlist=True) - indres = np.arange(nfiles) - from multiprocessing import Pool + if extinct_: + + dmaxs = autil.dmod2dist(dmaglim - dthist_use3['a_g_val'][indf] - absmag_lit['absg']) + dmaxs_main = autil.dmod2dist(dmaglim - dthist_usemain['a_g_val'][i] - absmag_lit['absg']) - print('all fine') - p=Pool(ncpu) - data_postdist = p.map(partial(myfunc,floc=floc), indres) - data_pd={} - for key in data_postdist[0].keys(): - data_pd[key]=np.concatenate([d[key] for d in data_postdist]).transpose() + else: - - p.close() - - dtools.fitswrite(data_pd,'rubbish',desktop) - - - - return - - - stp2(ncpu) - timeit.end() - - return - - - - - - - - - - + dmaxs = autil.dmod2dist((dmaglim) - absmag_lit['absg']) + dmaxs_main = dmaxs + # # #------------checking + # # tst = {} + # # tst['indf'] = indf + # # tst['i'] = i + # # dtools.picklewrite(tst,'rubbish',desktop,prnt=False) + # # #-------------------- + + # print('check....') + # print(i,indf) + # print(dmaxs.size) + # print(dmaxs) + indgmax = np.where(dthist_use3['dist'][indf] < dmaxs)[0] + + sfval = indgmax.size/indf.size + + if extinct_: + gvals = autil.dist2dmod(dthist_use3['dist'][indf]) + absmag_lit['absg'] +dthist_use3['a_g_val'][indf] + gmax = np.nanmax(gvals) + gmin = np.nanmin(gvals) + gmed = np.median(gvals) + + if dthist_usehier['dist'][i] < dmaxs_main : + sfval_wrong = 1 + else: + sfval_wrong = 0 + + res = {} + res['sf'] = np.array([sfval]) + res['sfval_wrong'] = np.array([sfval_wrong]) + res['gmax'] = np.array([gmax]) + res['gmin'] = np.array([gmin]) + res['gmed'] = np.array([gmed]) + return res diff --git a/docs/notebooks/RedClumpGaiaAllWISE/rcdemo/putil.py b/docs/notebooks/RedClumpGaiaAllWISE/rcdemo/putil.py new file mode 100644 index 0000000..fb64641 --- /dev/null +++ b/docs/notebooks/RedClumpGaiaAllWISE/rcdemo/putil.py @@ -0,0 +1,308 @@ +import matplotlib as mpl +import matplotlib.pyplot as plt +import matplotlib.cm as cm +from matplotlib.colors import LinearSegmentedColormap +from mpl_toolkits.axes_grid1 import AxesGrid +from matplotlib.ticker import MaxNLocator + + +exec(open("./rcdemo/packages_to_import.py").read()) + + + +def make_cmap(name): + a={} + a['red']=((0.0, 1, 1), (0.003, 1, 1), (0.003, 0, 0), (0.35, 0, 0), (0.66, 1, 1), (0.89, 1, 1), (1, 0.5, 0.5)) + a['blue']=((0.0, 1.0, 1.0),(0.003, 1.0, 1.0),(0.003, 0.5, 0.5), (0.11, 1, 1), (0.34, 1, 1), (0.65, 0, 0), (1, 0, 0)) + a['green']=((0.0, 1.0, 1.0),(0.003, 1.0, 1.0),(0.003, 0, 0), (0.125, 0, 0), (0.375, 1, 1), (0.64, 1, 1), (0.91, 0, 0), (1, 0, 0)) + newjet=LinearSegmentedColormap('newjet',a) + cm.register_cmap(cmap=newjet) + + + +class Plm2(object): + """ + Uses object-oriented matplotlib + fig,axes=plt.subplot(rows,cols) + plm.ax is the current axis + For sutil.hist_nd.imshow, you have to get back a mappable image object + and pass it on to colorbar after tight_layout + plm=putil.Plm2(2,2); + for in range(4): + plm.next() + im1=h.imshow(,ax=plm.ax) + plm.next() + im2=h.imshow(,ax=plm.ax) + plm.tight_layout() + For two colorbars on top + plt.colorbar(im1,ax=plm.axes[:,0],location='top',pad=0,fraction=0.08) + plt.colorbar(im2,ax=plm.axes[:,1],location='top',pad=0,fraction=0.08) + For single colorbar on side + plt.colorbar(im2,ax=plm.axes,location='right') + """ + + def __init__(self,rows=1,cols=1,xsize=7.0,ysize=7.0,xmulti=False,ymulti=False,full=False,slabelx=0.89,slabely=0.1,slabel=True,order='left-right',slabclr='black'): + #self.slabels=['a','b','c','d','e','f','g','h','i','j','k','l','m','n','o','p','q','r','s','t','u','v','w','x','y','z'] + self.slabels=['a','b','c','d','e','f','g','h','i','j','k','l','m','n','o','p','q','r','s','t','u','v','w','x','y','z','aa','ab','ac','ad','ae','af','ag','ah','ai','aj'] + params = {'font.size':12, + 'text.usetex':False, + 'ytick.labelsize': 'medium', + 'legend.fontsize': 'large', + 'axes.linewidth': 1.0, + 'xtick.labelsize': 'medium', + 'font.family': 'sans-serif', + 'axes.labelsize': 'medium'} + mpl.rcParams.update(params) + + + # if xsize>13.0: + # mpl.rcParams['font.size']=15 + # mpl.rcParams['legend.fontsize']=15 + #mpl.rcParams['text.usetex'] = True + if full: + #mpl.rcParams['axes.titlesize']=8 + mpl.rcParams['font.size']=8 + mpl.rcParams['legend.fontsize']=8 + else: + mpl.rcParams['font.size']=15 + mpl.rcParams['legend.fontsize']=15 + + #mpl.rcParams['font.size']=10 + #mpl.rcParams['legend.fontsize']=10 + + self.rows=rows + self.cols=cols + self.figno=0 + self.panelno=0 + self.xmulti=xmulti + self.ymulti=ymulti + self.slabelx=slabelx + self.slabely=slabely + self.slabel=slabel + self.order=order + self.fig,self.axes=plt.subplots(self.rows,self.cols,figsize=(xsize,ysize)) + self.slabclr = slabclr + + + + def panels(self): + return self.rows*self.cols + + + def next(self,slabclr='black',weight='bold'): + self.slabclr = slabclr + self.weight = weight + self.figno+=1 + self.figno=(self.figno-1) % (self.rows*self.cols)+1 + if type(self.order) == list: + self.panelno=self.order[self.figno-1] + else: + if self.order == 'top-down': + r=(self.figno-1)/self.rows + c=(self.figno-1)%self.rows + self.panelno=int((c*self.cols+r)+1) # modified to int() by Shourya (feb 25 2021) + else: + self.panelno=self.figno + + + self.ax=self.axes.flat[self.panelno-1] + #---added by Shourya + plt.sca(self.ax) + self.lcount=0 + #--- + if (self.slabel) and (self.rows*self.cols > 1): + self.ax.text(self.slabelx,self.slabely,'('+self.slabels[(self.panelno-1)%len(self.slabels)]+')',transform=self.ax.transAxes,color=self.slabclr,weight=self.weight) + + # if self.xmulti: + # if (self.panelno-1)/self.cols != (self.rows-1): + # self.ax.set_xticklabels('') + # #ax.set_xticks([]) + if self.ymulti: + if (self.panelno-1) % self.cols != 0: + self.ax.set_yticklabels('') + #ax.set_yticks([]) + + def xlabel(self,s): + if self.xmulti: + if (self.panelno-1)/self.cols == (self.rows-1): + self.ax.set_xlabel(s) + else: + self.ax.set_xlabel(s) + + def ylabel(self,s): + if self.ymulti: + if (self.panelno-1) % self.cols == 0: + self.ax.set_ylabel(s) + else: + self.ax.set_ylabel(s) + + # def colorbar(self,*args,**kwargs): + # self.fig.colorbar(*args,ax=self.ax,pad=0.0,**kwargs) + # self.fig.colorbar(*args,ax=self.axes,pad=0.0,**kwargs) + # self.fig.colorbar(*args,ax=self.axes[:,0],pad=0.0,**kwargs) + # #self.fig.colorbar(*args,ax=self.ax,fraction=0.1,pad=0.0,**kwargs) + + # def figcolorbar(self,*args,**kwargs): + # self.fig.colorbar(*args,ax=self.axes,**kwargs) + + + + def tight_layout(self): + self.fig.tight_layout() + if (self.ymulti and self.xmulti): + self.fig.subplots_adjust(wspace=0.0,hspace=0.0) + elif self.ymulti and (self.xmulti==False): + self.fig.subplots_adjust(wspace=0.0) + elif self.xmulti and (self.ymulti==False): + self.fig.subplots_adjust(hspace=0.0) + for ax in self.axes.flat: + plt.setp(ax.get_yticklabels()[-1],visible=False) + plt.setp(ax.get_xticklabels()[-1],visible=False) + # for ax in self.axes.flat: + # ax.xaxis.set_major_locator(MaxNLocator(5,prune='upper')) + + + + def xoffset(self): + ax=self.ax + ax.set_xlabel('{0} {1}'.format(ax.get_xlabel(), ax.get_xaxis().get_offset_text().get_text())) + ax.get_xaxis().get_offset_text().set_visible(False) + + + def yoffset(self): + ax=self.ax + offset = ax.get_yaxis().get_offset_text() + ax.set_ylabel('{0} {1}'.format(ax.get_ylabel(), offset.get_text())) + offset.set_visible(False) + + def text(self,x,y,label, **kwargs): + self.ax.text(x,y,label,transform=self.ax.transAxes,**kwargs) + + + +class Plm1(object): + + def __init__(self,rows=1,cols=1,xsize=7.0,ysize=7.0,xmulti=False,ymulti=False,full=False,slabelx=0.89,slabely=0.1,slabel=True,order='left-right',slabclr='black'): + self.slabels=['a','b','c','d','e','f','g','h','i','j','k','l','m','n','o','p','q','r','s','t','u','v','w','x','y','z'] + params = {'font.size':12, + 'text.usetex':False, + 'ytick.labelsize': 'medium', + 'legend.fontsize': 'large', + 'axes.linewidth': 1.0, + 'xtick.labelsize': 'medium', + 'font.family': 'sans-serif', + 'axes.labelsize': 'medium'} + mpl.rcParams.update(params) + + + # if xsize>13.0: + # mpl.rcParams['font.size']=15 + # mpl.rcParams['legend.fontsize']=15 + #mpl.rcParams['text.usetex'] = True + if full: + #mpl.rcParams['axes.titlesize']=8 + mpl.rcParams['font.size']=8 + mpl.rcParams['legend.fontsize']=8 + else: + mpl.rcParams['font.size']=15 + mpl.rcParams['legend.fontsize']=15 + + self.rows=rows + self.cols=cols + self.figno=0 + self.panelno=0 + self.xmulti=xmulti + self.ymulti=ymulti + self.slabelx=slabelx + self.slabely=slabely + self.slabel=slabel + self.order=order + self.fig=plt.figure(figsize=(xsize,ysize)) + self.ax=None + self.slabclr = slabclr + + def panels(self): + return self.rows*self.cols + + + + + def next(self,slabclr='black',weight='normal'): + self.slabclr = slabclr + self.weight = weight + self.figno+=1 + self.figno=(self.figno-1) % (self.rows*self.cols)+1 + if type(self.order) == list: + self.panelno=self.order[self.figno-1] + else: + if self.order == 'top-down': + r=(self.figno-1)/self.rows + c=(self.figno-1)%self.rows + self.panelno=(c*self.cols+r)+1 + else: + self.panelno=self.figno + + plt.subplot(self.rows,self.cols,self.panelno) + if (self.slabel) and (self.rows*self.cols > 1): + plt.text(self.slabelx,self.slabely,'('+self.slabels[(self.panelno-1)%len(self.slabels)]+')',transform=plt.gca().transAxes,color=self.slabclr,weight=self.weight) + + if self.xmulti: + if (self.panelno-1)/self.cols != (self.rows-1): + plt.gca().set_xticklabels('') + #ax.set_xticks([]) + if self.ymulti: + if (self.panelno-1) % self.cols != 0: + plt.gca().set_yticklabels('') + #ax.set_yticks([]) + + + def xlabel(self,s): + if self.xmulti: + if (self.panelno-1)/self.cols == (self.rows-1): + plt.xlabel(s) + + else: + plt.xlabel(s) + + def ylabel(self,s): + if self.ymulti: + if (self.panelno-1) % self.cols == 0: + plt.ylabel(s) + else: + plt.ylabel(s) + + def colorbar(self,*args,**kwargs): + plt.colorbar(fraction=0.1,pad=0.0,**kwargs) + # if self.ymulti: + # if (self.panelno-1) % self.cols == (self.cols-1): + # plt.colorbar(fraction=0.1,pad=0.0,**kwargs) + # else: + # plt.colorbar(fraction=0.1,pad=0.0,**kwargs) + + + def tight_layout(self): + plt.tight_layout() + if (self.ymulti and self.xmulti): + plt.subplots_adjust(wspace=0.0,hspace=0.0) + elif self.ymulti and (self.xmulti==False): + plt.subplots_adjust(wspace=0.0) + elif self.xmulti and (self.ymulti==False): + plt.subplots_adjust(hspace=0.0) + + def xoffset(self): + ax=plt.gca() + ax.set_xlabel('{0} {1}'.format(ax.get_xlabel(), ax.get_xaxis().get_offset_text().get_text())) + ax.get_xaxis().get_offset_text().set_visible(False) + + + def yoffset(self): + ax=plt.gca() + offset = ax.get_yaxis().get_offset_text() + ax.set_ylabel('{0} {1}'.format(ax.get_ylabel(), offset.get_text())) + offset.set_visible(False) + + def text(self,x,y,label, **kwargs): + ax=plt.gca() + ax.text(x,y,label,transform=ax.transAxes,**kwargs) + + diff --git a/docs/notebooks/RedClumpGaiaAllWISE/rcdemo/sutil_sanj.py b/docs/notebooks/RedClumpGaiaAllWISE/rcdemo/sutil_sanj.py new file mode 100644 index 0000000..d9d1f2c --- /dev/null +++ b/docs/notebooks/RedClumpGaiaAllWISE/rcdemo/sutil_sanj.py @@ -0,0 +1,1249 @@ +from __future__ import print_function +from __future__ import division + + +exec(open("./rcdemo/packages_to_import.py").read()) + + + +def interp_weights(xyz, uvw): + d=xyz.shape[1] + tri = qhull.Delaunay(xyz) + simplex = tri.find_simplex(uvw) + vertices = np.take(tri.simplices, simplex, axis=0) + temp = np.take(tri.transform, simplex, axis=0) + delta = uvw - temp[:, d] + bary = np.einsum('njk,nk->nj', temp[:, :d, :], delta) + return vertices, np.hstack((bary, 1 - bary.sum(axis=1, keepdims=True))) + +def interpolate(values, vtx, wts, fill_value=np.nan): + ret = np.einsum('nj,nj->n', np.take(values, vtx), wts) + if fill_value is not None: + ret[np.any(wts < 0, axis=1)] = fill_value + return ret + + +def npstruct_add_field(data1,fieldname,value): + if data1.dtype.char == 'V': + dt=[(name,data1.dtype[name]) for name in data1.dtype.names] + if fieldname not in data1.dtype.names: + dt.append((fieldname,value.dtype)) + dt=np.dtype(dt) + data2=np.zeros(data1.size,dtype=dt) + for key in data1.dtype.names: + data2[key]=data1[key] + data2[fieldname]=value + return data2 + else: + raise RuntimeError('Field already exists:'+fieldname) + return None + else: + raise RuntimeError('Data is not a numpy structure') + +def chi2(x1,x2,weights1=None,weights2=None,bins=10,range=None): + h1,be1=np.histogram(x1,range=range,bins=bins,density=False,weights=weights1) + h2,be2=np.histogram(x2,range=range,bins=bins,density=False,weights=weights2) + temp=np.sum(h1,dtype=np.float64)/np.sum(h2,dtype=np.float64) + err=h1+h2*np.square(temp) + ind=np.where((h1+h2)>0)[0] + return np.sum(np.square(h1[ind]-h2[ind]*temp)/err[ind],dtype=np.float64)#/(ind.size-1) + +def delta(x): + return np.r_[x[1]-x[0],(x[2:]-x[0:-2])*0.5,x[-1]-x[-2]] + +def loghist(x,bins=10,range=None,ax=None,**kwargs): + if ax is None: + ax1=plt + else: + ax1=ax + if range is not None: + ax1.hist(x,bins=np.logspace(np.log10(np.min(range[0])),np.log10(np.max(range[1])),bins),**kwargs) + else: + ax1.hist(x,bins=np.logspace(np.log10(np.min(x)),np.log10(np.max(x)),bins),**kwargs) + if ax is None: + plt.xscale('log') + else: + ax.set_xscale('log') + +def ks(x1,x2,shift=None,tol=None): + ind=np.where(np.isfinite(x1))[0] + x1=x1[ind] + x1=np.sort(x1) + y1=np.arange(x1.size)*1.0/x1.size + if shift is not None: + xmin=np.min(x2)*np.min(shift)*0.99 + xmax=np.max(x2)*np.max(shift)*1.01 + else: + xmin=np.min(x2)*0.99 + xmax=np.max(x2)*1.01 + if xmin < np.min(x1): + x1=np.r_[xmin,x1] + y1=np.r_[0.0,y1] + if xmax> np.max(x1): + x1=np.r_[x1,xmax] + y1=np.r_[y1,1.0] + func1=scipy.interpolate.interp1d(x1,y1) + ind=np.where(np.isfinite(x2))[0] + x2=x2[ind] + x2=np.sort(x2) + y2=np.arange(x2.size)*1.0/x2.size + if shift is None: + return np.max(np.abs(func1(x2)-y2))*np.sqrt((x1.size*x2.size*1.0)/(x1.size+x2.size)) + else: + gr=1.61803 + r1=shift[0] + r4=shift[1] + r2=r4-(r4-r1)/gr + r3=r1+(r4-r1)/gr + s1=np.max(np.abs(func1(x2*r1)-y2)) + s2=np.max(np.abs(func1(x2*r2)-y2)) + s3=np.max(np.abs(func1(x2*r3)-y2)) + s4=np.max(np.abs(func1(x2*r4)-y2)) + while np.abs(r3-r2) > tol: + if s3 > s2: + r4=r3 + s4=s3 + r3=r2 + s3=s2 + r2=r4-(r4-r1)/gr + s2=np.max(np.abs(func1(x2*r2)-y2)) + else: + r1=r2 + s1=s2 + r2=r3 + s2=s3 + r3=r1+(r4-r1)/gr + s3=np.max(np.abs(func1(x2*r3)-y2)) + # res=[] + # for temp in shift: + # res.append(np.max(np.abs(func1(x2*temp)-y2))) + return r2,s2 + +#def hist2d(x, y, bins=10, range=None, normed=False, weights=None, vmin=None, vmax=None, norm=None,cmapname='jet',**kwargs): +def hist2d(x, y, bins=10, range=None, normed=False, weights=None,levels=None,clevels=None,perc=0,xscale='linear',yscale='linear',returnh1=False,**kwargs): + ind=np.where(np.isfinite(x)&np.isfinite(y))[0] + h1=hist_nd([x[ind],y[ind]],range=range,perc=perc,normed=normed,weights=weights,bins=bins) + #h1.imshow(cmapname=cmapname,vmin=vmin,vmax=vmax,norm=norm,**kwargs) + #image=h.apply(x,np.mean).reshape(h.bins) + + if levels is None and returnh1: + h1.imshow(clevels=clevels,xscale=xscale,yscale=yscale,**kwargs) + return h1 + + elif levels is None: + #h1.imshow(cmapname=cmapname,dnorm=False,clevels=clevels,**kwargs) + return h1.imshow(clevels=clevels,xscale=xscale,yscale=yscale,**kwargs) + else: + # return h1.imshow(levels=levelsclevels=clevels,**kwargs) + #h1.contourf(cmapname=cmapname,levels=levels,clevels=clevels,dnorm=False,**kwargs) + return h1.contourf(levels=levels,clevels=clevels,xscale=xscale,yscale=yscale,**kwargs) + #return h1.contour(levels=levels,clevels=clevels,xscale=xscale,yscale=yscale,**kwargs) + + + # kernel = astropy.convolution.Gaussian2DKernel(stddev=1) + # image=h.apply(x,np.mean).reshape(h.bins) + # temp=astropy.convolution.convolve(image.reshape(h.bins),kernel).reshape(np.prod(h.bins)) + # temp[h.data<20]=np.nan + # h.contourf(temp,cmapname='jet', interpolation='bicubic',levels=np.linspace(-20,20,11)) + +def map2d(x, y, z, bins=10, func=np.mean,range=None, perc=0,normed=False, weights=None,levels=None,clevels=None,xscale='linear',yscale='linear',**kwargs): + ind=np.where(np.isfinite(x)&np.isfinite(y)&np.isfinite(z))[0] + + h1=hist_nd([x[ind],y[ind]],range=range,perc=perc,normed=normed,weights=weights,bins=bins) + #h1.imshow(cmapname=cmapname,vmin=vmin,vmax=vmax,norm=norm,**kwargs) + image=h1.apply(z[ind],func).reshape(h1.bins) + + if levels is None: + #h1.imshow(cmapname=cmapname,dnorm=False,clevels=clevels,**kwargs) + return h1.imshow(data=image, dnorm=0,xscale=xscale,yscale=yscale,**kwargs) +# return h1.imshow(data=image,**kwargs) + else: + return h1.contourf(data=image,levels=levels,clevels=clevels, dnorm=0,xscale=xscale,yscale=yscale,**kwargs) + + + + +def profile(x,z,bins=100,range=None,label=None,mincount=3,fmt='-o',color='',meanerror=False,style=None,func=None,lw=None,return_profile=False,ms=None,error=None,weights=None,alpha=1): + """ + style: ['lines','fill_between,'errorbar'] + func: default is np.median + """ + #style=['lines','fill_between','errorbar'] + ind=np.where(np.isfinite(x)&np.isfinite(z))[0] + x=x[ind] + z=z[ind] + if weights is None: + w=None + else: + w=weights[ind] + h=hist_nd(x,bins=bins,range=range) + ind1=np.where(h.data>=mincount)[0] + if func is None: + ym=h.apply(z,autil.percentile,50.0,weights=weights) + # if weights is None: + # ym=h.apply(z,np.median) + # else: + # ym=h.apply_quantile_1D(z,w,0.5) + else: + ym=h.apply(z,func,weights=weights) + xm=h.locations[0] + + yl=h.apply(z,autil.percentile,16,weights=weights) + yh=h.apply(z,autil.percentile,84,weights=weights) + + if error is not None: + yl=ym-h.apply(error,autil.percentile,50,weights=weights) + yh=ym+h.apply(error,autil.percentile,50,weights=weights) + + + if meanerror: + if weights is None: + yl=ym+(yl-ym)/np.sqrt(h.data) + yh=ym+(yh-ym)/np.sqrt(h.data) + else: + raise RuntimeError('weights not implemented') + + if return_profile: + return xm,ym,h.data + else: + xm=xm[ind1] + ym=ym[ind1] + yl=yl[ind1] + yh=yh[ind1] + + if style == 'fill_between': + plt.fill_between(xm,yl,yh,interpolate=True,alpha=0.75) + elif style == 'errorbar': + plt.errorbar(xm,ym,yerr=[ym-yl,yh-ym],fmt=color+'-o',label=label,lw=lw,alpha=alpha) + elif style == 'lines': + if color == '': + color=plt.gca()._get_lines.get_next_color() + plt.plot(xm,ym,fmt,label=label,color=color,lw=lw,ms=ms,alpha=alpha) + plt.plot(xm,yl,'--',color=color,lw=lw,alpha=alpha) + plt.plot(xm,yh,'--',color=color,lw=lw,alpha=alpha) + elif style == 'null': + temp=1.0 + else: + plt.plot(xm,ym,color+fmt,label=label,lw=lw,ms=ms,alpha=alpha) + + +def profile_old(x,z,bins=100,range=None,label=None,mincount=3,fmt='-o',color='',meanerror=False,style=None,func=None,lw=None,return_profile=False,ms=None,error=None): + """ + style: ['lines','fill_between,'errorbar'] + func: default is np.median + """ + #style=['lines','fill_between','errorbar'] + ind=np.where(np.isfinite(x)&np.isfinite(z))[0] + x=x[ind] + z=z[ind] + h=hist_nd(x,bins=bins,range=range) + ind1=np.where(h.data>=mincount)[0] + if func is None: + ym=h.apply(z,np.median)[ind1] + else: + ym=h.apply(z,func)[ind1] + xm=h.locations[0][ind1] + + yl=h.apply(z,np.percentile,16)[ind1] + yh=h.apply(z,np.percentile,84)[ind1] + if error is not None: + yl=ym-h.apply(error,np.nanmedian)[ind1] + yh=ym+h.apply(error,np.nanmedian)[ind1] + + if meanerror: + yl=ym+(yl-ym)/np.sqrt(h.data[ind1]) + yh=ym+(yh-ym)/np.sqrt(h.data[ind1]) + if style == 'fill_between': + plt.fill_between(xm,yl,yh,interpolate=True,alpha=0.75) + elif style == 'errorbar': + plt.errorbar(xm,ym,yerr=[ym-yl,yh-ym],fmt=color+'-o',label=label,lw=lw) + elif style == 'lines': + if color == '': + color=plt.gca()._get_lines.get_next_color() + plt.plot(xm,ym,fmt,label=label,color=color,lw=lw,ms=ms) + plt.plot(xm,yl,'--',color=color,lw=lw) + plt.plot(xm,yh,'--',color=color,lw=lw) + elif style == 'null': + temp=1.0 + else: + plt.plot(xm,ym,color+fmt,label=label,lw=lw,ms=ms) + if return_profile: + if func is None: + ym=h.apply(z,np.median) + else: + ym=h.apply(z,func) + return xm,ym + + # if errorbar: + # yerr=[ym+(ym-yl)/np.sqrt(h.data[ind1]),ym+(yh-ym)/np.sqrt(h.data[ind1])] + # plt.errorbar(xm,ym,yerr=yerr,fmt=color+'-o',label=label) + # elif percentile=True: + # else: + # plt.plot(xm,ym,color+fmt,label=label) + # if low is not None: + # yl=h.apply(z[ind],np.percentile,low)[ind1] + # plt.plot(xm,yl,color+'--') + # if high is not None: + # yh=h.apply(z[ind],np.percentile,high)[ind1] + # plt.plot(xm,yh,color+'--') + +def neff_kish(x): + return (np.sum(x)**2)/np.sum(x*x) + +class hist_nd(object): + """ + PURPOSE + ---------- + a. Makes n-dimensional histogram + b. Returns ids for points in each bins + c. Apply function to points in a bin + e. Make plt.contourf and plt.imshow plots + d. Input-> ndarray, list of ndarry, or dict of ndarray + Copyright (c) 2015 Sanjib Sharma + Example: + >>> import matplotlib.pyplot as plt + >>> import sutil + >>> x=np.random.normal(size=(1000,2)) + >>> x=[np.random.normal(size=1000),np.random.normal(size=1000)] + >>> x={'x0':np.random.normal(size=1000),'x1':np.random.normal(size=1000)} + >>> h=sutil.hist_nd(x,bins=[10,10]) + >>> h.contourf() + >>> h.imshow() + >>> d=np.random.normal(size=1000) + >>> d_mean=h.apply(d,np.mean) + >>> h.imshow(d_mean) + """ + + + def __init__(self,V,bins=10,range=None,perc=0,normed=False,weights=None,keys=None,ri=True): + """ + Args: + + V: sample. The data to be histogrammed. It can be an (N,D) array + or data that can be converted to such an array, e.g., a list, + a tuple or a dict with keys. + + bins: a sequence or scalar int + + range: A sequence of lower and upper bin edges to be used + + perc: percentile + normed: bool + + weights: on data points + + keys: if V is disct the keys which deifne the dimensions + ri: bool, to specify if reverse indices are to be computed + + Stores: + + self.data: the histogram + + self.bins: the shape of the histogram, or no of bins along + each dimensions + + self.range: range along each dimension + + Methods: + imshow: takes imshow kwargs + colorbar: for colorbar, takes colorbar kwargs + apply: apply function on values of 3rd variable in each bin in histdd + resample: resample a given data to match the histogram + """ + self.data,self.bins,self.range,self.ri=self.compute(V,bins=bins,range=range,perc=perc,normed=normed,weights=weights,keys=keys,ri=ri) + loc=[] + for i in np.arange(self.bins.size): + xe = np.linspace(self.range[i,0],self.range[i,1],self.bins[i]+1) + xc = (xe[0:-1]+xe[1:])/2.0 + loc.append(xc) + self.locations=loc + self.keys=keys + + def indices(self,i=None): + if i is None: + return self.ri[self.ri[0]:].copy() + if i>> h.contourf() + or + >>> h.contourf(d_estimate) + """ + + # if data is None: + # data=self.data + # if dnorm: + # bs=np.float64((self.range[:,1]-self.range[:,0]))/self.bins + # ind=np.where(np.isfinite(data))[0] + # data=np.float64(data)/(np.sum(data[ind])*np.prod(bs)) + # ind=np.where(data==0.0)[0] + # data[ind]=np.nan + # else: + # data=np.float64(data) + # else: + # data=data.copy() + # # ind=np.where(np.isfinite(data)==True)[0] + # # if vmin is None: + # # vmin=np.min(data[ind]) + # # vmax=np.max(data[ind]) + # # vmin=vmin-(vmax-vmin)/255.0 + # # else: + # # ind1=ind[np.where(data[ind]<=vmin)[0]] + # # ind2=np.where(np.isfinite(data)==False)[0] + # # data[ind1]=vmin + # # #data[ind1]=vmin+(vmax-vmin)/255.0 + # # #data[ind2]=vmin + # # ind1=ind[np.where(data[ind]>=vmax)[0]] + # # data[ind1]=vmax + # data=data*dfactor + + + + xe = np.linspace(self.range[0,0],self.range[0,1],self.bins[0]+1) + ye = np.linspace(self.range[1,0],self.range[1,1],self.bins[1]+1) + xc = (xe[0:-1]+xe[1:])/2.0 + yc = (ye[0:-1]+ye[1:])/2.0 + x=np.meshgrid(xc,yc,indexing='ij') + + # if dnorm==2: + # data=data/np.nanmax(data) + + + # if dnorm==3: + # data.shape=self.bins + # data=data.transpose()*1.0/np.nanmax(data,axis=1) + # data=data.transpose() + # data.shape=-1 + + data=self.density(data=data,dnorm=dnorm,dfactor=dfactor) + + data=data.reshape(self.bins) + + if smooth: + kernel = astropy.convolution.Gaussian2DKernel(x_stddev=1.0) + y=astropy.convolution.convolve(self.data.reshape(self.bins),kernel) + data=astropy.convolution.convolve(data.reshape(self.bins),kernel) + data[y<1]=np.nan + kwargs['interpolation']='bicubic' + + if xscale == 'log': + x[0]=10.0**x[0] + plt.xscale('log') + + if yscale == 'log': + x[1]=10.0**x[1] + plt.yscale('log') + + if clevels is not None: + levels1=levels[::len(levels)//clevels] + plt.contour(x[0],x[1],data,levels1,linewidths=0.5) + #plt.contour(x[0],x[1],data,clevels) + + if cmap is None: + cmap=cm.get_cmap(cmapname) + + + #return plt.contourf(x[0],x[1],data,levels,cmap=cmap,**kwargs) + return plt.contour(x[0],x[1],data,levels,cmap=None,**kwargs) + + def get_grid2(self): + x=np.meshgrid(self.locations[0],self.locations[1],indexing='ij') + # xe = np.linspace(self.range[0,0],self.range[0,1],self.bins[0]+1) + # ye = np.linspace(self.range[1,0],self.range[1,1],self.bins[1]+1) + # xc = (xe[0:-1]+xe[1:])/2.0 + # yc = (ye[0:-1]+ye[1:])/2.0 + # x=np.meshgrid(xc,yc,indexing='ij') + x=[xt.reshape(-1) for xt in x] + return x + + # def digitize(self,nsize): + # result=np.zeros(nsize,dtype=np.int64)-1 + # for i in np.arange(self.data.size): + # if self.data[i] > 0: + # result[self.indices(i)]=i + # return result + + def density_of_points(self,X,keys=None,**kwargs): + if type(X) == hist_nd: + hist1=X + else: + hist1=hist_nd(X,bins=self.bins,range=self.range,keys=keys,ri=True) + den=self.density(**kwargs) + den=den[hist1.index_of_points] + den[hist1.index_of_points<0]=np.nan + return den + + def density(self,data=None,dnorm=0,dfactor=1): + if data is None: + data=self.data.copy() + if dnorm: + bs=np.float64((self.range[:,1]-self.range[:,0]))/self.bins + data=np.float64(data)/(np.prod(bs)) + ind=np.where(data==0.0)[0] + data[ind]=np.nan + else: + data=np.float64(data) + else: + data=data.copy() + data=data*dfactor + if dnorm==1: + data=data/np.nansum(data) + elif dnorm==2: + data=data/np.nanmax(data) + elif dnorm==3: + data.shape=self.bins + #data=(data.transpose()*1.0/np.nanmax(data,axis=1)).transpose() + # below will work for ndim > 2 but above wont + data=(data.transpose()*1.0/np.nanmax(data.transpose(),axis=0)).transpose() + data.shape=-1 + elif dnorm==4: + data=data*1.0 + elif dnorm==5: + x=self.get_grid2() + data=data/np.cos(np.radians(x[1])) + elif dnorm==6: + data.shape=self.bins + #data=(data.transpose()*1.0/np.nansum(data,axis=1)).transpose() + # below will work for ndim > 2 but above wont + data=(data.transpose()*1.0/np.nansum(data.transpose(),axis=0)).transpose() + data.shape=-1 + return data + + + def imshow(self,data=None,ax=None,cmapname='jet',cmap=None,dnorm=True,smooth=False,clevels=None,dfactor=1.0,xscale='linear',yscale='linear',**kwargs): + # # def imshow(self,data=None,ax=None,cmapname='jet',cmap=None,dnorm=1,smooth=False,clevels=None,dfactor=1.0,xscale='linear',yscale='linear',**kwargs): + """ + Make am image either with input data or precomputed histogram + Args: + + dnorm (int): [0,1,2,3], normalization of histogram + 0 - number counts + 1 - prob_density(x,y), counts/binsize_x*binsize_y + 2 - prob_density(x,y)/max(prob_density(x,y)) + 3 - prob_density(y|x)/max(prob_density(y|x)) + Example: + >>> h.imshow() + or + >>> h.imshow(d_estimate) + """ + # putil.make_cmap('newjet') + + + if data is None: + data=self.data + if dnorm: + bs=np.float64((self.range[:,1]-self.range[:,0]))/self.bins + data=np.float64(data)/(np.prod(bs)) + # ind=np.where(np.isfinite(data))[0] + # data=np.float64(data)/(np.sum(data[ind])*np.prod(bs)) + ind=np.where(data==0.0)[0] + data[ind]=np.nan + else: + data=np.float64(data) + else: + data=data.copy() + # ind=np.where(np.isfinite(data)==True)[0] + # if vmin is None: + # vmin=np.min(data[ind]) + # vmax=np.max(data[ind]) + # vmin=vmin-(vmax-vmin)/255.0 + # else: + # ind1=ind[np.where(data[ind]<=vmin)[0]] + # ind2=np.where(np.isfinite(data)==False)[0] + # data[ind1]=vmin+(vmax-vmin)/255.0 + # data[ind2]=vmin + # if dnorm==2: + # data=data/np.nanmax(data) + + # if dnorm==3: + # data.shape=self.bins + # data=data.transpose()*1.0/np.nanmax(data,axis=1) + # data=data.transpose() + # data.shape=-1 + data=data*dfactor + print(dfactor) + print('dnorm=',dnorm) + if dnorm==1: + data=data/np.nansum(data) + elif dnorm==2: + data=data/np.nanmax(data) + elif dnorm==3: + data.shape=self.bins + data=data.transpose()*1.0/np.nanmax(data,axis=1) + data=data.transpose() + data.shape=-1 + elif dnorm==4: + data=data*1.0 + elif dnorm==5: + x=np.meshgrid(self.locations[0],self.locations[1],indexing='ij') + x[1].shape=-1 + data=data/np.cos(np.radians(x[1])) + + if cmap is None: + cmap=cm.get_cmap(cmapname) + + #cmap.set_bad('w',1.) + #plt.imshow(np.ma.masked_where(np.isnan(d),d), interpolation=interpolation,extent=[self.range[0][0], self.range[0][1], self.range[1][0], self.range[1][1]],cmap=cmap,norm=norm,origin='lower',aspect='auto',vmin=vmin,vmax=vmax,**kwargs) + # if smooth: + # kernel = astropy.convolution.Gaussian2DKernel(stddev=1.0) + # d=astropy.convolution.convolve(d,kernel) + # d[d<1]=np.nan + # kwargs['interpolation']='bicubic' + + if smooth: + # kernel = astropy.convolution.Gaussian2DKernel(x_stddev=1.0) + # y=astropy.convolution.convolve(self.data.reshape(self.bins),kernel) + # d=astropy.convolution.convolve(data.reshape(self.bins),kernel) + # d[y<1]=np.nan + # kwargs['interpolation']='bicubic' + # d=d.transpose() + + import dtools + d = data.reshape(self.bins).transpose() + d = dtools.smoother_(d,sigma=1,truncate=4) + + + else: + d=data.reshape(self.bins).transpose() + + + xe = np.linspace(self.range[0,0],self.range[0,1],self.bins[0]+1) + ye = np.linspace(self.range[1,0],self.range[1,1],self.bins[1]+1) + xc = (xe[0:-1]+xe[1:])/2.0 + yc = (ye[0:-1]+ye[1:])/2.0 + x=np.meshgrid(xc,yc,indexing='ij') + + + if ax is None: + ax=plt + if clevels is not None: + raise RuntimeError('Check the code') + #ax.contour(x[0],x[1],d.transpose(),clevels,vmin=vmin,vmax=vmax) + #should be above one + #ax.contour(x[0],x[1],d,levels[::len(levels)/clevels],linewidths=0.5,color='k') + + print(np.sum(d)) + + status=0 + if xscale == 'log': + status=1 + xe=10.0**xe + plt.xscale('log') + + if yscale == 'log': + status=1 + ye=10.0**ye + plt.yscale('log') + + # return plt.pcolormesh(xe,ye,d,cmap=cmap,**kwargs) + + if status==1: + return plt.pcolormesh(xe,ye,d,cmap=cmap,**kwargs) + else: + return ax.imshow(d,extent=[self.range[0][0], self.range[0][1], self.range[1][0], self.range[1][1]],cmap=cmap,origin='lower',aspect='auto',**kwargs) + + + + def apply(self,quant,func,*args,**kwargs): + """ + Apply a scalar function to data points in a bin of the histogram. + Args: + + quant: an array of size N (no of data points) + + func: a scalar function to apply to data points + + Example: + >>> d_estimate=h.apply(d,np.mean) + + """ + if 'weights' in kwargs: + weights=kwargs.pop('weights') + else: + weights=None + #result=np.zeros(self.data.size,dtype=np.float64)+np.nan + result=[] + + nsize=np.min([100,quant.size]) + if weights is None: + res_nan=func(quant[0:nsize],*args,**kwargs)+np.nan + else: + res_nan=func(quant[0:nsize],*args,weights=weights[0:nsize],**kwargs)+np.nan + + for i in np.arange(self.data.size): + if self.data[i] > 0: + if weights is None: + res=func(quant[self.indices(i)],*args,**kwargs) + else: + res=func(quant[self.indices(i)],*args,weights=weights[self.indices(i)],**kwargs) + else: + res=res_nan + # result[i]=res + result.append(res) + return np.array(result) + + # def apply_quantile_1D(self,quant,weights,q): + # """ + # Apply a scalar function to data points in a bin of the histogram. + # Args: + + # quant: an array of size N (no of data points) + + # func: a scalar function to apply to data points + + # Example: + # >>> d_estimate=h.apply(d,np.mean) + + # """ + # result=np.zeros(self.data.size,dtype=np.float64)+np.nan + # for i in np.arange(self.data.size): + # if self.data[i] > 0: + # result[i]=wquantiles.quantile_1D(quant[self.indices(i)],weights[self.indices(i)],q) + # return result + + def equisample(self,nsize): + indt=[] + for i in np.arange(self.data.size): + ind=self.indices(i) + np.random.shuffle(ind) + if ind.size>nsize: + indt.append(ind[0:nsize]) + else: + indt.append(ind) + return np.concatenate(indt) + + def resample_df(self,df,keys,fsample=1.0,verbose=False): + X=[df[key] for key in keys] + ind,weights=self.resample(X,fsample=fsample,verbose=verbose,return_weights=True) + tab.where(df,ind,basekey=keys[0]) + df['weights_orig']=weights + + def resample(self,X,fsample=1.0,keys=None,verbose=False,return_weights=False): + weights=None + if type(X) == hist_nd: + hist1=X + else: + hist1=hist_nd(X,weights=weights,bins=self.bins,range=self.range,keys=keys,ri=True) + hist2=self + count1=np.sum(hist1.data) + count2=np.sum(hist2.data) + indices=np.zeros(np.int64(count2*fsample),dtype=np.int64) + nprev=0 + misscount=0 + newh=[] + for i in np.arange(hist1.data.size): + if hist2.data[i] > 0: + if hist1.data[i] < hist2.data[i]*fsample: + misscount=misscount+hist2.data[i]*fsample-hist1.data[i] + if hist1.data[i] > 0: + ind1=hist1.indices(i) + np.random.shuffle(ind1) + nsize=np.int64(fsample*hist2.data[i]) + ind=np.arange(nsize) + indices[nprev:nsize+nprev]=ind1[ind%ind1.size] + nprev=nsize+nprev + newh.append(nsize) + else: + newh.append(0.0) + else: + newh.append(0.0) + + indices=indices[0:nprev] + newh=np.array(newh,dtype=np.float64) + + if weights is None: + weights=np.ones(hist1.index_of_points.size,dtype=np.float64) + weights1=weights*hist1.data[hist1.index_of_points]*1.0/newh[hist1.index_of_points] + + if verbose: + print('fsmaple=',fsample,' primary size=',np.sum(hist2.data),' secondary size=', np.sum(hist1.data)) + print('Points lacking in primary=',misscount) + print('Total points missed =',int(np.sum(hist2.data)*fsample)-indices.size) + if return_weights: + return indices,weights1[indices] + else: + return indices + + def reweight(self,X,weights=None,keys=None,verbose=False): + hist1=hist_nd(X,weights=weights,bins=self.bins,range=self.range,keys=keys,ri=True) + if weights is None: + weights=np.ones(hist1.index_of_points.size,dtype=np.float64) + + weights1=weights*self.data[hist1.index_of_points]*1.0/hist1.data[hist1.index_of_points] + ind1=np.where(hist1.index_of_points<0)[0] + weights1[ind1]=0.0 + ind1=np.where(weights==0) + weights1[ind1]=0.0 + weights1=weights1*np.sum(self.data)*1.0/np.sum(weights1) + return weights1 + + def compute(self,X,bins=10,range=None,perc=0,normed=False,weights=None,keys=None,ri=True): + if type(keys) == str: + keys=[keys] + + if type(X) == list: + dims=len(X) + V=X + elif type(X) == tuple: + dims=len(X) + V=X + elif type(X) == dict: + dims=len(keys) + V=[X[key] for key in keys] + elif type(X) == np.ndarray: + if X.dtype.char == 'V': + dims=len(keys) + V=[X[key] for key in keys] + else: + if X.ndim == 2: + dims=X.shape[1] + V=[X[:,i] for i in np.arange(dims)] + elif X.ndim == 1: + dims=1 + V=[X] + else: + raise RuntimeError('Input data must be of ndim=1 or 2') + + for i in np.arange(dims): + if type(V[i]) != np.ndarray: + V[i]=np.array(V[i]) + + nsize=V[0].size + for i in np.arange(dims): + if V[i].size != nsize: + print('dim=',i,' size=',V[i].size,' required size=',nsize) + raise RuntimeError('all dimensions not of same size') + #print 'dims=',dims + + # V={} + # if keys==None: + # if X.ndim == 2: + # dims=X.shape[1] + # for i in np.arange(dims): + # V[i]=X[:,i] + # elif X.ndim == 1: + # dims=1 + # V[0]=X + # else: + # raise RuntimeError('Input data must be of ndim=1 or 2') + # else: + # if type(keys) == str: + # keys=[keys] + # dims=len(keys) + # for i,key in enumerate(keys): + # V[i]=X[key] + + #determine range and bin size + flag=np.zeros(V[0].size,dtype=np.int64) + nbins=np.zeros(dims,dtype=np.int64) + nbins[:]=bins + total_bins=np.prod(nbins) + if range is None: + range=np.zeros((dims,2),dtype=np.float64) + if perc == 0: + for i in np.arange(dims): + range[i,0]=np.nanmin(V[i]) + range[i,1]=np.nanmax(V[i]) + else: + for i in np.arange(dims): + temp=np.nanpercentile(V[i],[perc,50,100-perc]) + range[i,0]=temp[1]-(temp[1]-temp[0])*3 + range[i,1]=temp[1]+(temp[2]-temp[1])*3 + + else: + range=np.float64(range) + if len(range.shape) == 1: + range=range.reshape((1,2)) + # clip the data to fit in range + for i in np.arange(dims): + # To prevent last bin from taking extra points, on 22 April 2017 changed to from + # ind=np.where((V[i]range[i,1]))[0] + ind=np.where((V[i]=range[i,1]))[0] + flag[ind]=1 + bs=np.float64((range[:,1]-range[:,0]))/nbins + ind=np.where(flag==0)[0] + + #index of each data point + d=np.clip(np.int64((V[0]-range[0,0])/bs[0]),0,nbins[0]-1) + for i in np.arange(1,dims): + # The scaled indices, + d=nbins[i]*d+np.clip(np.int64((V[i]-range[i,0])/bs[i]),0,nbins[i]-1) + self.index_of_points=d.copy() + self.index_of_points[flag!=0]=-1 + d=d[ind] + + # h,e=np.histogram(d,range=[0,total_bins],bins=total_bins,normed=normed,weights=weights) + + # np.bincount is faster + h=np.bincount(d,weights=None,minlength=total_bins) + e=np.arange(total_bins+1) + + # reverse indices + if ri == True: + inds=np.argsort(d) + rev_ind=np.zeros(e.size+inds.size,dtype='int64') + rev_ind[0]=e.size + rev_ind[1:e.size]=np.cumsum(h)+e.size + rev_ind[e.size:]=ind[inds] + else: + rev_ind=None + + if weights is not None: + h=np.bincount(d,weights=weights[ind],minlength=total_bins) + + if normed==True: + h=np.float64(h)/(np.sum(h)*np.prod(bs)) + + return h,nbins,range,rev_ind + + +class hist_ndp(hist_nd): + def imshow1(self,density=False,vmin=None,vmax=None,**kwargs): +# putil.make_cmap('newjet') + data=self.data.copy() + if density: + bs=np.float64((self.range[:,1]-self.range[:,0]))/self.bins + data=np.float64(data)/(np.sum(data)*np.prod(bs)) + else: + ind=np.where(np.isfinite(data)==True)[0] + if vmin is None: + vmin=np.min(data[ind]) + vmax=np.max(data[ind]) + vmin=vmin-(vmax-vmin)/255.0 + else: + ind1=ind[np.where(data[ind]<=vmin)[0]] + ind2=np.where(np.isfinite(data)==False)[0] + data[ind1]=vmin+(vmax-vmin)/255.0 + data[ind2]=vmin + plt.imshow(data.reshape(self.bins).transpose(),extent=[self.range[0][0], self.range[0][1], self.range[1][0], self.range[1][1]],vmin=vmin,vmax=vmax,origin='lower',aspect='auto',**kwargs) + # def recbin(x, y, C=None, gridsize=100, bins=None, xscale='linear', yscale='linear', extent=None, cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, edgecolors='none', reduce_C_function=, mincnt=None, marginals=False, hold=None, **kwargs): + # h1=hist_nd([x,y],range=range,normed=normed,weights=weights) + + + +class StructGrid(): + """ + Takes an ndarray of npstruct and makes a grid out of it + for use in interpolation. + """ + @staticmethod + def groupby(data,keys,regular=True): + """ + Will group data + Parameters + ---------- + data : (ndarray of npstruct) + keys : a list of strings specifying struct field names + to group by + Returns + ------- + res : (list) data split in groups + groups: (list) of length len(keys) + groups[j][i] value of key[j] in i-th group + """ + temp=0 + for key in keys: + temp=temp+np.abs(np.diff(data[key])) + res=np.split(data,np.where(temp!=0)[0]+1) + + + groups1=[] + for key in keys: + groups1.append([]) + for temp in res: + for i,key in enumerate(keys): + groups1[i].append(temp[key][0]) + groups1=[np.array(group) for group in groups1] + + if regular==False: + return res,groups1 + else: + groups2=[np.unique(data[key]) for key in keys] + myshape=[group.size for group in groups2] + points=(np.meshgrid(*groups2,indexing='ij')) + groups2=[np.ravel(point) for point in points] + + + print('groupby keys:',keys) + print('group size:',groups1[0].size) + print('grid size :',groups2[0].size,', ',myshape) + + j=0 + for i in range(groups2[0].size): + temp=0.0 + for k in range(len(groups1)): + temp=temp+np.abs(groups1[k][j]-groups2[k][i]) + if temp != 0: + res.insert(i,None) + else: + j=j+1 + + return [res,groups2] + + @staticmethod + def fill_missing(data,keys,miss_order=None): + """ + + Parameters + ---------- + data : (ndarray of npstruct) + keys : a list of strings specifying struct field names + to group by + Returns + ------- + res : (list) data split in groups + groups: (list) of length len(keys) + groups[j][i] value of key[j] in i-th group + """ + data.sort(order=keys) + vnames=[temp for temp in data.dtype.names if temp not in keys] + myshape=np.array([np.unique(data[key]).size for key in keys]) + # if one is nan all are also assumed to be nan + ind=np.where(np.isfinite(data[vnames[0]])==False)[0] + if miss_order is None: + miss_order=list(range(len(keys))) + else: + if type(miss_order[0]) == str: + miss_order=[keys.index(temp) for temp in miss_order] + print('Filling missing grid points------>') + print('grid shape:',myshape) + print('missing ',ind.size,' out of ', data.size) + idone=0 + idone1=0 + for i in ind: + index=np.unravel_index(i,myshape) + ibk=None + # get ibk to correct + for j in miss_order: + k=index[j] + i1=i + i2=i + while (k+1)0: + k=k-1 + index1=list(index) + index1[j]=k + temp=np.ravel_multi_index(index1,myshape) + if np.isfinite(data[vnames[0]][temp]) == True: + i2=temp + break + # correct by linear interpolation + if (i1!=i)and(i2!=i): + idone=idone+1 + u=(data[keys[j]][i]-data[keys[j]][i1])/(data[keys[j]][i2]-data[keys[j]][i1]) + for vname in vnames: + data[vname][i]=data[vname][i1]*(1-u)+data[vname][i2]*u + break + # assign ibk to nearest left or right point + if ibk is None: + if i1!=i: + ibk=i1 + elif i2 != i: + ibk=i2 + # correct the value with ibk + if np.isfinite(data[vnames[0]][i]) == False: + if ibk is not None: + for vname in vnames: + data[vname][i]=data[vname][ibk] + idone=idone+1 + idone1=idone1+1 + + print(idone ,' out of ', ind.size,' filled (', idone1, ' using nearest)') + + @staticmethod + def griddata(data1,keys,qname,quant,miss_order=None): + """ + Construct a regular grid out of given points. + One dimension can be regridded if it is not already regular. + If few grid points are missing it will also fill them. + Parameters + ---------- + data1 : (ndarray of npstruct) + keys : a list of strings specifying struct field names + which will be grid dimensions + qname : field name which is irregular and needs to be regridded + qname should be present in list keys + quant : the array specifying new values of qname + Returns + ------- + data_new: (ndarray of npstruct) conforming to a regular grid, + sorted and ordered by keys. + """ + # make a list of rows data_split, with missing as None + data=np.resize(data1,data1.size) + if qname not in keys: + raise RuntimeError('qname should be present in keys') + split_keys=[temp for temp in keys if temp != qname] + vnames=[temp for temp in data.dtype.names if temp not in keys] + data.sort(order=split_keys+[qname]) + data_split,groups=StructGrid.groupby(data,keys=split_keys) + + # make a table data_new, adding np.nan for missing rows + mylist=[] + for j,d in enumerate(data_split): + data2=np.zeros(quant.size,dtype=data.dtype) + data2[qname]=quant + for i,key in enumerate(split_keys): + data2[key]=groups[i][j] + if d is None: + for vname in vnames: + data2[vname]=np.nan + else: + ind1=np.argsort(d[qname]) + xs=np.r_[quant[0],d[qname][ind1],quant[-1]] + for i,vname in enumerate(vnames): + ys=np.r_[d[vname][ind1[0]],d[vname][ind1],d[vname][ind1[-1]]] + data2[vname]=scipy.interpolate.interp1d(xs,ys,assume_sorted=True)(data2[qname]) + mylist.append(data2) + data_new=np.concatenate(mylist) + + StructGrid.fill_missing(data_new,keys,miss_order) + data_new.sort(order=keys) + return data_new + +def make_RegularGridInterpolator(outfile,gridname,dimnames,points,myfunc,**kwargs): + bins=[temp.size for temp in points] + points1=np.meshgrid(*points,indexing='ij') + points1=np.array([temp.reshape(-1) for temp in points1]).transpose() + temp=np.zeros(points1[:,0].size,dtype=np.float64) + for i in range(points1.shape[0]): + if i % 100 == 0: + print(i,' out of ',temp.size) + temp[i]=myfunc(*points1[i,:],**kwargs) + values=temp.reshape(bins) + + if outfile is not None: + if gridname[0].startswith('/') == False: + gridname='/'+gridname + ebf.write(outfile,gridname+'/data',values,'w') + ebf.write(outfile,gridname+'/dimnames',dimnames,'a') + for i,temp in enumerate(points): + ebf.write(outfile,gridname+'/'+dimnames[i],points[i],'a') + + return scipy.interpolate.RegularGridInterpolator(points,values,bounds_error=False,fill_value=np.nan) + +def read_RegularGridInterpolator(outfile,gridname): + if gridname[0].startswith('/') == False: + gridname='/'+gridname + values=ebf.read(outfile,gridname+'/data') + dimnames=ebf.read(outfile,gridname+'/dimnames') + points=[ebf.read(outfile,gridname+'/'+dimname) for dimname in dimnames] + return scipy.interpolate.RegularGridInterpolator(points,values,bounds_error=False,fill_value=np.nan) + + + +class InterpGrid(): + + """ + Takes an ndarray of npstruct and makes a grid out of it + for use in interpolation. + """ + + + def __init__(self,data1,keys): + + """ + Parameters + ---------- + data1 : (ndarray of npstruct) + keys : a list of strings specifying struct field names + to group by + """ + + data=np.resize(data1,data1.size) + data.sort(order=keys) + self.keys=keys + self.vnames=[temp for temp in data.dtype.names if temp not in self.keys] + + self.points=[np.unique(data[key]) for key in self.keys] + self.delta=[self._get_delta(x) for x in self.points] + + self.values={} + for vname in self.vnames: + self.values[vname]=data[vname].reshape([point.size for point in self.points]) + + self.points1=tuple([data[key] for key in self.keys]) + self.values1={} + temp=np.meshgrid(*self.delta,indexing='ij') + self.vol=1.0 + for x in temp: + self.vol=self.vol*x + for vname in self.vnames: + self.values1[vname]=data[vname] + + + + def _get_delta(self,x): + return np.r_[x[1]-x[0],(x[0:-2]-x[2:])*0.5,x[-1]-x[-2]] + + def _homogenize_arrays(self,xi): + xj=[np.asarray(t) for t in xi] + temp=xj[0] + for t in xj: + temp=temp+t + xj=[np.zeros_like(temp)+t for t in xj] + return xj + + + def get_values(self,vname,xi,fill_value=None,method='linear'): + """ + Parameters + ---------- + vname: field name whose interpolated value is desired + xi : the coordinates for which interpolation is required + should be in same order as keys + Returns + ------- + value: the interpolated value + """ + fill_value1=np.nan + if type(xi) == list: + xi=np.array(self._homogenize_arrays(xi)).transpose() + t1=scipy.interpolate.interpn(self.points,self.values[vname],xi,bounds_error=False,fill_value=fill_value1,method=method) + if fill_value == 'nearest': + ind=np.where(np.isfinite(t1)==False)[0] + if ind.size>0: + print('outside interp range',ind.size,' out of ',t1.size) + t1[ind]=scipy.interpolate.griddata(self.points1,self.values1[vname],xi[ind],method='nearest') + return t1 + + + + + + + + + + + + + + + + + + + + + + + + + +