diff --git a/docs/notebooks/RedClumpGaiaAllWISE/rcdemo/dtools.py b/docs/notebooks/RedClumpGaiaAllWISE/rcdemo/dtools.py new file mode 100644 index 0000000..60aa2d8 --- /dev/null +++ b/docs/notebooks/RedClumpGaiaAllWISE/rcdemo/dtools.py @@ -0,0 +1,5936 @@ +# import os, time +# import ebf +# import numpy as np +# import matplotlib.pyplot as plt +# import scipy.stats +# import numpy.polynomial.polynomial as nppoly +# import matplotlib.cm as cm +# import matplotlib +# import scipy +# import sutil, autil, tabpy, tabpy as tab +# import astropy +# from astropy.table import Table, Column +# from astropy.io import ascii +# from matplotlib.colors import LogNorm +# from scipy.interpolate import interp1d +# import colorcet as cc +# import galpy +# from galpy.util import bovy_coords, _rotate_to_arbitrary_vector, bovy_conversion +# plt.ion() + + +#os.system('tput bel') + +exec(open("./packages.py").read()) + + +#---Toolssc + +# def getdirec(loc,at='mac'): +# def getdirec(loc,at='bologna'): +def getdirec(loc,at='cluster2'): +# def getdirec(loc,at='torino'): + ''' + OPTIONS: + 1. home: '/home/shourya' + 2. phddir: home+'/Documents/phd_work' + 3. glxdir: phddir+'/GalaxiaWork' + 3. desktop: home+'/Desktop' + 4. downloads: home+'/Downloads' + 5. galaxia: home+'/GalaxiaData' + + at = ['kapteyn','lenovo','mac','INAF','cluster','cluster2','torino'] + + ''' + #savdir = HOME+'/warp2018' + + # home= '/home/shourya'; galaxia = home+'/GalaxiaData' + # home= '/import/photon1/skha2680';galaxia = '/import/photon1/sanjib/share/GsynthData' + + if at == 'kapteyn': + home= '/net/huygens/data/users/khanna'; + if at == 'mac': + home= '/Users/shouryapro'; + if at == 'bologna': + home= '/home/guest/Sunny/data8'; + if at == 'cluster': + home= '/u/skhanna'; + if at == 'cluster2': + home= '/iranet/users/pleia14/'; + if at == 'torino': + home= '/home/shouryakhanna'; + + + desktop = home+'/Desktop' + documents = home+'/Documents' + downloads = home+'/Downloads' + pdocdir= home+'/Documents/pdoc_work' + galaxia = documents+'/GalaxiaData' + phddir= home+'/Documents/phd_work' + glxdir = phddir+'/GalaxiaWork' + + gaiadata = home+'/Documents/phd_work/gaia/data' + + direc = {'home':home,'phddir':phddir,'pdocdir':pdocdir,'glxdir':glxdir,'desktop':desktop,'downloads':downloads,'galaxia':galaxia,'gaiadata':gaiadata,'documents':documents} + + return direc[loc] + + +def mk_mini(mydata,fac=1.0,key='pz',prnt_=True): + + import tabpy + + putvelkeysback = False + #velkeys = ['usun','vsun','wsun','xsun','zsun'] + + velkeys = [] + for ky in mydata.keys(): + if mydata[ky].size < mydata[key].size: + velkeys.append(ky) + velkeys = np.array(velkeys) + tmp_vel={} + + for ky in velkeys: + if ky in mydata.keys(): + tmp_vel[ky] = mydata[ky] + del mydata[ky] + putvelkeysback = True + + + if prnt_: + print(mydata[key].size,' stars in all') + + + + crnt = (mydata[key].size)*fac; crnt = int(crnt) + tabpy.shuffle(mydata,crnt) + if prnt_: + print(mydata[key].size,' stars shuffled') + + + if putvelkeysback: + for ky in velkeys: + mydata[ky] = tmp_vel[ky] + + return mydata +def filter_dict(data,ind): + ''' + PURPOSE + + > Filters given dictionary by given indices + equivalent of doing mydata['x'] = mydata['x'][ind] for each key + + INPUT: + > data: dictionary containing some data + > ind: indices at which to filter data + !!! all keys need to have same length !!! + + RETURNS: + > data filtered at specified indices + ''' + + data1={} + for key in data.keys(): + # print(key) + data1[key]=data[key][ind] + return data1 + + +def indfinite(qnt,nans=False,print_=True): + ''' + Returns the indices where input quantity is finite + + ''' + if nans == False: + ind = np.where(np.isfinite(qnt))[0] + if print_: + print('ind where finite') + print(ind.size) + else: + + ind = np.where(np.isfinite(qnt)==False)[0] + if print_: + print('ind where not finite') + print(ind.size) + return ind + + +def sqrtsum(ds=[],prnt=False): + ''' + handy function to sum up the squares and return the square-root + ''' + + if prnt: + print(len(ds)) + + mysum = 0 + for i in range(len(ds)): + + + tmp = ds[i]**2. + mysum+=tmp + + + resval = np.sqrt(mysum) + + + return resval + + + +def add_array_nan(im1,im2): + + import numpy + + # a = im1.copy() + # b = im2.copy() + na = numpy.isnan(im1) + nb = numpy.isnan(im2) + im1[na] = 0 + im2[nb] = 0 + im1 += im2 + na &= nb + im1[na] = numpy.nan + + +class stopwatch(object): + # import time + def __init__(self): + self.purpose = 'time' + + def begin(self): + self.t1=time.time() + + + def end(self): + tm = (time.time()-self.t1) + + print('') + print('---------------------------------------------') + + print ('time (seconds, minutes, hours) =', str(np.round(tm,2))+','+str(np.round(tm/60.,2))+','+str(np.round(tm/3600.,2))) + + return tm + + + + +# kinematics +def get_lsr(typ='schonrich',show=False): + ''' + Comment: using 8.275 kpc following ESO-grav 2021 + # was using 8.2 kpc following ESO-grav 2018 + + typ =='schonrich': + from schonrich 2011 + + + + typ == 'gravity': + # values used in Drimmel 2022 (based on Gravity) + + + typ == 'galaxia': + for use with galaxia kinematics + + ''' + + # print(typ) + + LSR = {} + if typ =='schonrich': + LSR = {'xsun':-8.275, + 'zsun':0.027, + 'usun':11.1, + 'wsun':7.25, + 'omega_sun':30.24} + elif typ == 'gravity': + # values used in Drimmel 2022 (based on Gravity) + LSR = {'xsun':-8.277, + 'zsun':0., + 'usun':9.3, + # 'omega_sun':6.39*4.74} + 'omega_sun':6.411*4.74} + + LSR['wsun'] = 0.219*4.74*LSR['xsun']*-1 + + + elif typ == 'galaxia': + LSR = {'xsun':-8., + 'zsun':0.0, + 'usun':11.1, + 'wsun':7.25, + 'omega_sun':239.08/8.} + + LSR['vsun'] = -LSR['omega_sun']*LSR['xsun'] + LSR['Rsun'] = -LSR['xsun'] + + if show: + + print('') + print(typ+' LSR: ') + for k, v in LSR.iteritems(): + print ("{:<15} :{:<15}".format(k,v)) + + return LSR + + +def getkin(d,rkey,rad_vel_key='vr',typ='schonrich'): + + ''' + + input: + d = dictionary of data - as a minimum requiring the columns [d['ra'],d['dec'],d[rkey],d['mura'],d['mudec'],d[rad_vel_key]] + where mura = pmra*1e-03 + rkey = the key in the dictionary representing heliocentric distance in kpc + rad_vel_key = the key in the dictionary representing line-of-sight velocity in km/s + typ = which LSR constants to use ['schonrich','gravity','galaxia'] - this calls get_lsr(typ) + + Output: + R (galactocentric) = 'rgc' + r (galactocentric) = 'rgcd' + l = glon + b = glat + + ''' + + print('') + print('rkey = '+rkey) + lsr = get_lsr(typ=typ) + print(lsr) + + omega_sun = lsr['omega_sun'];usun=lsr['usun'];wsun=lsr['wsun'];xsun=lsr['xsun'];zsun=lsr['zsun'] + + vsun= -(omega_sun*xsun) + + + # print('') + # print('Using '+dtype+' kinematics') + + + # print('') + # print('Using '+rad_vel_key) + + + # print(xsun) + + if 'l' in d.keys(): + d['glon'] = d['l'].copy() + d['glat'] = d['b'].copy() + + if 'glon' not in d.keys() and 'l' not in d.keys(): + d['glon'],d['glat']=autil.equ2gal(d['ra'],d['dec']) + + + + if 'ra' not in d.keys(): + d['ra'],d['dec'] = autil.gal2equ(d['glon'],d['glat']) + + + d['glongc'],d['pzgc'],d['rgc'],d['vlgc'],d['vzgc'],d['vrgc']=autil.helio2gc(d['ra'],d['dec'],d[rkey],d['mura'],d['mudec'],d[rad_vel_key],gal=False,vsun=vsun,usun=usun,xsun=xsun,zsun=zsun,wsun=wsun) + d['px1'],d['py1'],d['pz1']=autil.lbr2xyz(d['glon'],d['glat'],d[rkey]) + + l,b,d['mul'],d['mub'] = autil.equ2gal_pm(d['ra'],d['dec'],d['mura'],d['mudec']) + d['vl']=d['mul']*4.74e3*d[rkey] + d['vb']=d['mub']*4.74e3*d[rkey] + + d['vx1'],d['vy1'],d['vz1'] = autil.vlbr2xyz(d['glon'],d['glat'],d[rkey],d['vl'],d['vb'],d[rad_vel_key]) + + d['glongc'],d['glatgc'],d['rgcd'],vlgc,vbgc,vrgc=autil.helio2gc(d['ra'],d['dec'],d[rkey],d['mura'],d['mudec'],d[rad_vel_key],gal=False,sph=True,vsun=vsun,usun=usun,xsun=xsun,zsun=zsun,wsun=wsun) + #d['glongc'] = phi_mod(d['glongc']) + d['pxgc'],d['pygc'],d['pzgc'] = autil.lbr2xyz(d['glongc'],d['glatgc'],d['rgcd']) + d['glongc'] = d['glongc']%360. + + d['vxgc'],d['vygc'],vzgc = autil.vlbr2xyz(d['glongc'],d['glatgc'],d['rgcd'],d['vlgc'],vbgc,d['vrgc']) + + + +def vgsr(l,b,vhelio,dtype='data'): + ''' + see Xu 2015, Schonrich 2012 + ''' + b_rad = np.radians(b) + l_rad = np.radians(l) + #vgsr = vhelio + (13.84*np.cos(b_rad)*np.cos(l_rad)) + (250.*np.cos(b_rad)*np.sin(l_rad)) + (6.*np.sin(b)) + vgsr = vhelio + (11.1*np.cos(b_rad)*np.cos(l_rad)) + (8.34*30.24*np.cos(b_rad)*np.sin(l_rad)) + (7.25*np.sin(b)) + + if dtype =='galaxia': + vgsr = vhelio + (11.1*np.cos(b_rad)*np.cos(l_rad)) + (239.08*np.cos(b_rad)*np.sin(l_rad)) + (7.25*np.sin(b)) + + return vgsr +def calc_energy(rgc,pzgc,vlgc,vrgc,rscale,vscale,method=''): + if method == 'galpy': + print('----------------') + print('Using galpy.potential') + print('') + + import galpy + from galpy.potential import MWPotential2014 + energy = galpy.potential.evaluatePotentials(MWPotential2014,rgc/rscale,pzgc/rscale)+0.5*(np.square(vlgc/vscale)+np.square(vrgc/vscale)) + else: + print('----------------') + print('Using logarithmic approximation') + print('') + + energy = np.log(rgc/rscale)+0.5*(np.square(vlgc/vscale)+np.square(vrgc/vscale)) + + return energy + + +def n_from_res(tscale,tf,ti,res): + + ''' + + NAME: n_from_res + + PURPOSE: calculate number of orbit integrations to achieve desired resolution + + + INPUT: + + tf = final time (in Gyr) + ti = initial time (in Gyr) + res = resolution desired (in Myr) + + + OUTPUT: N + + REMARKS: + + + HISTORY: + + 20 November 2020 (RUG) + + ''' + + + ti_bv = ti/tscale + tf_bv = tf/tscale + + res_p = res/(tscale*1000.) + + n = (tf_bv-ti_bv)/res_p + + + return int(n) +class orbit_(object): + + def __init__(self,pxgc,pygc,pzgc,vxgc,vygc,vzgc,ti=0.,tf=1,res=20,rscale=8.3,savdir=''): + + + ''' + + NAME: orbit_ + + PURPOSE: orbit integration + + + INPUT: + + pxgc = Galactocentric X + pygc = Galactocentric Y + pzgc = Galactocentric Z + vxgc = Galactocentric VX + vygc = Galactocentric VY + vzgc = Galactocentric VZ + + + ti = initial time (in Gyr) + tf = final time (in Gyr) + res = resolution desired (in Myr) + + + OUTPUT: N + + REMARKS: + + + HISTORY: + + 20 November 2020 (RUG) + + ''' + + print('') + + + val = locals() + self.args={} + for ky in val.keys(): + if ky !='self': + self.args[ky] = val[ky] + + + + + if self.args['savdir'] == '': + raise RuntimeError('No savdirectory provided!!') + print('saving orbits to '+self.args['savdir']) + + siminfo={} + siminfo['rscale']=rscale + siminfo['vscale']= get_lsr()['omega_sun']*siminfo['rscale'] + self.tscale = galpy.util.bovy_conversion.time_in_Gyr(siminfo['vscale'],siminfo['rscale']) + + self.ti_bv = ti/self.tscale + self.tf_bv = tf/self.tscale + + num = n_from_res(self.tscale,tf,ti,res) + print(num) + print(tf) + print(ti) + siminfo['ts']= np.linspace(self.ti_bv,self.tf_bv,num) + siminfo['npoints'] = num + + self.siminfo = siminfo.copy() + + self.prep_() + + def prep_(self): + ''' + + + ''' + + pxgc,pygc,pzgc,vxgc,vygc,vzgc = self.args['pxgc'],self.args['pygc'],self.args['pzgc'],self.args['vxgc'],self.args['vygc'],self.args['vzgc'] + + siminfo = self.siminfo.copy() + + + R = np.sqrt(pxgc**2. + pygc**2.) + vlgc,vzgc,vrgc = autil.vxyz2lzr(pxgc,pygc,pzgc,vxgc,vygc,vzgc) + phi = (np.arctan2(pygc,pxgc)) # in radians + + # rescale + self.R = R/siminfo['rscale'] + self.pzgc = pzgc/siminfo['rscale'] + + self.vlgc = vlgc/siminfo['vscale'] + self.vrgc = vrgc/siminfo['vscale'] + self.vzgc = vzgc/siminfo['vscale'] + self.phi = phi.copy() + + + # save temporary files + val_dt = {} + val_dt['rgc'] = self.R + val_dt['vrgc'] = self.vrgc + val_dt['vlgc'] = self.vlgc + val_dt['vzgc'] = self.vzgc + val_dt['pzgc'] = self.pzgc + val_dt['phi'] = self.phi + + ebfwrite(val_dt,'tmp_data_rescaled',self.args['savdir']) + ebfwrite(self.siminfo,'tmp_siminfo',self.args['savdir']) + + + + + return + + def intorb_(self): + + + ''' + + NAME: orbit_ + + PURPOSE: integrate orbits using galpy + + + INPUT: + + R = cylindrical Galactocentric radius at which to compute (default=1) + vrgc = + vlgc = + pzgc = + vzgc + phi = + + + OUTPUT: density (rgcd) + + REMARKS: + + -analytical form taken http://biff.adrian.pw/en/latest/scf/examples.html + + HISTORY: + + 14 November 2020 (RUG) + + ''' + from galpy.orbit import Orbit + from galpy.potential import MWPotential2014 + + + + ts = self.siminfo['ts'] + + #i = 0 + #o= Orbit(vxvv=[self.R[i],self.vrgc[i],self.vlgc[i],self.pzgc[i],self.vzgc[i],self.phi[i]]) + #o.integrate(self.siminfo['ts'],MWPotential2014,method='odeint') + #o.plot(d1='t',d2='r') + + oa=[] + for i in range(self.R.size): + o= Orbit(vxvv=[self.R[i],self.vrgc[i],self.vlgc[i],self.pzgc[i],self.vzgc[i],self.phi[i]]) + oa.append(o) + + nsize1=len(oa) + for i in range(len(oa)): + oa[i].integrate(ts,MWPotential2014,method='odeint') + + data={} + data['lgc']=np.array([o.phi(ts) for o in oa])*360.0/(2*np.pi) + + # velocities + data['vlgc']=-np.array([o.vphi(ts)*o.R(ts) for o in oa]) + data['vrgc']=np.array([o.vR(ts) for o in oa]) + data['vzgc']=np.array([o.vz(ts) for o in oa]) + + + # positions + data['rgc']=np.array([o.R(ts) for o in oa]) + + data['pxgc']=np.cos(np.radians(data['lgc']))*data['rgc'] + data['pygc']=np.sin(np.radians(data['lgc']))*data['rgc'] + data['pzgc']=np.array([o.z(ts) for o in oa]) + + data['rgcd'] = np.sqrt(data['pxgc']**2. + data['pygc']**2. + data['pzgc']**2.) + + + print('scaling velocity and distance') + for key in data.keys(): + if key.startswith('v'): + data[key] = data[key]*self.siminfo['vscale'] + elif key.startswith('r'): + data[key] = data[key]*self.siminfo['rscale'] + elif key.startswith('p'): + data[key] = data[key]*self.siminfo['rscale'] + + + return data +def intorb_one_(i): + + + ''' + + NAME: orbit_ + + PURPOSE: integrate orbits using galpy per star + + + INPUT: + + R = cylindrical Galactocentric radius at which to compute (default=1) + vrgc = + vlgc = + pzgc = + vzgc + phi = + inum = index + + + OUTPUT: density (rgcd) + + REMARKS: + + + HISTORY: + + 25 November 2020 (RUG) + + ''' + from galpy.orbit import Orbit + from galpy.potential import MWPotential2014 + + hloc = '/net/huygens/data/users/khanna/Documents/pdoc_work/science/halo' + + siminfo = tabpy.read(hloc+'/tmp_orbit/tmp_siminfo.ebf') + val_dt = tabpy.read(hloc+'/tmp_orbit/tmp_data_rescaled.ebf') + + + + ts = siminfo['ts'] + + + R = val_dt['rgc'] + vrgc = val_dt['vrgc'] + vlgc = val_dt['vlgc'] + vzgc = val_dt['vzgc'] + pzgc = val_dt['pzgc'] + phi = val_dt['phi'] + + oa=[] + o= Orbit(vxvv=[R[i],vrgc[i],vlgc[i],pzgc[i],vzgc[i],phi[i]]) + oa.append(o) + + nsize1=len(oa) + for j in range(len(oa)): + oa[j].integrate(ts,MWPotential2014,method='odeint') + + data={} + data['lgc']=np.array([o.phi(ts) for o in oa])*360.0/(2*np.pi) + + # velocities + data['vlgc']=-np.array([o.vphi(ts)*o.R(ts) for o in oa]) + data['vrgc']=np.array([o.vR(ts) for o in oa]) + data['vzgc']=np.array([o.vz(ts) for o in oa]) + + + # positions + data['rgc']=np.array([o.R(ts) for o in oa]) + + data['pxgc']=np.cos(np.radians(data['lgc']))*data['rgc'] + data['pygc']=np.sin(np.radians(data['lgc']))*data['rgc'] + data['pzgc']=np.array([o.z(ts) for o in oa]) + + data['rgcd'] = np.sqrt(data['pxgc']**2. + data['pygc']**2. + data['pzgc']**2.) + + + print('scaling velocity and distance') + for key in data.keys(): + if key.startswith('v'): + data[key] = data[key]*siminfo['vscale'] + elif key.startswith('r'): + data[key] = data[key]*siminfo['rscale'] + elif key.startswith('p'): + data[key] = data[key]*siminfo['rscale'] + + ebfwrite(data,'orbit_'+str(i),hloc+'/tmp_orbit/orbits') + return data + + +class reid_spiral(object): + + + def __init__(self,kcor=False): + print('') + + self.kcor = kcor + self.getarmlist() + + def getarmlist(self): + + # self.arms = np.array(['3-kpc','Norma','Sct-Cen','Sgt-Car','Local','Perseus','Outer']) + self.arms = np.array(['3-kpc','Norma','Sct-Cen','Sgr-Car','Local','Perseus','Outer']) + + def getparams(self,arm): + + if arm == '3-kpc': + params = {'name':arm,'beta_kink':15,'pitch_low':-4.2,'pitch_high':-4.2,'R_kink':3.52,'beta_min':15,'beta_max':18,'width':0.18} + if arm == 'Norma': + params = {'name':arm,'beta_kink':18,'pitch_low':-1.,'pitch_high':19.5,'R_kink':4.46,'beta_min':5,'beta_max':54,'width':0.14} + if arm == 'Sct-Cen': + params = {'name':arm,'beta_kink':23,'pitch_low':14.1,'pitch_high':12.1,'R_kink':4.91,'beta_min':0,'beta_max':104,'width':0.23} + if arm == 'Sgr-Car': #'Sgr-Car' + params = {'name':arm,'beta_kink':24,'pitch_low':17.1,'pitch_high':1,'R_kink':6.04,'beta_min':2,'beta_max':97,'width':0.27} + if arm == 'Local': + params = {'name':arm,'beta_kink':9,'pitch_low':11.4,'pitch_high':11.4,'R_kink':8.26,'beta_min':-8,'beta_max':34,'width':0.31} + if arm == 'Perseus': + params = {'name':arm,'beta_kink':40,'pitch_low':10.3,'pitch_high':8.7,'R_kink':8.87,'beta_min':-23,'beta_max':115,'width':0.35} + if arm == 'Outer': + params = {'name':arm,'beta_kink':18,'pitch_low':3,'pitch_high':9.4,'R_kink':12.24,'beta_min':-16,'beta_max':71,'width':0.65} + + + if self.kcor: + Rreid = 8.15 + diffval = params['R_kink'] - Rreid + xsun = get_lsr()['xsun'] + if diffval < 0: + params['R_kink'] = (-xsun) + diffval + else: + params['R_kink'] = (-xsun) + diffval + + + return params + + + def model_(self,params): + ''' + X and Y are flipped in Reid et al. 2019 + I flip it back to sensible orientation here + + ''' + + beta_kink = np.radians(params['beta_kink']) + pitch_low = np.radians(params['pitch_low']) + pitch_high = np.radians(params['pitch_high']) + R_kink = params['R_kink'] + beta_min = params['beta_min'] + beta_max = params['beta_max'] + width = params['width'] + + + # beta = np.linspace(beta_min-180,beta_max,100) + beta = np.linspace(beta_min,beta_max,1000) + + + beta_min = np.radians(beta_min) + beta_max = np.radians(beta_max) + beta = np.radians(beta) + + + pitch = np.zeros(beta.size) + np.nan + indl = np.where(betabeta_kink)[0]; pitch[indr] = pitch_high + + tmp1 = (beta - beta_kink)*(np.tan(pitch)) + tmp2 = np.exp(-tmp1) + + R = R_kink*tmp2 + x = -R*(np.cos(beta)) + y = R*(np.sin(beta)) + + ##3 testing + R2 = (R_kink+(width*0.5))*tmp2 + x2 = -R2*(np.cos(beta)) + y2 = R2*(np.sin(beta)) + + R1 = (R_kink-(width*0.5))*tmp2 + x1 = -R1*(np.cos(beta)) + y1 = R1*(np.sin(beta)) + + + + return x,y, x1,y1,x2,y2 + + def plot_(self,arm,color='',typ_='HC',xsun_=[],linewidth=0.8,markersize=3,linestyle = '-'): + + if len(xsun_) == 0: + xsun = get_lsr()['xsun'] + else: + xsun = xsun_[0] + + + params = self.getparams(arm) ; + x,y, x1,y1,x2,y2 = self.model_(params); + if color == '': + color = 'black' + + if typ_ == 'GC': + plt.plot(x,y,color,label=params['name'],linestyle='--',linewidth=linewidth) + plt.plot(x2,y2,color,linestyle='dotted',linewidth=linewidth) + plt.plot(x1,y1,color,linestyle='dotted',linewidth=linewidth) + plt.axvline(xsun,linewidth=1,linestyle='--') + plt.axhline(0,linewidth=1,linestyle='--') + # plt.xlabel('X$_{GC}$') + # plt.ylabel('Y$_{GC}$') + plt.plot(0.,0.,marker='+',markersize=10,color='black') + plt.plot(xsun,0.,marker='o',markersize=10,color='black') + if typ_ == 'HC': + print('..') + print('using linewidth = '+str(linewidth)) + print('..') + xhc = x - xsun + xhc1 = x1 - xsun + xhc2 = x2 - xsun + plt.plot(xhc,y,color,label=params['name'],linestyle='-',linewidth=linewidth) + plt.plot(xhc1,y,color,linestyle='dotted',linewidth=linewidth) + plt.plot(xhc2,y,color,linestyle='dotted',linewidth=linewidth) + plt.plot(0.,0.,marker='o',markersize=markersize,color='black') + plt.plot(-xsun,0.,marker='+',markersize=markersize,color='black') + # plt.xlabel('X$_{HC}$') + # plt.ylabel('Y$_{HC}$') + # plt.xlabel('X [kpc]') + # plt.ylabel('Y [kpc]') + + # plt.legend() + + if typ_ =='polar': + + xhc = x - xsun + xhc1 = x1 - xsun + xhc2 = x2 - xsun + + rgc = sqrtsum(ds=[x,y]) + phi1 = np.arctan2(y,-x) + phi2 = np.degrees(np.arctan(y/-x)) + phi3 = np.degrees(np.arctan2(y,x))%180. + + # phi3 = 180.-np.degrees(phi1) + + # phi1 = (np.arctan2(yhc,xgc)) + # plt.plot(phi1,rgc,color,linestyle='-',linewidth=linewidth) + plt.plot(phi1,rgc,'.',color=color,markersize=markersize) + + + if typ_ =='polargrid': + + linewidth=2 + + yhc = y + xgc = x + phi4 = np.degrees(np.arctan2(yhc,xgc))%360. + rgc = sqrtsum(ds=[x,y]) + + plt.plot(np.radians(phi4),rgc,color=color,markersize=markersize,linestyle=linestyle,linewidth=linewidth,label=arm) + + + + + return + + +def spiral_eloisa(): + + ''' + plot contours of OB star spirals from Poggio 2021 + ''' + + pdocdir = getdirec('pdocdir') + dloc = pdocdir+'/science_verification/DR3/data' + # #read overdensity contours + xvalues_overdens=np.load(dloc+'/Eloisa_contours/xvalues_dens.npy') + yvalues_overdens=np.load(dloc+'/Eloisa_contours/yvalues_dens.npy') + over_dens_grid=np.load(dloc+'/Eloisa_contours/over_dens_grid_threshold_0_003_dens.npy') + + phi1_dens = np.arctan2(yvalues_overdens,-xvalues_overdens) + Rvalues_dens = sqrtsum(ds=[xvalues_overdens,yvalues_overdens]) + + # # #------------------ overplot spiral arms in overdens ------------------ + iniz_overdens=0 #.1 + fin_overdens=1.5 #.1 + N_levels_overdens=2 + levels_overdens=np.linspace(iniz_overdens,fin_overdens,N_levels_overdens) + cset1 = plt.contourf(xvalues_overdens, yvalues_overdens,over_dens_grid.T, levels=levels_overdens,alpha=0.2,cmap='Greys') + # cset1 = plt.contourf(phi1_dens, Rvalues_dens,over_dens_grid.T, levels=levels_overdens,alpha=0.2,cmap='Greys') + + iniz_overdens=0. #.1 + fin_overdens=1.5 #.1 + N_levels_overdens=4#7 + levels_overdens=np.linspace(iniz_overdens,fin_overdens,N_levels_overdens) + cset1 = plt.contour(xvalues_overdens, yvalues_overdens,over_dens_grid.T, levels=levels_overdens,colors='black',linewidths=0.7) + # cset1 = plt.contour(phi1_dens, Rvalues_dens,over_dens_grid.T, levels=levels_overdens,colors='black',linewidths=0.7) + + + + +class spiral_drimmel(object): + ''' + + February 22, 2022 + + Usage: + spi = spiral_drimmel() + spi.plot_(arm='1',color='b',typ_='HC') + spi.plot_(arm='2',color='b',typ_='HC') + spi.plot_(arm='all',color='b',typ_='HC') + + ''' + + def __init__(self): + + + # self.loc = '/net/huygens/data/users/khanna/Documents/pdoc_work/science_verification/DR3/data/Drimmel_spiral' + self.loc = getdirec('pdocdir')+'/science_verification/DR3/data/Drimmel_spiral' + self.fname = 'Drimmel2armspiral.fits' + self.xsun = get_lsr()['xsun'] + self.getdata(xsun_=[self.xsun]) + + def getdata(self,xsun_=[]): + ''' + + ''' + + dt = tabpy.read(self.loc+'/'+self.fname) + self.data0 = dt.copy() + if len(xsun_) == 0: + xsun = self.xsun + else: + xsun = xsun_[0] + # rescaling to |xsun| + qnts = ['rgc1','xhc1','yhc1','rgc2','xhc2','yhc2'] + for qnt in qnts: + dt[qnt] = dt[qnt]*abs(xsun) + + + + #----- add phase-shifted arms as `3` and `4` + + + + dloc = self.loc+'/phase_shifted' + for inum in [3,4]: + dt['xhc'+str(inum)] = np.load(dloc+'/Arm'+str(inum)+'_X_hel.npy') + dt['yhc'+str(inum)] = np.load(dloc+'/Arm'+str(inum)+'_Y_hel.npy') + dt['rgc'+str(inum)] = np.sqrt( ((dt['xhc'+str(inum)] + xsun)**2.) + ((dt['yhc'+str(inum)])**2.) ) + + + #------------------ + + + + self.data = dt.copy() + + return + + def plot_(self,color='',typ_='HC',xsun_=[],linewidth=0.8,arm='all',markersize=3): + + if len(xsun_) == 0: + xsun = get_lsr()['xsun'] + else: + xsun = xsun_[0] + + self.getdata(xsun_=[xsun]) + dt = self.data.copy() + # print(list(dt.keys())) + + if color == '': + color = 'black' + + numbs = [arm] + if arm == 'all': + numbs = ['1','2','4'] + # numbs = ['2','3','4'] + elif arm == 'main': + numbs = ['1','2'] + # numbs = ['1','4'] + + + + self.dused = {} + self.dused['rgc'] = [] + self.dused['xgc'] = [] + self.dused['yhc'] = [] + self.dused['phi1'] = [] + self.dused['phi4'] = [] + + + for numb in numbs: + + linestyle = '-' + if float(numb) > 2: + linestyle = '--' + + xhc = dt['xhc'+numb] + yhc = dt['yhc'+numb] + rgc = dt['rgc'+numb] + + xgc = xhc + xsun + + if typ_ == 'HC': + + + # plt.plot(xhc,yhc,color,label=arm,linestyle=linestyle,linewidth=linewidth,markersize=2) + plt.plot(xhc,yhc,color,linestyle=linestyle,linewidth=linewidth,markersize=2) + plt.plot(0.,0.,marker='o',markersize=markersize,color='black') + plt.plot(-xsun,0.,marker='+',markersize=markersize,color='black') + + # plt.xlabel('X$_{HC}$') + # plt.ylabel('Y$_{HC}$') + + + + if typ_ == 'GC': + + # plt.plot(xgc,yhc,color,label=arm,linestyle=linestyle,linewidth=linewidth) + plt.plot(xgc,yhc,color,linestyle=linestyle,linewidth=linewidth) + plt.axvline(xsun,linewidth=1,linestyle='--') + plt.axhline(0,linewidth=1,linestyle='--') + # plt.xlabel('X$_{GC}$') + # plt.ylabel('Y$_{GC}$') + plt.plot(0.,0.,marker='+',markersize=10,color='black') + plt.plot(xsun,0.,marker='o',markersize=10,color='black') + self.dused['xgc'].append(xgc) + self.dused['yhc'].append(yhc) + + + if typ_ =='polar': + + + phi1 = np.arctan2(yhc,-xgc) + + phi2 = np.degrees(np.arctan(yhc/-xgc)) + phi3 = np.degrees(np.arctan2(yhc,xgc))%180. + phi4 = np.degrees(np.arctan2(yhc,xgc))%360. + + # phi3 = 180.-np.degrees(phi1) + + # phi1 = (np.arctan2(yhc,xgc)) + # plt.plot(np.degrees(phi1),rgc,color,linestyle='--',linewidth=linewidth) + # plt.plot(np.degrees(phi1),rgc,'.',color='blue') + plt.plot(phi1,rgc,color=color,markersize=markersize,linestyle=linestyle,linewidth=linewidth) + + self.dused['rgc'].append(rgc) + self.dused['xgc'].append(xgc) + self.dused['yhc'].append(yhc) + self.dused['phi1'].append(phi1) + self.dused['phi4'].append(phi4) + + + if typ_ =='polargrid': + + + phi1 = np.arctan2(yhc,-xgc) + + phi2 = np.degrees(np.arctan(yhc/-xgc)) + phi3 = np.degrees(np.arctan2(yhc,xgc))%180. + phi4 = np.degrees(np.arctan2(yhc,xgc))%360. + + # phi3 = 180.-np.degrees(phi1) + + + if numb == numbs[0]: + plt.plot(np.radians(phi4),rgc,color=color,markersize=markersize,linestyle=linestyle,linewidth=linewidth,label='NIR') + + else: + plt.plot(np.radians(phi4),rgc,color=color,markersize=markersize,linestyle=linestyle,linewidth=linewidth) + + + + + self.dused['rgc'].append(rgc) + self.dused['xgc'].append(xgc) + self.dused['yhc'].append(yhc) + self.dused['phi1'].append(phi1) + self.dused['phi4'].append(phi4) + + + # plt.plot(xgc,yhc,'.',color=color) + + # plt.legend() + return + + + +class spiral_cepheids(object): + ''' + + June 28, 2024 + + Usage: + spi = spiral_drimmel() + spi.plot_(arm='1',color='b',typ_='HC') + spi.plot_(arm='2',color='b',typ_='HC') + spi.plot_(arm='all',color='b',typ_='HC') + + ''' + + def __init__(self): + + + # where the data is + + self.pdocdir = getdirec('pdocdir') + self.cephloc = self.pdocdir+'/science/dr3/data/cepheids' + self.spiral_loc = self.cephloc+'/spiral_model' + + + self.fname = 'ArmAttributes_dyoungW1_bw025.pkl' + + self.spirals = pickleread(self.spiral_loc+'/'+self.fname) + + self.armlist = list(self.spirals['0']['arm_attributes'].keys()) + + self.xsun = get_lsr()['xsun'] + self.rsun = get_lsr()['Rsun'] + + + def plotit_(self,armplt='',typ_='GC',markersize=4,linewidth=2,linestyle2='--'): + + from time import sleep + from scipy.signal import find_peaks + import numpy as np + import astropy + import astropy.table as tb + import pandas as pd + import os + import matplotlib as mpl + import matplotlib.pyplot as plt + import imp + import dtools + import autil + import tabpy + params = {'font.size':12, + 'text.usetex':False, + 'ytick.labelsize': 'medium', + 'legend.fontsize': 'large', + 'axes.linewidth': 1.0, + 'figure.dpi': 150.0, + 'xtick.labelsize': 'medium', + 'font.family': 'sans-serif', + 'axes.labelsize': 'medium'} + mpl.rcParams.update(params) + + imp.reload(dtools) + + + + spirals = self.spirals + + # arms and plotting colors for the arms + colors = ['C3','C0','C1','C2'] + arms = np.array(['Scutum','Sag-Car','Orion','Perseus']) + + figtyp = 'png' + + # XY positions + rsun = self.rsun # Might want to put these in a configuration file + xsun = self.xsun # Might want to put these in a configuration file + lnrsun = np.log(rsun) + + + # best phi range: + phi_range = np.deg2rad(np.sort(spirals['1']['phi_range'].copy())) + maxphi_range = np.deg2rad([60,-120]) + + + # arms and plotting colors for the arms + colors = ['C3','C0','C1','C2'] + arms = np.array(self.armlist) + + arm_clr = {'Scutum':'C3','Sag-Car':'C0','Orion':'C1','Perseus':'C2'} + self.arm_clr = arm_clr + + dt = {} + + + for armi in np.arange(arms.size): + + arm = arms[armi] + pang = (spirals['1']['arm_attributes'][arm]['arm_pang_strength']+spirals['1']['arm_attributes'][arm]['arm_pang_prom'])/2. + lnr0 = (spirals['1']['arm_attributes'][arm]['arm_lgr0_strength']+spirals['1']['arm_attributes'][arm]['arm_lgr0_prom'])/2. + + + + # plot the arms + + + phi=(np.arange(51)/50.)*np.diff(phi_range)[0] + phi_range[0] + lgrarm = lnr0 - np.tan(np.deg2rad(pang))*phi + + + xgc = -np.exp(lgrarm)*np.cos(phi); xhc = xgc - xsun + ygc = np.exp(lgrarm)*np.sin(phi) ; yhc = ygc + + + # extrapolate the arms + phi=(np.arange(101)/100.)*np.diff(maxphi_range)[0] + maxphi_range[0] + lgrarm = lnr0 - np.tan(np.deg2rad(pang))*phi + + xgc_ex = -np.exp(lgrarm)*np.cos(phi); xhc_ex = xgc_ex - xsun + ygc_ex = np.exp(lgrarm)*np.sin(phi); yhc_ex = ygc_ex + lonarm = np.arctan((np.exp(lgrarm)*np.sin(phi))/(rsun - np.exp(lgrarm)*np.cos(phi))) + + dt[arm] = {} + dt[arm]['xgc'] = xgc + dt[arm]['xhc'] = xhc + dt[arm]['ygc'] = ygc + dt[arm]['yhc'] = yhc + + dt[arm]['xgc_ex'] = xgc_ex + dt[arm]['xhc_ex'] = xhc_ex + dt[arm]['ygc_ex'] = ygc_ex + dt[arm]['yhc_ex'] = yhc_ex + + + + self.dused = {} + self.dused['rgc'] = [] + self.dused['xgc'] = [] + self.dused['yhc'] = [] + self.dused['phi1'] = [] + self.dused['phi4'] = [] + + + + # for armi in dt.keys(): + for armi in armplt: + # print(armplt) + + xgc = dt[armi]['xgc'] + ygc = dt[armi]['ygc'] + xhc = dt[armi]['xhc'] + yhc = dt[armi]['yhc'] + + xgc_ex = dt[armi]['xgc_ex'] + ygc_ex = dt[armi]['ygc_ex'] + xhc_ex = dt[armi]['xhc_ex'] + yhc_ex = dt[armi]['yhc_ex'] + + + rgc = np.sqrt(xgc**2. + ygc**2.) + rgc_ex = np.sqrt(xgc_ex**2. + ygc_ex**2.) + + + + if typ_ == 'GC': + + + + plt.plot(xgc,ygc,'-',color=arm_clr[armi]) + plt.plot(xgc_ex,ygc_ex,linestyle=linestyle2,color=arm_clr[armi]) + + plt.axvline(xsun,linewidth=1,linestyle='--') + plt.axhline(0,linewidth=1,linestyle='--') + + + plt.plot(0.,0.,marker='+',markersize=10,color='black') + plt.plot(xsun,0.,marker='o',markersize=10,color='black') + + plt.xlabel('X$_{GC}$') + plt.ylabel('Y$_{GC}$') + + + + + # # labels + # plt.text(-2,-5,'Scutum',fontsize=14,fontweight='bold',color=colors[0]) + # plt.text(-2,-10,'Sgr-Car',fontsize=14,fontweight='bold',color=colors[1]) + # plt.text(-3,-13,'Local',fontsize=14,fontweight='bold',color=colors[2]) + # plt.text(-9,-14,'Perseus',fontsize=14,fontweight='bold',color=colors[3]) + + + if typ_ == 'HC': + + + + + + # plt.plot(xhc,yhc,color,label=arm,linestyle=linestyle,linewidth=linewidth,markersize=2) + # plt.plot(xhc,yhc,color,linestyle=linestyle,linewidth=linewidth,markersize=2) + + + plt.plot(xhc,yhc,'-',color=arm_clr[armi]) + plt.plot(xhc_ex,yhc_ex,linestyle=linestyle2,color=arm_clr[armi]) + + plt.plot(0.,0.,marker='o',markersize=markersize,color='black') + plt.plot(-xsun,0.,marker='+',markersize=markersize,color='black') + + + + plt.xlabel('X$_{HC}$') + plt.ylabel('Y$_{HC}$') + + + + + if typ_ =='polar': + + + phi1 = np.arctan2(yhc,-xgc) + phi1_ex = np.arctan2(ygc_ex,-xgc_ex) + + phi2 = np.degrees(np.arctan(yhc/-xgc)) + phi3 = np.degrees(np.arctan2(yhc,xgc))%180. + phi4 = np.degrees(np.arctan2(yhc,xgc))%360. + + plt.plot(phi1,rgc,'-',color=arm_clr[armi],markersize=markersize) + plt.plot(phi1_ex,rgc_ex,linestyle=linestyle2,color=arm_clr[armi],markersize=markersize) + + + self.dused['rgc'].append(rgc) + self.dused['xgc'].append(xgc) + self.dused['yhc'].append(yhc) + self.dused['phi1'].append(phi1) + self.dused['phi4'].append(phi4) + + + if typ_ =='polargrid': + + linewidth=2 + linestyle = '-' + phi4 = np.degrees(np.arctan2(yhc,xgc))%360. + phi4_ex = np.degrees(np.arctan2(ygc_ex,xgc_ex))%360. + + phi1 = np.arctan2(yhc,-xgc) + phi1_ex = np.arctan2(ygc_ex,-xgc_ex) + + + # plt.plot(np.radians(phi4),rgc,color=arm_clr[armi],markersize=markersize,linestyle=linestyle,linewidth=linewidth) + + # plt.plot(phi1,rgc,color=arm_clr[armi],markersize=markersize,linestyle=linestyle,linewidth=linewidth) + # plt.plot(phi1_ex,rgc_ex,color=arm_clr[armi],markersize=markersize,linestyle='--',linewidth=linewidth) + + plt.plot(np.radians(phi4),rgc,color=arm_clr[armi],markersize=markersize,linestyle=linestyle,linewidth=linewidth) + + plt.plot(np.radians(phi4_ex),rgc_ex,color=arm_clr[armi],markersize=markersize,linestyle=linestyle2,linewidth=linewidth) + # plt.plot(np.radians(phi4_ex),rgc_ex,color=arm_clr[armi],markersize=markersize,linestyle='--',linewidth=linewidth) + + + self.dused['rgc'].append(rgc) + self.dused['xgc'].append(xgc) + self.dused['yhc'].append(yhc) + self.dused['phi4'].append(phi4) + + + + + +def ovplot_mw(): + + ''' + under development.... + plot the Milky Way background using Leung's package + + + History : created on July 24, 2023 [INAF, Torino] + + ''' + + import pylab as plt + + from mw_plot import MWPlot, MWSkyMap + + from astropy import units as u + + + # setup a mw-plot instance of bird's eyes view of the disc + mw2 = MWPlot(radius=20 * u.kpc, center=(0, 0)*u.kpc, unit=u.kpc, coord='galactocentric', rot90=2, grayscale=True, annotation=False) + mw3 = MWSkyMap() + + # setup subplots with matplotlib + + fig = plt.figure(figsize=(5,5)) + + ax1 = fig.add_subplot(221) + + ax2 = fig.add_subplot(222) + + # transform the subplots with different style + + mw2.transform(ax1) + + mw3.transform(ax2) + + + fig.tight_layout() + + + return + + + + +class sampfromcov_gaia(object): + + ''' + NAME: + + PURPOSE: + - Constructs covariance matrix for Gaia data. + - Used to generate samples from multivariate Gaussian + + + INPUT: data as dictionary + + OUTPUT: + + HISTORY: + + + October 07, 2021: + October 30, 2024: INAF + + ''' + + def __init__(self,data1): + + + self.dtrim, self.drest = self.prep_from_samp(data1) + data = self.dtrim.copy() + + + # print('777') + + data['pmra'] = data['mura']*1e+03 + data['pmdec'] = data['mudec']*1e+03 + + self.data = Table(data) + self.dsize = data['pmra'].size + + # Create a copy of the default unit map + self.get_unit_map() + + # Store the source table + data = self.data + + self.allnames = ['ra', 'dec', 'parallax', 'pmra', 'pmdec','radial_velocity'] + + # Update the unit map with the table units + self._invalid_units = dict() + for c in data.colnames: + if data[c].unit is not None: + try: + self.units[c] = u.Unit(str(data[c].unit)) + except ValueError: + self._invalid_units[c] = data[c].unit + + + + self.has_rv = 'radial_velocity' in self.data.colnames + self._cache = dict() + + + + def prep_from_samp(self,data1): + + ''' + input: the entire dataset + + dtrim = dictionary containing only relevant keys + drest = dictionary containing remaining keys to be joined later on + + ''' + + + + restkys = [] + self.limnames = ['ra', 'dec', 'parallax', 'pmra', 'pmdec','radial_velocity','mura','mudec'] + for ky in data1.keys(): + if 'pseudocolour' not in ky and 'phot' not in ky and 'feh' not in ky: + if 'corr' in ky or 'error' in ky: + + self.limnames.append(ky) + + for ky in data1.keys(): + if ky not in self.limnames: + restkys.append(ky) + + restkys = np.array(restkys) + + dtrim = {} + for ky in self.limnames: + dtrim[ky] = data1[ky].copy() + + drest = {} + for ky in restkys: + drest[ky] = data1[ky].copy() + + + + dtrim['source_id'] = drest['source_id'].copy() + + + + + self.dtrim = dtrim.copy() + self.drest = drest.copy() + + + + return self.dtrim, self.drest + + + + + def get_unit_map(self): + import astropy.units as u + gaia_unit_map = { + 'ra': u.degree, + 'dec': u.degree, + 'parallax': u.milliarcsecond, + 'pmra': u.milliarcsecond / u.year, + 'pmdec': u.milliarcsecond / u.year, + 'radial_velocity': u.km / u.s, + 'ra_error': u.milliarcsecond, + 'dec_error': u.milliarcsecond, + 'parallax_error': u.milliarcsecond, + 'pmra_error': u.milliarcsecond / u.year, + 'pmdec_error': u.milliarcsecond / u.year, + 'radial_velocity_error': u.km / u.s, + 'astrometric_excess_noise': u.mas, + 'astrometric_weight_al': 1/u.mas**2, + 'astrometric_pseudo_colour': 1/u.micrometer, + 'astrometric_pseudo_colour_error': 1/u.micrometer, + 'astrometric_sigma5d_max': u.mas, + 'phot_g_mean_flux': u.photon/u.s, + 'phot_g_mean_flux_error': u.photon/u.s, + 'phot_g_mean_mag': u.mag, + 'phot_bp_mean_flux': u.photon/u.s, + 'phot_bp_mean_flux_error': u.photon/u.s, + 'phot_bp_mean_mag': u.mag, + 'phot_rp_mean_flux': u.photon/u.s, + 'phot_rp_mean_flux_error': u.photon/u.s, + 'phot_rp_mean_mag': u.mag, + 'bp_rp': u.mag, + 'bp_g': u.mag, + 'g_rp': u.mag, + 'rv_template_teff': u.K, + 'l': u.degree, + 'b': u.degree, + 'ecl_lon': u.degree, + 'ecl_lat': u.degree, + 'teff_val': u.K, + 'teff_percentile_lower': u.K, + 'teff_percentile_upper': u.K, + 'a_g_val': u.mag, + 'a_g_percentile_lower': u.mag, + 'a_g_percentile_upper': u.mag, + 'e_bp_min_rp_val': u.mag, + 'e_bp_min_rp_percentile_lower': u.mag, + 'e_bp_min_rp_percentile_upper': u.mag, + 'radius_val': u.Rsun, + 'radius_percentile_lower': u.Rsun, + 'radius_percentile_upper': u.Rsun, + 'lum_val': u.Lsun, + 'lum_percentile_lower': u.Lsun, + 'lum_percentile_upper': u.Lsun, + 'ref_epoch': u.year + } + + self.units = gaia_unit_map.copy() + self.gaia_unit_map = gaia_unit_map.copy() + + + def get_cov(self,units=None): + """ + The Gaia data tables contain correlation coefficients and standard + deviations for (ra, dec, parallax, pm_ra, pm_dec), but for most analyses + we need covariance matrices. This converts the data provided by Gaia + into covariance matrices. + + If a radial velocity exists, this also contains the radial velocity + variance. If radial velocity doesn't exist, that diagonal element is set + to inf. + + The default units of the covariance matrix are [degree, degree, mas, + mas/yr, mas/yr, km/s], but this can be modified by passing in a + dictionary with new units. For example, to change just the default ra, + dec units for the covariance matrix, you can pass in:: + + units=dict(ra=u.radian, dec=u.radian) + + Parameters + ---------- + RAM_threshold : `astropy.units.Quantity` + Raise an error if the expected covariance array is larger than the + specified threshold. Set to ``None`` to disable this checking. + """ + + # The full returned matrix + C = np.zeros((len(self.data), 6, 6)) + + # We handle radial_velocity separately below - doesn't have correlation + # coefficients with the astrometric parameters + names = ['ra', 'dec', 'parallax', 'pmra', 'pmdec'] + + + # pre-load the diagonal + for i, name in enumerate(names): + if name + "_error" in self.data.colnames: + err = (self.data[name + "_error"])*self.gaia_unit_map[name + "_error"] + C[:, i, i] = err.to(self.gaia_unit_map[name]).value ** 2 + else: + C[:, i, i] = np.nan + + if self.has_rv: + name = 'radial_velocity' + err = self.data[name + "_error"] + C[:, 5, 5] = err ** 2 + else: + C[:, 5, 5] = np.inf + + C[:, 5, 5][np.isnan(C[:, 5, 5])] = np.inf # missing values + + for i, name1 in enumerate(names): + for j, name2 in enumerate(names): + if j <= i: + continue + + if "{0}_{1}_corr".format(name1, name2) in self.data.colnames: + corr = self.data["{0}_{1}_corr".format(name1, name2)] + else: + corr = np.nan + + # We don't need to worry about units here because the diagonal + # values have already been converted + C[:, i, j] = corr * np.sqrt(C[:, i, i] * C[:, j, j]) + C[:, j, i] = C[:, i, j] + + self._cache['cov'] = C + self._cache['cov_units'] = units + + return self._cache['cov'] + + def get_error_samples(self, size=1, rnd=None): + """Generate a sampling from the Gaia error distribution for each source. + + This function constructs the astrometric covariance matrix for each + source and generates a specified number of random samples from the error + distribution for each source. This does not handle spatially-dependent + correlations. Samplings generated with this method can be used to, e.g., + propagate the Gaia errors through coordinate transformations or + analyses. + + Parameters + ---------- + size : int + The number of random samples per soure to generate. + rnd : ``numpy.random.RandomState``, optional + The random state. + + Returns + ------- + g_samples : `pyia.GaiaData` + The same data table, but now each Gaia coordinate entry contains + samples from the error distribution. + + """ + + if rnd is None: + rnd = np.random.RandomState() + + tn = self.get_cov() + rv_mask = ~np.isfinite(tn[:, 5, 5]) + tn[rv_mask, 5, 5] = 0. + + arrs = [] + for nm in self.allnames: + arrs.append(self.data[nm]) + y = np.stack(arrs).T + rnd = np.random.RandomState() + + samples = np.array([rnd.multivariate_normal(y[i], tn[i], size=size) for i in range(len(y)) ]) + + + + dtemp = {} + for ky in self.allnames: + dtemp[ky] = np.zeros(self.dsize) + np.nan + + for jnum in range(self.dsize): + for inum,ky in enumerate(self.allnames): + dtemp[ky][jnum] = samples[jnum][0][inum] + + return dtemp + + + + + + +# Gaia validation + +def get_gaiaxpy(): + ''' + to import bmcmc2 from external directory + 01/Nov/2018 + + ''' + import sys + #loc = '/home/shourya/Documents/phd_work' + loc = getdirec('pdocdir')+'/validation/gaia_validation/GaiaXPy' + + sys.path.insert(0,loc) + import gaiaxpy as gxpy + + return gxpy + +def get_gunlim(): + ''' + to import gaiaunlimited from external directory + 10/Mar/2023 + + ''' + import sys + #loc = '/home/shourya/Documents/phd_work' + loc = getdirec('pdocdir')+'/gaiaunlimited/src' + + sys.path.insert(0,loc) + import gaiaunlimited as gunlim + + return gunlim + + +def make_kld_readme(): + + ''' + + NAME: make_kld_readme + + PURPOSE: makes readme files for kld runs + + + INPUT: - keyboard input + + OUTPUT: saves file in valdir + + HISTORY: March 07, 2021 (Groningen) + + + ''' + + pdocdir = getdirec('pdocdir') + valdir = pdocdir+'/validation/gaia_validation' + + + + dt = {} + + + date = input('month_date_year = ') + data = input('data ex: sources_03_03.... = ') + subset = input('subset = ') + keys_run = input('keys_run = ') + comments = input('comments = ') + + dt['date'] = [date] + dt['data'] = [data] + dt['subset'] = [subset] + dt['keys_run'] = [keys_run] + dt['comments'] = [comments] + + + + tab = Table(dt) + tab.write(valdir+'/readme.csv',format='csv') + + print('readme.csv file written in .... '+valdir) + + return + + + +# Galaxia +def add_kinematics(d,thick=True,modify=True): + + if modify: + usun=11.1 + vsun=239.08 + wsun=7.25 + xsun=-8.0 + zsun=0.0 + tmax=10.0; tmin=0.1 + Rd=2.5 + Rsig0=1/0.073 + Rsig1=1/0.132 + sigma_phi0=25.34 + sigma_z0=25.92 + sigma_R0=36.69 + betaR=0.164 + betaphi=0.164 + betaz=0.37 + + sigma_phi1=38.37 + sigma_z1=39.41 + sigma_R1=57.87 + + home = getdirec('home') + #vc_loc = '/work1/sharma/GsynthData' + vc_loc = getdirec('galaxia')+'/Model' + vcirc1=tab.read(vc_loc+'/vcirc_potential.csv') + + + glongc,pzgc,rgc=autil.xyz2lzr(d['px']+xsun,d['py'],d['pz']+zsun) + age=np.power(10.0,d['age']-9.0) + + Rsig=d['px']-d['px']+Rsig0 + fac=np.exp(-(rgc+xsun)/Rsig) + sigma_phi=sigma_phi0*np.power((age+tmin)/(tmax+tmin),betaphi)*fac + sigma_z=sigma_z0*np.power((age+tmin)/(tmax+tmin),betaz)*fac + sigma_R=sigma_R0*np.power((age+tmin)/(tmax+tmin),betaR)*fac + + if thick: + ind=np.where(d['popid']>6)[0] + Rsig[ind]=Rsig1 + fac[ind]=np.exp(-(rgc[ind]+xsun)/Rsig[ind]) + sigma_phi[ind]=sigma_phi1*fac[ind] + sigma_z[ind]==sigma_z1*fac[ind] + sigma_R[ind]==sigma_R1*fac[ind] + + ind_bulge_etc = np.where(d['popid'] > 7)[0] + vx_bluge_etc,vy_bluge_etc,vz_bluge_etc = d['vx'][ind_bulge_etc],d['vy'][ind_bulge_etc],d['vz'][ind_bulge_etc] + + #vcirc=239.08-12.2 + vcirc= np.interp(rgc,vcirc1['r'],vcirc1['vcirc']) + temp=vcirc*vcirc+sigma_R*sigma_R*(-rgc/Rd-2*rgc/Rsig+1-np.power(sigma_phi/sigma_R,2.0)+(1-np.power(sigma_z/sigma_R,2.0))*0.5) + print (np.mean(sigma_R),np.mean(-np.sqrt(temp)),np.mean(vcirc),np.mean(age)) + vphi=-np.sqrt(temp)+np.random.normal(size=d['px'].size)*sigma_phi + vz=np.random.normal(size=d['px'].size)*sigma_z + vR=np.random.normal(size=d['px'].size)*sigma_R + l,b,r,vl,vb,vr=autil.gc2helio(glongc,pzgc,rgc,vphi,vz,vR,gal=True,vsun=vsun,usun=usun,xsun=xsun) + d['vx'],d['vy'],d['vz']=autil.vlbr2xyz(d['glon'],d['glat'],d['rad'],vl,vb,vr) + + d['vx'][ind_bulge_etc],d['vy'][ind_bulge_etc],d['vz'][ind_bulge_etc] = vx_bluge_etc,vy_bluge_etc,vz_bluge_etc + + gutil.append_muvr(d) +def getmtip(age,feh): + + ''' + NAME: make_kld_readme + + PURPOSE: makes readme files for kld runs + + + INPUT: age [Gyr], [Fe/H] + + OUTPUT: mtip + + HISTORY: July 20, 2021 (Groningen) + + ''' + + loc = getdirec('galaxia') + d = ebf.read(loc+'/feh_age_mtip.ebf','/') + sgrid=sutil.InterpGrid(tabpy.npstruct(d),['feh','log_age']) + log_age = np.log10((age)*1e+09) + + mtip = sgrid.get_values('mtip',[feh,log_age],fill_value='nearest') + + return mtip + + +class mkglx(object): + + ''' + to make magnitude limited surveys from a galaxia file etc + + february 17, 2023 [INAF-TORINO] + + ''' + def __init__(self,data=None,writehere=''): + + + self.writehere = writehere + self.glxdir = getdirec('galaxia') + + def generate_(self,runfname='galaxy1'): + + + + + os.system('galaxia -r '+runfname+'.ebf') + os.system('galaxia -a --psys=GAIA '+runfname+'.ebf') + + + + return + + + def mini_file_old(self,survey='galaxia',add_errors=False,fac=1.0,iso='tmasswise'): + + # mydata = tabpy.read(desktop+'/galaxia_nw_allsky_rc_f0.01.ebf') + + # downloads = dtools.getdirec('downloads') + # fname = 'hermes4_nw_tmasswise_fehm0.3_jv15_f1.0_cut.ebf' + + # mydata = tabpy.read(downloads+'/'+fname) + + mydata = tabpy.read(self.glxdir+'/runs_/'+self.fname_+'.ebf') + + if 'log' in mydata.keys(): + del mydata['center'] + del mydata['log'] + + print(mydata['pz'].size,survey+' stars in all') + + # high [Fe/H] + ind = np.where(mydata['feh'] > -2.0)[0] + print(str(len(ind))+' high [Fe/H] stars') + high_data = dtools.filter_dict(mydata,ind) + crnt = (high_data['px'].size)*fac; crnt = int(crnt) + tabpy.shuffle(high_data,crnt) + print(high_data['pz'].size,survey+' [Fe/H] > -2.0 stars shuffled') + + # low [Fe/H] + ind = np.where(mydata['feh'] < -2.0)[0] + mydata = dtools.filter_dict(mydata,ind) + print(str(mydata['px'].size)+' low [Fe/H] stars') + + tabpy.union(mydata,high_data,pkey=None) + + print(mydata['pz'].size,survey+' stars selected') + if add_errors: + print('adding photometric & spectroscopic errors') + + gutil.add_tmass_ph_error(mydata) + add_spec_error(mydata) + + + mydata['gaia_g_1'],mydata['gaia_gbp_1'],mydata['gaia_grp_1'] = mydata['gaia_g'],mydata['gaia_gbp'],mydata['gaia_grp'] + mydata[iso+'_h_1'],mydata[iso+'_j_1'],mydata[iso+'_ks_1'] = mydata[iso+'_h'],mydata[iso+'_j'],mydata[iso+'_ks'] + mydata[iso+'_w1_1'],mydata[iso+'_w2_1'],mydata[iso+'_w3_1'],mydata[iso+'_w4_1'] = mydata[iso+'_w1'],mydata[iso+'_w2'],mydata[iso+'_w3'],mydata[iso+'_w4'] + gutil.abs2app(mydata,isoch_loc=dtools.getdirec('galaxia'),noext=False,corr=False) + #gutil.append_muvr(mydata) + + mydata['teff'] = 10**mydata['teff'] + mydata['logg'] = mydata['grav'].copy() + + if add_errors: + ebf.write(root_+'/glxminifile_errors.ebf','/',mydata,'w') + else: + ebf.write(root_+'/glxminifile.ebf','/',mydata,'w') + + return mydata + + def reducecols(self,useloc='',runfname='galaxy1',svfname='galaxy1_red'): + + + keepkys = ['px', 'py', 'pz', 'vx', 'vy', 'vz', 'feh', 'smass', 'age', 'rad', + 'popid', 'lum', 'teff', 'grav', 'mact', 'mtip', 'tmasswise_j', + 'tmasswise_h', 'tmasswise_ks', 'tmasswise_w1', 'tmasswise_w2', + 'tmasswise_w3', 'tmasswise_w4', 'exbv_schlegel', 'exbv_solar', + 'exbv_schlegel_inf', 'glon', 'glat', 'gaia_g', 'gaia_gbp', + 'gaia_grp'] + + if useloc =='': + + mydata = dtools.ebfread_keys(self.glxdir+'/runs_/'+runfname+'.ebf',keys=keepkys) + else: + mydata = dtools.ebfread_keys(useloc,keys=keepkys) + + dtools.ebfwrite(mydata,svfname,self.glxdir) + + return + + def mini_file(self,runfname='galaxy1_red',survey='galaxia',add_errors=False,fac=1.0,iso='tmasswise',noext=False,maglimband='',maglim=10000): + + suff_ = '' + if noext: + suff_ = '_noext' + print('noext is...'+str(noext)) + + + mydata = tabpy.read(self.glxdir+'/'+runfname+'.ebf') + + + + if 'log' in mydata.keys(): + del mydata['center'] + del mydata['log'] + + print(mydata['pz'].size,survey+' stars in all') + + if fac < 1.: + mk_mini(mydata,fac=fac,key='pz') + + + + if add_errors: + print('adding photometric & spectroscopic errors') + + gutil.add_tmass_ph_error(mydata) + add_spec_error(mydata) + + mydata['gaia_g_1'],mydata['gaia_gbp_1'],mydata['gaia_grp_1'] = mydata['gaia_g'],mydata['gaia_gbp'],mydata['gaia_grp'] + mydata[iso+'_h_1'],mydata[iso+'_j_1'],mydata[iso+'_ks_1'] = mydata[iso+'_h'],mydata[iso+'_j'],mydata[iso+'_ks'] + mydata[iso+'_w1_1'],mydata[iso+'_w2_1'],mydata[iso+'_w3_1'],mydata[iso+'_w4_1'] = mydata[iso+'_w1'],mydata[iso+'_w2'],mydata[iso+'_w3'],mydata[iso+'_w4'] + gutil.abs2app(mydata,isoch_loc=dtools.getdirec('galaxia'),noext=noext,corr=False) + #gutil.append_muvr(mydata) + + mydata['teff'] = 10**mydata['teff'] + mydata['logg'] = mydata['grav'].copy() + del mydata['grav'] + + + if maglimband != '': + + tabpy.where(mydata,condition=(mydata[maglimband]0.) + &(np.isfinite(d['parallax'])) + &((d['parallax_error']/d['parallax'])9.0)&(np.isfinite(d['teff']))&(np.isfinite(d['grav'])) + &(np.isfinite(d['feh']))&(np.isfinite(d['vr']))&(d['field_id']>=0)&(d['field_id']<7339)) + + d['vmag_jk']=autil.jk2vmag(d['tmasswise_j'],d['tmasswise_ks']) + + if ('pmra_hsoy' in s)and('pmra_ucac5' in s): + d['mura']=(d['pmra_ucac5']+d['pmra_hsoy'])*0.5*1e-3 + d['mudec']=(d['pmdec_ucac5']+d['pmdec_hsoy'])*0.5*1e-3 + + d['mura_ucac5'] = (d['pmra_ucac5'])*1e-3 + d['mura_hsoy'] = (d['pmra_hsoy'])*1e-3 + + d['mudec_ucac5'] = (d['pmdec_ucac5'])*1e-3 + d['mudec_hsoy'] = (d['pmdec_hsoy'])*1e-3 + else: + d['mura']=d['pmra']*1e-3 + d['mudec']=d['pmdec']*1e-3 + + if selrc: + cond = dtools.selfunc_rc(d['teff'],d['grav'],d[metalkey]) + tab.where(d,cond) + d['dist']=dtools.distance_rc(d['tmasswise_j'],d['tmasswise_ks'],d['teff'],d['grav'],d[metalkey]) #feh + d['rad']=d['dist'] + + print (d['ra'].size) + return d +def load_galah_apogee_gaia(survey='all',selrc=False,quasar_offset=True): + + def get_galah(): + + d1=load_survey('galah',metalkey='m_h',selrc=selrc) + + ## cmatch with gaia cross-matched file? + ##fl = tabpy.read('/home/shourya/Documents/phd_work/GalahWork/sobject_iraf_53_gaia.fits') + ##tabpy.sortby(fl,'angular_distance') + ##tabpy.unique(fl,'source_id') + ##tabpy.ljoin(d1,fl,'sobject_id','sobject_id') + + + + + + if 'mura' not in d1.keys(): + d1['mura'] = np.zeros(d1['ra'].size) -9999. + d1['mudec'] = np.zeros(d1['ra'].size) -9999. + return d1 + + def get_apogee(): + d3=load_survey('apogee_dr14',selrc=selrc) + fl = tabpy.read('/home/shourya/Documents/phd_work/apogee_14/apogee_dr14_gaia.fits') + tabpy.sortby(fl,'angdist') + tabpy.unique(fl,'apogee_id') + + # removes all multishaped keys to allow ljoin (check if you can resolve this later) # 091018 + for ky in fl.keys(): + if np.array(fl[ky].shape).size >1: + del fl[ky] + + tabpy.ljoin(d3,fl,'apogee_id','apogee_id') + + if 'mura' not in d3.keys(): + d3['mura'] = np.zeros(d3['apogee_id'].size) -9999. + d3['mudec'] = np.zeros(d3['apogee_id'].size) -9999. + + return d3 + + def get_apogee_rc(): + d3=load_survey('apogee_rc_dr14',selrc=selrc) + fl = tabpy.read('/home/shourya/Documents/phd_work/gaia/data/apogee_gaia.fits') + tabpy.sortby(fl,'angdist') + tabpy.unique(fl,'apogee_id') + + # removes all multishaped keys to allow ljoin (check if you can resolve this later) # 091018 + for ky in fl.keys(): + if np.array(fl[ky].shape).size >1: + del fl[ky] + + tabpy.ljoin(d3,fl,'apogee_id','apogee_id') + + if 'mura' not in d3.keys(): + d3['mura'] = np.zeros(d3['apogee_id'].size) -9999. + d3['mudec'] = np.zeros(d3['apogee_id'].size) -9999. + + return d3 + + if survey =='all': + print('') + + if selrc: + print('combining APOGEE & GALAH RC....') + else: + print('combining APOGEE & GALAH .....') + d1 = get_galah() + d3 = get_apogee() + ####keep common keys only + d1keys = np.array(d1.keys()) + d3keys = np.array(d3.keys()) + indl,indr,indnm = tabpy.crossmatch(d3keys,d1keys) + for key in d1.keys(): + if key not in d1keys[indr]: + del d1[key] + tab.union(d1,d3,None) + + elif survey == 'galah': + print('') + + if selrc: + print('getting GALAH RC....') + else: + print('getting GALAH ....') + d1 = get_galah() + elif survey == 'apogee': + print('') + + if selrc: + print('selecting RC from APOGEE....') + else: + print('getting APOGEE ....') + d1 = get_apogee() + + elif survey == 'apogee_rc': + print('') + + if selrc: + print('selecting RC from APOGEE-RC ....') + else: + print('getting APOGEE-RC ....') + d1 = get_apogee_rc() + + print('') + print('Not making parallax cuts!!!!!!!!!!!!!!!!!!!!') + + #p_errorcut = 0.2 + + #tabpy.where(d1,condition= (np.isfinite(d1['parallax'])&(d1['parallax']>0.) &((d1['parallax_error']/d1['parallax'])2.0)&(d['gaia_g']<17.0)) + #tab.where(data,(data['phot_g_mean_mag']>2.0)&(data['phot_g_mean_mag']<17.0)) + #h=sutil.hist_nd([data['glon'],data['glat'],data['phot_g_mean_mag']],range=[[0,360.],[-90.0,90.],[2.0,17.0]],bins=[np.max(data['field_id'])+1,5]) + ##h.data=h.data*4 + #ind=h.resample([d['field_id'],d['vmag_jk']]) + #tab.select(d,ind) + #elif survey == 'apogee': +## np.random.seed(12) +## print('seed =12') + #d['field_id']=d['location_id'] + #del d['location_id'] + #tab.where(d,(d['tmasswise_h']>7.0)&(d['tmasswise_h']<13.8)&((d['tmasswise_j']-d['tmasswise_ks'])>0.5)) + #tab.where(data,(data['tmasswise_h']>7.0)&(data['tmasswise_h']<13.8)&((data['tmasswise_j']-data['tmasswise_ks'])>0.5)) + #h=sutil.hist_nd([data['field_id'],data['tmasswise_h']],range=[[0,np.max(data['field_id'])+1],[7.0,13.8]],bins=[np.max(data['field_id'])+1,34]) + ##h.data=h.data*4 + #ind=h.resample([d['field_id'],d['tmasswise_h']],fsample=1.0) + #tab.select(d,ind) + + #else: +## tab.where(d,(d['tmasswise_h']>7.0)&(d['tmasswise_h']<15.0)&(d['vmag_jk']<15.0)) +## tab.where(d,(d['tmasswise_h']>7.0)&(d['tmasswise_h']<13.8)) + #tab.where(d,(d['tmasswise_h']>7.0)) + #print d['ra'].size + + return d +def fltr_pilot_galah(mydata,keep_=['','k2','tess']): + + print('Removing PILOT [cobid>1403010000] & -ve fid only') + tabpy.where(mydata,condition=(mydata['field_id'] >-1)&(mydata['cob_id']>1403010000)) + + print('') + print('Using only: ') + print(keep_) + + tabpy.where(mydata,condition=(mydata['progname']==keep_[0])|(mydata['progname']==keep_[1])|(mydata['progname']==keep_[2])) + + return mydata +def dgaia(ver='dr2'): + + if ver == 'dr2': + fname = 'gaia_mini' + loc = getdirec('phddir')+'/gaia/data' + elif ver == 'edr3': + loc = getdirec('pdocdir')+'/science/edr3/gedr3data' + + fname = 'rvs_poege5_ext' + # elif ver == 'dr3': + # loc = getdirec('pdocdir')+'/science/edr3/gedr3data' + + # fname = 'rvs_poege5_ext' + + print(loc) + print('reading.... '+ver+'...'+fname) + d1=ebf.read(loc+'/'+fname+'.ebf') + if ver == 'edr3': + print('') + d1_feh = ebf.read(loc+'/'+fname+'_feh.ebf') + tabpy.ljoin(d1,d1_feh,'source_id','source_id') + # d1['lgc'] = d1['glongc'].copy() + + return d1 +def dgalah(create=False): + loc = getdirec('phddir')+'/GalahWork' + if create: + dt = load_galah_apogee_gaia(survey='galah') + getkin(dt,'dist_gaia',dtype='data') + ebfwrite(dt,'galah_use',loc) + d = dt.copy() + else: + dt=ebf.read(loc+'/'+'galah_use_dr2.ebf') + + dt2=ebf.read(loc+'/'+'galah_use.ebf') + #dsven = tabpy.read(loc+'/GALAH_iDR3_v1_181221.fits') + dsven = tabpy.read(loc+'/GALAH_iDR3_main_alpha_190529.fits') + + indl,indr,indnm=tabpy.crossmatch(dt['sobject_id'],dsven['sobject_id']) + + dt['feh_new'] = np.zeros(dt['feh'].size) + np.nan + dt['feh_new'][indl] = dsven['fe_h'][indr] + + dt['alpha_new'] = np.zeros(dt['alpha_fe_cannon'].size) + np.nan + dt['alpha_new'][indl] = dsven['alpha_fe'][indr] + + d = dt.copy() + d['lgc'] = d['glongc'].copy() + + return d +def dapogee(filetyp=''): + ''' + do this properly for DR17 + ''' + gloc = '/net/gaia2/data/users/gaia' + loc = gloc+'/apogee_dr17' + # # loc = gloc+'/apogee_16' + + if filetyp == 'rc': + print('reading apogee-dr17 rc file') + loc = gloc+'/apogee_dr17' + dt = tabpy.read(loc+'/apogee-rc-DR17.fits') + + # correctly format apogee_id in the RC catalog + dt['apogee_id'] = dt['apogee_id'].astype(str) + tmpval = [] + for val in dt['apogee_id']: + tmpval.append(val.replace(" ","")) + dt['apogee_id'] = np.array(tmpval) + + + else: + # print('reading apogee-dr16') + # dt = tabpy.read(loc+'/allStar-r12-l33.fits') + print('reading apogee-dr17') + dt = tabpy.read(loc+'/allStar-dr17-synspec_rev1.fits') + dt['apogee_id'] = dt['apogee_id'].astype(str) + + + return dt + + + + + +class dtoy_sanjib(object): + + + + + def __init__(self,name=None,readsnaps=False): + self.loc = getdirec('phddir')+'/toy_phasemix' + + if name is not None: + self.name = name + self.filename = name+'.ebf' + else: + self.filename = 'ridge_galpy2.ebf' + + print(self.filename) + + if readsnaps == False: + self.mkfile() + + + + + def mkfile(self): + self.data=ebf.read(self.loc+'/'+self.filename,'/data/') + self.siminfo=ebf.read(self.loc+'/'+self.filename,'/siminfo/') + + self.rscale=self.siminfo['rscale'] + self.vscale=self.siminfo['vscale'] + self.npoints = self.data[list(self.data.keys())[0]][0,:].size + + + def getsnaps(self,snapnum=99): + ''' + Only works in readsnaps=False mode + + ''' + print('reading saved snapshots') + print(snapnum) + loc = self.loc+'/'+self.name+'_snapshots' + self.d = tabpy.read(loc+'/'+str(snapnum)+'.ebf') + + + return self.d + def gettscale(self): + ''' + Only works in readsnaps=False mode (check this!) + + ''' + print('reading tscale from saved snapshots') + loc = self.loc+'/'+self.name+'_snapshots' + timescale = tabpy.read(loc+'/timescale.ebf') + + + return timescale['ts'] + + + + def getrun(self,i=70,**kwargs): + + endpoint = self.npoints + if 'points' in kwargs.keys(): + endpoint = kwargs['points'] + print(endpoint) + + d = {} + for key in self.data.keys(): + d[key] = self.data[key][i,:endpoint].copy() + + + print('scaling velocity and distance') + for key in d.keys(): + if key.startswith('v'): + d[key] = d[key]*self.vscale + elif key.startswith('r'): + d[key] = d[key]*self.rscale + + # assign spiral-arm ids: + d['id']=(np.arange(d['rgc'].size)%(d['rgc'].size/16))/(d['rgc'].size/(16*4)) + + self.d = d.copy() + + return self.d + + +# Distance catalogues +def add_pauld(d): + ''' + McMillan distances are in parsec! + ''' + flloc = getdirec('phddir')+'/gaia/data' + fl=tabpy.read(flloc+'/GaiaDR2_RV_star_distance_paul.ebf') + ind=np.where((fl['distance_error']/fl['distance'])>0.2)[0] + fl['distance'][ind]= np.nan + fl['distance'] = fl['distance']*1e-03 + fl['distance_error'] = fl['distance_error']*1e-03 + tabpy.ljoin(d,fl,'source_id','source_id') +def mk_schon_dist(): + desktop = dtools.getdirec('desktop') + + timeit = dtools.stopwatch() + timeit.begin() + + #subdir = 'modoffset'; flname = 'gaiaRVdelpeqspdelsp43' + subdir = '54offset'; flname = 'gaiaRVdelp54delsp43' + + loc = dtools.getdirec('phddir')+'/gaia/data/schonrich_d/'+subdir + d1 = ascii.read(loc+'/'+flname+'.txt') + + dt = {} + dt['source_id'] = d1['sourceid'].copy() + dt['dschon'] = d1['E_dist'].copy() + dt['parallax_schon'] = d1['parallax'].copy() + dt['parallax_parallaxerr_schon'] = d1['parallax/parallaxerr'].copy() + dtools.ebfwrite(dt,subdir+'_use',loc) + + + timeit.end() + + +# stats +def midx(x): + midx = (x[1:]+x[0:-1])*0.5 + return midx +def gaus(x,x0,sigma): + return (1.0/(np.sqrt((2*np.pi))*sigma))*np.exp(-0.5*(np.power((x-x0)/sigma,2.0))) +def boots(data,iters=2): + from astropy.stats import bootstrap + from astropy.utils import NumpyRNGContext + + test_statistic = lambda x: (np.mean(x)) + + with NumpyRNGContext(1): + bootresult = bootstrap(data, iters,bootfunc = test_statistic) + + + boot_std = np.std(bootresult) + return boot_std, bootresult + + +def bootstrap_(data,iters=2,bootfunc=None): + from astropy.stats import bootstrap + from astropy.utils import NumpyRNGContext + + with NumpyRNGContext(1): + bootresult = bootstrap(data, iters,bootfunc=bootfunc) + + + + return bootresult +def mystat(x,uplow=False):#-----------bmcmc type print + temp=np.percentile(x,[16.0,84.0,50.0]) + sig=(temp[1]-temp[0])/2.0 + xmean=np.mean(x) + d2=np.floor(np.log10(sig)) + return np.round(xmean*(10**(-d2)))/10.0**(-d2) +def get_bmcmc2(): + ''' + to import bmcmc2 from external directory + 01/Nov/2018 + + ''' + import sys + loc = getdirec('pdocdir')+'/py_scripts' + + sys.path.insert(0,loc) + + import bmcmc2 as bmcmc + + return bmcmc + +def pdf2cdf(pdf_,xv=None,plotit=False,getlims=False,usesig=1,sample_=False,nsamples=10,interp_=False,yv=0): + ''' + xv = xpoints + pdf = evaluated at xv + assuming that xv is already ordered + + ''' + + cdf = np.cumsum(pdf_) + cdfval = cdf/cdf[-1] + if plotit: + plt.plot(xv,cdfval) + + if getlims: + zm = interp1d(cdfval,xv,bounds_error=False,fill_value=(cdfval[0],cdfval[-1])) + + dlta = stats.chi2.cdf(usesig**2.,1)/2. + xmin, xmax = zm(0.5 - dlta),zm(0.5+dlta) + + return cdfval, xmin, xmax + + if sample_: + zm = interp1d(cdfval,xv,bounds_error=False,fill_value=(cdfval[0],cdfval[-1])) + + cdfpnts = np.random.uniform(size=nsamples) + xpnts = zm(cdfpnts) + + return xpnts + if interp_: + + zm = interp1d(xv,cdfval,bounds_error=False,fill_value=(xv[0],xv[-1])) + + ypnts = zm(yv) + + return ypnts + + + else: + return cdfval + + +def get_pyia(): + ''' + to import pyia from external directory + 06/Nov/2019 + + ''' + import sys + #loc = '/home/shourya/Documents/phd_work' + loc = getdirec('phddir')+'/pyia-master' + + sys.path.insert(0,loc) + import pyia + + return pyia + +def chisq(data,model): + + chisq = np.square(data - model)/model + return chisq +def chi2(x1,x2,bins=10,range=None): + h1,be1=np.histogram(x1,range=range,bins=bins,density=False) + h2,be2=np.histogram(x2,range=range,bins=bins,density=False) + temp=np.sum(h1,dtype=np.float64)/np.sum(h2,dtype=np.float64) + err=h1+h2*np.square(temp) + ind=np.where((h1+h2)>0)[0] + return np.sum(np.square(h1[ind]-h2[ind]*temp)/err[ind],dtype=np.float64)#/(ind.size-1) + + +def chunkwriter(i): + mydata = mydatacopy.copy() + idkey = idkey_ + indl, indr, indnm = tabpy.crossmatch(chunk_list[i],mydata[idkey]) + d = {} + for ky in mydata.keys(): + d[ky] = mydata[ky][indr] + if write_as_=='fits': + fitswrite(d,'data_part_'+str(i),loc_) + elif write_as_ == 'ebf': + ebfwrite(d,'data_part_'+str(i),loc_) + return + +def mk_chunks(mydata,chunk_size=1000,loc='',refkey='glon',idkey='fid',write_as='ebf',ncpu=5): + + ''' + clean it right away!! + ''' + + + global mydatacopy + global loc_ + global write_as_ + + global chunk_list + global idkey_ + + if idkey in mydata.keys(): + raise RuntimeError(idkey+' already present') + + if chunk_size > mydata[refkey].size: + raise Exception('Reduce chunk size (bigger than data size)') + + mydata[idkey]=np.array([i for i in range(mydata[refkey].size)]) + items, chunk = mydata[idkey], chunk_size + # chunk_list = np.array(zip(*[iter(items)]*chunk)) #python2 + chunk_list = np.array(list(zip(*[iter(items)]*chunk))) #python3 + + + + mydatacopy = mydata.copy() + loc_ = loc + write_as_ = write_as + idkey_ = idkey + + #### + + # # # for i in range(len(chunk_list)): + # # # indl, indr, indnm = tabpy.crossmatch(chunk_list[i],mydata[idkey]) + # # # d = {} + # # # for ky in mydata.keys(): + # # # d[ky] = mydata[ky][indr] + # # # if write_as=='fits': + # # # fitswrite(d,'data_part_'+str(i),loc) + # # # elif write_as == 'ebf': + # # # ebfwrite(d,'data_part_'+str(i),loc) + + + + print('running pool') + + i = np.arange(len(chunk_list)) + ifinal = i[-1]+1 + from multiprocessing import Pool + p=Pool(ncpu) + p.map(chunkwriter,i) + + print('end pool') + + #### + + print(str(ifinal)+' files written') + + chunk_list_flt = chunk_list.flatten() + indl, indr, indnm = tabpy.crossmatch(chunk_list_flt,mydata[idkey]) + + if indnm.size >0: + d = {} + for ky in mydata.keys(): + d[ky] = mydata[ky][indnm] + + if write_as=='fits': + fitswrite(d,'data_part_'+str(ifinal),loc) + + elif write_as == 'ebf': + ebfwrite(d,'data_part_'+str(ifinal),loc) + + + print('') + print('Remainder file contains = '+str(d[refkey].size)) + + + return + + + +def cmb_chunks(loc='',svloc='',refkey='',write_as='ebf',read_format='.fits',svname='combined'): + + + import natsort + from natsort import natsorted, ns + + timeit = stopwatch() + timeit.begin() + + + import os + if svloc == '': + svloc = os.getcwd() + + files = os.listdir(loc) + files = natsorted(files) + files = np.array(files) + + + + ####-- shuffle - currently running! (delete this line upon completion) + #print('Total = '+str(len(files))) + #inds = np.arange(0,len(files),1) + #np.random.shuffle(inds) + #ind = inds[:100] + #files = files[ind] + # files = files[:10] + ####----------------- + + file_list = [] + for fl in files: + if fl.endswith(read_format): + file_list.append(fl) + + file_list = np.array(file_list) + + #print(len(file_list)) + print(file_list) + + + d1 = tabpy.read(loc+'/'+file_list[0]) + + + for inum, fl in enumerate(file_list[1:]): + print(str(inum)+'......') + print(fl) + d2 = tabpy.read(loc+'/'+fl) + tabpy.union(d1,d2,None) + #print(d1[refkey].size) + + if refkey != '': + tabpy.sortby(d1,refkey) + tabpy.unique(d1,refkey) + #print(d1[refkey].size) + + + if write_as=='fits': + dt = Table(d1) + dt.write(svloc+'/'+svname+'.fits',format='fits',overwrite=True) + + elif write_as == 'ebf': + ebfwrite(d1,svname,svloc) + + + print('') + print('combined file contains = '+str(d1[list(d1.keys())[0]].size)) + + timeit.end() + return + +def cmb_chunks_keys(loc='',svloc='',refkey='glon',write_as='ebf',read_format='.ebf',svname='combined',keys='',pky=False,nosavrefky=False): + ''' + February 23 2019 + To combine chunks based on a given keylist + ! only works if read_format = ebf + ''' + + import os + import natsort + from natsort import natsorted, ns + + if svloc == '': + svloc = os.getcwd() + + files = os.listdir(loc) + files = natsorted(files) + files = np.array(files) + + file_list = [] + for fl in files: + if fl.endswith(read_format): + file_list.append(fl) + + file_list = np.array(file_list) + + if read_format == '.ebf': + d1 = ebfread_keys(loc+'/'+file_list[0],keys=keys) + + for inum, fl in enumerate(file_list[1:]): + print(str(inum)+'......') + d2 = ebfread_keys(loc+'/'+fl,keys=keys) + tabpy.union(d1,d2,None) + + + tabpy.sortby(d1,refkey) + tabpy.unique(d1,refkey) + + + ds = {} + for ky in d1.keys(): + ds[str(ky)] = d1[ky].copy() + + + ## added on December 14, 2022 [INAF TORINO] + if nosavrefky: + del ds[refkey] + + if write_as=='fits': + dt = Table(ds) + dt.write(svloc+'/'+svname+'.fits',format='fits',overwrite=True) + + elif write_as == 'ebf': + ebfwrite(ds,svname,svloc) + + + print('nosavrefky is ..='+str(nosavrefky)) + print(ds) + + print('') + print('combined file contains = '+str(ds[list(ds.keys())[0]].size)) + + + return + +def scott_bin(N,sigma,dim=1): + ''' + + NAME: + + PURPOSE: + calculates bin width using Scott's rule + INPUT: + N = total number of data points + sigma = standard dev along a dimension + dim (=1 by default) = number of dimensions + + OUTPUT: bin width + + HISTORY: generalised formula (16 Aug, 2023) + + https://ui.adsabs.harvard.edu/abs/1992mde..book.....S/abstract + + https://stats.stackexchange.com/questions/114490/optimal-bin-width-for-two-dimensional-histogram + https://arxiv.org/pdf/physics/0605197.pdf + ''' + + + b_width = (3.5*sigma)/(N**(1./(2. + dim))) + + # b_width = (3.5*sigma)/(N**(1./3.)) + # b_width = (2.15*sigma)/(N**(1./5.)) + + return b_width + + + + +def rms(data): + + return np.sqrt(np.mean(data**2.)) +def entropy(prob): + ''' + + NAME: + + PURPOSE: + calculates entropy + INPUT: + probability + + OUTPUT: + + HISTORY: + + + ''' + lnprob = np.log(prob) + ind_en = indfinite(lnprob) + ent = -np.sum(prob[ind_en]*lnprob[ind_en]) + + return ent + +def modulus(x,y,z): + ''' + returns the modulus of the x and y and z components + ''' + + val = np.sqrt(x**2 + y**2 + z**2) + return val + + +def fitgauss(plotchars,xval,yval,amp=5, cen=5, width=1): + + ''' + NAME: + + PURPOSE: + fits a Gaussian profile to a given data curve (x,y) + INPUT: + x,y + + OUTPUT: + + HISTORY: January 24, 2022 (RUG) + + ''' + + from numpy import exp, loadtxt, pi, sqrt + from lmfit import Model + + + def gaussian_func(x, amp, cen, wid): + """1-d gaussian: gaussian(x, amp, cen, wid)""" + return (amp / (sqrt(2*pi) * wid)) * exp(-(x-cen)**2 / (2*wid**2)) + + + gmodel = Model(gaussian_func) + result = gmodel.fit(yval, x=xval, amp=amp, cen=cen, wid=width) + + + # # print(result.fit_report()) + + + if plotchars['plot_']: + + plt.close('all') + + # plm=putil.Plm2(1,2,xsize=8.0,ysize=3.,xmulti=False,ymulti=False,full=True,slabelx=0.7,slabely=0.07) + plm=putil.Plm1(1,1,xsize=8.0,ysize=6.,xmulti=False,ymulti=False,full=False,slabelx=0.7,slabely=0.07) + plm.next() + plt.plot(xval, yval, 'k.') + plt.plot(xval, result.best_fit, '-', label='best fit') + plt.plot(xval, result.init_fit, '--', label='initial fit') ; plt.legend() + plt.axvline(result.best_values['cen']) + + + plt.title(plotchars['title']) + plt.text(0.5,0.95,str(np.round(result.best_values['cen'],3))+', '+str(np.round(result.best_values['wid'],3)),transform=plt.gca().transAxes,color='orange',fontsize=10) + + if plotchars is not None: + + # plm.next() + # plt.plot(plotchars['x2'],yval,'r.') + + plm.tight_layout() + + if plotchars['plotsave']: + plt.savefig(plotchars['plotloc']+'/fitgauss_'+plotchars['plotname']+'.png') + + return result.best_values['cen'],result.best_values['wid'],result + + +def get_kde(data,kernel='gaussian',use_scott=False,bandwidth=1,showleg=False,density=True,outbins=1000,lwdth = 2,alpha=0.5,typ='',prnt=True): + + ''' + + NAME: get_kde + + PURPOSE: to provide a kernel density fit + + + INPUT: data (1d array) + kernel: 'gaussian' or 'tophat' (check for updates to see if other kernels are available) + use_scott: True/False [to plot data histogram using Scott's binning] + if False, bins is computed using data percentiles + bandwidth: used for kde estimation [same units as data] + outbins: N bins to be used for output data + + + OUTPUT: a plot of data, + X [x axis where kde is evaluated] + Y [kde evaluated at X] + HISTORY: September 28, 2021 (Groningen) + April 07, 2023 (INAF-Torino) [cleaned up to allow kde sampling at user-defined bins] + + https://scikit-learn.org/stable/auto_examples/neighbors/plot_kde_1d.html#sphx-glr-auto-examples-neighbors-plot-kde-1d-py + + ''' + + + + + from sklearn.neighbors import KernelDensity + + xmin,xmax = np.nanpercentile(data,1),np.nanpercentile(data,99) + fac = 0.25 + if use_scott: + if prnt: + print('using Scotts rule') + bandwidth = fac*scott_bin(data.size,np.std(data)) + # print('Scott bin width = '+str(bn_width)) + bins = int((xmax-xmin)/bandwidth) + + else: + bins = int((xmax - xmin)/bandwidth) + + if prnt: + print(bandwidth,bins) + + + print('using '+kernel+' kernel') + + X = data[:,np.newaxis] + kde = KernelDensity(kernel=kernel, bandwidth=bandwidth).fit(X) + + X_plot = np.linspace(xmin, xmax, outbins)[:, np.newaxis] + log_dens = kde.score_samples(X_plot) + + + + if typ =='': + plt.hist(data,bins=bins,density=density,range=[xmin,xmax],label='data',histtype='step',alpha=alpha) + plt.plot(X_plot[:, 0], np.exp(log_dens),label='fit',linewidth=lwdth,color='orange') + + + + ########## + + if showleg: + plt.legend() + + + return X_plot[:, 0], np.exp(log_dens) + + + +def getlike_basic(model_,data_,sigval=1): + ''' + very basic log likelihood + ''' + + + tmp1 = data_ - model_ + sig1 = sigval + + # indf = dtools.indfinite(1./sig1,print_=False) + # sig = sig1[indf] + # tmp = tmp1[indf] + + sig = sig1 + tmp = tmp1 + + loglike_ = -0.5*(np.sum((((tmp)/sig)**2) - np.log(2.*np.pi*sig))) + minloglike_ = -loglike_ + return minloglike_, sig + + + +def getlikelihood(model,data,noise=[],useall=False,typ='gauss'): + + ''' + + NAME: likelihood_poiss + + PURPOSE: + returns Poissonian likelihood + INPUT: + model + data + noise (if typ == 'poiss') + + typ: 'gauss' 'poiss' + + OUTPUT: + + HISTORY: February 12, 2024 (INAF-OATO) + + + returns: log L + + useall = uses all three terms in the log l + ''' + + + if typ =='poiss': + + tmp1 = - model + tmp2 = data*np.log(model) + + tmp = tmp1 + tmp2 + if useall: + tmp3 = - np.log(scipy.special.factorial(data)) + tmp += tmp3 + + return tmp + + elif typ =='gauss': + + if len(noise) == 0: + raise Exception('using Gaussian likelihood, provide noise') + + + + temp = 0 + pdf_ = scipy.stats.norm.logpdf(data,loc=model,scale=noise) + temp+= pdf_ + + return pdf_ + + + + + +def eqn_linear(x,m,cy=None,cx=None): + ''' + input: xpoints (array) + m (gradient) + cy (y-intercept, None by default) + cx (x-intercept, None by default); if provided, make sure to have cy=None + + History: July 10, 2022 (INAF, Torino) + ''' + + if cy is not None: + c = cy + else: + c = -m*cx + + y = (m*x) + c + + return y + + + +def getpercentiles(data,useval=[1,16,50,84,99],prnt=True): + + ''' + gets percentiles at specified intervals. + default at [1,16,50,84,99] + + ''' + + if prnt: + print(useval) + pval = [] + for val in useval: + pval.append(np.nanpercentile(data,val)) + + return np.array(pval) + + + + +# File reading +def ebfread_keys(file1,keys,printkeys=False): + ''' + PURPOSE: reads ebf file (specified keys only) + good for reading huge files + ''' + + data = {} + for key in keys: + if printkeys: + print('') + print(key) + print('') + data[key] = ebf.read(file1,'/'+key) + + return data + +def readh5(file2,path=None): + ds = astropy.io.misc.hdf5.read_table_hdf5(file2,path=path) + + return ds + + +def pickleread(file1): + + ''' + read pickle files + input: fileloc+'/'+filename + + ''' + import pickle + data = pickle.load(open(file1,'rb')) + + + return data + + + +# File writing +def ebfwrite(data,nam,loc,prnt=True): + ''' + + ''' + + ebf.write(loc+'/'+nam+'.ebf','/',data,'w') + if prnt: + + print(nam+'.ebf written to '+loc) + return +def ebfappend(file1,data,ext): + ''' + file1 : ebf file to be modified + data: new key data being added + ext: new key name being added + ''' + + + ebf.write(file1,'/'+ext,data,'a') + print(file1+' appended') + return + +def fitswrite(data,nam,loc,prnt=True): + + dt = Table(data) + dt.write(loc+'/'+nam+'.fits',format='fits',overwrite=True) + if prnt: + print(nam+' .FITS written to '+loc) + return + +def picklewrite(data,nam,loc,prnt=True): + ''' + write files using pickle + ''' + + + + import pickle + + pickle.dump(data,open(loc+'/'+nam+'.pkl','wb')) + if prnt: + print(nam+' .pkl written to '+loc) + + return + + + +def findkey(data,name,look=''): + ''' + + Fix runtime error issue (June 27 2018) + + last update: April 23 2018 + + ''' + + kyvals = [] + if look == '': + for key in data.keys(): + if key.startswith(name): + # print(key) + kyvals.append(key) + #else key.startswith(name)==False: + #raise RuntimeError('key not found') + + if look=='any': + for key in list(data.keys()): + if name in key: + #print(key) + kyvals.append(key) + if len(kyvals) > 0: + # print(str(len(kyvals))+' found') + return kyvals + else: + return None + + +def mk_textable(): + fldir = '/home/shokan/Downloads/' + flnm = 'galaxy10myparameterfile' + + FILE=np.loadtxt(fldir+flnm+'.txt', dtype=str)#,usecols=(0,7,10)) + col=zip(*FILE) + tab=Table(col) + tab.write('table',format='latex') + print(tab) + return + +# plotting +def one2one(x,y,rng=[],alpha=0.2,s=0.2,**kwargs): + + lbl = '' + lnstyle = '-' + clr='black' + if 'label' in kwargs.keys(): + lbl = kwargs['label'] + if 'linestyle' in kwargs.keys(): + lnstyle = kwargs['linestyle'] + if 'color' in kwargs.keys(): + clr = kwargs['color'] + + + # plt.plot(x,y,'-',color=clr,label=lbl) + if len(rng) > 0.: + xpnt = np.linspace(rng[0],rng[1],100) + plt.xlim([rng[0],rng[1]]) + plt.ylim([rng[0],rng[1]]) + xpnt = np.linspace(0.,10.,100) + plt.plot(xpnt,xpnt,linestyle='--') + plt.plot(xpnt,xpnt,'.') + + + else: + print('here..') + xmin = np.nanpercentile(x,1) + xmax = np.nanpercentile(x,99) + + ymin = np.nanpercentile(y,1) + ymax = np.nanpercentile(y,99) + + print(xmin,xmax) + xpnt = np.linspace(xmin,xmax,100) + plt.plot(xpnt,xpnt,linestyle='--') + # plt.plot(xpnt,xpnt,'.') + + + plt.scatter(x,y,alpha=alpha,s=s,color=clr) + + #plt.legend() + + + return + +def png2movie(readdir,savdir,flname='movie',fmt='gif',duration=1.): + ''' + Purpose: make a gif from set of images + readdir = directory where set of images are + savdir = directory where to save the final movie + flname = filename + + #dtools.png2movie(desktop+'/snaps/',desktop) + + ''' + + from PIL import Image as image + import imageio + import natsort + from natsort import natsorted, ns + + images = [] + filenames = os.listdir(readdir) + filenames = natsorted(filenames) + filenames = np.array(filenames) + + fps = 1./duration + + for filename in filenames: + filename = readdir+'/'+filename + images.append(imageio.imread(filename)) + + if fmt == 'gif': + imageio.mimsave(savdir+'/'+flname+'.gif', images,duration=duration) + elif fmt == 'mp4': + imageio.mimsave(savdir+'/'+flname+'.mp4', images,fps=fps) + + + #import images2gif + #from images2gif import writeGif + #for filename in filenames: + #filename = readdir+'/'+filename + #images.append(image.io.open(filename)) + #imageio.mimsave(savdir+'/'+flname+'.gif', images,duration=0.8) + ###writeGif("images.gif",images,duration=0.3,dither=0) + + + return + + +def mkcirc(rval): + + theta = np.radians(np.linspace(0.,360.,100)) + xval = rval*np.cos(theta) + yval = rval*np.sin(theta) + + return xval, yval + +def plot3d(x,y,z,setlim=False,xmin=0,xmax=10,ymin=0,ymax=10,zmin=0,zmax=10,color='red',s=0.2,alpha=0.2): + # def plot3d(x,y,z,indset1,indset2,setlim=False,xmin=0,xmax=10,ymin=0,ymax=10,zmin=0,zmax=10,color='red'): + from mpl_toolkits.mplot3d import Axes3D + from mpl_toolkits.mplot3d.art3d import Poly3DCollection + + fig = plt.figure() + ax = fig.add_subplot(projection='3d') + # ax.scatter3D(x,y,z, marker='p',s=1,alpha=0.7, color=color) + ax.scatter3D(x,y,z, marker='p',s=s,alpha=alpha, color='red') + # ax.scatter3D(x,y[indset2],z[indset2], marker='p',s=1,alpha=0.7, color='blue') + + + ax.set_xlabel('X (kpc)') + ax.set_ylabel('Y (kpc)') + ax.set_zlabel('Z (kpc)') + + if setlim: + + ax.set_xlim([xmin,xmax]) + ax.set_ylim([ymin,ymax]) + ax.set_zlim([zmin,zmax]) + + plt.subplots_adjust(left=0.01, bottom=0.01, right=0.99, top=0.99) + + + + return + +def threed(x,y,z): +#---------- Plot 3D ------------------------# + fig = plt.figure(); ax = fig.add_subplot(111, projection='3d') + ax.scatter(x, y,z, marker='p',s=1,alpha=0.7) + ax.set_xlabel('X (kpc)'); ax.set_ylabel('Y (kpc)'); ax.set_zlabel('Z (kpc)') + + return + +def mkline(m=1.,c=1.,x=[0.,1.],color='black',linestyle='-'): + + xp = np.linspace(x[0],x[1],100) + + y = m*xp + c + + plt.plot(xp,y,color=color,linestyle=linestyle) + + return + + +def invert(axis): + + if axis == 'x': + plt.gca().invert_xaxis() + elif axis =='y': + plt.gca().invert_yaxis() + elif axis == 'both': + plt.gca().invert_xaxis() + plt.gca().invert_yaxis() + return + + +def pltLabels(xlabel, ylabel, lblsz=None): + if lblsz: + plt.xlabel(xlabel, fontsize = lblsz) + plt.ylabel(ylabel,fontsize = lblsz) + + else: + plt.xlabel(xlabel) + plt.ylabel(ylabel) + + return + +def profile(x,z,bins=100,range=None,label=None,mincount=3,fmt='-o',markersize=2,color='',meanerror=False,style=None,func=None,lw=None,return_profile=False,return_bins=False,fig=True): + """ + style: ['lines','fill_between,'errorbar'] + + To add: bootstrapping errors + """ + + + if lw == None: + lw=5.0 + #style=['lines','fill_between','errorbar'] + ind=np.where(np.isfinite(x)&np.isfinite(z))[0] + x=x[ind] + z=z[ind] + h=sutil.hist_nd(x,bins=bins,range=range) + ind1=np.where(h.data>=mincount)[0] + if func is None: + ym=h.apply(z,np.median)[ind1] + else: + ym=h.apply(z,func)[ind1] + xm=h.locations[0][ind1] + yl=h.apply(z,np.percentile,16)[ind1] + yh=h.apply(z,np.percentile,84)[ind1] + + if meanerror: + yl=ym+(yl-ym)/np.sqrt(h.data[ind1]) + yh=ym+(yh-ym)/np.sqrt(h.data[ind1]) + + + if fig: + + if style == 'fill_between': + plt.fill_between(xm,yl,yh,interpolate=True,alpha=0.25,label=label,color=color) + elif style == 'errorbar': + #plt.errorbar(xm,ym,yerr=[ym-yl,yh-ym],fmt=color+'-o',label=label,lw=lw) + #plt.errorbar(xm,ym,yerr=[ym-yl,yh-ym],fmt=color,label=label,lw=lw) #restore!! #+'-*' + plt.errorbar(xm,ym,yerr=[abs(ym-yl),abs(yh-ym)],fmt=color,label=label,lw=lw) #restore!! #+'-*' + #plt.errorbar(xm,ym,yerr=[0.5*(yh-yl),0.5*(yh-yl)],fmt=color+'-*',label=label,lw=lw) + + elif style == 'lines': + if color == '': + color=plt.gca()._get_lines.get_next_color() + plt.plot(xm,ym,fmt,label=label,color=color,lw=lw,markersize=markersize) + plt.plot(xm,yl,'--',color=color,lw=lw) + plt.plot(xm,yh,'--',color=color,lw=lw) + else: + if fig: #added by Shourya (August 9, 2018) + #plt.plot(xm,ym,color+fmt,label=label,lw=lw) + plt.plot(xm,ym,fmt,label=label,color=color,lw=lw,markersize=markersize) + # plt.plot(xm,ym,color+'-',label=label,lw=lw) + + ncount= [] + indset = [] + for i in np.arange(h.bins): + ncount.append(h.indices(i).size) + indset.append((h.indices(i))) + ncount = np.array(ncount, dtype=object) + indset = np.array(indset, dtype=object) + + + + if return_profile and return_bins: + return xm,ym,ncount[ncount>=mincount],indset, 0.5*(abs(ym-yl) + abs(yh-ym)) + elif return_profile: + return xm,ym + + +def dens_logmeth(mode='vol',plotit=False,rlogmin=-2,rlogmax=3,nbins=128): + + ''' + pwelan logmeth + ''' + bins = np.logspace(rlogmin, rlogmax, nbins) + bin_cen = (bins[1:] + bins[:-1]) / 2. + H,edges = np.histogram(dt['rgc'], bins=bins, weights=np.zeros_like(dt['rgc']) + 1/dt['rgc'].size) + + if mode =='vol': + V = 4/3.*np.pi*(bins[1:]**3 - bins[:-1]**3) + densval_ = (H / V) + else: + A = np.pi*(bins[1:]**2 - bins[:-1]**2) + densval_ = (H / A) + + if plotit: + plt.loglog(bin_cen, densval_, marker=None, label='Particles', color='red') + + return bin_cen,densval_ + +def cmaps(key=''): + ''' + prints details about colorcet colorschemes + ''' + for ky in cc.cm.keys(): + if ky.startswith(key): + print(ky) + + + return + +def colbar(im,ax,label='',orientation='vertical',pad=0.05,ticks=None): + ''' + + ax = plt.gca() + ''' + print('pad = ') + print(pad) + from mpl_toolkits.axes_grid1 import make_axes_locatable + from matplotlib.transforms import Bbox + + divider1 = make_axes_locatable(ax) + cax = divider1.append_axes("right", size="5%",pad=pad) + + if ticks is not None: + plt.colorbar(im,cax,orientation=orientation,label=label,ticks=ticks) + else: + plt.colorbar(im,cax,orientation=orientation,label=label) + + return + +def clevel(h1,levels=[1.,0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1],colors='red',linestyles='dotted',label=None,coords=False): + ''' + Must be normed=True! + + ''' + xbin_wdth = (h1.locations[0][1] - h1.locations[0][0]) + ybin_wdth = (h1.locations[1][1] - h1.locations[1][0]) + z = (h1.data.reshape(h1.bins))*xbin_wdth*ybin_wdth + + n = 1000 + t = np.linspace(0, z.max(), n) + integral = ((z >= t[:, None, None]) * z).sum(axis=(1,2)) + + from scipy import interpolate + + f = interpolate.interp1d(integral,t,bounds_error=False,fill_value=(t[0],t[-1])) + + t_contours = f(np.array(levels)) + + + xe = np.linspace(h1.range[0,0],h1.range[0,1],h1.bins[0]+1) + ye = np.linspace(h1.range[1,0],h1.range[1,1],h1.bins[1]+1) + xc = (xe[0:-1]+xe[1:])/2.0 + yc = (ye[0:-1]+ye[1:])/2.0 + x=np.meshgrid(xc,yc,indexing='ij') + + cntour = plt.contour(x[0],x[1],z, t_contours,colors=colors,linestyles=linestyles) + + + + ################# + if coords: + continf = {} + continf['rvals'] = [] + ncnts = len(cntour.collections) + + for j in range(ncnts): + continf[str(j)+'x'] = [] + continf[str(j)+'y'] = [] + + plens = len(cntour.collections[j].get_paths()) + rvals = [] + for i in range(plens): + ps = cntour.collections[j].get_paths()[i].vertices + rvals.append(np.max(np.sqrt(ps[:,0]**2. + ps[:,1]**2.))) # using max seems to better trace the contour radius + continf[str(j)+'x'].append(ps[:,0]) + continf[str(j)+'y'].append(ps[:,1]) + + rvals = np.array(rvals) + continf['rvals'].append(np.mean(rvals)) + + return continf + + ################# + elif label != None: + lns = [] + lbls = [] + lines = []; lines.extend(cntour.collections); lns = [lines[0]] + lbls = [label] + + return lns,lbls + +def get_clevels(dims=1): + ''' + get clevels + + ''' + + lvls = [] + + for i in range(1,6): + lvls.append(scipy.stats.chi2.cdf(i**2.,dims)) + + lvls = np.array(lvls) + + + + return lvls[::-1] + +def view_hist(fl,xcol,ycol): + import sutil_sanj + cmap = cc.cm['linear_kryw_0_100_c71_r'] + sutil_sanj.hist2d(fl[xcol],fl[ycol],bins=100,normed=True,dnorm=2,norm=LogNorm(vmin=1e-2,vmax=1),cmap=cmap,smooth=False) + + return + +def pltfig_hist(x,y,bins=100,xrng=[0.,100],yrng=[0.,100],labels=['',''],eplot=False): + + ''' + NAME: pltfig_hist + + PURPOSE: scatter-plot with histograms + + + INPUT: + + x + y + bins = hist bins (default=100) + xrng = [min,max] (default=[0,100]) + yrng = [min,max] (default=[0,100]) + labels = [xlabel,ylabel] (default=['','']) + + OUTPUT: plots figure + + REMARKS: + + + + HISTORY: + + 28 October 2020 (RUG) + + ''' + + # Set up the axes with gridspec + fig = plt.figure(figsize=(6, 6)) + grid = plt.GridSpec(4, 4, hspace=0.2, wspace=0.2) + main_ax = fig.add_subplot(grid[-3:, 0:3]) + y_hist = fig.add_subplot(grid[-3:, 3], xticklabels=[], sharey=main_ax) + x_hist = fig.add_subplot(grid[0,0:3 ], yticklabels=[], sharex=main_ax) + + # scatter points on the main axes + main_ax.plot(x, y, 'ok', markersize=3, alpha=0.2) + + main_ax.set_xlabel(labels[0]) + main_ax.set_ylabel(labels[1]) + main_ax.set_xlim([xrng[0],xrng[1]]) + main_ax.set_ylim([yrng[0],yrng[1]]) + + + def get_rp_from_e(e,ra): + + rp = ra/((2./(1-e)) - 1.) + + + return rp + + if eplot: + e_vals = np.array([0.,0.5,0.9]) + ra = np.linspace(xrng[0],xrng[1],100) + for e_val in e_vals: + rp = get_rp_from_e(e_val,ra) + main_ax.plot(ra,rp,'r--',linewidth=0.4) + + + + # histogram on the attached axes + x_hist.hist(x, bins=bins, histtype='stepfilled',orientation='vertical', color='gray',range=[xrng[0],xrng[1]]) + # x_hist.hist(x, bins=bins, histtype='step',orientation='vertical', color='gray',range=[xrng[0],xrng[1]]) + + + x_hist.tick_params(labelbottom=False,labeltop=True) + + y_hist.hist(y, bins=bins, histtype='stepfilled', + orientation='horizontal', color='gray',range=[yrng[0],yrng[1]]) + + y_hist.tick_params(labelleft=False, labelright=True) + + + return + + +def addgpos(addsun=True,addgc=True,frame='hc',coord_='cartesian',markersize=5): + + ''' + function to overplot the locations of the Sun, Galactic center etc + + + INPUT: + addsun=True + addgc=True + frame='hc' ('gc') + coord = 'cartesian' (polar) + + + + ''' + + xsun = get_lsr()['xsun'] + Rsun = get_lsr()['Rsun'] + + if addsun: + + if coord_ == 'cartesian': + + if frame =='hc': + plt.plot(xsun,0.,marker='*',markersize=markersize,color='black') + + + if coord_ == 'polar': + + if frame =='gc': + plt.plot(Rsun,180.,marker='*',markersize=markersize,color='black') + + + if addgc: + + + if coord_ == 'cartesian': + + if frame =='gc': + plt.plot(0.,0.,marker='+',markersize=markersize,color='black') + + if coord_ == 'polar': + if frame =='gc': + plt.plot(0,0.,marker='+',markersize=markersize,color='black') + + + + return + + +def smoother_(image_,sigma=1,truncate=5,donoth=False): + + ''' + smooth out an image + # sigma = standard deviation for Gaussian kernel + # truncate = truncate filter at this many sigmas + + March 15, 2022 RUG + + ''' + + if donoth: + return image_ + + else: + import numpy as np + import scipy as sp + import scipy.ndimage + + + U = image_.copy() + + V=U.copy() + V[np.isnan(U)]=0 + VV=sp.ndimage.gaussian_filter(V,sigma=sigma,truncate=truncate) + # VV=sp.ndimage.median_filter(V,size=sigma) + + W=0*U.copy()+1 + W[np.isnan(U)]=0 + WW=sp.ndimage.gaussian_filter(W,sigma=sigma,truncate=truncate) + # WW=sp.ndimage.median_filter(W,size=sigma) + + img=VV/WW + + # mask out smear beyond data + indf = np.where(np.isnan(image_.flatten()))[0] + i3 = img.copy().flatten() + i3[indf] = np.nan + i4 = np.reshape(i3,img.shape) + + + return i4 + +# under construction # +def smoothroutine2(i,addons): + + x = addons['x'] + y = addons['y'] + kernel_epan = addons['kernel_epan'] + Deltapix_x = addons['Deltapix_x'] + Deltapix_y = addons['Deltapix_y'] + Deltapix_x_large = addons['Deltapix_x_large'] + Deltapix_y_large = addons['Deltapix_y_large'] + coords = addons['coords'] + + prod_bandwidth = addons['prod_bandwidth'] + prod_bandwidth_large = addons['prod_bandwidth_large'] + + this_x= coords[i][0] + this_y= coords[i][1] + + # + ker_x,n_data = kernel_epan(this_x,x,Deltapix_x) + ker_y,n_data = kernel_epan(this_y,y,Deltapix_y) + + # + ker_xy=np.sum(ker_x*ker_y) + dens=ker_xy/(n_data*prod_bandwidth) + + # + #---------------------------------------------------- + # + ker_x_large,n_data=kernel_epan(this_x,x,Deltapix_x_large) + ker_y_large,n_data=kernel_epan(this_y,y,Deltapix_y_large) + + + + # + ker_xy_large=np.sum(ker_x_large*ker_y_large) + mean_dens=ker_xy_large/(n_data*prod_bandwidth_large) + + + over_dens_grid_local=(dens-mean_dens)/np.double(mean_dens) + # + res = {} + res['i'] = np.array([i]) + res['this_x'] = np.array([this_x]) + res['this_y'] = np.array([this_y]) + res['over_dens_grid_local'] = np.array([over_dens_grid_local]) + # # dtools.picklewrite(res,'rub1',desktop) + + + return res +class smoother2_(object): + + ''' + + smoothing code (Eloisa + ) + + ''' + def __init__(self,data=None,ncpu=5): + print('') + + self.ncpu = ncpu + self.data = data + + def kernel_epan(self,x_point,x_data,h): + + ker=np.zeros(len(x_data)) #final kernel + var=(x_point-x_data)/np.double(h) #my variable + n_data=len(x_data); self.n_data = n_data + i_in=np.where(abs(var) < 1) + + if ( len(ker[i_in]) > 0): + ker[i_in]=(1. - (var[i_in])**2)*3./4. #(1.- (var[i_in]^2) )*3./4. + + + return ker,n_data + + + + def mainstuff(self,x=[],xmin=-1,xmax=1,binsx=10,y=[],ymin=-1,ymax=1,binsy=10,meth=1): + + xstep = (xmax - xmin)/binsx + ystep = (ymax - ymin)/binsy + + kernel_epan = self.kernel_epan + + xvalues=np.arange(start=xmin,stop=xmax,step=xstep) + yvalues=np.arange(start=ymin,stop=ymax,step=ystep) + + + nx=len(xvalues) + ny=len(yvalues) + + self.xvalues = xvalues + self.yvalues = yvalues + + xgrid=np.zeros([nx,ny]) + ygrid=np.zeros([nx,ny]) + dens_grid=np.zeros([nx,ny]) + over_dens_grid=np.zeros([nx,ny]) + + + Deltapix_x=0.02 #define one value for the "local" bandwith in Z. + Deltapix_y=1.2 #define one value for the "local" bandwith in Vz. + prod_bandwidth=Deltapix_x*Deltapix_y + + Deltapix_x_large=4.*Deltapix_x + Deltapix_y_large=4.*Deltapix_y + + prod_bandwidth_large=Deltapix_x_large*Deltapix_y_large + + + addons = {} + addons['x'] = x + addons['y'] = y + addons['kernel_epan'] = kernel_epan + addons['Deltapix_x'] = Deltapix_x + addons['Deltapix_y'] = Deltapix_y + addons['Deltapix_x_large'] = Deltapix_x_large + addons['Deltapix_y_large'] = Deltapix_y_large + addons['prod_bandwidth'] = prod_bandwidth + addons['prod_bandwidth_large'] = prod_bandwidth_large + + + iniz=-0.4 ; fin=0.4 ; N_levels=40 ; self.levels=np.linspace(iniz,fin,N_levels) + if meth == 3: + + print('using pool..') + ncpu = self.ncpu + print('running on ..'+str(ncpu)) + + X,Y = np.meshgrid(xvalues,yvalues) + xygrid = np.array([X.ravel(), Y.ravel()]).T + addons['coords'] = xygrid + + indres = np.arange(xygrid.shape[0]) + # # indres = np.arange(100) + from multiprocessing import Pool + p=Pool(ncpu) + overdens_smooth_intmd = p.map(partial(smoothroutine2,addons=addons), indres) + data_pd={} + for key in overdens_smooth_intmd[0].keys(): + data_pd[key]=np.concatenate([d[key] for d in overdens_smooth_intmd]).transpose() + + self.over_dens_grid = data_pd['over_dens_grid_local'].reshape(binsx,binsy) + # self.xvalues = data_pd['this_x'] + # self.yvalues = data_pd['this_y'] + + p.close() + + elif meth == 4: + + for ix in np.arange(0,nx): + print(ix) + for iy in np.arange(0,ny): + this_x=xvalues[ix] + this_y=yvalues[iy] + # + ker_x,n_data = kernel_epan(this_x,x,Deltapix_x) + ker_y,n_data = kernel_epan(this_y,y,Deltapix_y) + + + + # + ker_xy=np.sum(ker_x*ker_y) + dens=ker_xy/(n_data*prod_bandwidth) + dens_grid[ix,iy]=dens + # + #---------------------------------------------------- + # + ker_x_large,n_data1=kernel_epan(this_x,x,Deltapix_x_large) + ker_y_large,n_data1=kernel_epan(this_y,y,Deltapix_y_large) + # + ker_xy_large=np.sum(ker_x_large*ker_y_large) + mean_dens=ker_xy_large/(n_data*prod_bandwidth_large) + over_dens_grid[ix,iy]=(dens-mean_dens)/np.double(mean_dens) + # + xgrid[ix,iy]=this_x + ygrid[ix,iy]=this_y + self.over_dens_grid = over_dens_grid + + + + + def plotit(self): + + iniz=-0.2 + fin=0.2 + N_levels=40 + levels=np.linspace(iniz,fin,N_levels) + cset1 = plt.contourf(smt.xvalues, smt.yvalues,smt.over_dens_grid.T, levels=levels, cmap='seismic') + + cbar=plt.colorbar(mappable=cset1,orientation='vertical') + + cbar.set_label('Overdensity', fontsize=18) + + # cbar.ax.tick_params(labelsize=18) + + # plt.xlabel('Z (kpc)', fontsize=18) + # plt.ylabel('Vz (km/s)', fontsize=18) + # plt.xticks(fontsize=18) + # plt.yticks(fontsize=18) + # #plt.xlim([-4.5,4.]) + # #plt.ylim([-5.4,5.]) + # plt.show() + + plt.savefig(desktop+'/rubfigs/test.png') + + + return + +def usharp(myimg,radius=2,amount=200): + + from skimage.filters import unsharp_mask + from skimage.filters import gaussian + from skimage import io, img_as_float + + + unsharped_img = unsharp_mask(myimg,radius=radius,amount=amount,preserve_range=True) + + + + return unsharped_img + +#................. + + +# spectroscopy etc +def Z2XY_abun(Z): + ''' + using relations given in Onno Pols et al. 1998, MNRAS 298, 525-536 + ''' + X = 0.76 - 3*Z + Y = 0.24 + 2*Z + return X,Y +def feh2Z(feh,Zsolar=0.019,A=1.0): + ''' + using relations given in Onno Pols et al. 1998, MNRAS 298, 525-536 + X = 0.76 - 3*Z + Y = 0.24 + 2*Z + Z = 0.76f/(1+ 3f) + where f = 10^(M/H) *(Zsolar/Xsolar) + ''' + Xsolar, Ysolar = Z2XY_abun(Zsolar) + + meh = A*feh + f = (10**meh)*(Zsolar/Xsolar) + Z = (0.76*f)/(1 + 3*f) + + return Z +def Z2feh(Z,Zsolar=0.019,A=1.0): + Xsolar, Ysolar = Z2XY_abun(Zsolar) + + f = Z/(0.76 - 3*Z) + meh = np.log10(f/(Zsolar/Xsolar)) + + feh = A*meh + + return feh +def get_galaxia_mtip_new(log_age=1.,feh=1.): + + ''' + INPUT: (as arrays of size>1) + log_age = log10(Age/yr) + feh = [Fe/H] + + OUTPUT: + mtip_new + ''' + import sutil_sanj + + HOME = getdirec('home') + loc = HOME+'/GalaxiaData' + + d = ebf.read(loc+'/feh_age_mtip.ebf','/') + sgrid=sutil_sanj.InterpGrid(tab.npstruct(d),['feh','log_age']) + mtip_new = sgrid.get_values('mtip',[feh,log_age],fill_value='nearest',method='linear') + return mtip_new + +def m_h_from_feh(feh=0.,a_feh=0.): + + ''' + input: + feh: [Fe/H] + a_feh: [alpha/Fe] + + Output: + [M/H] + + reference: Salaris & Cassisi, Evolution of Stars and Stellar Populations + ''' + f_alpha = 10.**(a_feh) + m_h = feh + np.log10(0.694*f_alpha + 0.306) + return m_h +def feh_from_m_h(m_h=0.,a_feh=0.): + + ''' + input: + m_h: [M/H] + a_feh: [alpha/Fe] + + Output: + [Fe/H] + + reference: Salaris & Cassisi, Evolution of Stars and Stellar Populations + ''' + f_alpha = 10.**(a_feh) + + feh = m_h - np.log10(0.694*f_alpha + 0.306) + return feh +def rc_teff2clr(teff,a,b,c): + ''' Here a,b and c are quadratic coeffecients: + a(x^2) + bx + c ''' + cprime = (c) - (5040./teff) + discrim_sqrt = np.sqrt((b**2.0) - (4*a*cprime)) + clr = (-b + discrim_sqrt)/(2*a) + + return clr +def rc_clrzero(feh,teff,method='direct'): + ''' RETURNS jk_0 FROM [Fe/H] & Teff ''' + + HOME = getdirec('phddir') + glxdir = getdirec('galaxia') + + if method == 'direct': + + print('') + + + ############################################ + ## [teff, Feh] to clr (direct method) + ############################################ + import calibrations_direct + + calib_file = 'k18rc_jk_teff_feh_coeff.pkl' + + + # popt_pop = ebf.read(HOME+'/GalaxiaWork/calibrations/now_direct/calib_res_direct.ebf')['clumps'] + popt_pop = dtools.pickleread(glxdir+'/'+calib_file) + popt = np.array([popt_pop[1],popt_pop[2],popt_pop[3],popt_pop[4],popt_pop[5],popt_pop[6]]) + popt = popt.astype(np.float) + + xs = np.array([feh,teff]) + clr = (calibrations_direct.func(xs,popt[0],popt[1],popt[2],popt[3],popt[4],popt[5],prnt=True)) + + + elif method == 'inverted': + + ############################################ + ## teff2clr (inverted method) + ############################################ + + pop = 'clumps'; usemet='n' + out=np.loadtxt(HOME+'/GalaxiaWork/calibrations/calib_res.txt', dtype=str,usecols=(0,1,2,3,4,5,6,7,8)) + for i in range(len(out)): + if pop in out[i,0] and usemet in out[i,1]: + c,b,a = float(out[i,2]),float(out[i,3]),float(out[i,4]) + + clr = rc_teff2clr(teff,a=a,b=b,c=c) + + return clr +def distance_rc(j,ks,teff,logg,feh,akval=[]): + ''' + 1. f(i) = A(i)/E(B-V); use GALAXIA tables --> UKIRT J & K + 2. red-clump Mk-[Fe/H] curve valid for -0.8<[Fe/H]<0.4 + + ''' + print('using new Ak correction') + print('') + print('reading Mks_[Fe/H] interp file') + glxdir = getdirec('glxdir') + loc = glxdir+'/calibrations' + + nam_intp_file = 'absks_feh_intp_tmasswise_direct' + absks_feh_intp = ebf.read(loc+'/'+nam_intp_file+'.ebf') + f = interp1d(absks_feh_intp['feh_intp'],absks_feh_intp['absks_intp'],bounds_error=False,fill_value=(absks_feh_intp['absks_intp'][0],absks_feh_intp['absks_intp'][-1])) + #mk_intp = np.interp(feh,absks_feh_intp['feh_intp'],absks_feh_intp['absks_intp']) - correct this - requires sorted arrays!! + mk_intp = f(feh) + #print('mk_curve is :') + #print(mk_intp) + + #print(absks_feh_intp) + #plt.plot(feh,mk_intp,'r.') + + + aebv = aebv_galaxia() + + fj=aebv.info('TMASSWISE_J')[2] #0.88579 + fk=aebv.info('TMASSWISE_Ks')[2] #0.36247 + + if akval == []: + clr = rc_clrzero(feh,teff,method='direct') + ak=fk*((j-ks)-clr)/(fj-fk) + else: + ak = akval[0] + + + return autil.dmod2dist(ks-mk_intp-ak) +def selfunc_rc(teff,logg,feh,mthd='direct',clr=[]): + print('selecting red-clumps (Bovy"s method but using abs_j,ks etc)') + + zsolar = 0.019 + mydata = {'teff':teff,'logg':logg,'feh':feh} + mydata['Zmet'] = (10**(mydata['feh']))*zsolar + + if clr == []: + mydata['clr'] = rc_clrzero(mydata['feh'],mydata['teff'],method=mthd) + + else: + print('using true colours') + mydata['clr'] = clr[0].copy() + + + ############################################ + ## SELECT RED-CLUMPS + ############################################ + teff_ref = -(382.5*mydata['feh']) + 4607 + loggup = 0.0018*(mydata['teff'] - teff_ref) + 2.5 + zlower = 1.21*((mydata['clr'] -0.05)**9.0) + 0.0011; + zupper = 2.58*((mydata['clr'] -0.40)**3.0) + 0.0034 + + + cond1 = (mydata['clr'] > 0.5)&(mydata['clr'] < 0.8) + cond2 = (mydata['logg']>= 1.8)&(mydata['logg']<= loggup) + cond3 = (mydata['feh']>=-0.8)&(mydata['feh']<= 0.4) + cond4 = (mydata['Zmet']<= 0.06)&(mydata['Zmet']>=zlower)&(mydata['Zmet']<=zupper) + #cond4 = 1 + + cond = cond1&cond2&cond3&cond4 + return cond + + +# Fourier +def psd2d_old(image,binsize,dx,dy,pad=0): + import bovy_psd + + ''' + OLD VERSION + ''' + + #image=image-np.mean(image[True-np.isnan(image)]) + image=image-np.mean(image[True ^ np.isnan(image)]) + image[np.isnan(image)]= 0. + + image=image-np.mean(image) + temp= np.fft.fftshift(np.fft.fft2(image,s=((1+pad)*image.shape[0]+1,(1+pad)*image.shape[1]+1))) + if pad == 0: + temp= np.fft.fftshift(np.fft.fft2(image,s=((1+pad)*image.shape[0],(1+pad)*image.shape[1]))) + + nxbins = image.shape[0] + nybins = image.shape[1] + + Lx = image.shape[0]*dx + Ly = image.shape[1]*dy + Lbovx = 6.75 + Lbovy = 6.75 + + #nom_cor = dx*dy*0.01716 #64./(((nxbins*nybins)**2.)*dx*dy) # to match Bovy 2015 + #nom_cor =4./((nxbins*nybins)**2.) + #bv_cor = 16. * (((Lx*Ly)/(Lbovx*Lbovy))**2.) + #hf=np.power(np.abs(temp),2.0)*nom_cor*bv_cor + + + hf=np.power(np.abs(temp),2.0)*(dx*dy)*0.01716 + + + x=np.fft.fftshift(np.fft.fftfreq(temp.shape[0],dx)) + y=np.fft.fftshift(np.fft.fftfreq(temp.shape[1],dy)) + + binsize=binsize/(temp.shape[0]*dx) + + x2,y2=np.meshgrid(x,y,indexing='ij') + r = np.hypot(x2, y2) + nbins = int(np.round(r.max() / binsize)+1) + maxbin = nbins * binsize + + h1=sutil.hist_nd(r.flatten(),bins=nbins,range=[0,maxbin]) + res=h1.apply(hf.flatten(),np.mean) + loc=h1.locations[0] + + return loc*2.1,res +def psd2d(image,binsize,dx,dy,pad=0): + import bovy_psd + ''' + FROM SANJIB: OCTOBER 01, 2018 + ''' + + + fac=np.sum(np.isfinite(image))*1.0/np.prod(image.shape); #print('fac = '+str(fac)); print('imshape = ='+str(np.prod(image.shape))) + image=image-np.nanmean(image) + image[np.isnan(image)]= 0.0 + temp= np.fft.fftshift(np.fft.fft2(image,s=((1+pad)*image.shape[0]+1,(1+pad)*image.shape[1]+1))) + hf=(np.power(np.abs(temp),2.0)*dx*dy/(np.prod(image.shape)*fac)) + x=np.fft.fftshift(np.fft.fftfreq(temp.shape[0],dx)) + y=np.fft.fftshift(np.fft.fftfreq(temp.shape[1],dy)) + binsize=binsize/(temp.shape[0]*dx) + x2,y2=np.meshgrid(x,y,indexing='ij') + r = np.hypot(x2, y2) + nbins = int(np.round(r.max() / binsize)+1) + # # print('testing................') + # # print(nbins) + # # print('.........') + maxbin = nbins * binsize + h1=sutil.hist_nd(r.flatten(),bins=nbins,range=[0,maxbin]) + res=h1.apply(hf.flatten(),np.mean) + loc=h1.locations[0] + + #print np.sum(hf)*(x[1]-x[0])*(y[1]-y[0]),np.sum(image*image)/(np.prod(image.shape)*fac),np.trapz(res[0:-1]*loc[0:-1]*2*np.pi,loc[0:-1]),fac + #ind = np.where(np.isfinite(res))[0] + #print(np.sum(res[ind]*2.*np.pi*loc[ind]*(loc[1]-loc[0])) ) + return loc*2.1,res + + + +# vizier +def get_vizier(catalog): + nam = {'gaiadr2':'vizier:I/345/gaia2', + 'gaiaedr3':'vizier:I/350', + 'wise':'vizier:II/311/wise', + 'allwise':'vizier:II/328/allwise', + 'unwise':'vizier:II/363/unwise', + 'catwise':'vizier:II/365/catwise', + 'panstarrs':'vizier:II/349/ps1', + 'sdss':'vizier:V/147/sdss12', + 'harris': 'vizier:VII/202/catalog', + 'spitzer':'vizier:II/293/glimpse', + 'dodddr3':'J/A+A/670/L2', + 'twomass':'vizier:II/246/out'} + + return nam[catalog] +def mk_upload(data,FILENAME='tst',FORMAT='csv',loc='',rakey='ra',deckey='dec',**kwargs): + ''' + creates .csv file + + ''' + from astropy.table import Table, Column + from astropy.io import ascii + + + mydata={} + mydata[rakey] = data[rakey] + mydata[deckey] = data[deckey] + idkey = kwargs['idkey'] + mydata[idkey] = data[idkey] + + #mydata['_2mass'] = data['_2mass'] + + tab = Table(mydata) + + if loc == '': + loc = os.getcwd() + + fullname =loc+'/'+FILENAME+'.'+FORMAT + tab.write(fullname,format='csv',names=list(mydata.keys()),overwrite=True) + + print('') + print('file written') + return tab +def cmatch(data,radius=5.,cat2='vizier:I/345/gaia2',colra1='ra',coldec1='dec',outname='mydata',match_key='source_id',loc='',write_as='fits'): + from astropy import units as u + from astroquery.xmatch import XMatch + from astropy.table import Table, Column + from astropy.io import ascii + + if loc == '': + loc = os.getcwd() + + print('') + print('Cross-matching with '+cat2) + mk_upload(data,rakey=colra1,deckey=coldec1,idkey=match_key,loc=loc) + + + data_temp = XMatch.query(cat1=open(loc+'/tst.csv'),cat2=cat2,max_distance=radius * u.arcsec,colRA1=colra1,colDec1=coldec1) + #table = XMatch.query_async(cat1=open(cat1),cat2=cat2,max_distance=radius * u.arcsec,colRA1=colra1,colDec1=coldec1) + + print(data_temp) + kyuse = '' + for ky in data_temp.keys(): + if ky.startswith('ra'): + kyuse = ky + + print(data_temp[ky].size) + print('joining...') + tabpy.ljoin(data,data_temp,match_key,match_key) + + for ky in data.keys(): + if ky.startswith('ang'): + tabpy.sortby(data,ky) + + tabpy.unique(data,match_key) + + print('') + print('----------') + if write_as == 'fits': + dt = Table(data) + dt.write(loc+'/'+outname+'.fits',format='fits',overwrite=True) + print('File written to '+loc) + if write_as == 'ebf': + ebfwrite(data,outname,loc) + print('File written to '+loc) + + + + return data +def topcatxm(in1,in2,outfile): + + print('') + + os.system('topcat -stilts tmatch2 in1='+in1+' in2='+in2+'\ + join=1and2 matcher=exact values1=source_id values2=source_id find=best ofmt=colfits-plus out='+outfile) + + + return + + + +def xmatch_topcat(floc1,floc2,floc3,radius=5): + ''' + all with full path: + floc1 = first file + floc2 = second file + floc3 = save file + radius = arcseconds + ''' + + os.system('topcat -stilts tskymatch2 in1='+floc1+' in2='+floc2+' ra1=ra dec1=dec ra2=ra dec2=dec join=1and2 find=best error='+str(radius)+' ofmt=colfits-plus out='+floc3) + + return + +# Extinction + + + +def redden_fac(maptype=''): + ''' + + maptype: '' == uses Galaxia values + maptype: 'bayestar3d' == uses values as in Bayestar + + HISTORY: 14 November 2019 (RUG) + 21 JUNE 2021 (RUG) + + Purpose: Returns multiplicative factor to convert reddening E(B-V) + + 1. from Cassagrande & Vandenburg 2018, for Gaia bands + 2. from Green et al. 2019, in to extinction for PANSTARS and 2MASS bands. + + ''' + + + aebv=aebv_galaxia() + + + val= {'jmag': aebv.info('TMASSWISE_J')[2], + 'hmag': aebv.info('TMASSWISE_H')[2], + 'kmag': aebv.info('TMASSWISE_Ks')[2], + 'phot_g_mean_mag': 2.74, + 'bp': 3.374, + 'rp': 2.035} + + + if maptype == 'bayestar3d': + val['gP1'] = 3.518 + val['rP1'] = 2.617 + val['iP1'] = 1.971 + val['zP1'] = 1.549 + val['yP1'] = 1.263 + val['jmag'] = 0.7927 + val['hmag'] = 0.4690 + val['kmag'] = 0.3026 + + + + wise='WISE_W' + for num in [1,2,3,4]: + # val['w'+str(num)+'mag']=aebv.info(wise+str(num))[2] + val['w'+str(num)+'mag']=aebv.info('TMASSWISE_W'+str(num))[2] + val['w'+str(num)+'mpro']=aebv.info('TMASSWISE_W'+str(num))[2] + + # val['w1mpro'] = val['bp']/125.6 + # val['w2mpro'] = val['bp']/138.5 + return val + +def deredden_map(): + mags={'jmag':'2mass_j', 'kmag':'2mass_ks','hmag':'2mass_h', 'w1mag':'wise_w1', 'w2mag':'wise_w2', 'w3mag':'wise_w3', 'w4mag':'wise_w4', 'phot_g_mean_mag':'gaia_g'} + + return mags +class aebv_galaxia(object): + + ''' + NAME: + + PURPOSE: aebv factors from GALAXIA + + + INPUT: bandname + + OUTPUT: 'name, lambda, fac' + + HISTORY: 10 April 2020 + + ''' + def __init__(self): + + + filename=getdirec('galaxia')+'/Isochrones/aebv_factor.ebf' + self.aebv_file = ebf.read(filename) + self.aebv_file['filter'] = self.aebv_file['filter'].astype(str) + + self.get_bands() + def get_bands(self): + + val = self.aebv_file['filter'] + return val + + def info(self,band): + + if band in self.aebv_file['filter']: + + indf = np.where(self.aebv_file['filter']==band)[0] + #print('name, lambda, fac') + return self.aebv_file['filter'][indf][0], self.aebv_file['lambda_eff'][indf][0],self.aebv_file['aebv_factor'][indf][0] + + else: + raise Exception('check bandname') +def deredden(glon,glat,mag1=None,bandname1=None,mag2=None,bandname2=None,getebv_only=False,corrfac='bstar'): + + ''' + Estimate extinction at infinity using Schlegel maps + + + corrfac = bstar (0.86 by default) + '' (uses the scheme in Sharma 2011, Koppelman 2020) + ''' + + import gutil2 + filename=getdirec('galaxia')+'/Isochrones/aebv_factor.ebf' + + + + ext=gutil2.Extinction(GalaxiaPath=getdirec('galaxia')+'/Extinction/',filename=filename) + ebv=ext.ebv_inf(glon,glat) + + if corrfac == 'bstar': + ebv = ebv*0.86 + elif corrfac == 'koppelman': + + indcor = np.where(ebv > 0.15)[0] + + ''' + correct for overestimated Schlegel maps using the scheme in Sharma 2011 etc + + ''' + cor_fac = 0.6 + (0.2*(1 - np.tanh((ebv[indcor] - 0.15)/0.3) ) ) + ebv[indcor] = ebv[indcor]*cor_fac + + + if getebv_only: + return ebv + + + else: + + aebv_file = ebf.read(filename) + filter_names = (np.array([filters.lower() for filters in aebv_file['filter']])).astype(str) + + bandnames = {'bandname1':bandname1} + if mag2 is not None: + bandnames['bandname2'] = bandname2 + + for bandname in bandnames.keys(): + if bandnames[bandname] not in filter_names: + print(bandnames[bandname]) + print(aebv_file['filter']) + bandname = raw_input('bandname = ') ; # bandname = input('bandname = ') + bandnames[bandname] = bandname + + print('') + print('dereddenning:') + print(bandnames) + + + col0=ext.deredden(ebv,mag1,bandname1) + + if mag2 is not None: + col0=ext.deredden(ebv,mag1,bandname1)-ext.deredden(ebv,mag2,bandname2) + + return col0, ebv + +def extmapsanj(l,b,r): + + ''' + function to interpolate extinction from 2D and 3D maps + + NAME: extmapsanj + + PURPOSE: obtain ebv using Sanjib's interpolated extinction map + + INPUT: l,b,r + + OUTPUT: ebv-2d, ebv-3d, intfac + + HISTORY: August 16, 2022 + + ''' + l = np.array(l) + b = np.array(b) + r = np.array(r) + + data = {} + data['glon'] = l.copy() + data['glat'] = b.copy() + data['rad'] = r.copy() + + import scipy.interpolate + + GalaxiaPath=getdirec('galaxia')+'/Extinction/' + x=np.zeros((data['glon'].size,3),dtype='float64') + x[:,0]=data['glon'] + x[:,1]=data['glat'] + x[:,2]=np.log10(data['rad']) + data3d=ebf.read(GalaxiaPath+'ExMap3d_1024.ebf','/ExMap3d.data') + xmms3d=ebf.read(GalaxiaPath+'ExMap3d_1024.ebf','/ExMap3d.xmms') + points3d=[xmms3d[i,0]+np.arange(data3d.shape[i])*xmms3d[i,2] for i in range(data3d.ndim)] + data2d=ebf.read(GalaxiaPath+'Schlegel_4096.ebf','/ExMap2d.data') + xmms2d=ebf.read(GalaxiaPath+'Schlegel_4096.ebf','/ExMap2d.xmms') + points2d=[xmms2d[i,0]+np.arange(data2d.shape[i])*xmms2d[i,2] for i in range(data2d.ndim)] + + temp3d=scipy.interpolate.interpn(points3d,data3d,x,bounds_error=False,fill_value=None,method='linear') + temp2d=scipy.interpolate.interpn(points2d,data2d,x[:,0:2],bounds_error=False,fill_value=None,method='linear') + data['exbv_schlegel_inf']=temp2d + data['exbv_schlegel']=temp2d*temp3d + + return temp2d, temp2d*temp3d, temp3d + + + +class deredden_3d(object): + + ''' + + NAME: deredden_3d from schlegel + + PURPOSE: estimate 3d extinction from 2d Schlegel maps by correcting using the methods in Binney 2014 + Koppelman 2020 and Sharma 2011 + + + ** has to be done star-by-star!! + + INPUT: + l (degrees) + b (degrees) + d (kpc) + mag + mag_map + + OUTPUT: a_val, mag0, intfac(ratio) + + HISTORY: 28 April 2020 [Groningen] + : 02 September 2022 [Torino] + + need to add a line to apply only to R > Rwarp and Rflare + + ''' + def __init__(self): + + + self.constants() + + + def constants(self): + + + self.Rsun = get_lsr()['Rsun'] + self.zsun = get_lsr()['zsun'] + self.hr = 4.2 #kpc + self.hz = 0.088 #kpc + self.yflare = 0.0054 #kpc^-1 + self.ywarp = 0.18 #kpc^-1 + + self.Rflare = 1.12*self.Rsun #kpc + self.Rwarp = 8.4 #kpc + + + return + + + def dum(self,rterm): + l = self.l + b = self.b + + R,lgc = self.getcoords(l,b,rterm) + + self.kflare = 1. + (self.yflare*(np.min([self.Rflare,R-self.Rflare]) )) + self.zwarp= (self.ywarp*(np.min([self.Rwarp,R-self.Rwarp]) )*np.sin(np.radians(lgc))) + + a1 = (np.cos(np.radians(b)))**2. + a2 = (-2.)*self.Rsun*(np.cos(np.radians(b)))*(np.cos(np.radians(l))) + a3 = (self.Rsun)**2. + a4 = (np.sin(np.radians(b))) + + tmp1 = np.exp(self.Rsun/self.hr) + tmp2 = np.exp(-(( (a1*rterm**2.) + (a2*rterm) + a3)**0.5)/self.hr) + + + tmp3 = np.exp(-(abs( (a4*rterm) + self.zsun - self.zwarp) )/(self.kflare*self.hz) ) + + val = tmp1*tmp2*tmp3 + + + return val + + + def getcoords(self,l,b,distance): + + + xsun = get_lsr()['xsun'] + zsun = get_lsr()['xsun'] + + x,y,z = autil.lbr2xyz(l,b,distance) + xgc = x+xsun + zgc = z+zsun + ygc = y.copy() + + #rgcd = np.sqrt(xgc**2. + ygc**2. + zgc**2.) + rgc = np.sqrt(xgc**2. + ygc**2.) + + lgc = np.degrees(np.arctan2(ygc,xgc)) + + return rgc,lgc + + def getintfac(self,l,b,r): + + # timeit = stopwatch() + # timeit.begin() + + self.l = l + self.b = b + self.r = r + + func = lambda rfn : self.dum(rfn) + ts = scipy.integrate.nquad(func,ranges=[[0.,r]],full_output=True) + + # print('here...') + # timeit.end() + + + ts1 = scipy.integrate.nquad(func,ranges=[[0.,np.inf]],full_output=True) + + # print('here...') + # timeit.end() + + + self.intfac = ts[0]/ts1[0] + return self.intfac + + def getmag0(self,mag,mag_map): + ''' + returns: mag0_3d, mag0_2d, Amag_3d + ''' + + l,b,r = self.l,self.b,self.r + + ## calculate a_lambda + mag0_sch,ebv_sch = deredden(l,b,mag,mag_map) + + a_mag_sch = mag - mag0_sch + + a_mag_sch_3d = self.intfac*a_mag_sch + mag0_sch_3d = mag - a_mag_sch_3d + + # return a_mag_sch_3d, mag0_sch_3d, intfac, ebv_sch + return mag0_sch_3d, mag0_sch, a_mag_sch_3d + + +def chk(): + l,b,r = 187.36485163807515, -35.11673792906733, 0.6573329467773438 + myred = deredden_3d() + myred.getintfac(l,b,r) + + return + + +def dustmap_web(l,b,d,band,version='bayestar2019'): + ''' + estimate extinction from 3d maps from Green et al. 2019 using their webserver + + l (degrees) + b (degrees) + d (kpc) + + ''' + from astropy.coordinates import SkyCoord + import astropy.units as u + from dustmaps.bayestar import BayestarWebQuery + + l = l*u.deg + b = b*u.deg + d = (d*1000.)*u.pc + + coords = SkyCoord(l, b, distance=d, frame='galactic') + + q = BayestarWebQuery(version=version) + + E = q(coords, mode='median') + print('E is ...'+str(E)) + + rfac = redden_fac() + if band in rfac.keys(): + A_lambda = E*rfac[band] + else: + A_lambda = np.zeros(len(l)) + np.nan + + return A_lambda + +class dustmap_green(object): + + ''' + estimate extinction from 3d maps from Green et al. 2019 using their downloaded map + l (degrees) + b (degrees) + d (kpc) + + machine: home or huygens + ''' + def __init__(self,machine='home',usemap='bayestar'): + print('') + + self.usemap = usemap + self.machine = machine + print('running on '+self.machine) + + if machine == 'kapteyn': + self.readloc_ = '/net/huygens/data/users/khanna/Documents/phd_work' + if machine == 'bologna': + self.readloc_ ='/home/guest/Sunny/data8/Documents/pdoc_work' + if machine == 'cluster2': + self.readloc_ =getdirec('pdocdir',at='cluster2') + + def loadit(self,max_samples=20): + + from dustmaps.bayestar import BayestarQuery + timeit=stopwatch() + timeit.begin() + + maploc = 'dustmaps/'+self.usemap + mapname = os.listdir(self.readloc_+'/'+maploc)[0] + + self.bayestar = BayestarQuery(max_samples=max_samples,map_fname=self.readloc_+'/'+maploc+'/'+mapname) + + + timeit.end() + return + + def get(self,l,b,d,band=None,mode='median',getebv_only=False,getebv=False): + + from astropy.coordinates import SkyCoord + import astropy.units as u + + l = l*u.deg + b = b*u.deg + d = (d*1000.)*u.pc + + coords = SkyCoord(l, b, distance=d, frame='galactic') + + q = self.bayestar + + if mode == 'median': + E = q(coords, mode=mode) + elif mode == 'samples': + E = q(coords, mode='samples') + + if getebv_only: + + return E + + else: + + rfac = redden_fac(maptype='bayestar3d') + + if band in rfac.keys(): + A_lambda = E*rfac[band] + elif l.size == 1: + A_lambda = np.nan + else: + A_lambda = np.zeros(len(l)) + np.nan + + if getebv: + print(' A_lambda & E(B-V) ') + return A_lambda, E + else: + return A_lambda + + +def extmaplallemant(l,b,r,typ='19'): + + + ''' + l [deg] + b [deg] + r [kpc] + + typ = '18' or '22' + + + ''' + import imp + + + import lallement as llm + + + + if typ =='18': + lmap = llm.L18map(dustmaploc=getdirec('pdocdir')+'/dustmaps') + elif typ =='19': + lmap = llm.L19map(dustmaploc=getdirec('pdocdir')+'/dustmaps') + + ebv = lmap.getebv(l,b,r,plot=True) + + return ebv + + + + + +# Other Astronomy (rarely used) +def periodic_dist(x1,x2,l=360.): + + ''' + To get stars around longitude=20.0 use the following function + periodic_dist(l,20,360) < 20 + + ''' + + dx=(x2-x1)%360.0 + if (hasattr(dx,"__len__") == False): + return np.min([dx,l-dx]) + else: + return np.select([dx>l*0.5],[l-dx],default=dx) +def a2age(age_a): + from astropy.cosmology import Planck15 + z = (1.0/age_a) - 1.0 + + age_giga = Planck15.lookback_time(z).value + + return age_giga +def get_absmag(mag,a_ext,dmod): + + ''' + Absolute magnitude from apparent magnitude and dmod + + ''' + + abs_mag = mag - a_ext - dmod + + return abs_mag +def get_absmag_d(mag,a_ext,d): + + ''' + Absolute magnitude from apparent magnitude and distance + + + ''' + + import uncertainties.unumpy as unumpy + + abs_mag = mag - a_ext - 10 + (5.*unumpy.log10(1./d)) + + + return abs_mag +def get_absmag_plx(mag,a_ext,parallax): + + ''' + Absolute magnitude from apparent magnitude and parallaxes + + ''' + # import uncertainties.unumpy as unumpy + + # indx = np.where(parallax<0)[0] + # parallax[indx] = np.nan + + # abs_mag = mag - a_ext - 10 + (5.*unumpy.log10(parallax)) + + abs_mag = mag - a_ext - 10 + (5.*np.log10(parallax)) + + # return abs_mag.astype(np.float32) + return abs_mag + +def get_dmod(abs_mag,a_ext,mag): + + ''' + dist modulus from Absolute magnitude + ''' + + dmod = mag - a_ext - abs_mag + return dmod + +def phi_mod(value): + + ''' + Modified Galactocentric phi (to match Katz 2018 GDR2) + ''' + + #val = np.degrees(np.arctan2(y,x)) + + phi=[] + for val in value: + if val >= 0.: + val = 180. - val + elif val <= 0.: + val = -1.*(180. - abs(val)) + phi.append(val) + + return np.array(phi) +def iter_cent(part_data,rcentmax): + ## Iterative centering to return new x_cen ## + r_max = max(abs(part_data[:,0])) + ind=np.arange(part_data[:,0].size) + while (r_max > rcentmax): + xyz_cen = [np.mean(part_data[ind,0]),np.mean(part_data[ind,1]),np.mean(part_data[ind,2])] + r_new=0 + for i in [0,1,2]: + temp=(part_data[:,i]-xyz_cen[i]) + r_new+=temp*temp + r_new = np.sqrt(r_new) + ind=np.where(r_new < r_max)[0] + r_max = 0.7*r_max + + return xyz_cen, ind + + +# Healpix +def allsky_area(): + + ''' + returns the allsky surface area in degrees squared + ''' + + r = 360./(2.*np.pi) + A = 4*np.pi*(r**2.) + + return A +def pixsize2nside(pixel_size): + + ''' + + + NAME: pixsize2nside + + PURPOSE: pixel size to nside + + + INPUT: pixel_size [degrees squared] + + OUTPUT: nside + + HISTORY: March 05, 2020 (Groningen) + + + ''' + + import healpy as hp + + A_allsky = allsky_area() + npix = (int(A_allsky/pixel_size)) + nside = int(np.sqrt((npix/12.))) + + # nside = hp.npix2nside(int(A_allsky/pixel_size)) + + return nside + + + + +def sourceid2hpx(source_id,level=12): + ''' + source_id (has to be array or int) + level (12 by default) + + hpx id + + April 23, 2021 + February 18, 2022 + ''' + + # val = int(source_id/((2**35)*(4**(12-level)))) + val = (source_id/((2**35)*(4**(12-level)))) + + # if val.size > 1: + # return val.astype(int) + # else: + # return int(val) + # if type(val) != 'float'.size > 1: + # return val.astype(int) + # else: + # return int(val) + + if isinstance(val, (float)) == False: + return val.astype(int) + else: + + return int(val) + +def hpx2sourceid(hpx,level=12): + ''' + hpx id + level (12 by default) + + source_id id + + May 06, 2021 + ''' + + + source_id = hpx*((2**35)*(4**(12-level))) + + + # if source_id.size > 1: + # return source_id.astype(int) + + # else: + # return int(source_id) + + return int(source_id) + + + + +def sourceid2pos(source_id,level=12): + + ''' + source_id + level (12 by default) + + ra, dec, l , b + + May 06, 2021 + ''' + + from astropy_healpix import HEALPix + from astropy import units as u + + nside = 2**level + hp = HEALPix(nside, order='nested') + val = (source_id/((2**35)*(4**(12-level)))) + val = np.array(val) + + if val.size>1: + val = val.astype(int) + else: + val = int(val) + + + ra, dec = hp.healpix_to_lonlat([val]) # radians + ra,dec = np.degrees(ra.value)[0], np.degrees(dec.value)[0] + + l,b = autil.equ2gal(ra,dec) + + return ra, dec, l, b + +def hpix2pos(hpix,nside,nest=True,lonlat=True,style=''): + + ''' + + + hpixel + nside + + ra, dec, l , b + + * note if style == 'gaia' healpix id is passed in, it returns ra dec instead of l, b, internally corercted. + + HISTORY: 20 May, 2024 (INAF-TORINO) + + ''' + + l,b = healpy.pix2ang(nside,hpix,lonlat=lonlat,nest=nest) + ra,dec = autil.gal2equ(l,b) + + if style == 'gaia': + ra,dec = healpy.pix2ang(nside,hpix,lonlat=lonlat,nest=nest) + l,b = autil.equ2gal(ra,dec) + + return ra, dec, l, b + + +def DeclRaToIndex(decl, RA, nside): + return healpy.pixelfunc.ang2pix(nside,np.radians(decl+90.),-np.radians(360.-RA)) +def hpstatistic(nside, ra, dec, statistics='count', vals=None,nest=False): + """ + Create HEALpix map of count, frequency or mean or rms value. + :param nside: nside of the healpy pixelization + :param v: either (x, y, z) vector of the pixel center(s) or only x-coordinate + :param y: y-coordinate(s) of the center + :param z: z-coordinate(s) of the center + :param statistics: keywords 'count', 'frequency', 'mean' or 'rms' possible + :param vals: values (array like) for which the mean or rms is calculated + :return: either count, frequency, mean or rms maps + """ + + import healpy + npix = healpy.nside2npix(nside) + pix = healpy.ang2pix(nside,ra, dec,lonlat=True,nest=nest) + + + + n_map = np.bincount(pix, minlength=npix) + if statistics == 'count': + v_map = n_map.astype('float') + elif statistics == 'frequency': + v_map = n_map.astype('float') + v_map /= max(n_map) # frequency [0,1] + elif statistics == 'mean': + if vals is None: + raise ValueError + v_map = np.bincount(pix, weights=vals, minlength=npix) + v_map /= n_map # mean + elif statistics == 'rms': + if vals is None: + raise ValueError + v_map = np.bincount(pix, weights=vals ** 2, minlength=npix) + v_map = (v_map / n_map) ** .5 # rms + else: + raise NotImplementedError("Unknown keyword") + return v_map, pix + + +# tepper sims + +#-- DICE FILES USING FORTRAN +def tep(snp,svloc=''): + from astropy.table import Table, Column + from astropy.io import ascii + + print('svloc = '+svloc) + print(os.getcwd()+'/'+svloc) + + loc = os.getcwd() + + dt = ascii.read(loc+'/table.txt') + kys = {'x[kpc]':'px', 'y[kpc]':'py', 'z[kpc]':'pz','vx[km/s]':'vx','vy[km/s]':'vy','vz[km/s]':'vz','ID':'part_id'} + + data = {} + for key in kys: + data[kys[key]] = np.array(dt[key]) + + + ebfwrite(data,snp,os.getcwd()+'/'+svloc) + return + +def runtep(typ=3): + ''' + + FORTRAN + + ''' + + + timeit = stopwatch() + timeit.begin() + + desc = {3:'thick_disc',11:'thin_disc'} + print('making '+desc[typ]+'...') + typ = str(typ) + + # previously did for 60 steps + #outs = np.linspace(1.,300.,300) # iso + #outs = np.linspace(1.,174.,174) # s + outs = np.linspace(1.,154.,154) # r + + print(len(outs)) + print(outs) + outs = outs.astype(int) + outps = [] + for t in outs: + val = t.astype(str).rjust(5,'0') + outps.append(val) + outps = np.array(outps) + + simname = 'dice_MW_Sgr_dSph_r_hires' #dice_MW_Sgr_dSph_p_MWonly_hires + svloc = simname+'_'+typ + os.mkdir(svloc) + for out in outps: + print(out) + + dloc = '/import/photon1/tepper/ramses_output/Nbody/dice/myics/'+simname + cf = './read_part -inp '+dloc+'/output_'+out+' -out table.txt -typ '+typ+' -nc 11 -fil ascii' + os.system(cf) + tep(out+'_'+typ,svloc=svloc) + + + + timeit.end() + + +#-- AGAMA FILES USING pynbody + + +def read_tepper_pynbody(file1,clock=True): + ''' + pyNbody + + + Access to the following models can be found on: + + /export/photon1/tepper/ramses_output/Nbody/agama/myics/ + + + I. Models with a bar: + agama_test + agama_test_hires + + II. Featureless model: + chequers_2018_iso + + AGAMA component IDs + 1 -> DM halo + 3 -> stellar bulge + 5 -> thick disc + 7 -> thin disc + + + ''' + + import pynbody + + if clock: + timeit = stopwatch() + timeit.begin() + + + MaxCompNumber = 11 + ro = pynbody.load(file1) + ro.physical_units() + tstamp = float(ro.properties['time']) # in Gyr + ro['part_id']=ro['iord'] % (2*MaxCompNumber) + ro['pos'] = ro['pos'] - (ro['pos']).mean(axis=0) + ro['vel'] = ro['vel'] - (ro['vel']).mean(axis=0) + + d={} + d['px']=np.array(ro['pos'][:,0]) + d['py']=np.array(ro['pos'][:,1]) + d['pz']=np.array(ro['pos'][:,2]) + d['vx']=np.array(ro['vel'][:,0]) + d['vy']=np.array(ro['vel'][:,1]) + d['vz']=np.array(ro['vel'][:,2]) + d['part_id']=ro['part_id'] + d['popid']=np.array(ro['part_id']) + d['lgc'],d['pzgc'],d['rgc']=autil.xyz2lzr(d['px'],d['py'],d['pz']) + d['vlgc'],d['vzgc'],d['vrgc']=autil.vxyz2lzr(d['px'],d['py'],d['pz'],d['vx'],d['vy'],d['vz']) + d['lgc']=d['lgc']%360.0 + d['pzgc_abs']=np.abs(d['pzgc']) + d['vphi']=-(d['vlgc']) + #........ + d['vlgc']=-(d['vlgc'].copy()) + #........ + d['vphi']=-(d['vlgc']) + d['tstamp'] = np.zeros(d['px'].size) + tstamp + + d['pxgc'], d['pygc'] = d['px'],d['py'] + del d['px'] + del d['py'] + + + + print('saving only thick and thin disc stars...') + tabpy.where(d,(d['part_id']==5)|(d['part_id']==7)) + + if clock: + timeit.end() + return d + +def getsims(): + timeit = stopwatch() + timeit.begin() + + + simname = 'agama_test_hires' + svloc = '/import/photon1/skha2680/Documents/phd_work/tepper_sims/warp/'+simname + os.mkdir(svloc) + + import natsort + from natsort import natsorted, ns + dloc = '/export/photon1/tepper/ramses_output/Nbody/agama/myics/'+simname + filenames = os.listdir(dloc) + filenames = natsorted(filenames) + filenames = np.array(filenames) + + for fl in filenames: + if fl.startswith('output_00140'): + print(fl) + dt = read_tepper_pynbody(dloc+'/'+fl,clock=False) + ebfwrite(dt,fl,svloc) + + timeit.end() + return + + + +# Miscellaneous + + +def points_sphere_equ(N=100,r=10,smpfac=0.1): + + ''' + returns equidistant points on a sphere + + https://www.cmu.edu/biolphys/deserno/pdf/sphere_equi.pdf + + + N = number of points to generate + r = radius at which to generate + + + # dts = points_sphere_equ(N=1000,r=50) + # # dtools.picklewrite(dts,'pointings',desktop) + + # dts = dtools.pickleread(desktop+'/pointings.pkl') + + ''' + + + Nc = 0 + r1 = 1. + a = (4*np.pi*(r1**2.))/N + d = np.sqrt(a) + mtheta = int(np.round(np.pi/d)) + dtheta= np.pi/mtheta + dphi = a/dtheta + dts = {} + dts['xv'] = [] + dts['yv'] = [] + dts['zv'] = [] + for m in range(0,mtheta-1): + theta = (np.pi*(m + 0.5))/mtheta + mphi = int(np.round(2*np.pi*(np.sin(theta)/dphi))) + for n in range(0,mphi-1): + phi = (2*np.pi*n)/mphi + x = r*np.sin(theta)*np.cos(phi) + y = r*np.sin(theta)*np.sin(phi) + z = r*np.cos(theta) + + dts['xv'].append(x) + dts['yv'].append(y) + dts['zv'].append(z) + + for ky in dts.keys(): + dts[ky] = np.array(dts[ky]) + + dts['l'],dts['b'],dts['d'] = autil.xyz2lbr(dts['xv'],dts['yv'],dts['zv']) + dts['l']=dts['l']%360. + + indall = np.arange(0,dts['l'].size) + np.random.shuffle(indall) + # print(smpfac) + smpsize = int(smpfac*indall.size) + # print(smpsize) + dts = dtools.filter_dict(dts,indall[:smpsize]) + + dts['dgrid'] = np.linspace(0.,30,100) + + return dts + + + +def sech2(x): + """ + sech squared distribution + + Arguments: + x = flot, int or array + + Returns: + sech2(x), same format as x + + 2019-01-19 + """ + return 1./np.cosh(x)**2 + + +def tcalc(totsize,chunksize,tperchunk): + + ''' + totsize: total number of objects to run + chunksize: total per chunk + + tperchunk : seconds + + ''' + + tmp1 = float(totsize)/float(chunksize) + + nhrs = ((tperchunk*tmp1)/3600.) + ndays = nhrs/24. + + + + return str(nhrs)+' hours', str(ndays)+' days' + + +def fcount(floc,flist=False,nlist=False): + + ''' + NAME: fcount + + PURPOSE: counts the number of files in a given directory + + + INPUT: file location + + OUTPUT: number count + + HISTORY: October 27, 2022 (INAF Torino) + + ''' + + + cnt = [] + + for fl in os.listdir(floc): + cnt.append(fl) + + cnt = np.array(cnt) + + + + + print(str(cnt.size)+' files in total') + + if flist: + # os.system('ls -lh '+floc) + return cnt + elif nlist: + return cnt.size + else: + os.system('ls -lh '+floc) + return + + +def getphi_(glon,typ=''): + + ''' + '' type for overplotting glon on healpix + '2' for normal glon, but with glon > 180 as negative + ''' + + if typ == '': + phival = glon.copy() + indg = np.where(glon < 180)[0] + phival[indg] = -(glon[indg]).copy() + indl = np.where(glon > 180)[0] + phival[indl] = 360. - glon[indl].copy() + + if typ == '2': + + phival = glon.copy() + indg = np.where(glon < 180)[0] + phival[indg] = (glon[indg]).copy() + indl = np.where(glon > 180)[0] + phival[indl] = glon[indl].copy() - 360 + + return phival + +def comments_form(): + + ''' + + NAME: + + PURPOSE: + + + INPUT: + + OUTPUT: + + HISTORY: + + ''' + + + ''' + + NAME: Einasto density + + PURPOSE: evaluate Einasto density at a given radius (or rq) + + + INPUT: + + rv = radius at which to compute (default=1) + ntot = Total number/mass of stars in volume (default=1) + n = Einasto profile shape (default=1) + rs = half-mass radius (default=1) + p = triaxiality (y/x, default=1) + q = triaxiality (z/x, default=1) + + OUTPUT: density (rgcd) + + REMARKS: + + -analytical form taken from Merrit 2006 (page 15) + -also refer to Retana-Montenegro 2012 for expressions + + HISTORY: + + 28 September 2020 (RUG) + + ''' + + + + #Java: + + ''' + + /** + * NAME: + * PURPOSE: + * INPUT: + * OUTPUT: + * HISTORY: + + */ + + + + + + ''' + + return + + +class cltemplate(object): + + ''' + empty class template + + ''' + def __init__(self,data=None): + print('') + + def fnc(self): + + + return + + + +def ncombs(N,ncmb=2): + ''' + No. of unique combinations + ''' + print('N = '+str(N)) + print('unique combinations of '+str(ncmb)) + + num1 = float(np.math.factorial(N)) + num2 = float(np.math.factorial(N-ncmb)) + num3 = float(np.math.factorial(ncmb)) + + num1/(num2*num3) + return num1/(num2*num3) + + +def tpass(n=10,t=5): + ''' + dummy run + ''' + + for i in range(n): + print(i) + time.sleep(t) + +def dbug(): + + print('--------------------------') + print('testing..............') + + print('--------------------------') + + return + +def basic_pool_example(): + + + + + + exec(open("./packages.py").read()) + + desktop = dtools.getdirec('desktop') + + os.environ["NUMEXPR_MAX_THREADS"] = "5" + + + + import argparse + parser = argparse.ArgumentParser() + parser.add_argument('--ncpu',nargs='+') + parser.add_argument('--flen',nargs='+') + args = parser.parse_args() + ncpu= int(args.ncpu[0]) + flen= int(args.flen[0]) + + + timeit = dtools.stopwatch() + timeit.begin() + + + + stp1 = False + + + # notes: send this file to cluster - > desktop+'/xgbrc.ebf' + # notes: send this directory to cluster - > desktop+'/dummy/' + + + if stp1: + + ''' + creates files + ''' + fl = tabpy.read(desktop+'/xgbrc.ebf') + fl = dtools.mk_mini(fl,fac=0.06,key='source_id') + + os.system('rm -rf '+desktop+'/dummy') + os.system('mkdir '+desktop+'/dummy') + + for inum in range(flen): + print('running...'+str(inum)) + # fl = tabpy.read(desktop+'/dummy.fits') + + val1 = np.random.uniform(0.,100000,1) + val = val1**2. + fl['source_id'] + dtools.picklewrite(val,'test_'+str(inum),desktop+'/dummy') + + + def myfunc(i,floc): + + + fl = dtools.pickleread(floc+'/test_'+str(i)+'.pkl') + res = {} + + res['source_id'] = fl + res['value'] = (fl + fl) + np.sin(0.4) + + + + + return res + + + def stp2(ncpu): + + + ''' + uses pool + ''' + + + floc = desktop+'/dummy' + nfiles = dtools.fcount(floc,nlist=True) + indres = np.arange(nfiles) + from multiprocessing import Pool + + print('all fine') + + p=Pool(ncpu) + data_postdist = p.map(partial(myfunc,floc=floc), indres) + data_pd={} + for key in data_postdist[0].keys(): + data_pd[key]=np.concatenate([d[key] for d in data_postdist]).transpose() + + + p.close() + + dtools.fitswrite(data_pd,'rubbish',desktop) + + + + return + + + stp2(ncpu) + timeit.end() + + return + + + + + + + diff --git a/docs/notebooks/RedClumpGaiaAllWISE/rcdemo/packages_to_import.py b/docs/notebooks/RedClumpGaiaAllWISE/rcdemo/packages_to_import.py new file mode 100644 index 0000000..021dccc --- /dev/null +++ b/docs/notebooks/RedClumpGaiaAllWISE/rcdemo/packages_to_import.py @@ -0,0 +1,59 @@ +import os, sys, time, math +import importlib as imp +from time import sleep +import ebf +import numpy, numpy as np +import numpy.polynomial.polynomial as nppoly +import pickle +import scipy +from scipy import stats +from scipy import integrate +from scipy.stats import norm +from scipy.stats import poisson +from scipy.interpolate import interp1d +from scipy.optimize import curve_fit +from scipy.optimize import minimize +import scipy.interpolate +import scipy.spatial.qhull as qhull +import astropy, astropy.convolution +from astropy.table import Table, Column +from astropy.io import ascii +from astroquery.gaia import Gaia +import colorcet as cc +import natsort +from natsort import natsorted, ns +import itertools +from multiprocessing import Pool +from functools import partial +import asctab, ephem +import tabpy as tab, tabpy +import dtools +import sutil, sutil_sanj, putil, gutil ,autil +import matplotlib +import matplotlib.cm as cm +import matplotlib.pyplot as plt +from matplotlib.colors import LogNorm +import matplotlib as mpl +from matplotlib.colors import LinearSegmentedColormap +from mpl_toolkits.axes_grid1 import AxesGrid +from matplotlib.ticker import MaxNLocator +import matplotlib.collections +from matplotlib_venn import venn2 +from matplotlib.patches import Circle +# import cmasher as cmr +import pylab +import healpy, healpy as hp +from healpy.newvisufunc import projview, newprojplot +import pandas as pd +import h5py +import uncertainties.unumpy as unumpy +from configparser import ConfigParser + + +# import agama +# import vaex +matplotlib.use('Agg') # non interactive +# matplotlib.use('Qt5Agg') + +# bmcmc = dtools.get_bmcmc2() + diff --git a/docs/notebooks/RedClumpGaiaAllWISE/rcdemo/redclumptools.py b/docs/notebooks/RedClumpGaiaAllWISE/rcdemo/redclumptools.py new file mode 100644 index 0000000..302fd13 --- /dev/null +++ b/docs/notebooks/RedClumpGaiaAllWISE/rcdemo/redclumptools.py @@ -0,0 +1,666 @@ +''' +# one stop script for all red clump related tools +''' + +exec(open("./packages.py").read()) + +# imp.reload(dtools) + +timeit = dtools.stopwatch() +timeit.begin() + + +#............................. +#............................. + +zsolar=0.019 + + +#............................. +#............................. + + +def rc_distfunc(dist,sigabsmag,sigplx=0,dplx=100): + + ''' + estimate distance uncertainty in RC + + + returns the distance error from inverse parallax + ''' + + sig_d_rc = (np.log(10)*abs(sigabsmag))*dist*0.2 + + sig_d_plx = (sigplx*(dplx**2.)) + + + return sig_d_rc, sig_d_plx + +def rc_distfunc_interp(d,band='g'): + + ''' + temporary: interpolate distance uncertainty from d, based on the curve for w1 or g + returns: sig_drc(w1 or g) + + ''' + + root_ = '/iranet/users/pleia14//Documents/pdoc_work/science/edr3/rc/calrcdir' + duncprof = tabpy.read(root_+'/duncprof.ebf') + + + if band == 'g': + print('grabbing from g') + dgrid = duncprof['dg'] + sigdgrid = duncprof['sigdg'] + if band == 'w1': + print('grabbing from w1') + dgrid = duncprof['dw1'] + sigdgrid = duncprof['sigdw1'] + + from scipy import interpolate + f = interpolate.interp1d(dgrid,sigdgrid,bounds_error=False,fill_value=(sigdgrid[0],sigdgrid[-1])) + sigd = f(d) + + return sigd + +def jk0_from_teff_feh(teff,feh): + + ''' + gets intrinsic colour 2mass, from teff, feh using fits from khanna et al. 2018 + + ''' + + glxdir = dtools.getdirec('galaxia') + calib_file = 'k18rc_jk_teff_feh_coeff.pkl' + + + xs = np.array([feh,teff]) + + popt_pop = dtools.pickleread(glxdir+'/'+calib_file) + popt = np.array([popt_pop[1],popt_pop[2],popt_pop[3],popt_pop[4],popt_pop[5],popt_pop[6]]) + popt = popt.astype(float) + + clr = (func(xs,popt[0],popt[1],popt[2],popt[3],popt[4],popt[5])) + + return clr + + +def alambda_rc(j,ks,clr_jk0,flambda): + + ''' + get A_lambda for red clump like stars, using the RJCE method from Khanna et al. 2018 + ''' + + fj = dtools.redden_fac()['jmag'] + fk = dtools.redden_fac()['kmag'] + + alambda = flambda*((j-ks)-clr_jk0)/(fj-fk) + + return alambda + + +def mks_feh(feh_dt): + + ''' + return mks from feh + + ''' + + feh = np.linspace(-0.8,0.4,13) + mks = np.array([-1.39,-1.405,-1.442,-1.475,-1.520,-1.564,-1.598,-1.622,-1.633,-1.646,-1.659,-1.666,-1.676]) + + mk_dt=np.interp(feh_dt,feh,mks) + + return mk_dt + + + +def myselfunc_rc(mydata,zcuts=False,rem_rogue=False,tstcut=False,galaxia=False): + + print('') + + if 'clr' not in mydata.keys(): + + + mydata['Z'] = (10**(mydata['feh']))*zsolar + + met = mydata['feh'] + teff = mydata['teff'] + + mydata['clr'] = jk0_from_teff_feh(mydata['teff'],mydata['feh']) + + ############################################ + ## SELECT RED-CLUMPS + ############################################ + teff_ref = -(382.5*mydata['feh']) + 4607 + loggup = 0.0018*(mydata['teff'] - teff_ref) + 2.5 + zlower = 1.21*((mydata['clr'] -0.05)**9.0) + 0.0011 + zupper = 2.58*((mydata['clr'] -0.40)**3.0) + 0.0034 + + teffmax = 5383 + teffmin = 4227 + cond1 = (mydata['teff'] > teffmin)&(mydata['teff'] < teffmax) + #cond1 = (mydata['clr'] > 0.5)&(mydata['clr'] < 0.8) + cond2 = (mydata['logg']>= 1.8)&(mydata['logg']<= loggup) + cond3 = 1 + cond4 = 1#(mydata['absks']> -1000052) + cond5 = 1 + + if zcuts: + cond3 = (mydata['Z']<= 0.06)&(mydata['Z']>=zlower)&(mydata['Z']<=zupper) + + if rem_rogue: + print('removing rogue..') + cond4 = (mydata['absks']> -2.0) + + + if tstcut: + cond2 = (mydata['logg']>= 2.3)&(mydata['logg']<= loggup) + + if galaxia: + cond5 = (mydata['smass'])>mydata['mtip'] + + conds = cond1&cond2&cond3&cond4&cond5 + + + return conds,zlower,zupper,teff_ref,loggup + + +def myselfunc_rgb(mydata,loggkey='',teffkey=''): + + ''' + basic selection based on dr3 gaia paper + + ''' + + if loggkey == '': + loggkey = 'logg' + if teffkey == '': + teffkey = 'teff' + + cond1 = mydata[loggkey] < 3.5 + cond2 = (mydata[teffkey] > 3000)&(mydata[teffkey] < 5500) + conds = cond1&cond2 + + + + return conds + + + +############################################ +## CALIBRATION FUNCTIONS (f(Fe/H, (J-K)_0)) +############################################ +def func(xs,a0,a1,a2,a3,a4,a5,prnt=False): + # Z = (j-k)_0, xs = [feh,Teff] + Z_key = 'jk0'; X_key = '[FeH]'; Y_key = '(5040/Teff)' + X = xs[0] + Y = 5040.0/xs[1] + Z = a0 + a1*X + a2*(X**2.0) + a3*X*Y + a4*Y + a5*(Y**2.0) + if prnt: + a0 = np.round(a0,3);a1 = np.round(a1,3);a2 = np.round(a2,3);a3 = np.round(a3,3);a4 = np.round(a4,3);a5 = np.round(a5,3) + print(Z_key+' = '+str(a0)+'+ '+str(a1)+X_key+'+ '+str(a2)+'('+X_key+'^2)'+'+ '+str(a3)+X_key+Y_key+' + '+str(a4)+Y_key+'+ '+str(a5)+'('+Y_key+'^2)') + return Z +def transpose_table(tab_before, id_col_name='ID'): + colnms = np.linspace(0,len(tab_before)-1,len(tab_before)) + colnms = colnms.astype('string') + new_colnames=tuple(colnms) + + new_rownames=tab_before.colnames[:] + tab_after=Table(names=new_colnames) + for r in new_rownames: + tab_after.add_row(tab_before[r]) + if id_col_name != '': + tab_after.add_column(Column(new_rownames, name=id_col_name),index=0) + return(tab_after) +def sv_res(pop,popt,sz): + ############################################ + ## WRITE RESULTS + ############################################ + pltdir = caldir + calib_file = 'calib_res_direct.ebf' + print(popt) + + if os.path.isfile(pltdir+'/'+calib_file): + print('updating '+calib_file) + results = ebf.read(pltdir+'/'+'calib_res_direct.ebf') + else: + print('Creating '+calib_file) + results = {} + + # ex:- [dwarfs,a0,a1,a2.....] + popt_pop = list(popt); popt_pop.insert(0,pop); popt_pop = np.array(popt_pop) + results[pop] = popt_pop + ebf.write(pltdir+'/'+calib_file,'/',results,'w') + + #mk Table + tab = Table(results) + tab.write(pltdir+'/'+calib_file+'table',format='latex') + return + + +############################################ +## SELECT POPULATION (DWARFS/GIANTS/CLUMPS) +############################################ +def sel_pop(mydata,pop): + + print('Total '+str(mydata['teff'].size)+' stars') + + ########################################## + ## REMOVE M-DWARFS (4200 < Teff < 8000 K) + ########################################## + ind = np.where((mydata['teff'] > 4200.0)&(mydata['teff'] < 8000.0))[0] + print('REMOVING M-DWARFS -> select 4200 < Teff < 8000 K') + mydata = sutil.filter_dict(mydata,ind) + print('Total '+str(mydata['teff'].size)+' stars selected') + + ############################################# + ## Choose population (dwarfs/giants/clumps) + ############################################# + + if pop == 'dwarfs': + ind = np.where((mydata['logg'] >= 3.8)&(mydata['smass']= 1.8)&(mydata['logg'] <= 3.0)&(mydata['smass']>mydata['mtip'])&(mydata['absks']>-2.0))[0] +# ind = np.where((mydata['logg'] <= 3.0)&(mydata['smass']>mydata['mtip']))[0] + + if pop == 'giants_comb': + ind = np.where((mydata['logg'] <= 3.8))[0] + + mydata = sutil.filter_dict(mydata,ind) + print('selected '+str(mydata['teff'].size)+' '+pop+' stars') + + + return mydata + +def rd_it(zsolar=0.019,iso='tmasswise',errors=False): + loc = datadir + if errors: + mydata = ebf.read(loc+'/minifile_errors.ebf') + else: + mydata = ebf.read(loc+'/minifile.ebf') + + mydata['teff'] = 10**mydata['teff'] + mydata['logg'] = mydata['grav'] + mydata['Z'] = (10**(mydata['feh']))*zsolar + print('using '+iso+' photometry') + mydata['absj'],mydata['absks'] = mydata[iso+'_j1'],mydata[iso+'_ks1'] + mydata['ajk0'] = mydata['absj'] - mydata['absks'] + + + #print('') + #print('Adding mtip_new') + #mydata['log_age'] = mydata['age'] + #loc = HOME+'/GalaxiaWork' + #d = ebf.read(loc+'/feh_age_mtip.ebf','/') + #sgrid=sutil.InterpGrid(tabpy.npstruct(d),['feh','log_age']) + #mydata['mtip_new'] = sgrid.get_values('mtip',[mydata['feh'],mydata['log_age']],fill_value='nearest',method='nearest') + mydata['mtip_new'] = mydata['mtip'] + + return mydata + + +class plt_rc_sel(object): + + def __init__(self,mydata,zsolar=0.019,iso='tmasswise',use_res='y'): + self.pop = 'clumps' + self.mydata = mydata + self.zsolar = zsolar + self.iso = iso + self.use_res = use_res + + self.loc = datadir + + self.calib_file = 'calib_res_direct.ebf' + # self.caldir = caldir +# self.caldir = '/home/shourya/Documents/phd_work/GalaxiaWork/calibrations/now_direct' + + def read_results(self): + + + mydata = self.mydata + # pop = self.pop + # print('reading results for '+self.pop) + # xs = np.array([mydata['feh'],mydata['teff']]) + # results = ebf.read(self.caldir+'/'+self.calib_file) + # print(results) + # popt_pop = results[pop] + # popt = np.array([popt_pop[1],popt_pop[2],popt_pop[3],popt_pop[4],popt_pop[5],popt_pop[6]]) + # popt = popt.astype(np.float) + # self.popt= popt + + glxdir = dtools.getdirec('galaxia') + calib_file = 'k18rc_jk_teff_feh_coeff.pkl' + + + # popt_pop = ebf.read(HOME+'/GalaxiaWork/calibrations/now_direct/calib_res_direct.ebf')['clumps'] + popt_pop = dtools.pickleread(glxdir+'/'+calib_file) + popt = np.array([popt_pop[1],popt_pop[2],popt_pop[3],popt_pop[4],popt_pop[5],popt_pop[6]]) + self.popt = popt.astype(np.float) + + def sel_clumps(self,mydata,zcuts,use_true=False,simple_sel=False,rem_rogue=False,tstcut=False,mtip_to_use='mtip_new'): + + popt = self.popt + met = mydata['feh'] + teff = mydata['teff'] + xs = np.array([met,teff]) + + + + if use_true: + print('') + print('USING TRUE COLORS') + mydata['clr'] = mydata['tmasswise_j1']-mydata['tmasswise_ks1'] + + else: + print('') + print('USING DERIVED COLORS') + mydata['clr'] = (func(xs,popt[0],popt[1],popt[2],popt[3],popt[4],popt[5])) + + + print('') + print('Using '+mtip_to_use) + print('') + ratio = mydata['smass']/mydata[mtip_to_use] + + conds,zlower,zupper,teff_ref,loggup = myselfunc_rc(mydata,zcuts=zcuts,rem_rogue=False,tstcut=False) + + ind = np.where(conds)[0] + + if simple_sel: + print('') + print('USING SIMPLE CUTS') + ind = np.where((ratio > 1.0)&(mydata['logg']>= 1.8)&(mydata['logg']<= 3.0)&(mydata['teff'] > teffmin)&(mydata['teff'] < teffmax)&cond3&cond4)[0] + + #------------------------------------- + #ind = np.where((ratio > 1.0)&cond3&cond4)[0] + #ind = np.where((ratio > 1.0)&(mydata['logg']>= 1.8)&(mydata['logg']<= 3.5)&cond3&cond4)[0] + #ind = np.where((ratio > 1.0)&(mydata['logg']>= 1.8)&(mydata['logg']<= 3.5)&(mydata['teff'] > teffmin)&(mydata['teff'] < teffmax)&cond3&cond4)[0] + #ind = np.where((ratio > 1.0)&(mydata['logg']>= 1.8)&(mydata['logg']<= 3.5)&(mydata['teff'] > teffmin)&(mydata['teff'] < teffmax)&cond3&cond4)[0] + #ind = np.where((ratio > 1.0)&(mydata['logg']>= 2.6)&(mydata['logg']<= 3.0)&(mydata['teff'] > teffmin)&(mydata['teff'] < 5000)&cond3&cond4)[0] + + mydata['zlower'],mydata['zupper'] = zlower,zupper + mydata['teff_ref'], mydata['loggup'] = teff_ref, loggup + mydata = dtools.filter_dict(mydata,ind) + + print('') + print('Teff stats') + print(autil.stat(mydata['teff'])) + return mydata + def interpolate(self): + ''' + [FeH] vs. Mks + ''' + mydata = self.mydata + iso = self.iso + loc = self.loc + + if self.mk_interp=='y': + print('saving interp file') + + dtools.profile(mydata['feh'],mydata['absks'],range=[-1.,1.5],bins=100,label='',mincount=5,func=np.median,lw=4,return_profile=True) + mydata = sutil.runavg_x_y(mydata,'feh','absks',100) + absks_feh_intp = {'absks_intp':mydata['absks_intp'], 'feh_intp':mydata['feh']} + ebf.write(loc+'/absks_feh_intp_'+iso+'_direct.ebf','/',absks_feh_intp,'w') + + + + return + + def plt_purity(self): + ratio = self.ratio + above_per = self.above_per + err = self.err + + plt.hist(ratio,bins=100,histtype='step',normed=True,label=str(above_per)+' % ('+err+')') + plt.xlim([0.99,1.02]) + plt.ylim([0,260]) + plt.axvline(1.0,linestyle='--',color='black') +# sutil.pltLabels(r'$\frac{Mass}{Mass_{\mathrm{Tip}}}$','Density') + sutil.pltLabels('Mass/ Tipping Mass','Density') + + return + + def plt_feh_mks(self,plm,lbl=True,cb=False): + + mydata = self.mydata + feh_pnts = self.feh_pnts + model_absks_intp = self.model_absks_intp + + + h = sutil.hist_nd([mydata['feh'],mydata['absks']],bins=100); + + im1 = h.imshow(cmapname='Greys',norm=matplotlib.colors.LogNorm(),smooth=False) + plt.plot(mydata['feh'],mydata['absks_intp'],'r.',markersize=0.1) + + plt.xlim([-0.74,0.4]) + plt.ylim([-2.0,-1.0]) + + #ax=plm.axes + #im1 = h.imshow(cmapname='Greys',norm=matplotlib.colors.LogNorm(),ax=ax,smooth=False) + #ax.plot(feh_pnts,model_absks_intp,'red') + #ax.set_xlabel('[Fe/H]') + #ax.set_xlim([-0.74,0.4]) + #ax.set_ylim([-2.0,-1.0]) + + if lbl: + #ax.set_ylabel('M$_{\mathrm{Ks}}$') + plt.ylabel('M$_k$') + plt.xlabel('[Fe/H]') + if cb: + plt.colorbar(pad=0.0,label='Density') + + + +## plt.text(0.05,0.8,err,color='black',fontweight='bold',transform=plt.gca().transAxes) + + ##err = self.err + ##plt.title(err,color='black',fontweight='bold') + #plt.xlim([h.locations[0][0],h.locations[0][-1]]) + + + + + return im1 + + def plt_clr_Z(self,plm,lbl=True,cb=True,typ=''): + mydata = self.mydata + zlower_mod = self.zlower_mod + zupper_mod = self.zupper_mod + clrs = self.clrs + plm.next() + xrng = [0.5,0.8] + yrng = [0.,0.04] + deltax = 0.0027 + deltay = 0.0005 + + xbins = int((xrng[1] - xrng[0])/deltax) + ybins = int((yrng[1] - yrng[0])/deltay) + + print('') + print('Xbins, Ybins:') + print(xbins, ybins) + print('') + + h = sutil.hist_nd([mydata['clr'],mydata['Z']],bins=[xbins,ybins],normed=True,range=[xrng,yrng]) + tmp = h.apply(mydata['absks'],np.median) + ax1 = plm.ax + if typ =='dens': + tmp = h.apply(mydata['absks'],len) + ind=np.where(h.data<1.)[0] + tmp[ind] = np.nan + im = h.imshow(tmp,cmapname='inferno',smooth=False,norm=matplotlib.colors.LogNorm(),ax=ax1) + + else: + + ind=np.where(h.data<1.)[0] + tmp[ind] = np.nan + levels= (-1.8,-1.75,-1.7,-1.65,-1.6,-1.55,-1.5) + + print('....checking here...') + + print(tmp) + print('......') + im = h.imshow(tmp,cmapname='jet',vmin=-1.8,vmax=-1.5,smooth=False,ax=ax1)#,norm=matplotlib.colors.LogNorm()) +# h.contourf(tmp,cmapname='jet',vmin=-1.8,vmax=-1.5,smooth=True,levels=levels) #norm=matplotlib.colors.LogNorm() +# h.imshow(tmp,cmapname='jet') #norm=matplotlib.colors.LogNorm() + + + if lbl: + plt.ylabel('$Z$') + + if cb: + plt.colorbar(pad=0.0) +# plt.colorbar(pad=0.0,use_gridspec=False,location='top') +# plt.colorbar(use_gridspec=False,location='top') + +# plt.plot(mydata['clr'],mydata['zlower'],'k.') +# plt.plot(mydata['clr'],mydata['zupper'],'k.') + + lw=2.5 + CLR = 'cyan' + ax = plm.ax + ax.plot(clrs,zlower_mod,COLOR=CLR,linestyle='--',linewidth=lw) + ax.plot(clrs,zupper_mod,color=CLR,linestyle='--',linewidth=lw) + + ax.set_ylim([h.locations[1][0],h.locations[1][-1]]) + ax.set_xlim([h.locations[0][0],h.locations[0][-1]]) + + ax.set_ylim([0.002,0.03]) + ax.set_xlim([0.52,0.75]) + ax.set_xlabel('$(J - K)_{0}$') + ax.set_ylabel('$Z$') + return im + + def plt_mks_diff(self,lbl=True,clr='red'): + mydata = self.mydata + + + mn_del_Mk = np.round(np.median(mydata['absks']-mydata['absks_intp']),2) + sig_del_Mk = 0.5*(np.percentile(mydata['absks']-mydata['absks_intp'],84)-np.percentile(mydata['absks']-mydata['absks_intp'],16)) + sig_del_Mk = np.round(sig_del_Mk,2) + plt.hist(mydata['absks']-mydata['absks_intp'],bins=100,histtype='step',normed=True,label='<$ \Delta M_{\mathrm{k}}$>='+str(mn_del_Mk)+'$\pm$'+str(sig_del_Mk),color=clr) + + plt.axvline(0,ymax=0.85,color='black',linestyle='--') + + plt.xlim([-0.5,1.0]) + + if lbl: + plt.ylabel('Density') + + + plt.xlabel('M$_{\mathrm{k}}$ - M$_{\mathrm{k}}$(pred) ') + + + + plt.ylim([0,6.5]) + +# plt.savefig(os.path.join(pltdir,"{}.png".format('clumps_sel'))) + return mn_del_Mk,sig_del_Mk + + def get_dist(self,dist_method='dmod',Mk=-1.65): + + + data = self.mydata + + print('method = '+dist_method) + if dist_method == 'dmod': + dmod = autil.dist2dmod(data['rad']) + + elif dist_method == 'rc': + # read Mk-[Fe/H] curve + print('reading Mks_[Fe/H] interp file') + loc = self.loc + nam_intp_file = 'absks_feh_intp_tmasswise_direct' + absks_feh_intp = ebf.read(loc+'/'+nam_intp_file+'.ebf') + f = interp1d(absks_feh_intp['feh_intp'],absks_feh_intp['absks_intp']) + + ind = np.where((data['feh'] > min(absks_feh_intp['feh_intp']))&(data['feh'] < max(absks_feh_intp['feh_intp'])))[0] + data = sutil.filter_dict(data,ind) + data['absks_intp'] = f(data['feh']) + Mk = data['absks_intp'] + + # extinction correction + ''' f(i) = A(i)/E(B-V); use GALAXIA tables --> UKIRT J & K ''' + fj = 0.902 + fk = 0.367 + data['Ak'] = (fk/(fj-fk))*(data['tmasswise_j']-data['tmasswise_ks'] - data['clr']); print('using new Ak correction') + dmod = data['tmasswise_ks']- Mk - data['Ak'] + + + data['d'] = (10.0*(np.power(10,((dmod)/5.0))))/1000 # in kpc + data['dmod_used'] = autil.distmod(data['d']) + + self.mydata = data + return + + + def run(self,lbl=True,errors='n',mk_interp='n',zcuts=True,use_true=False,simple_sel=False,rem_rogue=False,tstcut=False,mtip_to_use='mtip_new'): + + self.mk_interp = mk_interp + loc = self.loc + iso = self.iso + + self.read_results() + popt = self.popt + + + if errors =='n': + self.err= '' + elif errors == 'y': + self.err='+Spectroscopic errors' + self.err = self.err.upper() + + + self.mydata = self.sel_clumps(self.mydata,zcuts=zcuts,use_true=use_true,simple_sel=simple_sel,rem_rogue=rem_rogue,tstcut=tstcut,mtip_to_use=mtip_to_use) + mydata = self.mydata + print(str(mydata['px'].size)+' clumps selected') + + + + ratio = mydata['smass']/mydata[mtip_to_use] + above = (np.where(ratio > 1.0)[0]) + below = (np.where(ratio < 1.0)[0]) + above_per = (float(len(above))/mydata['smass'].size)*100.0; above_per = np.round(above_per,1) + print(str(above_per)+' % purity ') + print(str(len(above))+' No. of pure ') + self.ratio = ratio + self.above_per = above_per + are_above = mydata['fid'][above] + self.mydatarc = mydata + + #---------- + xs = np.array([mydata['feh'],mydata['teff']]) + mydata['clr']= (func(xs,popt[0],popt[1],popt[2],popt[3],popt[4],popt[5],prnt=True)) + mn= min(mydata['clr']) + mx = max(mydata['clr']) + self.clrs = np.linspace(mn,mx,mydata['clr'].size) + + self.zlower_mod = 1.21*((self.clrs -0.05)**9.0) + 0.0011 + self.zupper_mod = 2.58*((self.clrs -0.40)**3.0) + 0.0034 + + self.interpolate() + # print('reading interp file') + # absks_feh_intp = ebf.read(loc+'/absks_feh_intp_'+iso+'_direct.ebf') + # f = interp1d(absks_feh_intp['feh_intp'],absks_feh_intp['absks_intp']) + + + # ind = np.where((mydata['feh'] > min(absks_feh_intp['feh_intp']))&(mydata['feh'] < max(absks_feh_intp['feh_intp'])))[0] + # mydata = sutil.filter_dict(mydata,ind) + # mydata['absks_intp'] = f(mydata['feh']) + # self.mydata = mydata + + # feh_mn = min(mydata['feh']) + # feh_mx = max(mydata['feh']) + # self.feh_pnts = np.linspace(feh_mn,feh_mx,100) + # self.model_absks_intp = f(self.feh_pnts) + + #----------------------------- + + + + return are_above + +