forked from SCLBD/BackdoorBench
-
Notifications
You must be signed in to change notification settings - Fork 0
/
blended_attack.py
338 lines (279 loc) · 12.2 KB
/
blended_attack.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
'''
this script is for blended attack
basic structure:
1. config args, save_path, fix random seed
2. set the clean train data and clean test data
3. set the attack img transform and label transform
4. set the backdoor attack data and backdoor test data
5. set the device, model, criterion, optimizer, training schedule.
6. attack or use the model to do finetune with 5% clean data
7. save the attack result for defense
'''
import sys, yaml, os
os.chdir(sys.path[0])
sys.path.append('../')
os.getcwd()
import argparse
from pprint import pformat
import numpy as np
import torch
import time
import logging
from utils.aggregate_block.save_path_generate import generate_save_folder
from utils.aggregate_block.dataset_and_transform_generate import get_num_classes, get_input_shape
from utils.aggregate_block.fix_random import fix_random
from utils.aggregate_block.dataset_and_transform_generate import dataset_and_transform_generate
from utils.bd_dataset import prepro_cls_DatasetBD
from utils.backdoor_generate_pindex import generate_pidx_from_label_transform
from utils.aggregate_block.bd_attack_generate import bd_attack_img_trans_generate, bd_attack_label_trans_generate
from copy import deepcopy
from utils.aggregate_block.model_trainer_generate import generate_cls_model, generate_cls_trainer
from utils.aggregate_block.train_settings_generate import argparser_opt_scheduler, argparser_criterion
from utils.save_load_attack import save_attack_result
from utils.log_assist import get_git_info
def add_args(parser):
"""
parser : argparse.ArgumentParser
return a parser added with args required by fit
"""
# Training settings
# parser.add_argument('--mode', type=str,
# help='classification/detection/segmentation')
parser.add_argument('--amp', type=lambda x: str(x) in ['True', 'true', '1'])
parser.add_argument('--device', type = str)
parser.add_argument('--attack', type = str, )
parser.add_argument('--yaml_path', type=str, default='../config/attack/blended/default.yaml',
help='path for yaml file provide additional default attributes')
parser.add_argument('--lr_scheduler', type=str,
help='which lr_scheduler use for optimizer')
# only all2one can be use for clean-label
parser.add_argument('--attack_label_trans', type=str,
help='which type of label modification in backdoor attack'
)
parser.add_argument('--pratio', type=float,
help='the poison rate '
)
parser.add_argument('--epochs', type=int)
parser.add_argument('--dataset', type=str,
help='which dataset to use'
)
parser.add_argument('--dataset_path', type=str)
parser.add_argument('--attack_target', type=int,
help='target class in all2one attack')
parser.add_argument('--batch_size', type=int)
parser.add_argument('--lr', type=float)
parser.add_argument('--steplr_stepsize', type=int)
parser.add_argument('--steplr_gamma', type=float)
parser.add_argument('--sgd_momentum', type=float)
parser.add_argument('--wd', type=float, help='weight decay of sgd')
parser.add_argument('--steplr_milestones', type=list)
parser.add_argument('--client_optimizer', type=int)
parser.add_argument('--random_seed', type=int,
help='random_seed')
parser.add_argument('--frequency_save', type=int,
help=' frequency_save, 0 is never')
parser.add_argument('--model', type=str,
help='choose which kind of model')
parser.add_argument('--save_folder_name', type=str,
help='(Optional) should be time str + given unique identification str')
parser.add_argument('--git_hash', type=str,
help='git hash number, in order to find which version of code is used')
return parser
def main():
### 1. config args, save_path, fix random seed
parser = (add_args(argparse.ArgumentParser(description=sys.argv[0])))
args = parser.parse_args()
with open(args.yaml_path, 'r') as f:
defaults = yaml.safe_load(f)
defaults.update({k:v for k,v in args.__dict__.items() if v is not None})
args.__dict__ = defaults
args.terminal_info = sys.argv
args.num_classes = get_num_classes(args.dataset)
args.input_height, args.input_width, args.input_channel = get_input_shape(args.dataset)
args.img_size = (args.input_height, args.input_width, args.input_channel)
args.dataset_path = f"{args.dataset_path}/{args.dataset}"
### save path
if 'save_folder_name' not in args:
save_path = generate_save_folder(
run_info=('afterwards' if 'load_path' in args.__dict__ else 'attack') + '_' + args.attack,
given_load_file_path=args.load_path if 'load_path' in args else None,
all_record_folder_path='../record',
)
else:
save_path = '../record/' + args.save_folder_name
os.mkdir(save_path)
args.save_path = save_path
torch.save(args.__dict__, save_path + '/info.pickle')
### set the logger
logFormatter = logging.Formatter(
fmt='%(asctime)s [%(levelname)-8s] [%(filename)s:%(lineno)d] %(message)s',
datefmt='%Y-%m-%d:%H:%M:%S',
)
logger = logging.getLogger()
fileHandler = logging.FileHandler(save_path + '/' + time.strftime("%Y_%m_%d_%H_%M_%S", time.localtime()) + '.log')
fileHandler.setFormatter(logFormatter)
logger.addHandler(fileHandler)
consoleHandler = logging.StreamHandler()
consoleHandler.setFormatter(logFormatter)
logger.addHandler(consoleHandler)
logger.setLevel(logging.INFO)
logging.info(pformat(args.__dict__))
try:
logging.info(pformat(get_git_info()))
except:
logging.info('Getting git info fails.')
### set the random seed
fix_random(int(args.random_seed))
### 2. set the clean train data and clean test data
train_dataset_without_transform, \
train_img_transform, \
train_label_transfrom, \
test_dataset_without_transform, \
test_img_transform, \
test_label_transform = dataset_and_transform_generate(args)
benign_train_ds = prepro_cls_DatasetBD(
full_dataset_without_transform=train_dataset_without_transform,
poison_idx=np.zeros(len(train_dataset_without_transform)), # one-hot to determine which image may take bd_transform
bd_image_pre_transform=None,
bd_label_pre_transform=None,
ori_image_transform_in_loading=train_img_transform,
ori_label_transform_in_loading=train_label_transfrom,
add_details_in_preprocess=True,
)
benign_test_ds = prepro_cls_DatasetBD(
test_dataset_without_transform,
poison_idx=np.zeros(len(test_dataset_without_transform)), # one-hot to determine which image may take bd_transform
bd_image_pre_transform=None,
bd_label_pre_transform=None,
ori_image_transform_in_loading=test_img_transform,
ori_label_transform_in_loading=test_label_transform,
add_details_in_preprocess=True,
)
### 3. set the attack img transform and label transform
train_bd_img_transform, test_bd_img_transform = bd_attack_img_trans_generate(args)
### get the backdoor transform on label
bd_label_transform = bd_attack_label_trans_generate(args)
### 4. set the backdoor attack data and backdoor test data
train_pidx = generate_pidx_from_label_transform(
benign_train_ds.targets,
label_transform=bd_label_transform,
train=True,
pratio= args.pratio if 'pratio' in args.__dict__ else None,
p_num= args.p_num if 'p_num' in args.__dict__ else None,
)
torch.save(train_pidx,
args.save_path + '/train_pidex_list.pickle',
)
### generate train dataset for backdoor attack
adv_train_ds = prepro_cls_DatasetBD(
deepcopy(train_dataset_without_transform),
poison_idx= train_pidx,
bd_image_pre_transform=train_bd_img_transform,
bd_label_pre_transform=bd_label_transform,
ori_image_transform_in_loading=train_img_transform,
ori_label_transform_in_loading=train_label_transfrom,
add_details_in_preprocess=True,
)
### decide which img to poison in ASR Test
test_pidx = generate_pidx_from_label_transform(
benign_test_ds.targets,
label_transform=bd_label_transform,
train=False,
)
### generate test dataset for ASR
adv_test_dataset = prepro_cls_DatasetBD(
deepcopy(test_dataset_without_transform),
poison_idx=test_pidx,
bd_image_pre_transform=test_bd_img_transform,
bd_label_pre_transform=bd_label_transform,
ori_image_transform_in_loading=test_img_transform,
ori_label_transform_in_loading=test_label_transform,
add_details_in_preprocess=True,
)
# delete the samples that do not used for ASR test (those non-poisoned samples)
adv_test_dataset.subset(
np.where(test_pidx == 1)[0]
)
### 5. set the device, model, criterion, optimizer, training schedule.
device = torch.device(args.device if torch.cuda.is_available() else "cpu")
net = generate_cls_model(
model_name=args.model,
num_classes=args.num_classes,
image_size=args.img_size[0],
)
if torch.cuda.device_count() > 1 and args.device == 'cuda':
logging.info("device='cuda', default use all device")
net = torch.nn.DataParallel(net)
trainer = generate_cls_trainer(
net,
args.attack,
args.amp,
)
criterion = argparser_criterion(args)
optimizer, scheduler = argparser_opt_scheduler(net, args)
### 6. attack or use the model to do finetune with 5% clean data
if 'load_path' not in args.__dict__:
trainer.train_with_test_each_epoch_v2_sp(
batch_size=args.batch_size,
train_dataset = adv_train_ds,
test_dataset_dict={
"test_data" :benign_test_ds,
"adv_test_data" :adv_test_dataset,
},
end_epoch_num = args.epochs,
criterion = criterion,
optimizer = optimizer,
scheduler = scheduler,
device = device,
frequency_save = args.frequency_save,
save_folder_path = save_path,
save_prefix = 'attack',
continue_training_path = None,
)
else:
if 'recover' not in args.__dict__ or args.recover == False :
print('finetune so use less data, 5% of benign train data')
benign_train_ds.subset(
np.random.choice(
np.arange(
len(benign_train_ds)),
size=round((len(benign_train_ds)) / 20), # 0.05
replace=False,
)
)
torch.save(
list(benign_train_ds.original_index),
args.save_path + '/finetune_idx_list.pt',
)
trainer.train_with_test_each_epoch_v2_sp(
batch_size=args.batch_size,
train_dataset=benign_train_ds,
test_dataset_dict={
"test_data": benign_test_ds,
"adv_test_data": adv_test_dataset,
},
end_epoch_num=args.epochs,
criterion=criterion,
optimizer=optimizer,
scheduler=scheduler,
device=device,
frequency_save=args.frequency_save,
save_folder_path=save_path,
save_prefix='finetune',
continue_training_path=args.load_path,
only_load_model=True,
)
### 7. save model, data, and other information that defense process may need
save_attack_result(
model_name = args.model,
num_classes = args.num_classes,
model = trainer.model.cpu().state_dict(),
data_path = args.dataset_path,
img_size = args.img_size,
clean_data = args.dataset,
bd_train = adv_train_ds,
bd_test = adv_test_dataset,
save_path = save_path,
)
if __name__ == '__main__':
main()