forked from google-deepmind/kinetics-i3d
-
Notifications
You must be signed in to change notification settings - Fork 0
/
i3d_test.py
92 lines (76 loc) · 3.49 KB
/
i3d_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
# Copyright 2017 Google Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Tests for I3D model code."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import tensorflow as tf
import i3d
_IMAGE_SIZE = 224
_NUM_CLASSES = 400
class I3dTest(tf.test.TestCase):
"""Test of Inception I3D model, without real data."""
def testModelShapesWithSqueeze(self):
"""Test shapes after running some fake data through the model."""
i3d_model = i3d.InceptionI3d(
num_classes=_NUM_CLASSES, final_endpoint='Predictions')
inp = tf.placeholder(tf.float32, [None, 64, _IMAGE_SIZE, _IMAGE_SIZE, 3])
predictions, end_points = i3d_model(
inp, is_training=True, dropout_keep_prob=0.5)
init_op = tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(init_op)
sample_input = np.zeros((5, 64, _IMAGE_SIZE, _IMAGE_SIZE, 3))
out_predictions, out_logits = sess.run(
[predictions, end_points['Logits']], {inp: sample_input})
self.assertEqual(out_predictions.shape, (5, _NUM_CLASSES))
self.assertEqual(out_logits.shape, (5, _NUM_CLASSES))
def testModelShapesWithoutSqueeze(self):
"""Test that turning off `spatial_squeeze` changes the output shape.
Also try setting different values for `dropout_keep_prob` and snt.BatchNorm
`is_training`.
"""
i3d_model = i3d.InceptionI3d(
num_classes=_NUM_CLASSES, spatial_squeeze=False,
final_endpoint='Predictions')
inp = tf.placeholder(tf.float32, [None, 64, _IMAGE_SIZE, _IMAGE_SIZE, 3])
predictions, end_points = i3d_model(
inp, is_training=False, dropout_keep_prob=1.0)
init_op = tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(init_op)
sample_input = np.zeros((5, 64, _IMAGE_SIZE, _IMAGE_SIZE, 3))
out_predictions, out_logits = sess.run(
[predictions, end_points['Logits']], {inp: sample_input})
self.assertEqual(out_predictions.shape, (5, 1, 1, _NUM_CLASSES))
self.assertEqual(out_logits.shape, (5, 1, 1, _NUM_CLASSES))
def testInitErrors(self):
# Invalid `final_endpoint` string.
with self.assertRaises(ValueError):
_ = i3d.InceptionI3d(
num_classes=_NUM_CLASSES, final_endpoint='Conv3d_1a_8x8')
# Dropout keep probability must be in (0, 1].
i3d_model = i3d.InceptionI3d(num_classes=_NUM_CLASSES)
inp = tf.placeholder(tf.float32, [None, 64, _IMAGE_SIZE, _IMAGE_SIZE, 3])
with self.assertRaises(ValueError):
_, _ = i3d_model(inp, is_training=False, dropout_keep_prob=0)
# Height and width dimensions of the input should be _IMAGE_SIZE.
i3d_model = i3d.InceptionI3d(num_classes=_NUM_CLASSES)
inp = tf.placeholder(tf.float32, [None, 64, 10, 10, 3])
with self.assertRaises(ValueError):
_, _ = i3d_model(inp, is_training=False, dropout_keep_prob=0.5)
if __name__ == '__main__':
tf.test.main()