forked from AnyLoc/AnyLoc
-
Notifications
You must be signed in to change notification settings - Fork 0
/
dino_v2_gem.py
384 lines (352 loc) · 14 KB
/
dino_v2_gem.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
# Doing GeM pooling with Dino V2 descriptors
"""
Basic idea is to explore the layers and facets of Dino-v2 and do
GeM pooling over them to get global descriptors.
There is no caching for GeM pooling. It is done on-the-fly.
"""
# %%
import os
import sys
from pathlib import Path
# Set the './../' from the script folder
dir_name = None
try:
dir_name = os.path.dirname(os.path.realpath(__file__))
except NameError:
print('WARN: __file__ not found, trying local')
dir_name = os.path.abspath('')
lib_path = os.path.realpath(f'{Path(dir_name).parent}')
# Add to path
if lib_path not in sys.path:
print(f'Adding library path: {lib_path} to PYTHONPATH')
sys.path.append(lib_path)
else:
print(f'Library path {lib_path} already in PYTHONPATH')
# %%
import torch
from torch.nn import functional as F
from torchvision import transforms as T
from PIL import Image
import numpy as np
import tyro
from dataclasses import dataclass, field
from utilities import VLAD, get_top_k_recall, seed_everything
import einops as ein
import wandb
import matplotlib.pyplot as plt
import time
import joblib
import traceback
from tqdm.auto import tqdm
from dvgl_benchmark.datasets_ws import BaseDataset
from configs import ProgArgs, prog_args, BaseDatasetArgs, \
base_dataset_args, device
from typing import Union, Literal, Tuple, List
from utilities import DinoV2ExtractFeatures
from custom_datasets.baidu_dataloader import Baidu_Dataset
from custom_datasets.oxford_dataloader import Oxford
from custom_datasets.gardens import Gardens
from custom_datasets.aerial_dataloader import Aerial
from custom_datasets.hawkins_dataloader import Hawkins
from custom_datasets.vpair_dataloader import VPAir
from custom_datasets.vpair_distractor_dataloader import VPAir_Distractor
from custom_datasets.laurel_dataloader import Laurel
from custom_datasets.eiffel_dataloader import Eiffel
# %%
@dataclass
class LocalArgs:
# Program arguments (dataset directories and wandb)
prog: ProgArgs = ProgArgs(wandb_proj="Dino-v2-Descs",
wandb_group="GeM-Descs")
# BaseDataset arguments
bd_args: BaseDatasetArgs = base_dataset_args
# Experiment identifier (None = don't use)
exp_id: Union[str, None] = None
# Dino parameters
# Model type
model_type: Literal["dinov2_vits14", "dinov2_vitb14",
"dinov2_vitl14", "dinov2_vitg14"] = "dinov2_vitg14"
"""
Model for Dino-v2 to use as the base model.
"""
# Layer for extracting Dino feature (descriptors)
desc_layer: int = 31
# Facet for extracting descriptors
desc_facet: Literal["query", "key", "value", "token"] = "token"
# Dataset split for VPR (BaseDataset)
data_split: Literal["train", "test", "val"] = "test"
# Sub-sample query images (RAM or VRAM constraints) (1 = off)
sub_sample_qu: int = 1
# Sub-sample database images (RAM or VRAM constraints) (1 = off)
sub_sample_db: int = 1
# GeM Pooling Parameter
gem_p: float = 3
# Values for top-k (for monitoring)
top_k_vals: List[int] = field(default_factory=lambda:\
list(range(1, 21, 1)))
# Show a matplotlib plot for recalls
show_plot: bool = False
# Configure the behavior of GeM
gem_use_abs: bool = False
"""
If True, the `abs` is applied to the patch descriptors (all
values are strictly positive). Otherwise, a gimmick involving
complex numbers is used. If False, the `gem_p` should be an
integer (fractional will give complex numbers when applied to
negative numbers as power).
"""
# Do GeM element-by-element (only if gem_use_abs = False)
gem_elem_by_elem: bool = False
"""
Do the GeM element-by-element (only if `gem_use_abs` = False).
This can be done to prevent the RAM use from exploding for
large datasets.
"""
# %%
# ---------------- Functions ----------------
@torch.no_grad()
def build_gems(largs: LocalArgs, vpr_ds: BaseDataset,
verbose: bool=True, vpr_distractor_ds: BaseDataset=None) \
-> Tuple[torch.Tensor, torch.Tensor]:
"""
Build GeM (global) vectors for database and query images.
Parameters:
- largs: LocalArgs Local arguments for the file
- vpr_ds: BaseDataset The dataset containing database and
query images
- verbose: bool Prints progress if True
Returns:
- db_gems: GeM descriptors of database of shape
[n_db, d_dim]
- n_db: Number of database images
- d_dim: Descriptor dimensionality for the
(patch) features
- qu_gems: GeM descriptors of queries of shape
[n_qu, d_dim], 'n_qu' is num. of queries
"""
# Load Dino feature extractor model
dino = DinoV2ExtractFeatures(largs.model_type, largs.desc_layer,
largs.desc_facet, device=device)
if verbose:
print("Dino model loaded")
def extract_patch_descriptors(indices, use_distractor:bool=False):
patch_descs = []
# For VPAir (only ViT-G, to prevent RAM OOM)
# if use_distractor:
# patch_descs = torch.empty(10000, 2394, 1536)
for i in tqdm(indices, disable=not verbose):
if use_distractor:
img = vpr_distractor_ds[i][0].to(device)
else:
img = vpr_ds[i][0].to(device)
c, h, w = img.shape
h_new, w_new = (h // 14) * 14, (w // 14) * 14
img_in = T.CenterCrop((h_new, w_new))(img)[None, ...]
ret = dino(img_in)
# For VPAir (only ViT-G, to prevent RAM OOM)
# if use_distractor:
# patch_descs[i] = ret.cpu()
# else:
# patch_descs.append(ret.cpu())
patch_descs.append(ret.cpu())
# For VPAir (only ViT-G, to prevent RAM OOM)
# if not use_distractor:
# patch_descs = torch.cat(patch_descs, dim=0) # [N, n_p, d_dim]
patch_descs = torch.cat(patch_descs, dim=0) # [N, n_p, d_dim]
return patch_descs
def get_gem_descriptors(patch_descs: torch.Tensor):
assert len(patch_descs.shape) == len(("N", "n_p", "d_dim"))
g_res = None
if largs.gem_use_abs:
g_res = torch.mean(torch.abs(patch_descs)**largs.gem_p,
dim=-2) ** (1/largs.gem_p)
else:
if largs.gem_elem_by_elem:
g_res_all = []
for patch_desc in patch_descs:
x = torch.mean(patch_desc**largs.gem_p, dim=-2)
g_res = x.to(torch.complex64) ** (1/largs.gem_p)
g_res = torch.abs(g_res) * torch.sign(x)
g_res_all.append(g_res)
g_res = torch.stack(g_res_all)
else:
x = torch.mean(patch_descs**largs.gem_p, dim=-2)
g_res = x.to(torch.complex64) ** (1/largs.gem_p)
g_res = torch.abs(g_res) * torch.sign(x)
return g_res # [N, d_dim]
# Get the database descriptors
num_db = vpr_ds.database_num
ds_len = len(vpr_ds)
assert ds_len > num_db, "Either no queries or length mismatch"
# Get GeM descriptors of the database
if verbose:
print("Building GeMs for database...")
db_indices = np.arange(0, num_db, largs.sub_sample_db)
# All database descs (local descriptors): [n_db, n_d, d_dim]
full_db = extract_patch_descriptors(db_indices)
if verbose:
print(f"Full database descriptor shape: {full_db.shape}")
db_gems: torch.Tensor = get_gem_descriptors(full_db)
del full_db
if verbose:
print(f"Database GeMs shape: {db_gems.shape}")
# Get GeM of the queries
if verbose:
print("Building GeMs for queries...")
qu_indices = np.arange(num_db, ds_len, largs.sub_sample_qu)
full_qu = []
# Get global descriptors for queries
full_qu = extract_patch_descriptors(qu_indices)
if verbose:
print(f"Full query descriptor shape: {full_qu.shape}")
qu_gems: torch.Tensor = get_gem_descriptors(full_qu)
del full_qu
if verbose:
print(f"Query GeMs shape: {qu_gems.shape}")
# Append to db_gems for vpair distractors
if vpr_distractor_ds is not None:
num_dis_db = vpr_distractor_ds.database_num
if verbose:
print("Extracting GeMs for vpair distractors...")
try:
db_dis_indices = np.arange(0, num_dis_db, largs.sub_sample_db)
full_dis_db = extract_patch_descriptors(db_dis_indices,
use_distractor=True)
if verbose:
print(f"Full distractor database descriptor shape: "
f"{full_dis_db.shape}")
full_dis_db_gems: torch.Tensor = get_gem_descriptors(full_dis_db)
del full_dis_db
db_gems = torch.cat((db_gems, full_dis_db_gems), dim=0)
del full_dis_db_gems
if verbose:
print(f"Distractor database GeMs shape: {db_gems.shape}")
except RuntimeError as exc:
print(f"Runtime error: {exc}")
traceback.print_exc()
print("Ignoring vpair distractors")
# Return VLADs
return db_gems, qu_gems
@torch.no_grad()
def main(largs: LocalArgs):
print(f"Arguments: {largs}")
seed_everything(42)
if largs.prog.use_wandb:
# Launch WandB
wandb_run = wandb.init(project=largs.prog.wandb_proj,
entity=largs.prog.wandb_entity, config=largs,
group=largs.prog.wandb_group,
name=largs.prog.wandb_run_name)
print(f"Initialized WandB run: {wandb_run.name}")
print("--------- Generating VLADs ---------")
ds_dir = largs.prog.data_vg_dir
ds_name = largs.prog.vg_dataset_name
print(f"Dataset directory: {ds_dir}")
print(f"Dataset name: {ds_name}, split: {largs.data_split}")
# Load dataset
if ds_name=="baidu_datasets":
vpr_ds = Baidu_Dataset(largs.bd_args, ds_dir, ds_name,
largs.data_split)
elif ds_name=="Oxford":
vpr_ds = Oxford(ds_dir)
elif ds_name=="gardens":
vpr_ds = Gardens(largs.bd_args,ds_dir,ds_name,largs.data_split)
elif ds_name.startswith("Tartan_GNSS"):
vpr_ds = Aerial(largs.bd_args,ds_dir,ds_name,largs.data_split)
elif ds_name.startswith("hawkins"): # Use only long_corridor
vpr_ds = Hawkins(largs.bd_args,ds_dir,"hawkins_long_corridor",largs.data_split)
elif ds_name=="VPAir":
vpr_ds = VPAir(largs.bd_args,ds_dir,ds_name,largs.data_split)
vpr_distractor_ds = VPAir_Distractor(largs.bd_args,ds_dir,ds_name,largs.data_split)
elif ds_name=="laurel_caverns":
vpr_ds = Laurel(largs.bd_args,ds_dir,ds_name,largs.data_split)
elif ds_name=="eiffel":
vpr_ds = Eiffel(largs.bd_args,ds_dir,ds_name,largs.data_split)
else:
vpr_ds = BaseDataset(largs.bd_args, ds_dir, ds_name,
largs.data_split)
if ds_name == "VPAir":
db_gems, qu_gems = build_gems(largs, vpr_ds,
vpr_distractor_ds=vpr_distractor_ds)
else:
db_gems, qu_gems = build_gems(largs, vpr_ds)
print("--------- Generated GeMs ---------")
print("----- Calculating recalls through top-k matching -----")
dists, indices, recalls = get_top_k_recall(largs.top_k_vals,
db_gems, qu_gems, vpr_ds.soft_positives_per_query,
sub_sample_db=largs.sub_sample_db,
sub_sample_qu=largs.sub_sample_qu)
print("------------ Recalls calculated ------------")
print("--------------------- Results ---------------------")
ts = time.strftime(f"%Y_%m_%d_%H_%M_%S")
caching_directory = largs.prog.cache_dir
results = {
"Model-Type": str(largs.model_type),
"Desc-Layer": str(largs.desc_layer),
"Desc-Facet": str(largs.desc_facet),
"Desc-Dim": str(db_gems.shape[1]),
"Experiment-ID": str(largs.exp_id),
"DB-Name": str(ds_name),
"Num-DB": str(len(db_gems)),
"Num-QU": str(len(qu_gems)),
"Agg-Method": "GeM",
"Timestamp": str(ts)
}
print("Results: ")
for k in results:
print(f"- {k}: {results[k]}")
print("- Recalls: ")
for k in recalls:
results[f"R@{k}"] = recalls[k]
print(f" - R@{k}: {recalls[k]:.5f}")
if largs.show_plot:
plt.plot(recalls.keys(), recalls.values())
plt.ylim(0, 1)
plt.xticks(largs.top_k_vals)
plt.xlabel("top-k values")
plt.ylabel(r"% recall")
plt_title = "Recall curve"
if largs.exp_id is not None:
plt_title = f"{plt_title} - Exp {largs.exp_id}"
if largs.prog.use_wandb:
plt_title = f"{plt_title} - {wandb_run.name}"
plt.title(plt_title)
plt.show()
# Log to WandB
if largs.prog.use_wandb:
wandb.log(results)
for tk in recalls:
wandb.log({"Recall-All": recalls[tk]}, step=int(tk))
# Add retrievals
results["Qual-Dists"] = dists
results["Qual-Indices"] = indices
save_res_file = None
if largs.exp_id == True:
save_res_file = caching_directory
elif type(largs.exp_id) == str:
save_res_file = f"{caching_directory}/experiments/"\
f"{largs.exp_id}"
if save_res_file is not None:
if not os.path.isdir(save_res_file):
os.makedirs(save_res_file)
save_res_file = f"{save_res_file}/results_{ts}.gz"
print(f"Saving result in: {save_res_file}")
joblib.dump(results, save_res_file)
else:
print("Not saving results")
if largs.prog.use_wandb:
wandb.finish()
print("--------------------- END ---------------------")
# %%
if __name__ == "__main__" and ("ipykernel" not in sys.argv[0]):
largs = tyro.cli(LocalArgs, description=__doc__)
_start = time.time()
try:
main(largs)
except:
print("Unhandled exception")
traceback.print_exc()
finally:
print(f"Program ended in {time.time()-_start:.3f} seconds")
exit(0)
# %%