forked from AnyLoc/AnyLoc
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdino_v2_datasets_gem_pca_clustering.py
478 lines (448 loc) · 17.1 KB
/
dino_v2_datasets_gem_pca_clustering.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
# Cluster image descriptors for Dino-v2 across all datasets
"""
For all datasets, select representative images. Extract Dino-v2
image descriptors for each dataset, do GeM pooling per image.
Project them to 2D using PCA and visualize the descriptors (with
color codes for datasets).
"""
# %%
import os
import sys
from pathlib import Path
# Set the './../' from the script folder
dir_name = None
try:
dir_name = os.path.dirname(os.path.realpath(__file__))
except NameError:
print('WARN: __file__ not found, trying local')
dir_name = os.path.abspath('')
lib_path = os.path.realpath(f'{Path(dir_name).parent}')
# Add to path
if lib_path not in sys.path:
print(f'Adding library path: {lib_path} to PYTHONPATH')
sys.path.append(lib_path)
else:
print(f'Library path {lib_path} already in PYTHONPATH')
# %%
import torch
import numpy as np
from torchvision.transforms import functional as T
import einops as ein
from sklearn.decomposition import PCA
import matplotlib.pyplot as plt
import tyro
import joblib
from tqdm.auto import tqdm
from dataclasses import dataclass, field
from typing import Literal, Union, Tuple, List
import traceback
import time
# Program utilities
from utilities import DinoV2ExtractFeatures, CustomDataset, \
seed_everything
from configs import ProgArgs, prog_args, BaseDatasetArgs, \
base_dataset_args, device
from custom_datasets.global_dataloader import Global_Dataloader \
as GlobalDataloader
from dvgl_benchmark.datasets_ws import BaseDataset
from custom_datasets.baidu_dataloader import Baidu_Dataset
from custom_datasets.oxford_dataloader import Oxford
from custom_datasets.gardens import Gardens
from custom_datasets.aerial_dataloader import Aerial
from custom_datasets.hawkins_dataloader import Hawkins
from custom_datasets.vpair_dataloader import VPAir
from custom_datasets.laurel_dataloader import Laurel
from custom_datasets.eiffel_dataloader import Eiffel
from custom_datasets.vpair_distractor_dataloader import VPAir_Distractor
# %%
@dataclass
class LocalArgs:
# Program arguments (dataset directories and wandb)
prog: ProgArgs = ProgArgs(use_wandb=False)
# BaseDataset arguments
bd_args: BaseDatasetArgs = base_dataset_args
# Dino-v2 parameters
# Dino-v2 model type
model_type: Literal["dinov2_vits14", "dinov2_vitb14",
"dinov2_vitl14", "dinov2_vitg14"] = "dinov2_vits14"
# Layer for extracting Dino feature (descriptors)
desc_layer: int = 11
# Facet for extracting descriptors
desc_facet: Literal["query", "key", "value", "token"] = "key"
# Dataset split for VPR (BaseDataset)
data_split: Literal["train", "test", "val"] = "test"
# Number of images for each dataset (0 = don't use)
num_images: dict = field(default_factory=lambda: {
# Database name: number of images
"Oxford": 10,
"gardens": 10,
"17places": 10,
"baidu_datasets": 10,
"st_lucia": 10,
"pitts30k": 10,
"Tartan_GNSS_test_rotated": 10,
"Tartan_GNSS_test_notrotated": 10,
"hawkins": 10,
"laurel_caverns": 10,
"eiffel": 10,
"VPAir": 10
})
# A multiplier to the number of images (for scaling num of imgs)
num_imgs_scaling: int = 1
# Select the image from particular segment
seg_select: Literal["db", "query", "both"] = "both"
# Force inference image (H, W) size (bicubic interpolation)
img_res: Tuple[int, int] = (480, 640)
"""
Force a particular image size (so that the image sizes in the
dataset doesn't bias the result). Note that, if the numbers
aren't divisible by 14, the final size won't be this but its
nearest (lower) multiple of 14 (the patch size for Dino-v2).
"""
# Sub-sampling the final PCA figure
subsample_final: float = 1.0
"""
If 0.2, then only 20% of the descriptors from each dataset are
actually visualized. Use this to reduce clutter in plot.
Note that for each dataset, the number of descriptors is
`num_imgs` (so downsample accordingly). Use this setting with
`num_images` to handle representation in final plot.
"""
# Cache the detection results (as joblib dump)
cache_fname: Union[str, None] = None
"""
This should be a file in the cache directory. It can contain
'/' for folders. Don't use extensions.
- If an existing file, then it's used to read the dump (and
restore cache). No inference happens then.
- If not an existing file, then it's used to save the dump.
- If None, then no caching is done.
If caching is used, the following is cached
- Result cache for all image descriptors across all datasets.
The file extension is '.gz'
- PCA projections of the descriptors (you only need this for
plotting)
The file ends with '_pca.gz'
"""
# GeM Pooling Parameter
gem_p: float = 3
# Configure the behavior of GeM
gem_use_abs: bool = False
"""
If True, the `abs` is applied to the patch descriptors (all
values are strictly positive). Otherwise, a gimmick involving
complex numbers is used. If False, the `gem_p` should be an
integer (fractional will give complex numbers when applied to
negative numbers as power).
"""
# Do GeM element-by-element (only if gem_use_abs = False)
gem_elem_by_elem: bool = False
"""
Do the GeM element-by-element (only if `gem_use_abs` = False).
This can be done to prevent the RAM use from exploding for
large datasets.
"""
# Show the plot (False = No plot but save fig, True = show fig)
show_plot: bool = True
# If True, PCA training is done only on database
fit_db_tf_qu: bool = False
"""
If True, then the PCA training is done only on the database
descriptors. The query descriptors are transformed (using the
learned parameters).
"""
# %%
@torch.no_grad()
def build_cache(largs: LocalArgs, verbose: bool=True):
"""
Builds the cache dictionary.
Cache dictionary format:
- "time": str Time stamp of creation
- "model": dict
- "type": `largs.model_type`
- "layer": `largs.desc_layer`
- "facet": `largs.desc_facet`
- "data": dict Data dictionary
- "<Dataset Name>": dict
- "indices": List[int]
Indices for the images chosen (at random)
- "descriptors": np.ndarray
Image descriptors of shape [N, d_dim] where N is
number of images, d_dim is the descriptor
dimension.
- "num_db": int Number of database images
"""
# Create Dino-v2 model
dino = DinoV2ExtractFeatures(largs.model_type, largs.desc_layer,
largs.desc_facet, device=device)
res = {
"model": {
"type": largs.model_type,
"layer": largs.desc_layer,
"facet": largs.desc_facet
},
"data": {}
}
# Extracts descriptors for the given indices from given dataset
def extract_patch_descs(vpr_ds: CustomDataset,
indices: List[int]):
patch_descs = []
for i in tqdm(indices, disable=(not verbose)):
img = vpr_ds[i][0].to(device)
img = T.resize(img, largs.img_res)
c, h, w = img.shape
h_new, w_new = (h // 14) * 14, (w // 14) * 14
img_in = T.center_crop(img, (h_new, w_new))[None, ...]
res = dino(img_in)
patch_descs.append(res.cpu())
patch_descs = torch.cat(patch_descs, dim=0)
return patch_descs
# Do GeM pooling of descriptors
def get_gem_descriptors(patch_descs: torch.Tensor):
assert len(patch_descs.shape) == len(("N", "n_p", "d_dim"))
g_res = None
if largs.gem_use_abs:
g_res = torch.mean(torch.abs(patch_descs)**largs.gem_p,
dim=-2) ** (1/largs.gem_p)
else:
if largs.gem_elem_by_elem:
g_res_all = []
for patch_desc in patch_descs:
x = torch.mean(patch_desc**largs.gem_p, dim=-2)
g_res = x.to(torch.complex64) ** (1/largs.gem_p)
g_res = torch.abs(g_res) * torch.sign(x)
g_res_all.append(g_res)
g_res = torch.stack(g_res_all)
else:
x = torch.mean(patch_descs**largs.gem_p, dim=-2)
g_res = x.to(torch.complex64) ** (1/largs.gem_p)
g_res = torch.abs(g_res) * torch.sign(x)
return g_res # [N, d_dim]
ds_dir = largs.prog.data_vg_dir
ds_split = largs.data_split
bd_args = largs.bd_args
print(f"Dataset directory: {ds_dir}, split: {ds_split}")
ds_names = [k for k in largs.num_images \
if largs.num_images[k] > 0]
# for _ in tqdm(range(100), leave=False, position=0, desc="DB"):
for ds_name in tqdm(ds_names, disable=(not verbose)):
# Load dataset
if ds_name=="baidu_datasets":
vpr_ds = Baidu_Dataset(bd_args, ds_dir, ds_name, ds_split)
elif ds_name=="Oxford":
vpr_ds = Oxford(ds_dir)
elif ds_name=="gardens":
vpr_ds = Gardens(bd_args, ds_dir, ds_name, ds_split)
elif ds_name.startswith("Tartan_GNSS"):
vpr_ds = Aerial(bd_args, ds_dir, ds_name, ds_split)
elif ds_name.startswith("hawkins"): # Use only long_corridor
vpr_ds = Hawkins(bd_args, ds_dir,"hawkins_long_corridor",
ds_split)
elif ds_name=="VPAir":
vpr_ds = VPAir(bd_args, ds_dir, ds_name, ds_split)
vpr_distractor_ds = VPAir_Distractor(bd_args, ds_dir,
ds_name, ds_split)
elif ds_name=="laurel_caverns":
vpr_ds = Laurel(bd_args, ds_dir, ds_name, ds_split)
elif ds_name=="eiffel":
vpr_ds = Eiffel(bd_args, ds_dir, ds_name, ds_split)
else:
vpr_ds = BaseDataset(bd_args, ds_dir, ds_name, ds_split)
# Random indices
if largs.seg_select == "both":
seg_range = np.arange(len(vpr_ds))
elif largs.seg_select == "db":
seg_range = np.arange(0, vpr_ds.database_num)
elif largs.seg_select == "query":
seg_range = np.arange(vpr_ds.database_num, len(vpr_ds))
db_repr_samples: np.ndarray = np.random.choice(seg_range,
largs.num_images[ds_name] * largs.num_imgs_scaling,
replace=False)
# Get patch descriptors [N, n_d, d_dim]
patch_descs = extract_patch_descs(vpr_ds, db_repr_samples)
gem_descs = get_gem_descriptors(patch_descs)
# Add to result
res["data"][ds_name] = {
"indices": db_repr_samples.tolist(),
"descriptors": gem_descs.numpy(),
"num_db": int(vpr_ds.database_num),
}
# Add timestamp
res["time"] = str(time.strftime(f"%Y_%m_%d_%H_%M_%S"))
return res
# %%
# From the descriptors (from cache) build PCA projections
def pca_project(largs: LocalArgs, res: dict):
descs_all = []
labels_db = {}
for ds_name in res["data"]:
descs = res["data"][ds_name]["descriptors"] # [N, d_dim]
d = descs.shape[0]
i = np.random.choice(np.arange(d),
int(d * largs.subsample_final), replace=False)
descs = descs[i]
labels_db[ds_name] = descs.shape[0]
descs_all.append(descs)
descs_all = np.concatenate(descs_all, axis=0)
# PCA projection
pca = PCA(n_components=2)
desc_2d = pca.fit_transform(descs_all)
# Convert back to dictionary
descs_db = {}
i = 0
for db in labels_db:
descs_db[db] = desc_2d[i:i+labels_db[db], :]
i += labels_db[db]
return descs_db
# %%
def pca_fit_db_tr_qu(largs: LocalArgs, res: dict):
descs_db = []
labels_db = {}
descs_qu = []
labels_qu = {}
for ds_name in res["data"]:
descs = res["data"][ds_name]["descriptors"] # [N, d_dim]
ndb = res["data"][ds_name]["num_db"]
di_is = np.array(res["data"][ds_name]["indices"]) < ndb
qu_is = np.array(res["data"][ds_name]["indices"]) >= ndb
descs_db.append(descs[di_is])
labels_db[ds_name] = descs[di_is].shape[0]
descs_qu.append(descs[qu_is])
labels_qu[ds_name] = descs[qu_is].shape[0]
descs_db = np.concatenate(descs_db, axis=0)
descs_qu = np.concatenate(descs_qu, axis=0)
# PCA projection
pca = PCA(n_components=2)
desc_2d_db = pca.fit_transform(descs_db)
desc_2d_qu = pca.transform(descs_qu)
# Convert back to dictionaries (of database and query)
res_descs_db = {
"database": {},
"queries": {}
}
i_db, i_qu = 0, 0
for ds in res["data"]:
res_descs_db["database"][ds] = desc_2d_db[\
i_db:i_db+labels_db[ds], :]
res_descs_db["queries"][ds] = desc_2d_qu[\
i_qu:i_qu+labels_qu[ds], :]
i_db += labels_db[ds]
i_qu += labels_qu[ds]
return res_descs_db
# %%
def plot_pca(largs: LocalArgs, descs_db: dict):
# Colors and markers
db_colors = {
"Oxford": "#008000",
"gardens": "#004ccc",
"17places": "#004ccc",
"baidu_datasets": "#004ccc",
"st_lucia": "#008000",
"pitts30k": "#008000",
"Tartan_GNSS_test_rotated": "#800080",
"Tartan_GNSS_test_notrotated": "#800080",
"hawkins": "#80471c",
"laurel_caverns": "#80471c",
"eiffel": "#297bd8",
"VPAir": "#800080"
}
db_markers = {
"Oxford": "^",
"gardens": "p",
"17places": "P",
"baidu_datasets": "*",
"st_lucia": "v",
"pitts30k": "<",
"Tartan_GNSS_test_rotated": "_",
"Tartan_GNSS_test_notrotated": "|",
"hawkins": "1",
"laurel_caverns": "2",
"eiffel": "x",
"VPAir": "d"
}
qu_alphas = 0.5
# List of datasets being used
if largs.fit_db_tf_qu:
use_ds = list(descs_db["database"])
else:
use_ds = list(descs_db)
# Plot figure
plt.figure()
for db in use_ds:
if largs.fit_db_tf_qu:
plt.scatter(descs_db["database"][db][:, 0],
descs_db["database"][db][:, 1],
label=db, c=db_colors[db], marker=db_markers[db])
plt.scatter(descs_db["queries"][db][:, 0],
descs_db["queries"][db][:, 1], alpha=qu_alphas,
c=db_colors[db], marker=db_markers[db])
else:
plt.scatter(descs_db[db][:, 0], descs_db[db][:, 1],
label=db, c=db_colors[db], marker=db_markers[db])
plt.legend(bbox_to_anchor=(0.5, -0.1), loc='upper center', ncol=3)
plt.xticks([])
plt.yticks([])
plt.tight_layout()
if largs.show_plot:
plt.show()
else:
cache_fname = os.path.realpath(os.path.expanduser(
os.path.join(largs.prog.cache_dir, largs.cache_fname)))
plt.savefig(f"{cache_fname}_pca.png")
# %%
def main(largs: LocalArgs):
print(f"Arguments: {largs}")
seed_everything(42)
# Check if cache files exists
use_caching, cache_fname = False, None
if largs.prog.cache_dir is not None and \
largs.cache_fname is not None:
use_caching = True
cache_fname = os.path.realpath(os.path.expanduser(
os.path.join(largs.prog.cache_dir, largs.cache_fname)))
print(f"Using cache file: {cache_fname}")
d_name = os.path.dirname(cache_fname)
if os.path.isdir(d_name):
print(f"Directory {d_name} exists! (could overwrite)")
else:
os.makedirs(d_name)
print(f"Created directory {d_name}")
else:
print(f"Not using any caching (results won't be saved)")
# Get the descriptors
if use_caching and os.path.exists(f"{cache_fname}.gz"):
print(f"Loading from cache file: {cache_fname}.gz")
res = joblib.load(f"{cache_fname}.gz")
else:
res = build_cache(largs)
if use_caching:
print(f"Saving to cache file: {cache_fname}.gz")
joblib.dump(res, f"{cache_fname}.gz")
# PCA
if use_caching and os.path.exists(f"{cache_fname}_pca.gz"):
print(f"Loading from cache file: {cache_fname}_pca.gz")
descs_db = joblib.load(f"{cache_fname}_pca.gz")
else:
if largs.fit_db_tf_qu:
print("Fitting (training) database and not queries")
descs_db = pca_fit_db_tr_qu(largs, res)
else:
descs_db = pca_project(largs, res)
if use_caching:
print(f"Saving to cache file: {cache_fname}_pca.gz")
joblib.dump(descs_db, f"{cache_fname}_pca.gz")
# Plot
plot_pca(largs, descs_db)
# %%
if __name__ == "__main__" and ("ipykernel" not in sys.argv[0]):
largs = tyro.cli(LocalArgs, description=__doc__)
_start = time.time()
try:
main(largs)
except:
print("Unhandled exception")
traceback.print_exc()
finally:
print(f"Program ended in {time.time()-_start:.3f} seconds")
exit(0)
# %%