forked from AnyLoc/AnyLoc
-
Notifications
You must be signed in to change notification settings - Fork 0
/
dino_multilayer_vlad.py
461 lines (423 loc) · 16.6 KB
/
dino_multilayer_vlad.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
# Doing VLAD with Dino descriptors from multiple layers
"""
Basic idea is to extract descriptors from [1] and do VLAD on them.
Descriptors from multiple layers are concatenated and then used
for VLAD. The same facet is used for all layers.
DEPRECATED: Please do not use this script.
Note: '--prog.wandb-save-qual' is not used
[1]: https://github.com/ShirAmir/dino-vit-features/blob/main/extractor.py#L15
"""
# %%
import os
import sys
from pathlib import Path
# Set the './../' from the script folder
dir_name = None
try:
dir_name = os.path.dirname(os.path.realpath(__file__))
except NameError:
print('WARN: __file__ not found, trying local')
dir_name = os.path.abspath('')
lib_path = os.path.realpath(f'{Path(dir_name).parent}')
# Add to path
if lib_path not in sys.path:
print(f'Adding library path: {lib_path} to PYTHONPATH')
sys.path.append(lib_path)
else:
print(f'Library path {lib_path} already in PYTHONPATH')
# %%
import torch
from torch.nn import functional as F
from dino_extractor import ViTExtractor
from PIL import Image
import numpy as np
import tyro
from dataclasses import dataclass, field
from utilities import VLAD, get_top_k_recall, seed_everything
import einops as ein
import wandb
import matplotlib.pyplot as plt
import time
import joblib
import traceback
from tqdm.auto import tqdm
from dvgl_benchmark.datasets_ws import BaseDataset
from configs import ProgArgs, prog_args, BaseDatasetArgs, \
base_dataset_args, device
from typing import Union, Literal, Tuple, List
from custom_datasets.baidu_dataloader import Baidu_Dataset
from custom_datasets.oxford_dataloader import Oxford
from custom_datasets.gardens import Gardens
# %%
@dataclass
class LocalArgs:
# Program arguments (dataset directories and wandb)
prog: ProgArgs = ProgArgs(wandb_proj="Dino-Descs",
wandb_group="Direct-Descs")
# BaseDataset arguments
bd_args: BaseDatasetArgs = base_dataset_args
# Experiment identifier (None = don't use)
exp_id: Union[str, None] = None
# Dino parameters
model_type: Literal["dino_vits8", "dino_vits16", "dino_vitb8",
"dino_vitb16", "vit_small_patch8_224",
"vit_small_patch16_224", "vit_base_patch8_224",
"vit_base_patch16_224"] = "dino_vits8"
"""
Model for Dino to use as the base model.
"""
# Number of clusters for VLAD
num_clusters: int = 8
# Stride for ViT (extractor)
vit_stride: int = 4
# Down-scaling H, W resolution for images (before giving to Dino)
down_scale_res: Tuple[int, int] = (224, 298)
# Layers for extracting Dino feature (descriptors)
desc_layers: List[int] = field(default_factory=lambda: [6, 11])
# Facet for extracting descriptors
desc_facet: Literal["key", "query", "value", "token"] = "key"
# Apply log binning to the descriptor
desc_bin: bool = False
# Dataset split for VPR (BaseDataset)
data_split: Literal["train", "test", "val"] = "test"
# Sub-sample query images (RAM or VRAM constraints) (1 = off)
sub_sample_qu: int = 1
# Sub-sample database images (RAM or VRAM constraints) (1 = off)
sub_sample_db: int = 1
# Sub-sample database images for VLAD clustering only
sub_sample_db_vlad: int = 1
"""
Use sub-sampling for creating the VLAD cluster centers. Use
this to reduce the RAM usage during the clustering process.
Unlike `sub_sample_qu` and `sub_sample_db`, this is only used
for clustering and not for the actual VLAD computation.
"""
# Values for top-k (for monitoring)
top_k_vals: List[int] = field(default_factory=lambda:\
list(range(1, 21, 1)))
# Show a matplotlib plot for recalls
show_plot: bool = False
# Use hard or soft descriptor assignment for VLAD
vlad_assignment: Literal["hard", "soft"] = "hard"
# Softmax temperature for VLAD (soft assignment only)
vlad_soft_temp: float = 1.0
# Caching configuration
cache_vlad_descs: bool = True
# %%
# ---------------- Functions ----------------
@torch.no_grad()
def build_vlads(largs: LocalArgs, vpr_ds: BaseDataset,
verbose: bool=True) \
-> Tuple[torch.Tensor, torch.Tensor]:
"""
Build VLAD vectors for database and query images.
Parameters:
- largs: LocalArgs Local arguments for the file
- vpr_ds: BaseDataset The dataset containing database and
query images
- verbose: bool Prints progress if True
Returns:
- db_vlads: VLAD descriptors of database of shape
[n_db, vlad_dim]
- n_db: Number of database images
- vlad_dim: num_clusters * d_dim
- d_dim: Descriptor dimensionality
- num_clusters: Number of clusters
- qu_vlads: VLAD descriptors of queries of shape
[n_qu, vlad_dim], 'n_qu' is num. of queries
"""
cache_dir = None
if largs.cache_vlad_descs:
cache_dir = f"{largs.prog.cache_dir}/vlad_descs/Dino/" \
f"{largs.prog.vg_dataset_name}/" \
f"{largs.model_type}-{largs.desc_facet}-"
for l in largs.desc_layers:
cache_dir += f"L{l:02d}"
cache_dir += f"-C{largs.num_clusters}"
print(f"Using cache directory: {cache_dir}")
vlad = VLAD(largs.num_clusters, None,
vlad_mode=largs.vlad_assignment,
soft_temp=largs.vlad_soft_temp, cache_dir=cache_dir)
extractor = ViTExtractor(largs.model_type, largs.vit_stride,
device=device)
# Get the database descriptors
num_db = vpr_ds.database_num
ds_len = len(vpr_ds)
assert ds_len > num_db, "Either no queries or length mismatch"
if vlad.can_use_cache_vlad():
if verbose:
print("Valid cache found, using it")
vlad.fit(None) # Nothing to fit (restore cache)
else:
# Get cluster centers in the VLAD
if verbose:
print("Building VLAD cluster centers...")
db_indices = np.arange(0, num_db, largs.sub_sample_db_vlad)
# Database descriptors (for VLAD clusters): [n_db, n_d, d_dim]
full_db_vlad = []
# Get global database descriptors
for i in tqdm(db_indices, disable=(not verbose)):
img = vpr_ds[i][0]
img = ein.rearrange(img, "c h w -> 1 c h w").to(device)
img = F.interpolate(img, largs.down_scale_res)
descs = []
for l in largs.desc_layers:
# Descriptors: [1, num_descs, d_dim]
desc = extractor.extract_descriptors(img,
layer=l, facet=largs.desc_facet,
bin=largs.desc_bin)[0]
descs.append(desc)
# [n_layers, num_descs, d_dim] for each element
descs = torch.concat(descs, dim=0)
descs = ein.rearrange(descs, "l n d -> n (l d)")
descs = F.normalize(descs, dim=1)
full_db_vlad.append(descs.cpu()) # [num_descs, d_dim_new]
full_db_vlad = torch.stack(full_db_vlad)
if verbose:
print(f"Database (for VLAD) shape: {full_db_vlad.shape}")
d_dim = full_db_vlad.shape[2]
if verbose:
print(f"Descriptor dimensionality: {d_dim}")
vlad.fit(ein.rearrange(full_db_vlad, "n k d -> (n k) d"))
del full_db_vlad
# VLAD cluster centers loaded
if verbose:
print(f"VLAD cluster centers shape: "\
f"{vlad.c_centers.shape}, ({vlad.c_centers.dtype})")
# Get VLADs of the database
if verbose:
print("Building VLADs for database...")
db_indices = np.arange(0, num_db, largs.sub_sample_db)
db_img_names = vpr_ds.get_image_relpaths(db_indices)
if vlad.can_use_cache_ids(db_img_names):
if verbose:
print("Valid cache found, using it")
db_vlads = vlad.generate_multi([None] * len(db_indices),
db_img_names)
else:
if verbose:
print("Valid cache not found, doing forward pass")
# All database descs (local descriptors): [n_db, n_d, d_dim]
full_db = []
# Get global database descriptors
for i in tqdm(db_indices, disable=(not verbose)):
img = vpr_ds[i][0]
img = ein.rearrange(img, "c h w -> 1 c h w").to(device)
img = F.interpolate(img, largs.down_scale_res)
descs = []
for l in largs.desc_layers:
# Descriptors: [1, num_descs, d_dim]
desc = extractor.extract_descriptors(img,
layer=l, facet=largs.desc_facet,
bin=largs.desc_bin)[0]
descs.append(desc)
# [n_layers, num_descs, d_dim] for each element
descs = torch.concat(descs, dim=0)
descs = ein.rearrange(descs, "l n d -> n (l d)")
descs = F.normalize(descs, dim=1)
full_db.append(descs.cpu())
full_db = torch.stack(full_db)
if verbose:
print(f"Full database descriptor shape: {full_db.shape}")
db_vlads: torch.Tensor = vlad.generate_multi(full_db,
db_img_names)
del full_db
if verbose:
print(f"Database VLADs shape: {db_vlads.shape}")
# Get VLADs of the queries
if verbose:
print("Building VLADs for queries...")
qu_indices = np.arange(num_db, ds_len, largs.sub_sample_qu)
qu_img_names = vpr_ds.get_image_relpaths(qu_indices)
if vlad.can_use_cache_ids(qu_img_names):
if verbose:
print("Valid cache found, using it")
qu_vlads = vlad.generate_multi([None] * len(qu_indices),
qu_img_names)
else:
if verbose:
print("Valid cache not found, doing forward pass")
full_qu = []
# Get global descriptors for queries
for i in tqdm(qu_indices, disable=(not verbose)):
img = vpr_ds[i][0]
img = ein.rearrange(img, "c h w -> 1 c h w").to(device)
img = F.interpolate(img, largs.down_scale_res)
descs = []
for l in largs.desc_layers:
# Descriptors: [1, num_descs, d_dim]
desc = extractor.extract_descriptors(img,
layer=l, facet=largs.desc_facet,
bin=largs.desc_bin)[0]
descs.append(desc)
# [n_layers, num_descs, d_dim] for each element
descs = torch.concat(descs, dim=0)
descs = ein.rearrange(descs, "l n d -> n (l d)")
descs = F.normalize(descs, dim=1)
full_qu.append(descs.cpu())
full_qu = torch.stack(full_qu)
if verbose:
print(f"Full query descriptor shape: {full_qu.shape}")
qu_vlads: torch.Tensor = vlad.generate_multi(full_qu,
qu_img_names)
del full_qu
if verbose:
print(f"Query VLADs shape: {qu_vlads.shape}")
# Return VLADs
return db_vlads, qu_vlads
@torch.no_grad()
def main(largs: LocalArgs):
print(f"Arguments: {largs}")
seed_everything(42)
if largs.prog.use_wandb:
# Launch WandB
wandb_run = wandb.init(project=largs.prog.wandb_proj,
entity=largs.prog.wandb_entity, config=largs,
group=largs.prog.wandb_group,
name=largs.prog.wandb_run_name)
print(f"Initialized WandB run: {wandb_run.name}")
print("--------- Generating VLADs ---------")
ds_dir = largs.prog.data_vg_dir
ds_name = largs.prog.vg_dataset_name
print(f"Dataset directory: {ds_dir}")
print(f"Dataset name: {ds_name}, split: {largs.data_split}")
# Load dataset
if ds_name=="baidu_datasets":
vpr_ds = Baidu_Dataset(largs.bd_args, ds_dir, ds_name,
largs.data_split)
elif ds_name=="Oxford":
vpr_ds = Oxford(ds_dir)
elif ds_name=="gardens":
vpr_ds = Gardens(largs.bd_args,ds_dir,ds_name,largs.data_split)
else:
vpr_ds = BaseDataset(largs.bd_args, ds_dir, ds_name,
largs.data_split)
# Main VLAD generation
db_vlads, qu_vlads = build_vlads(largs, vpr_ds)
print("--------- Generated VLADs ---------")
print("----- Calculating recalls through top-k matching -----")
dists, indices, recalls = get_top_k_recall(largs.top_k_vals,
db_vlads, qu_vlads, vpr_ds.soft_positives_per_query,
sub_sample_db=largs.sub_sample_db,
sub_sample_qu=largs.sub_sample_qu)
print("------------ Recalls calculated ------------")
print("--------------------- Results ---------------------")
ts = time.strftime(f"%Y_%m_%d_%H_%M_%S")
caching_directory = largs.prog.cache_dir
results = {
"Model-Type": str(largs.model_type),
"Desc-Layer": str(largs.desc_layers),
"Desc-Facet": str(largs.desc_facet),
"Desc-Dim": str(db_vlads.shape[1]//largs.num_clusters),
"VLAD-Dim": str(db_vlads.shape[1]),
"Num-Clusters": str(largs.num_clusters),
"Experiment-ID": str(largs.exp_id),
"DB-Name": str(ds_name),
"Num-DB": str(len(db_vlads)),
"Num-QU": str(len(qu_vlads)),
"Timestamp": str(ts)
}
print("Results: ")
for k in results:
print(f"- {k}: {results[k]}")
print("- Recalls: ")
for k in recalls:
results[f"R@{k}"] = recalls[k]
print(f" - R@{k}: {recalls[k]:.5f}")
if largs.show_plot:
plt.plot(recalls.keys(), recalls.values())
plt.ylim(0, 1)
plt.xticks(largs.top_k_vals)
plt.xlabel("top-k values")
plt.ylabel(r"% recall")
plt_title = "Recall curve"
if largs.exp_id is not None:
plt_title = f"{plt_title} - Exp {largs.exp_id}"
if largs.prog.use_wandb:
plt_title = f"{plt_title} - {wandb_run.name}"
plt.title(plt_title)
plt.show()
# Log to WandB
if largs.prog.use_wandb:
wandb.log(results)
for tk in recalls:
wandb.log({"Recall-All": recalls[tk]}, step=int(tk))
# Add retrievals
results["Qual-Dists"] = dists
results["Qual-Indices"] = indices
save_res_file = None
if largs.exp_id == True:
save_res_file = caching_directory
elif type(largs.exp_id) == str:
save_res_file = f"{caching_directory}/experiments/"\
f"{largs.exp_id}"
if save_res_file is not None:
if not os.path.isdir(save_res_file):
os.makedirs(save_res_file)
save_res_file = f"{save_res_file}/results_{ts}.gz"
print(f"Saving result in: {save_res_file}")
joblib.dump(results, save_res_file)
else:
print("Not saving results")
if largs.prog.use_wandb:
wandb.finish()
print("--------------------- END ---------------------")
# %%
if __name__ == "__main__" and ("ipykernel" not in sys.argv[0]):
largs = tyro.cli(LocalArgs, description=__doc__)
_start = time.time()
try:
main(largs)
except:
print("Unhandled exception")
traceback.print_exc()
finally:
print(f"Program ended in {time.time()-_start:.3f} seconds")
exit(0)
# %%
# Experimental section
# %%
largs = LocalArgs(prog=ProgArgs(vg_dataset_name="gardens"),
sub_sample_db=5, sub_sample_qu=5,
sub_sample_db_vlad=2, desc_layers=[10, 11])
print(f"Arguments: {largs}")
# %%
ds_dir = largs.prog.data_vg_dir
ds_name = largs.prog.vg_dataset_name
print(f"Dataset directory: {ds_dir}")
print(f"Dataset name: {ds_name}, split: {largs.data_split}")
# Load dataset
if ds_name=="baidu_datasets":
vpr_ds = Baidu_Dataset(largs.bd_args, ds_dir, ds_name,
largs.data_split)
elif ds_name=="Oxford":
vpr_ds = Oxford(ds_dir)
elif ds_name=="gardens":
vpr_ds = Gardens(largs.bd_args,ds_dir,ds_name,largs.data_split)
else:
vpr_ds = BaseDataset(largs.bd_args, ds_dir, ds_name,
largs.data_split)
# %%
_start = time.time()
db_vlads, qu_vlads = build_vlads(largs, vpr_ds)
print(f"Building VLAD took {time.time()-_start:.3f} seconds")
# %%
dists, indices, recalls = get_top_k_recall(largs.top_k_vals,
db_vlads, qu_vlads, vpr_ds.soft_positives_per_query,
sub_sample_db=largs.sub_sample_db,
sub_sample_qu=largs.sub_sample_qu)
# %%
plt.plot(recalls.keys(), recalls.values())
plt.ylim(0, 1)
plt.xticks(largs.top_k_vals)
plt.xlabel("top-k values")
plt.ylabel(r"% recall")
plt_title = "Recall curve"
if largs.exp_id is not None:
plt_title = f"{plt_title} - Exp {largs.exp_id}"
plt.title(plt_title)
plt.show()
# %%
print(f"Dino dim: {db_vlads.shape[1]//largs.num_clusters}")
print(f"VLAD dim: {db_vlads.shape[1]}")
# %%