-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathRTree.go
680 lines (625 loc) · 20.7 KB
/
RTree.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
// Simple RTree is a blazingly fast and GC friendly RTree. It handles 1 Million points in 1.2 microseconds for nearest point search
// (measured in an i7 with 16Gb of RAM). It is GC friendly, queries require 0 allocations.
// Building the index requires exactly 8 allocations and approximately 40 bytes per coordinate.
// That is, an index for 1 million points requires approximately 40Mb in the heap.
//
// To achieve this speed, the index has three restrictions. It is static, once built it cannot be changed.
// It only accepts points coordinates, no bboxes, lines or ids. And it only accepts (for now) one query, closest point to a given coordinate.
//
// Beware, to achieve top performance one of the hot functions has been rewritten in assembly.
// Library works in x86 but it probably won't work in other architectures. PRs are welcome to fix this deficiency.
//
// Basic Usage
//
// The format of the points is a single array where each too coordinates represent a point.
// import "SimpleRTree"
// points := []float64{0.0, 0.0, 1.0, 1.0} // array of two points 0, 0 and 1, 1
// fp := SimpleRTree.FlatPoints(points)
// r := SimpleRTree.New().Load(fp)
// closestX, closestY, distanceSquared := r.FindNearestPoint(1.0, 3.0)
// // 1.0, 1.0, 4.0
//
// Algorithm
//
// Index is built using STR (sort tile recursive) method https://en.wikipedia.org/wiki/R*_tree . Points are sorted into buckets using
// Floyd-Rivest algorithm https://en.wikipedia.org/wiki/Floyd%E2%80%93Rivest_algorithm.
// During query time, nodes are traversed using a linear priority queue, so that most probable candidates are visited first.
// Possible distances from the given point to the BBox of the node is computed in Assembly for maximum speed.
//
//
// Benchmarks
//
// These are benchmarks for finding closest point. A uniform distribution of points has been used. If the point distribution is skewed times will vary.
// Nevertheless, STRTrees are known to behave well against skewed geometric information. The number represents the number of points.
//
// BenchmarkSimpleRTree_FindNearestPoint/10-4 10000000 124 ns/op
// BenchmarkSimpleRTree_FindNearestPoint/1000-4 3000000 465 ns/op
// BenchmarkSimpleRTree_FindNearestPoint/10000-4 2000000 670 ns/op
// BenchmarkSimpleRTree_FindNearestPoint/100000-4 2000000 871 ns/op
// BenchmarkSimpleRTree_FindNearestPoint/200000-4 2000000 961 ns/op
// BenchmarkSimpleRTree_FindNearestPoint/1000000-4 1000000 1210 ns/op
// BenchmarkSimpleRTree_FindNearestPoint/10000000-4 1000000 1593 ns/op
//
// Comparison with other RTrees
//
// It is hard to find a good comparison of RTrees, best available can be found at https://github.com/Sizmek/rtree2d which gathers benchmarks for
// RTrees in Java and Scala. According to that benchmark query times for 10M points vary from 2.7 microseconds to over 100 microseconds,
// so SimpleRTree performs fairly better. Times are even comparable with boost, R*-tree layout performs in 1.2 microseconds for 1 Million points https://www.boost.org/doc/libs/1_64_0/libs/geometry/doc/html/geometry/spatial_indexes/introduction.html
package SimpleRTree
import (
"bytes"
"fmt"
"log"
"math"
"strings"
"text/template"
"unsafe"
"sync"
"sort"
)
const MAX_POSSIBLE_SIZE = 9
// SimpleRTree is the main structure of the library
type SimpleRTree struct {
options Options
nodes []rNode
points FlatPoints
built bool
queuePool sync.Pool
unsafeQueue searchQueue // Only used in unsafe mode
sorterBuffer []int // floyd rivest requires a bucket, we allocate it once and reuse
}
// FlatPoints is the input format for coordinates
// It consists on a flat array, x coordinates are stored in even positions
// y coordinates are stored in odd coordinates
// []float64{0, 0, 2, 4} corresponds to the points (0, 0) and (2, 4)
//
// Note: rtree is assumed to have sole access to the array, it will modify the underlying order and it
// will return wrong results if the elements are modified
type FlatPoints []float64
type TreeType uint8
const (
STR = iota
HILBERT
)
// SimpleRTree can be slightly tuned
type Options struct {
UnsafeConcurrencyMode bool // Set this parameter to true if you only intend to access the R tree from one go routine. FindNearestPoint will be faster and it will make no allocations
MAX_ENTRIES int
TreeType TreeType
RTreePool *sync.Pool // If a lot of RTrees are being created you can provide a pool to the tree. On destroy the underlying memory space will be saved back to the pool, so next tree can use it
}
type rNode struct {
nodeType nodeType
nChildren int8
// Here we save firstChild - firstNode. That means that there is there is a theoretical upper limit to the tree of
// maxuint32 / node_size = 4294967295 / 40 = 107374182 ~ 100M
firstChildOffset uint32
BBox rVectorBBox
}
type nodeType int8
const (
default_node = iota
preleaf_node
)
var node_size = unsafe.Sizeof(rNode{})
var flat_point_size =unsafe.Sizeof([2]float64{})
var float_size = uintptr(unsafe.Sizeof([1]float64{}))
type pooledMem struct {
sorterBuffer []int
sq searchQueue
nodes []rNode
}
// Structure used to constructing the ndoe
type nodeConstruct struct {
height int
start, end uint32 // index in the underlying array
}
// New returns an instance of an RTree with default options
func New() *SimpleRTree {
defaultOptions := Options{
MAX_ENTRIES: MAX_POSSIBLE_SIZE,
}
return NewWithOptions(defaultOptions)
}
// NewWithOptions returns an instance of an RTree with given options o
func NewWithOptions(o Options) *SimpleRTree {
r := &SimpleRTree{
options: o,
}
if o.MAX_ENTRIES > MAX_POSSIBLE_SIZE {
panic(fmt.Sprintf("Cannot exceed %d for size", MAX_POSSIBLE_SIZE))
}
if o.MAX_ENTRIES == 0 {
r.options.MAX_ENTRIES = MAX_POSSIBLE_SIZE
}
return r
}
// Destroy frees up resources that are held within the RTree
// This method is useful if RTree was provided a pool, so used memory is return to the pool
// Example:
// pool := &sync.Pool{}
// r1 := SimpleRTree.NewWithOptions(SimpleRTree.Options{RTreePool: pool})
// /* Perform some queries */
// /* r1 is no longer needed */
// r1.Destroy()
//r2 will be used with the same underlying objects, thus avoiding heap allocations
// r2 := SimpleRTree.NewWithOptions(SimpleRTree.Options{RTreePool: pool})
func (r *SimpleRTree) Destroy () {
if r.options.RTreePool != nil {
r.options.RTreePool.Put(
&pooledMem{
sorterBuffer: r.sorterBuffer,
sq: r.unsafeQueue,
nodes: r.nodes,
},
)
}
}
// Load accepts points, an flat array of coordinates and builds the RTree
//
// Note: rtree is assumed to have sole access to the array, it will modify the underlying order and it
// will return wrong results if the elements are modified
func (r *SimpleRTree) Load(points FlatPoints) *SimpleRTree {
return r.load(points, false)
}
// LoadSortedArray accepts a sorted flat array of coordinates and builds the RTree.
// If the tree is STR (the default)
// points must have been sorted lexicographically. That is
// (x1, y1) < (x2, y2) if x1 < x2 or x1 === x2 and y1 < y2
//
// In case the tree is a hilbert tree (created with NewWithOptions) then points are assumed to be sorted wrt to the geohash
//
// Note: rtree is assumed to have sole access to the array, it will modify the underlying order and it
// will return wrong results if the elements are modified
func (r *SimpleRTree) LoadSortedArray(points FlatPoints) *SimpleRTree {
return r.load(points, true)
}
// FindNearestPoint will return the coordinates of the closest point
// to the provided coordinates x and y. The function returns three parameters
// x1, y1 coordinates of the point
// d1 distances squared to that point. That is |x1 - x|**2 + |y1 - y|**2
// x1, y1, d1 := r.FindNearestPoint(x, y)
// (x1 - x) * (x1 - x) + (y1 - y) * (y1 - y) == d1
func (r *SimpleRTree) FindNearestPoint(x, y float64) (x1, y1, d1 float64) {
x1, y1, d1, _ = r.FindNearestPointWithin(x, y, math.Inf(1))
return
}
// FindNearestPointWithin will return the closest point
// to the provided coordinates x and y, within the distance squared dsquared.
// The method returns coordinates of the point x1, y1.
// Distance squared to the point d1 and a boolean found
// In case there is no point satisfying |x1 - x|**2 + |y1 - y| ** 2 < dsquared
// found will return false
// x1, y1, d1, found := r.FindNearestPointWithin(x, y, 4)
// (x1 - x) * (x1 - x) + (y1 - y) * (y1 - y) < 4
func (r *SimpleRTree) FindNearestPointWithin(x, y, dsquared float64) (x1, y1, d1 float64, found bool) {
var minItem searchQueueItem
distanceLowerBound := math.Inf(1)
// if bbox is further from this bound then we don't explore it
distanceUpperBound := dsquared
var sq searchQueue
if r.options.UnsafeConcurrencyMode {
sq = r.unsafeQueue
} else {
sq = r.queuePool.Get().(searchQueue)
}
sq = sq[0:0]
rootNode := &r.nodes[0]
unsafeRootLeafNode := uintptr(unsafe.Pointer(&r.points[0]))
unsafeRootNode := uintptr(unsafe.Pointer(rootNode))
sq = append(sq, searchQueueItem{node: uintptr(unsafe.Pointer(rootNode)), distance: 0}) // we don't need distance for first node
for sq.Len() > 0 {
sq.PreparePop()
item := sq[sq.Len() - 1]
sq = sq[0: sq.Len() - 1]
currentDistance := item.distance
if found && currentDistance > distanceLowerBound {
break
}
node := (*rNode)(unsafe.Pointer(item.node))
if node == nil { // Leaf
// we know it is smaller from the previous test
distanceLowerBound = currentDistance
minItem = item
found = true
continue
}
switch node.nodeType {
case preleaf_node:
f := unsafeRootLeafNode + uintptr(node.firstChildOffset)
var i int8
for i = node.nChildren; i>0; i-- {
px := *(*float64)(unsafe.Pointer(f))
f = f + float_size
py := *(*float64)(unsafe.Pointer(f))
d := computeLeafDistance(px, py, x, y)
if d <= distanceUpperBound {
sq = append(sq, searchQueueItem{node: uintptr(unsafe.Pointer(nil)), px: px, py: py, distance: d})
distanceUpperBound = d
}
f = f + float_size
}
default:
f := unsafeRootNode + uintptr(node.firstChildOffset)
var i int8
for i = node.nChildren; i>0; i-- {
n := (*rNode)(unsafe.Pointer(f))
mind, maxd := vectorComputeDistances(n.BBox, x, y)
if mind <= distanceUpperBound {
sq = append(sq, searchQueueItem{node: uintptr(unsafe.Pointer(n)), distance: mind})
// Distance to one of the corners is lower than the upper bound
// so there must be a point at most within distanceUpperBound
if maxd < distanceUpperBound {
distanceUpperBound = maxd
}
}
f = f + node_size
}
}
}
// return heap
if !r.options.UnsafeConcurrencyMode {
r.queuePool.Put(sq)
} else {
r.unsafeQueue = sq
}
if !found {
return
}
x1 = minItem.px
y1 = minItem.py
d1 = distanceUpperBound
return
}
func (r *SimpleRTree) load(points FlatPoints, isSorted bool) *SimpleRTree {
if points.Len() == 0 {
return r
}
if points.Len() >= math.MaxUint32 / int(node_size) {
log.Fatal("Exceded maximum possible size", math.MaxUint32 / int(node_size))
}
if r.options.MAX_ENTRIES == 0 {
panic("MAX entries was 0")
}
if r.built {
log.Fatal("Tree is static, cannot load twice")
}
r.built = true
isPooledMemReceived := false
var rtreePooledMem *pooledMem
if r.options.RTreePool != nil {
rtreePoolMemCandidate := r.options.RTreePool.Get()
if rtreePoolMemCandidate != nil {
rtreePooledMem = rtreePoolMemCandidate.(*pooledMem)
isPooledMemReceived = true
}
}
if isPooledMemReceived && cap(rtreePooledMem.sorterBuffer) >= r.options.MAX_ENTRIES+1 {
r.sorterBuffer = rtreePooledMem.sorterBuffer[0: 0]
} else {
r.sorterBuffer = make([]int, 0, r.options.MAX_ENTRIES+1)
}
r.points = points
if isPooledMemReceived && cap(rtreePooledMem.nodes) >= computeSize(points.Len()) {
r.nodes = rtreePooledMem.nodes[0: 0]
} else {
r.nodes = make([]rNode, 0, computeSize(points.Len()))
}
var rootNodeConstruct nodeConstruct
if r.options.TreeType == STR {
rootNodeConstruct = r.buildSTR(points, isSorted)
} else {
rootNodeConstruct = r.buildHilbert(points, isSorted)
}
if isPooledMemReceived && r.options.UnsafeConcurrencyMode && cap(rtreePooledMem.sq) >= rootNodeConstruct.height*r.options.MAX_ENTRIES {
r.unsafeQueue = rtreePooledMem.sq
} else {
if r.options.UnsafeConcurrencyMode {
r.unsafeQueue = make(searchQueue, rootNodeConstruct.height*r.options.MAX_ENTRIES)
} else {
r.queuePool = sync.Pool{
New: func () interface {} {
return make(searchQueue, rootNodeConstruct.height*r.options.MAX_ENTRIES)
},
}
firstQueue := r.queuePool.Get()
r.queuePool.Put(firstQueue)
}
}
return r
}
func (r *SimpleRTree) buildHilbert(points FlatPoints, isSorted bool) nodeConstruct {
r.nodes = append(r.nodes, rNode{})
if (!isSorted) {
r.sortHilbert(points)
}
nBuckets := points.Len() / r.options.MAX_ENTRIES
if (points.Len() % r.options.MAX_ENTRIES > 0) {
nBuckets++
}
previousStart := 0
nextStart := len(r.nodes)
height := 2
for i:= 0; i < nBuckets ; i++ {
start := previousStart + i * r.options.MAX_ENTRIES
end := minInt(start + r.options.MAX_ENTRIES, points.Len())
x0, y0 := r.points.GetPointAt(start)
vb := rVectorBBox{x0, y0, x0, y0}
for i := end - start - 1; i > 0; i-- {
x1, y1 := r.points.GetPointAt(start + i)
vb1 := [4]float64{
x1,
y1,
x1,
y1,
}
vb = vectorBBoxExtend(vb, vb1)
}
r.nodes = append(r.nodes, rNode{
nodeType: preleaf_node,
BBox: vb,
nChildren: int8(end - start),
firstChildOffset: uint32(start) * uint32(flat_point_size),
})
}
for nBuckets > r.options.MAX_ENTRIES {
height++
previousNBuckets := nBuckets
previousStart = nextStart
nextStart = len(r.nodes)
nBuckets = previousNBuckets / r.options.MAX_ENTRIES
if (previousNBuckets % r.options.MAX_ENTRIES > 0) {
nBuckets++
}
for i:= 0; i < nBuckets ; i++ {
start := previousStart + i * r.options.MAX_ENTRIES
end := minInt(start + r.options.MAX_ENTRIES, len(r.nodes))
vb := r.nodes[start].BBox
for i := end - start - 1; i > 0; i-- {
vb1 := r.nodes[start + i].BBox
vb = vectorBBoxExtend(vb, vb1)
}
r.nodes = append(r.nodes, rNode{
nodeType: default_node,
BBox: vb,
nChildren: int8(end - start),
firstChildOffset: uint32(start) * uint32(node_size),
})
}
}
previousStart = nextStart
r.nodes[0] = rNode{
nodeType: default_node,
// no need for bbox
firstChildOffset: uint32(previousStart) * uint32(node_size),
nChildren: int8(nBuckets),
}
return nodeConstruct{
height: height,
}
}
func (r *SimpleRTree) sortHilbert(points FlatPoints) {
hashes := make([]uint64, points.Len())
for i:= 0; i < points.Len(); i++ {
hash := GeoHash(points.GetPointAt(i))
hashes[i] = hash
}
sorter := GeoHashSorter{
points: points,
hashes: hashes,
}
sort.Sort(sorter)
}
func (r *SimpleRTree) buildSTR(points FlatPoints, isSorted bool) nodeConstruct {
r.nodes = append(r.nodes, rNode{})
rootNodeConstruct := nodeConstruct{
height: int(math.Ceil(math.Log(float64(points.Len())) / math.Log(float64(r.options.MAX_ENTRIES)))),
start: uint32(0),
end: uint32(points.Len()),
}
r.buildNodeDownwards(&r.nodes[0], rootNodeConstruct, isSorted)
return rootNodeConstruct
}
func (r *SimpleRTree) buildNodeDownwards(n *rNode, nc nodeConstruct, isSorted bool) rVectorBBox {
N := int(nc.end - nc.start)
// target number of root entries to maximize storage utilization
var M float64
if N <= r.options.MAX_ENTRIES { // Leaf node
return r.setLeafNode(n, nc)
}
M = math.Ceil(float64(N) / float64(math.Pow(float64(r.options.MAX_ENTRIES), float64(nc.height-1))))
N2 := int(math.Ceil(float64(N) / M))
N1 := N2 * int(math.Ceil(math.Sqrt(M)))
start := int(nc.start)
// parent node might already be sorted. In that case we avoid double computation
if !isSorted {
sortX := xSorter{n: n, points: r.points, start: start, end: int(nc.end), bucketSize: N1}
sortX.Sort(r.sorterBuffer)
}
nodeConstructs := [MAX_POSSIBLE_SIZE]nodeConstruct{}
var nodeConstructIndex int8
firstChildIndex := len(r.nodes)
for i := 0; i < N; i += N1 {
right2 := minInt(i+N1, N)
sortY := ySorter{n: n, points: r.points, start: start+ i, end: start+ right2, bucketSize: N2}
sortY.Sort(r.sorterBuffer)
for j := i; j < right2; j += N2 {
right3 := minInt(j+N2, right2)
child := rNode{}
childC := nodeConstruct{
start: nc.start + uint32(j),
end: nc.start + uint32(right3),
height: nc.height - 1,
}
r.nodes = append(r.nodes, child)
nodeConstructs[nodeConstructIndex] = childC
nodeConstructIndex++
}
}
n.firstChildOffset = uint32(firstChildIndex) * uint32(node_size)
n.nChildren = nodeConstructIndex
// compute children
var i int8
bbox := r.buildNodeDownwards(&r.nodes[firstChildIndex], nodeConstructs[i], false)
for i = 1; i < nodeConstructIndex; i++ {
// TODO check why using (*Node)f here does not work
bbox2 := r.buildNodeDownwards(&r.nodes[firstChildIndex+int(i)], nodeConstructs[i], false)
bbox = vectorBBoxExtend(bbox, bbox2)
}
n.BBox = bbox
return bbox
}
func (r *SimpleRTree) setLeafNode(n *rNode, nc nodeConstruct) rVectorBBox {
// Here we follow original rbush implementation.
start := int(nc.start)
end := int(nc.end)
firstChildIndex := start
x0, y0 := r.points.GetPointAt(start)
vb := rVectorBBox{x0, y0, x0, y0}
for i := end-start - 1; i > 0; i-- {
x1, y1 := r.points.GetPointAt(start + i)
vb1 := [4]float64{
x1,
y1,
x1,
y1,
}
vb = vectorBBoxExtend(vb, vb1)
}
n.firstChildOffset = uint32(firstChildIndex) * uint32(flat_point_size) // We access leafs on the original array
n.nChildren = int8(nc.end - nc.start)
n.nodeType = preleaf_node
n.BBox = vb
return vb
}
func (r *SimpleRTree) toJSON() {
text := make([]string, 0)
fmt.Println(strings.Join(r.toJSONAcc(&r.nodes[0], text), ","))
}
func (r *SimpleRTree) toJSONAcc(n *rNode, text []string) []string {
t, err := template.New("foo").Parse(`{
"type": "Feature",
"properties": {},
"geometry": {
"type": "Polygon",
"coordinates": [
[
[
{{index .BBox 0}},
{{index .BBox 1}}
],
[
{{index .BBox 2}},
{{index .BBox 1}}
],
[
{{index .BBox 2}},
{{index .BBox 3}}
],
[
{{index .BBox 0}},
{{index .BBox 3}}
],
[
{{index .BBox 0}},
{{index .BBox 1}}
]
]
]
}
}`)
if err != nil {
log.Fatal(err)
}
var tpl bytes.Buffer
if err := t.Execute(&tpl, n); err != nil {
log.Fatal(err)
}
text = append(text, tpl.String())
f := unsafe.Pointer(uintptr(unsafe.Pointer(&r.nodes[0])) + uintptr(n.firstChildOffset))
var i int8
for i = 0; i < n.nChildren; i++ {
cn := (*rNode)(f)
text = r.toJSONAcc(cn, text)
f = unsafe.Pointer(uintptr(f) + node_size)
}
return text
}
// node is point, there is only one distance
func computeLeafDistance(px, py, x, y float64) float64 {
return (x-px)*(x-px) +
(y-py)*(y-py)
}
func computeDistances(bbox rVectorBBox, x, y float64) (mind, maxd float64) {
// TODO try simd
minX := bbox[0]
minY := bbox[1]
maxX := bbox[2]
maxY := bbox[3]
minx, maxx := sortFloats((x-minX)*(x-minX), (x-maxX)*(x-maxX))
miny, maxy := sortFloats((y-minY)*(y-minY), (y-maxY)*(y-maxY))
sideX := (maxX - minX) * (maxX - minX)
sideY := (maxY - minY) * (maxY - minY)
// Code is a bit cryptic but it is equivalent to the commented code which is clearer
if maxx >= sideX {
mind += minx
}
if maxy >= sideY {
mind += miny
}
// Given a bbox the distance will be bounded to the two intermediate corners
maxd = minFloat(maxx+miny, minx+maxy)
return
/*
How to compute mind
// point is inside because max distances in both axis are smaller than sides of the square
if (maxx < sideX && maxy < sideY) {
// do nothing mind is already 0
} else if (maxx < sideX && maxy >= sideY) {
// point is in vertical stripe. Hence distance to the bbox is minimum vertical distance
mind = miny
} else if (maxx >= sideX && maxy < sideY) {
// point is in horizontal stripe, Hence distance is least distance to one of the sides (vertical distance is 0
mind = minx
} else if (maxx >= sideX && maxy >= sideY){
// point is not inside bbox. closest vertex is that one with closest x and y
mind = minx + miny
}*/
}
func vectorComputeDistances(bbox rVectorBBox, x, y float64) (mind, maxd float64)
func minInt(a, b int) int {
if a < b {
return a
}
return b
}
func minFloat(a, b float64) float64 {
if a < b {
return a
}
return b
}
func maxFloat(a, b float64) float64 {
if a > b {
return a
}
return b
}
func (fp FlatPoints) Len() int {
return len(fp) / 2
}
func (fp FlatPoints) Swap(i, j int) {
fp[2*i], fp[2*i+1], fp[2*j], fp[2*j+1] = fp[2*j], fp[2*j+1], fp[2*i], fp[2*i+1]
}
func (fp FlatPoints) GetPointAt(i int) (x1, y1 float64) {
return fp[2*i], fp[2*i+1]
}
func sortFloats(x1, x2 float64) (x3, x4 float64) {
if x1 > x2 {
return x2, x1
}
return x1, x2
}
func computeSize(n int) (size int) {
return n
}