forked from LostRuins/koboldcpp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgpttype_adapter.cpp
815 lines (735 loc) · 30.1 KB
/
gpttype_adapter.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
//This is Concedo's shitty adapter for adding python bindings for llama
//Considerations:
//Don't want to use pybind11 due to dependencies on MSVCC
//ZERO or MINIMAL changes as possible to main.cpp - do not move their function declarations here!
//Leave main.cpp UNTOUCHED, We want to be able to update the repo and pull any changes automatically.
//No dynamic memory allocation! Setup structs with FIXED (known) shapes and sizes for ALL output fields
//Python will ALWAYS provide the memory, we just write to it.
#include <time.h>
#include "model_adapter.h"
#include "otherarch.h"
//for easier compilation
#include "llamaextra.cpp"
//concat source files into one file for compilation purposes
#include "common-ggml.cpp"
#include "utils.cpp"
#include "gptj_v1.cpp"
#include "gptj_v2.cpp"
#include "gpt2_v1.cpp"
#include "gpt2_v2.cpp"
#include "rwkv.cpp"
#include "neox.cpp"
//return val: 0=fail, 1=(original ggml, alpaca), 2=(ggmf), 3=(ggjt)
static FileFormat file_format = FileFormat::BADFORMAT;
static gpt_vocab vocab;
static gptj_model_v1 gptj_ctx_v1;
static gptj_model gptj_ctx_v2;
static gpt2_v1_model gpt2_ctx_v1;
static gpt2_model gpt2_ctx_v2;
static stablelm_model neox_ctx;
static rwkv_context * rwkv_ctx_v1;
static llama_context_params llama_ctx_params;
static llama_context * llama_ctx_v1;
static gpt_params params;
static int n_past = 0;
static int n_threads = 4;
static int n_blasthreads = 4;
static int n_batch = 8;
static bool useSmartContext = false;
static bool unbanTokens = false;
static int blasbatchsize = 512;
static bool debugmode = false;
static std::string modelname;
static std::vector<gpt_vocab::id> last_n_tokens;
static std::vector<gpt_vocab::id> current_context_tokens;
static size_t mem_per_token = 0;
static std::vector<float> logits;
static std::vector<int> smartcontext;
static std::vector<std::string> stop_sequence;
inline bool IsNanCheck(float f)
{
const unsigned int u = *(unsigned int*)&f;
return (u&0x7F800000) == 0x7F800000 && (u&0x7FFFFF); // Both NaN and qNan.
}
inline bool LogitsDuplicated(std::vector<float> & arr1, std::vector<float> & arr2)
{
int compareQty = 5;
if(arr1.size() < compareQty || arr2.size() < compareQty || arr1.size()!=arr2.size())
{
printf("\nError: Logit array sizes are bad!\n");
return false;
}
for(int i=0;i<compareQty;++i)
{
if(arr1[i]!=arr2[i])
{
return false;
}
}
return true;
}
llama_token sample_token(llama_token_data_array * candidates, std::mt19937 & rng)
{
const int64_t t_start_sample_us = ggml_time_us();
llama_sample_softmax(nullptr, candidates);
std::vector<float> probs;
probs.reserve(candidates->size);
for (size_t i = 0; i < candidates->size; ++i) {
probs.push_back(candidates->data[i].p);
}
std::discrete_distribution<> dist(probs.begin(), probs.end());
int idx = dist(rng);
llama_token result = candidates->data[idx].id;
return result;
}
llama_token sample_token_mirostat(int n_vocab, llama_token_data_array * candidates, std::mt19937 & rng, float tau, float eta, int m, float * mu)
{
float N = float(n_vocab);
llama_sample_softmax(nullptr, candidates);
// Estimate s_hat using the most probable m tokens
float s_hat = 0.0;
float sum_ti_bi = 0.0;
float sum_ti_sq = 0.0;
for (size_t i = 0; i < size_t(m - 1) && i < candidates->size - 1; ++i) {
float t_i = logf(float(i + 2) / float(i + 1));
float b_i = logf(candidates->data[i].p / candidates->data[i + 1].p);
sum_ti_bi += t_i * b_i;
sum_ti_sq += t_i * t_i;
}
s_hat = sum_ti_bi / sum_ti_sq;
// Compute k from the estimated s_hat and target surprise value
float epsilon_hat = s_hat - 1;
float k = powf((epsilon_hat * powf(2, *mu)) / (1 - powf(N, -epsilon_hat)), 1 / s_hat);
// Sample the next word X using top-k sampling
llama_sample_top_k(nullptr, candidates, int(k),1);
llama_token X = sample_token(candidates, rng); // Compute error as the difference between observed surprise and target surprise value
size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
return candidate.id == X;
}));
float observed_surprise = -log2f(candidates->data[X_idx].p);
float e = observed_surprise - tau;
// Update mu using the learning rate and error
*mu = *mu - eta * e;
return X;
}
llama_token sample_token_mirostat_v2(llama_token_data_array * candidates, std::mt19937 & rng, float tau, float eta, float * mu)
{
llama_sample_softmax(nullptr, candidates);
// Truncate the words with surprise values greater than mu
candidates->size = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
return -log2f(candidate.p) > *mu;
}));
// Normalize the probabilities of the remaining words
llama_sample_softmax(nullptr, candidates);
// Sample the next word X from the remaining words
llama_token X = sample_token(candidates,rng);
// Compute error as the difference between observed surprise and target surprise value
size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
return candidate.id == X;
}));
float observed_surprise = -log2f(candidates->data[X_idx].p);
float e = observed_surprise - tau;
// Update mu using the learning rate and error
*mu = *mu - eta * e;
return X;
}
int SampleLogits(const float * logits, int n_ctx, int n_vocab, int rep_pen_range, float rep_pen, float top_k, float top_p, float typical_p, float tfs, float temp, std::mt19937 & rng,
int mirostat, float mirostat_tau, float mirostat_eta)
{
int id = 0;
std::vector<llama_token_data> candidates;
candidates.reserve(n_vocab);
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
}
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
// Apply penalties
auto last_n_repeat = std::min(std::min((int)last_n_tokens.size(), rep_pen_range), n_ctx);
llama_sample_repetition_penalty(nullptr, &candidates_p,
last_n_tokens.data() + last_n_tokens.size() - last_n_repeat,
last_n_repeat, rep_pen);
// llama_sample_frequency_and_presence_penalties(nullptr, &candidates_p,
// last_n_tokens.data() + last_n_tokens.size() - last_n_repeat,
// last_n_repeat, alpha_frequency, alpha_presence);
if (temp <= 0)
{
// Greedy sampling
id = llama_sample_token_greedy(nullptr, &candidates_p);
}
else
{
if (mirostat == 1)
{
static float mirostat_mu = 2.0f * mirostat_tau;
const int mirostat_m = 100;
llama_sample_temperature(nullptr, &candidates_p, temp);
id = sample_token_mirostat(n_vocab, &candidates_p, rng, mirostat_tau, mirostat_eta, mirostat_m, &mirostat_mu);
}
else if (mirostat == 2)
{
static float mirostat_mu = 2.0f * mirostat_tau;
llama_sample_temperature(nullptr, &candidates_p, temp);
id = sample_token_mirostat_v2(&candidates_p, rng, mirostat_tau, mirostat_eta, &mirostat_mu);
}
else
{
// Temperature sampling
llama_sample_top_k(nullptr, &candidates_p, top_k,1);
llama_sample_tail_free(nullptr, &candidates_p, tfs,1);
llama_sample_typical(nullptr, &candidates_p, typical_p,1);
llama_sample_top_p(nullptr, &candidates_p, top_p,1);
llama_sample_temperature(nullptr, &candidates_p, temp);
id = sample_token(&candidates_p, rng);
}
}
return id;
}
ModelLoadResult gpttype_load_model(const load_model_inputs inputs, FileFormat in_file_format)
{
ggml_time_init();
file_format = in_file_format;
n_threads = params.n_threads = inputs.threads;
n_blasthreads = inputs.blasthreads;
n_batch = params.n_batch = inputs.batch_size;
modelname = params.model = inputs.model_filename;
useSmartContext = inputs.use_smartcontext;
debugmode = inputs.debugmode;
unbanTokens = inputs.unban_tokens;
blasbatchsize = inputs.blasbatchsize;
params.memory_f16 = inputs.f16_kv;
params.n_ctx = inputs.max_context_length;
neox_ctx.hparams.n_ctx = gptj_ctx_v1.hparams.n_ctx = gptj_ctx_v2.hparams.n_ctx = gpt2_ctx_v1.hparams.n_ctx = gpt2_ctx_v2.hparams.n_ctx = params.n_ctx;
printf("System Info: %s\n", llama_print_system_info());
if(file_format == FileFormat::GGML || file_format == FileFormat::GGHF || file_format == FileFormat::GGJT)
{
llama_ctx_params = llama_context_default_params();
llama_ctx_params.n_ctx = inputs.max_context_length;
llama_ctx_params.n_parts = -1;
llama_ctx_params.seed = -1;
llama_ctx_params.f16_kv = inputs.f16_kv;
llama_ctx_params.logits_all = false;
llama_ctx_params.use_mmap = inputs.use_mmap;
llama_ctx_params.use_mlock = inputs.use_mlock;
llama_ctx_v1 = llama_init_from_file(modelname.c_str(), llama_ctx_params);
if (llama_ctx_v1 == NULL)
{
fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, modelname.c_str());
return ModelLoadResult::FAIL;
}
if (file_format < FileFormat::GGJT)
{
printf("\n---\nWarning: Your model has an INVALID or OUTDATED format (ver %d). Please reconvert it for better results!\n---\n", file_format);
}
if (lora_filename != "")
{
printf("\nAttempting to apply LORA adapter: %s\n", lora_filename.c_str());
int err = llama_apply_lora_from_file(llama_ctx_v1,
lora_filename.c_str(),
NULL,
n_threads);
if (err != 0)
{
fprintf(stderr, "%s: error: failed to apply lora adapter\n", __func__);
return ModelLoadResult::FAIL;
}
}
//determine mem per token
const std::vector<int> tmp = {0, 1, 2, 3};
llama_eval(llama_ctx_v1, tmp.data(), tmp.size(), 0, params.n_threads);
return ModelLoadResult::SUCCESS;
}
else if (file_format == FileFormat::RWKV_1)
{
rwkv_ctx_v1 = rwkv_init_from_file(modelname.c_str(), n_threads);
//setup buffers for rwkv state
auto padding = 512u;
auto statebufsiz = rwkv_get_state_buffer_element_count(rwkv_ctx_v1) * sizeof(float) + padding;
auto logitbufsiz = rwkv_get_logits_buffer_element_count(rwkv_ctx_v1) * sizeof(float) + padding;
printf("\nRWKV Init: State Buffer:%u, Logit Buffer:%u\n", statebufsiz, logitbufsiz);
rwkv_ctx_v1->state_out = (float *)malloc(statebufsiz);
rwkv_ctx_v1->logits_out = (float *)malloc(logitbufsiz);
rwkv_ctx_v1->state_in = nullptr;
n_batch = 1;
std::string word;
read_rwkv_vocab();
int vocabsiz = rwkv_vocab.size();
for (int i = 0; i < vocabsiz; i++) {
uint32_t len;
word = rwkv_vocab[i];
vocab.token_to_id[word] = i;
vocab.id_to_token[i] = word;
}
printf("\nRWKV Vocab: %u\n",vocabsiz);
bool testeval = rwkv_eval(rwkv_ctx_v1, 0, rwkv_ctx_v1->state_in, rwkv_ctx_v1->state_out, rwkv_ctx_v1->logits_out);
if(!testeval)
{
printf("\nError: RWKV Init Eval Failed!\n");
}
logits.resize(vocabsiz);
memcpy(logits.data(), rwkv_ctx_v1->logits_out, sizeof(float)*vocabsiz);
if (rwkv_ctx_v1 == NULL)
{
return ModelLoadResult::FAIL;
}
return ModelLoadResult::SUCCESS;
}
else if (file_format == FileFormat::GPT2_1)
{
ModelLoadResult res = legacy_gpt2_model_load(params.model, gpt2_ctx_v1, vocab, file_format);
if(res==ModelLoadResult::FAIL)
{
fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, params.model.c_str());
return res;
}
else if(res==ModelLoadResult::RETRY_LOAD)
{
printf("\nTensor Transposition Detected! Retrying GPT-2 model loading...");
return res;
}
// determine the required inference memory per token:
legacy_gpt2_eval(gpt2_ctx_v1, params.n_threads, 0, { 0, 1, 2, 3 }, logits, mem_per_token, file_format);
return ModelLoadResult::SUCCESS;
}
else if (file_format == FileFormat::GPT2_2)
{
ModelLoadResult res = gpt2_model_load(params.model, gpt2_ctx_v2, vocab, file_format);
if(res==ModelLoadResult::FAIL)
{
fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, params.model.c_str());
return res;
}
else if(res==ModelLoadResult::RETRY_LOAD)
{
printf("\nTensor Transposition Detected! Retrying GPT-2 model loading...");
return res;
}
// determine the required inference memory per token:
gpt2_eval(gpt2_ctx_v2, params.n_threads, 0, { 0, 1, 2, 3 }, logits, mem_per_token, file_format);
return ModelLoadResult::SUCCESS;
}
else if (file_format == FileFormat::GPTJ_1 || file_format == FileFormat::GPTJ_2)
{
ModelLoadResult res = legacy_gptj_model_load(params.model, gptj_ctx_v1, vocab, file_format);
if(res==ModelLoadResult::FAIL)
{
fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, params.model.c_str());
return res;
}
else if(res==ModelLoadResult::RETRY_LOAD)
{
printf("\nTensor Transposition Detected! Retrying GPT-J model loading...");
return res;
}
// determine the required inference memory per token:
legacy_gptj_eval(gptj_ctx_v1, params.n_threads, 0, { 0, 1, 2, 3 }, logits, mem_per_token, file_format);
//if the logits are NAN or duplicated, it means the model is incompatible
if(logits.size()>0 && IsNanCheck(logits[0]))
{
printf("\nBad Logits detected! Retrying GPT-J model loading...");
ggml_v1_free(gptj_ctx_v1.ctx);
return ModelLoadResult::RETRY_LOAD;
}
return ModelLoadResult::SUCCESS;
}
else if(file_format==FileFormat::NEOX_1 || file_format==FileFormat::NEOX_2)
{
ModelLoadResult res = stablelm_model_load(params.model, neox_ctx, vocab, file_format);
if(res==ModelLoadResult::FAIL)
{
fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, params.model.c_str());
return res;
}
else if(res==ModelLoadResult::RETRY_LOAD)
{
printf("\nIncorrect Tensor Size Detected! Retrying GPT-NeoX model loading...");
return res;
}
// determine the required inference memory per token:
stablelm_eval(neox_ctx, params.n_threads, 0, { 0, 1, 2, 3 }, logits, mem_per_token);
return ModelLoadResult::SUCCESS;
}
else
{
ModelLoadResult loadresult = gptj_model_load(params.model, gptj_ctx_v2, vocab);
if (loadresult == ModelLoadResult::FAIL)
{
fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, params.model.c_str());
return loadresult;
}
else if (loadresult == ModelLoadResult::RETRY_LOAD)
{
printf("\nTensor Transposition Detected! Retrying GPT-J model loading...");
return loadresult;
}
// determine the required inference memory per token:
gptj_eval(gptj_ctx_v2, params.n_threads, 0, { 0, 1, 2, 3 }, logits, mem_per_token);
//if the logits are NAN or duplicated, it means the model is incompatible
std::vector<float> oldlogits(logits);
//this is another hack because they change the library - we run the eval through the model
//twice and compare logits. if they give the same logits for different inputs, model is broken
gptj_eval(gptj_ctx_v2, params.n_threads, 0, {4, 5, 6, 7}, logits, mem_per_token);
if(logits.size()>0 && (IsNanCheck(logits[0]) || LogitsDuplicated(oldlogits,logits)))
{
printf("\nBad Logits detected! Retrying GPT-J model loading...");
ggml_free(gptj_ctx_v2.ctx);
return ModelLoadResult::RETRY_LOAD;
}
return ModelLoadResult::SUCCESS;
}
}
generation_outputs gpttype_generate(const generation_inputs inputs, generation_outputs &output)
{
stop_sequence.clear();
for(int x=0;x<stop_token_max;++x)
{
std::string stopper = inputs.stop_sequence[x];
if(stopper!="")
{
stop_sequence.push_back(stopper);
}
}
params.prompt = inputs.prompt;
params.seed = inputs.seed;
params.n_predict = inputs.max_length;
params.top_k = inputs.top_k;
params.top_p = inputs.top_p;
params.typical_p = inputs.typical_p;
params.tfs_z = inputs.tfs;
params.temp = inputs.temperature;
params.repeat_last_n = inputs.rep_pen_range;
params.repeat_penalty = inputs.rep_pen;
params.mirostat = inputs.mirostat;
params.mirostat_eta = inputs.mirostat_eta;
params.mirostat_tau = inputs.mirostat_tau;
params.n_ctx = inputs.max_context_length;
params.n_batch = n_batch;
params.n_threads = n_threads;
if (params.repeat_last_n < 1)
{
params.repeat_last_n = 1;
}
if (params.top_k < 1)
{
params.top_k = 300; //to disable top_k we actually need to increase this value to a very high number
}
if (params.seed <= 0)
{
params.seed = time(NULL);
}
// tokenize the prompt
std::vector<int> embd_inp;
if (file_format == FileFormat::GGML || file_format == FileFormat::GGHF || file_format == FileFormat::GGJT)
{
params.prompt.insert(0, 1, ' ');
if (file_format == FileFormat::GGML)
{
embd_inp = ::legacy_llama_tokenize(llama_ctx_v1, params.prompt, true);
}
else
{
embd_inp = ::llama_tokenize(llama_ctx_v1, params.prompt, true);
}
}
else
{
// tokenize the prompt
embd_inp = ::gpt_tokenize(vocab, params.prompt);
}
//truncate to front of the prompt if its too long
int32_t nctx = params.n_ctx;
if (embd_inp.size() + params.n_predict > nctx)
{
int offset = embd_inp.size() - nctx + params.n_predict;
embd_inp = std::vector<int>(embd_inp.begin() + offset, embd_inp.end());
}
//determine how much npast we have to rewind from the current state
std::vector<gpt_vocab::id> embd;
int last_n_size = params.repeat_last_n;
last_n_tokens.resize(last_n_size);
std::fill(last_n_tokens.begin(), last_n_tokens.end(), 0);
n_past = 0;
if (file_format == FileFormat::RWKV_1)
{
ContextFastForward(current_context_tokens, embd_inp, n_past, last_n_tokens, nctx, smartcontext, false, true);
}
else
{
ContextFastForward(current_context_tokens, embd_inp, n_past, last_n_tokens, nctx, smartcontext, useSmartContext, false);
}
//if using BLAS and prompt is big enough, switch to single thread and use a huge batch
bool approved_format = (file_format == FileFormat::GGML ||
file_format == FileFormat::GGHF ||
file_format == FileFormat::GGJT ||
file_format == FileFormat::GPT2_2 ||
file_format == FileFormat::GPTJ_3 ||
file_format == FileFormat::NEOX_1 ||
file_format == FileFormat::NEOX_2);
bool blasmode = (approved_format && embd_inp.size() >= 32 && ggml_cpu_has_blas());
// bool blasmode = false;
int original_batch = params.n_batch;
int original_threads = params.n_threads;
if (blasmode)
{
//for non llama, limit to 256
int bbs = blasbatchsize;
if (file_format != FileFormat::GGML && file_format != FileFormat::GGHF && file_format != FileFormat::GGJT)
{
bbs = (blasbatchsize > 256 ? 256 : blasbatchsize);
}
params.n_batch = bbs; //received reports of 1024 and above crashing on some models
if(!ggml_cpu_has_gpublas())
{
params.n_threads = 1; //do not limit here anymore.
}
else
{
params.n_threads = n_blasthreads;
}
}
current_context_tokens.resize(n_past);
int remaining_tokens = params.n_predict;
int stopper_unused_tokens = 0;
int input_consumed = 0;
std::mt19937 rng(params.seed);
std::string concat_output = "";
bool startedsampling = false;
timer_start();
double time1 = 0, time2 = 0;
int32_t n_vocab = 0;
if (file_format == FileFormat::GGML || file_format == FileFormat::GGHF || file_format == FileFormat::GGJT)
{
n_vocab = llama_n_vocab(llama_ctx_v1);
}
else if (file_format == FileFormat::GPTJ_1 || file_format == FileFormat::GPTJ_2)
{
n_vocab = gptj_ctx_v1.hparams.n_vocab;
}
else if(file_format == FileFormat::GPTJ_3)
{
n_vocab = gptj_ctx_v2.hparams.n_vocab;
}
else if(file_format == FileFormat::GPT2_1)
{
n_vocab = gpt2_ctx_v1.hparams.n_vocab;
}
else if(file_format == FileFormat::GPT2_2)
{
n_vocab = gpt2_ctx_v2.hparams.n_vocab;
}
else if(file_format == FileFormat::NEOX_1 || file_format == FileFormat::NEOX_2)
{
n_vocab = neox_ctx.hparams.n_vocab;
}
else if(file_format == FileFormat::RWKV_1)
{
n_vocab = vocab.id_to_token.size(); //handled seperately
if(n_past==0)
{
rwkv_ctx_v1->state_in = nullptr;
}
else
{
rwkv_ctx_v1->state_in = rwkv_ctx_v1->state_out;
//if it's empty, push in the final previous token
if(embd_inp.size()==0 && current_context_tokens.size()>0)
{
embd_inp.push_back(current_context_tokens[current_context_tokens.size()-1]);
}
}
}
else
{
printf("Bad format!");
}
printf("\n");
if(debugmode)
{
printf("\n[Debug: Dump Input Tokens]\n");
if (file_format == FileFormat::GGML || file_format == FileFormat::GGHF || file_format == FileFormat::GGJT)
{
for (auto id : embd_inp)
{
printf("'%s', ",llama_token_to_str(llama_ctx_v1, id));
}
}
else
{
for (auto id : embd_inp)
{
printf("'%s', ",vocab.id_to_token[id].c_str());
}
}
printf("\n");
}
while (remaining_tokens > 0)
{
gpt_vocab::id id = 0;
// predict
unsigned int embdsize = embd.size();
if (embdsize > 0)
{
//print progress
if (!startedsampling)
{
printf("\rProcessing Prompt%s (%d / %d tokens)", (blasmode ? " [BLAS]" : ""), input_consumed, embd_inp.size());
}
else
{
printf("\rGenerating (%d / %d tokens)", (1 + params.n_predict - remaining_tokens), params.n_predict);
}
fflush(stdout);
bool evalres = false;
if (file_format == FileFormat::GGML || file_format == FileFormat::GGHF || file_format == FileFormat::GGJT)
{
evalres = (llama_eval(llama_ctx_v1, embd.data(), embdsize, n_past, params.n_threads)==0);
}
else if(file_format==FileFormat::RWKV_1)
{
evalres = rwkv_eval(rwkv_ctx_v1, embd[0], rwkv_ctx_v1->state_in, rwkv_ctx_v1->state_out, rwkv_ctx_v1->logits_out);
memcpy(logits.data(), rwkv_ctx_v1->logits_out, sizeof(float)*rwkv_vocab.size());
rwkv_ctx_v1->state_in = rwkv_ctx_v1->state_out;
}
else if(file_format==FileFormat::GPT2_1)
{
evalres = legacy_gpt2_eval(gpt2_ctx_v1, params.n_threads, n_past, embd, logits, mem_per_token, file_format);
}
else if(file_format==FileFormat::GPT2_2)
{
evalres = gpt2_eval(gpt2_ctx_v2, params.n_threads, n_past, embd, logits, mem_per_token, file_format);
}
else if(file_format==FileFormat::NEOX_1 || file_format == FileFormat::NEOX_2)
{
evalres = stablelm_eval(neox_ctx, params.n_threads, n_past, embd, logits, mem_per_token);
}
else if(file_format==FileFormat::GPTJ_1 || file_format==FileFormat::GPTJ_2)
{
evalres = legacy_gptj_eval(gptj_ctx_v1, params.n_threads, n_past, embd, logits, mem_per_token, file_format);
}
else
{
evalres = gptj_eval(gptj_ctx_v2, params.n_threads, n_past, embd, logits, mem_per_token);
}
if (!evalres)
{
fprintf(stderr, "Failed to predict\n");
snprintf(output.text, sizeof(output.text), "%s", "");
output.status = 0;
return output;
}
}
n_past += embd.size();
embd.clear();
if ((int)embd_inp.size() <= input_consumed)
{
// out of user input, sample next token
const float top_k = params.top_k;
const float top_p = params.top_p;
const float temp = params.temp;
const float repeat_penalty = params.repeat_penalty;
const float typical_p = params.typical_p;
const float tfs_z = params.tfs_z;
if (!startedsampling)
{
startedsampling = true;
params.n_batch = original_batch;
params.n_threads = original_threads;
time1 = timer_check();
timer_start();
printf("\n");
}
if(file_format == FileFormat::GGML || file_format == FileFormat::GGHF || file_format == FileFormat::GGJT)
{
auto logits = llama_get_logits(llama_ctx_v1);
if (!unbanTokens)
{
// set the logit of the eos token (2) to zero to avoid sampling it
logits[llama_token_eos()] = 0;
//set logits of opening square bracket to zero.
logits[518] = 0;
logits[29961] = 0;
}
id = SampleLogits(logits, nctx, n_vocab, last_n_size, repeat_penalty,
top_k, top_p, typical_p, tfs_z, temp, rng,
params.mirostat,params.mirostat_tau,params.mirostat_eta);
}
else
{
if (!unbanTokens)
{
// set the logit of the eos token (2) to zero to avoid sampling it
if ((file_format == FileFormat::GPT2_1 ||
file_format == FileFormat::GPT2_2 ||
file_format == FileFormat::GPTJ_1 ||
file_format == FileFormat::GPTJ_2 ||
file_format == FileFormat::GPTJ_3) &&
logits.size() > 50256)
{
logits[50256] = (logits[50256] < 0 ? logits[50256] : 0);
}
//gpt2 uses negative logits, so we cant zero it
}
id = SampleLogits(logits.data(), nctx, n_vocab, last_n_size, repeat_penalty,
top_k, top_p, typical_p, tfs_z, temp, rng,
params.mirostat,params.mirostat_tau,params.mirostat_eta);
}
last_n_tokens.erase(last_n_tokens.begin());
last_n_tokens.push_back(id);
current_context_tokens.push_back(id);
// add it to the context
embd.push_back(id);
// decrement remaining sampling budget
--remaining_tokens;
if (file_format == FileFormat::GGML || file_format == FileFormat::GGHF || file_format == FileFormat::GGJT)
{
concat_output += llama_token_to_str(llama_ctx_v1, id);
if(unbanTokens && id==llama_token_eos())
{
printf("\n(EOS token triggered!)");
remaining_tokens = 0;
}
}
else
{
for (auto id : embd)
{
concat_output += vocab.id_to_token[id].c_str();
}
}
for (const auto &matched : stop_sequence)
{
if (concat_output.find(matched) != std::string::npos)
{
stopper_unused_tokens = remaining_tokens;
remaining_tokens = 0;
printf("\n(Stop sequence triggered: <%s>)", matched.c_str());
break;
}
}
}
else
{
// some user input remains from prompt or interaction, forward it to processing
while ((int)embd_inp.size() > input_consumed)
{
embd.push_back(embd_inp[input_consumed]);
last_n_tokens.erase(last_n_tokens.begin());
last_n_tokens.push_back(embd_inp[input_consumed]);
current_context_tokens.push_back(embd_inp[input_consumed]);
++input_consumed;
if ((int)embd.size() >= params.n_batch)
{
break;
}
}
}
}
time2 = timer_check();
float pt1 = (time1*1000.0/(embd_inp.size()==0?1:embd_inp.size()));
int realnpredict = params.n_predict-stopper_unused_tokens;
float pt2 = (time2*1000.0/(realnpredict==0?1:realnpredict));
printf("\nTime Taken - Processing:%.1fs (%.0fms/T), Generation:%.1fs (%.0fms/T), Total:%.1fs", time1, pt1, time2, pt2, (time1 + time2));
fflush(stdout);
output.status = 1;
snprintf(output.text, sizeof(output.text), "%s", concat_output.c_str());
return output;
}