-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathinference.py
99 lines (86 loc) · 3.71 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import os
import numpy as np
import cv2
import torch
import torch.nn.functional as F
from torch.autograd import Variable
import torchvision.transforms as transforms
from importlib import import_module
class TagPytorchInference(object):
def __init__(self, **kwargs):
_input_size = kwargs.get('input_size',299)
self.input_size = (_input_size, _input_size)
self.gpu_index = kwargs.get('gpu_index', '0')
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = self.gpu_index
self.net = self._create_model(**kwargs)
self._load(**kwargs)
self.net.eval()
self.transforms = transforms.ToTensor()
if torch.cuda.is_available():
self.net.cuda()
def close(self):
torch.cuda.empty_cache()
def _create_model(self, **kwargs):
module_name = kwargs.get('module_name','vgg_module')
net_name = kwargs.get('net_name', 'vgg16')
m = import_module('nets.' + module_name)
model = getattr(m, net_name)
net = model(**kwargs)
return net
def _load(self, **kwargs):
model_name = kwargs.get('model_name', 'model.pth')
model_filename = model_name
state_dict = torch.load(model_filename, map_location=None)
self.net.load_state_dict(state_dict)
def run(self, image_data, **kwargs):
_image_data = self.image_preproces(image_data)
input = self.transforms(_image_data)
_size = input.size()
input = input.resize_(1, _size[0], _size[1], _size[2])
if torch.cuda.is_available():
input = input.cuda()
logit = self.net(Variable(input))
# softmax
infer = F.softmax(logit, 1)
return infer.data.cpu().numpy().tolist()
def image_preproces(self, image_data):
_image = cv2.resize(image_data, self.input_size)
_image = _image[:,:,::-1] # bgr2rgb
return _image.copy()
if __name__ == "__main__":
# # python3 inference.py --image test.jpg --module inception_resnet_v2_module --net inception_resnet_v2 --model model.pth
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('-image', "--image", type=str, help='Assign the image path.', default=None)
parser.add_argument('-module', "--module", type=str, help='Assign the module name.', default=None)
parser.add_argument('-net', "--net", type=str, help='Assign the net name.', default=None)
parser.add_argument('-model', "--model", type=str, help='Assign the net name.', default=None)
parser.add_argument('-cls', "--cls", type=int, help='Assign the classes number.', default=None)
parser.add_argument('-size', "--size", type=int, help='Assign the input size.', default=None)
args = parser.parse_args()
if args.image is None or args.module is None or args.net is None or args.model is None\
or args.size is None or args.cls is None:
raise TypeError('input error')
if not os.path.exists(args.model):
raise TypeError('cannot find file of model')
if not os.path.exists(args.image):
raise TypeError('cannot find file of image')
print('test:')
filename = args.image
module_name = args.module
net_name = args.net
model_name = args.model
input_size = args.size
num_classes = args.cls
image = cv2.imread(filename)
if image is None:
raise TypeError('image data is none')
tagInfer = TagPytorchInference(module_name=module_name,net_name=net_name,
num_classes=num_classes, model_name=model_name,
input_size=input_size)
result = tagInfer.run(image)
print(result)
print('done!')