-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_utils.py
52 lines (39 loc) · 1.54 KB
/
train_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import tensorflow as tf
import feat_ext as fx
def parse(proto):
context_features = {k: v.Feature_type for k, v in fx.AudioLabelPair.context_features.items()}
sequence_features = {k: v.Feature_type for k, v in fx.AudioLabelPair.sequence_features.items()}
context, sequence = tf.parse_single_sequence_example(
proto,
context_features=context_features,
sequence_features=sequence_features,
)
return context, sequence
def parse_embedding_labels(proto):
_, sequence = parse(proto)
return sequence['embedding'], sequence['speechact']
def parse_length(proto):
context, _ = parse(proto)
return context['length']
def dataset_shape(fp_split):
d = tf.data.TFRecordDataset(str(fp_split.absolute()), num_parallel_reads=4)
d = d.map(parse_length)
n = d.make_one_shot_iterator().get_next()
num = 0
with tf.Session() as sess:
while True:
try:
num += sess.run(n)
except tf.errors.OutOfRangeError:
break
except tf.errors.DataLossError:
print("WARNING: DataLossError encountered. Would not read further.")
break
return num
def get_dataset(fp_split, batchsize=128):
dataset = tf.data.TFRecordDataset(str(fp_split.absolute()))
dataset = dataset.map(parse_embedding_labels)
dataset = dataset.apply(tf.data.experimental.unbatch())
dataset = dataset.batch(batchsize)
dataset = dataset.prefetch(buffer_size=batchsize*8)
return dataset